JP6524500B2 - Alloys and dental prostheses for baking dental porcelain excellent in oxidation resistance - Google Patents

Alloys and dental prostheses for baking dental porcelain excellent in oxidation resistance Download PDF

Info

Publication number
JP6524500B2
JP6524500B2 JP2014137775A JP2014137775A JP6524500B2 JP 6524500 B2 JP6524500 B2 JP 6524500B2 JP 2014137775 A JP2014137775 A JP 2014137775A JP 2014137775 A JP2014137775 A JP 2014137775A JP 6524500 B2 JP6524500 B2 JP 6524500B2
Authority
JP
Japan
Prior art keywords
alloy
less
dental
content
baking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014137775A
Other languages
Japanese (ja)
Other versions
JP2016014182A (en
Inventor
千葉 晶彦
晶彦 千葉
謙太 山中
謙太 山中
浩二 倉本
浩二 倉本
敬大 石水
敬大 石水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eiwa
Tohoku University NUC
Kyocera Corp
Original Assignee
Eiwa
Tohoku University NUC
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eiwa, Tohoku University NUC, Kyocera Corp filed Critical Eiwa
Priority to JP2014137775A priority Critical patent/JP6524500B2/en
Publication of JP2016014182A publication Critical patent/JP2016014182A/en
Application granted granted Critical
Publication of JP6524500B2 publication Critical patent/JP6524500B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Dental Preparations (AREA)
  • Dental Prosthetics (AREA)

Description

本発明は、耐酸化性に優れた歯科陶材焼付用合金および歯科補綴物に関する。   TECHNICAL FIELD The present invention relates to an alloy for dental porcelain baking and a dental prosthesis excellent in oxidation resistance.

クラウン、インレー、ブリッジ等の歯科補綴物を構成する歯科用合金として、Co−Cr−W合金やCo−Cr−W−Mo合金等のCo−Cr基合金が知られている。前記歯科補綴物の審美性を向上させるため、上記合金からなるフレームの表面に、ペースト状にした陶材原料粉末を塗布し焼成することによって歯科陶材を形成する。これにより天然歯に近い色調の歯科補綴物が得られる。上記歯科陶材の焼成(焼き付けともいう)は、通常、大気中にて約900〜1000℃の高温で行われる。この工程を、陶材の種類を変えて繰り返し数回行うことによって、上記天然歯に近い色調の歯科補綴物が完成する。   Co-Cr-based alloys such as Co-Cr-W alloys and Co-Cr-W-Mo alloys are known as dental alloys that constitute dental prostheses such as crowns, inlays, and bridges. In order to improve the aesthetics of the dental prosthesis, a dental porcelain is formed by applying and firing a paste-like porcelain raw material powder on the surface of the frame made of the above-mentioned alloy. As a result, a dental prosthesis having a color close to that of natural teeth can be obtained. The baking (also referred to as baking) of the dental porcelain is usually performed at a high temperature of about 900 to 1000 ° C. in the atmosphere. By repeating this process several times by changing the type of porcelain, a dental prosthesis having a color close to that of the natural tooth is completed.

歯科用合金として古くから使用されている金合金は、その熱膨張係数が上記陶材の熱膨張係数に近いため、上記焼成後も陶材が良好に形成される。上記Co−Cr基合金も、上記金合金とほぼ同等の熱膨張係数を有しているため、上記陶材の熱膨張係数に近づけることが可能である。   Since the thermal expansion coefficient of a gold alloy, which has long been used as a dental alloy, is close to the thermal expansion coefficient of the above-mentioned porcelain, the porcelain is well formed even after the above-mentioned firing. Since the said Co-Cr base alloy also has a thermal expansion coefficient substantially equivalent to the said gold alloy, it is possible to closely approach the thermal expansion coefficient of the said porcelain.

例えば特許文献1には、金属表面に形成されるセラミックの熱膨張係数との差を縮小させた合金として、重量%で0〜0.4の炭素、0.1〜5.0のけい素、0.01〜8.0のマンガン、25〜35のクロム、1.0〜8.0のモリブデン、0.1〜5.0のニオブ、0〜0.3のニッケル、0〜1.0の鉄、残部コバルト、および製造上生ずる不純物を含む合金が示されている。また特許文献2には、ニッケルなどの発癌性のリスクのある元素や、毒性データ未知の元素や、チタンなどの大気中での融解で酸化しやすい元素を含まないで、歯科用セラミックスを支えるのに十分な伸びと適当な硬さと熱膨張係数を有し、レーザ焼結による修復物製作にも適用できる歯科用合金材料が示されている。該歯科用合金材料として、クロム(Cr):22.7〜26.7重量%、モリブデン(Mo):5.5〜7.5重量%、タングステン(W):4.0〜6.0重量%、鉄(Fe):0.4〜0.6重量%、ケイ素(Si):1.0〜2.0重量%、マンガン(Mn):0.2〜0.4重量%、炭素(C):0.08〜0.12重量%、残部コバルト(Co)及び微量の不可避不純物からなる歯科用合金材料が示されている。また特許文献3には、Cr:25〜32質量%、W:8〜12質量%、周期表の第4a族の元素および/または第5a族元素:0.05〜0.4質量%を含み、残部がCoおよび不可避不純物からなる破壊強度と硬度の改善された歯科用鋳造合金が示されている。これらCo−Cr基合金は、近年の金価格の高騰等による金合金の代替品として注目されている。   For example, in Patent Document 1, 0 to 0.4 carbon by weight, 0.1 to 5.0 silicon by weight, as an alloy in which the difference with the thermal expansion coefficient of the ceramic formed on the metal surface is reduced. 0.01-8.0 manganese, 25-35 chromium, 1.0-8.0 molybdenum, 0.1-5.0 niobium, 0-0.3 nickel, 0-1.0 An alloy is shown containing iron, the balance cobalt, and impurities resulting from manufacturing. In addition, Patent Document 2 supports dental ceramics without containing an element at risk of carcinogenicity such as nickel, an element whose toxicity data is unknown, and an element which is easily oxidized by melting in the atmosphere such as titanium. A dental alloy material is shown which has sufficient elongation, a suitable hardness and a coefficient of thermal expansion and is also applicable to the fabrication of restorations by laser sintering. As the dental alloy material, chromium (Cr): 22.7 to 26.7% by weight, molybdenum (Mo): 5.5 to 7.5% by weight, tungsten (W): 4.0 to 6.0 weight %, Iron (Fe): 0.4 to 0.6% by weight, silicon (Si): 1.0 to 2.0% by weight, manganese (Mn): 0.2 to 0.4% by weight, carbon (C ): A dental alloy material is shown consisting of 0.08 to 0.12% by weight, the balance cobalt (Co) and traces of unavoidable impurities. Further, Patent Document 3 includes Cr: 25 to 32% by mass, W: 8 to 12% by mass, an element of Group 4a of the periodic table and / or an element of Group 5a: 0.05 to 0.4% by mass. A dental casting alloy with improved fracture strength and hardness, the remainder being Co and unavoidable impurities, is shown. These Co-Cr based alloys are attracting attention as substitutes for gold alloys due to the recent increase in gold price and the like.

しかし上記Co−Cr基合金の場合、上記高温での焼き付けを行うと、歯科陶材で被覆されていない金属露出部分、フレームにおける例えば歯科用アバットメント等との嵌合部の酸化が進み、黒色の酸化層が形成される。よって、該酸化層を研磨やブラスト等で除去する後加工が必要である。しかしこの後加工を行うと、酸化層除去部分の形状が変化する場合がある。該形状が変化すると、上記アバットメントとの組み合わせ面等の様に高い寸法精度が要求される部位において、形状の不一致、つまり形状適合性の低下が生じうる。一方、上記後加工を行わない場合には、酸化層の脱落等による不具合が懸念される。また上記酸化層は黒色であるため、審美性向上の観点から、上記焼成後も色調が薄く金属色により近いことが求められる。   However, in the case of the above-mentioned Co-Cr base alloy, when baking at the above-mentioned high temperature, oxidation of the metal exposed part which is not covered with dental porcelain, the fitting part in the frame with dental abutment etc. advances, Oxide layer is formed. Therefore, post-processing is required to remove the oxide layer by polishing or blasting. However, when this post-processing is performed, the shape of the oxide layer removed portion may change. When the shape changes, shape mismatch, that is, a decrease in shape compatibility may occur at a portion where high dimensional accuracy is required, such as a combination surface with the abutment. On the other hand, when the above-mentioned post-processing is not performed, there is a concern about a defect due to the dropping of the oxide layer or the like. In addition, since the oxide layer is black, it is required that the color tone be thin even after the baking and be closer to a metallic color from the viewpoint of improving the aesthetics.

よって、上記Co−Cr基合金には、上記焼成による酸化層の形成が極力抑制されること、つまり優れた耐酸化性が要求される。またCo−Cr基合金には、歯科補綴物に要求される強度等の引張特性が要求されると共に、ディスク製造過程で要求される熱間鍛造性も備わっていることが求められる。   Therefore, the Co-Cr-based alloy is required to suppress the formation of the oxide layer by the baking as much as possible, that is, to have excellent oxidation resistance. In addition to the tensile properties such as strength required for dental prostheses, the Co-Cr base alloy is also required to have the hot forgeability required in the disc manufacturing process.

特表昭61−501784号公報JP-A-61-501784 特開2010−275218号公報JP, 2010-275218, A 米国特許出願公開第2005/0232806号明細書U.S. Patent Application Publication No. 2005/0232806

本発明は上記の様な事情に着目してなされたものであって、その目的は、歯科陶材焼付用のCo−Cr基合金であって、良好な強度等の引張特性と熱間鍛造性が備わっていると共に、陶材焼成による酸化を極力抑制することのできる、つまり耐酸化性に優れた歯科陶材焼付用合金を提供することにある。更には、該歯科陶材焼付用合金を用いて得られる歯科補綴物の提供も目的とする。   The present invention has been made focusing on the above circumstances, and the object thereof is a Co-Cr base alloy for baking a dental porcelain, which has tensile properties such as good strength and hot forgeability. It is an object of the present invention to provide a dental porcelain baking alloy which is capable of suppressing oxidation due to porcelain firing as much as possible, that is, excellent in oxidation resistance. Furthermore, another object of the present invention is to provide a dental prosthesis obtained by using the dental porcelain baking alloy.

上記課題を解決し得た本発明の歯科陶材焼付用合金は、Crを20%以上40%以下(%は質量%の意味。化学成分について以下同じ)と、周期表の第6族元素を合計で5%以上20%以下と、周期表の第14族元素を合計で0%超3%以下と、B(ホウ素)を0.005%以上0.110%以下とを含み、残部がCoおよび不可避不純物からなる点に特徴を有する。   The alloy for baking dental porcelain according to the present invention, which has solved the above problems, contains 20% or more and 40% or less of Cr (% means mass%. The same applies to chemical components hereinafter) and the Group 6 element of the periodic table. It contains 5% to 20% in total, 0% to 3% in total of Group 14 elements in the periodic table, B (boron) in 0.005% to 0.110%, and the balance is Co And the inevitable impurities.

本発明の好ましい実施形態において、前記歯科陶材焼付用合金は、前記第6族元素として、WおよびMoよりなる群から選択される1種以上の元素を含む。   In a preferred embodiment of the present invention, the dental porcelain baking alloy contains, as the group 6 element, one or more elements selected from the group consisting of W and Mo.

本発明の好ましい実施形態において、前記歯科陶材焼付用合金は、前記第14族元素として、Si:0.5%以上3%未満、およびC(炭素):0.01%以上0.4%以下よりなる群から選択される1種以上の元素を含む。   In a preferred embodiment of the present invention, the dental porcelain baking alloy contains Si: 0.5% or more and less than 3% and C (carbon): 0.01% or more and 0.4% as the group 14 element. It contains one or more elements selected from the group consisting of:

本発明の好ましい実施形態において、前記歯科陶材焼付用合金は、大気雰囲気中にて1000℃で15分間熱処理を行った後の合金表面の色調が金属光沢を有する。   In a preferred embodiment of the present invention, the dental porcelain baking alloy has metallic gloss in the color tone of the alloy surface after heat treatment at 1000 ° C. for 15 minutes in an air atmosphere.

本発明の好ましい実施形態において、前記歯科陶材焼付用合金は、大気雰囲気中にて1000℃で15分間熱処理を行った後の合金表面に形成される酸化層の厚さが、850nm未満である。   In a preferred embodiment of the present invention, the dental porcelain baking alloy has a thickness of less than 850 nm of an oxide layer formed on the alloy surface after heat treatment at 1000 ° C. for 15 minutes in an air atmosphere. .

本発明には、前記歯科陶材焼付用合金を用いて得られる歯科補綴物も含まれる。   The present invention also includes dental prostheses obtained using the above-mentioned dental porcelain baking alloy.

本発明によれば、歯科陶材を高温で焼き付けた後も、金属露出部分は酸化が抑制されているため、色調が金属光沢を有し、かつ酸化層を研磨やブラスト等で除去する後加工の省略や簡略化が可能である。更に本発明の歯科陶材焼付用合金は、歯科補綴物に必要な強度を有し、かつ歯科補綴物の製造工程において熱間鍛造を良好に行うことができる。   According to the present invention, even after the dental porcelain is baked at high temperature, oxidation is suppressed in the exposed metal portion, so that the color tone has metallic luster, and the post-processing is performed to remove the oxide layer by polishing or blasting etc. It is possible to omit or simplify the Furthermore, the dental porcelain baking alloy of the present invention has the strength necessary for a dental prosthesis, and can perform hot forging well in the manufacturing process of the dental prosthesis.

図1は、実施例における各試料の表面のSEM(Scanning Electron Microscope)顕微鏡観察写真である。FIG. 1 is a SEM (Scanning Electron Microscope) microscopic photograph of the surface of each sample in the example. 図2は、試料No.8で認められた化合物のEPMA(Electron Probe MicroAnalyser)元素マッピング結果である。FIG. 2 shows the result of EPMA (Electron Probe MicroAnalyzer) element mapping of the compound recognized in sample No. 8. 図3は、実施例におけるXPS(X−ray Photoelectron Spectroscopy)測定例を示す図である。FIG. 3 is a view showing an example of XPS (X-ray Photoelectron Spectroscopy) measurement in the embodiment. 図4は、B含有量と、大気雰囲気中にて1000℃で15分間熱処理を行った後の合金表面に形成される酸化層の厚さとの関係を示す図である。FIG. 4 is a view showing the relationship between the B content and the thickness of the oxide layer formed on the alloy surface after heat treatment at 1000 ° C. for 15 minutes in the air atmosphere. 図5Aは、B含有量と、引張強度および0.2%耐力との関係を示す図である。FIG. 5A is a view showing the relationship between the B content and the tensile strength and the 0.2% proof stress. 図5Bは、B含有量と伸びとの関係を示す図である。FIG. 5B is a view showing the relationship between the B content and the elongation.

本発明者らは、前記課題を解決するにあたり、大気中での高温焼成において酸化され難いCo−Cr基合金とすればよいのでは、との思想のもと鋭意研究を重ねた。その結果、Co−Cr基合金に含まれる合金元素として、特にBを0.005%以上0.110%以下の範囲内で含有させればよいことを見出した。以下、本発明の歯科陶材焼付用合金について述べる。   In order to solve the above-mentioned problems, the inventors of the present invention have conducted intensive studies under the concept of using a Co-Cr-based alloy that is not easily oxidized during high-temperature firing in the atmosphere. As a result, it has been found that particularly B may be contained in the range of 0.005% or more and 0.110% or less as an alloy element contained in the Co—Cr base alloy. Hereinafter, the dental porcelain baking alloy of the present invention will be described.

本発明の歯科陶材焼付用合金は、Cr:20%以上40%以下と、周期表の第6族元素を合計で5%以上20%以下と、周期表の第14族元素を合計で0%超3%以下と、Bを0.005%以上0.110%以下とを含み、残部がCoおよび不可避不純物からなる。本発明の歯科陶材焼付用合金は、後述するCr、周期表の第6族元素および第14族元素を含むことを前提に、上述の通り、規定量のBを含有させる点に特徴を有する。以下、まずB含有量を規定した理由から説明する。   In the dental porcelain baking alloy of the present invention, Cr: 20% or more and 40% or less, 5% or more and 6% or less of the group 6 elements in the periodic table, and 0 or less in total of the group 14 elements in the periodic table More than% and 3% or less, B is contained in 0.005% or more and 0.110% or less, and the balance is made of Co and unavoidable impurities. The dental porcelain baking alloy of the present invention is characterized in that it contains B in a specified amount as described above, on the premise that it contains Cr, which will be described later, and the elements of Group 6 and Group 14 of the periodic table. . Hereinafter, it demonstrates from the reason which prescribed | regulated B content first.

[B:0.005%以上0.110%以下]
合金元素としてBを含有させることにより、酸化層の形成が十分に抑制され、色調がより薄く金属色に近づく。この様なBの耐酸化性向上の効果は、後記の実施例で述べる通り、酸化層内にBの濃縮領域が形成され、これが、酸化層の成長を抑制しているためと考えられる。本発明では、このBの効果を発揮させるため、B含有量を0.005%以上とする。B含有量は、好ましくは0.02%以上、より好ましくは0.03%以上、更に好ましくは0.05%以上、より更に好ましくは0.075%以上である。一方、B含有量が過剰になると、ホウ化物が形成され、引張強度が低下すると共に伸びも低下し、更には熱間鍛造時に割れが生じ易くなる。またB含有量が過剰になり、ホウ化物が形成されて、合金中に固溶状態で存在していたBが少なくなると、酸化層が形成されやすくなる。よってB含有量は0.110%以下とする。B含有量は、好ましくは0.10%以下である。
[B: 0.005% or more and 0.110% or less]
By containing B as an alloying element, the formation of the oxide layer is sufficiently suppressed, and the color tone becomes thinner and approaches metal color. Such an effect of improving the oxidation resistance of B is considered to be due to the formation of a concentrated region of B in the oxide layer, which suppresses the growth of the oxide layer, as described in the examples below. In the present invention, in order to exert the effect of B, the B content is made 0.005% or more. The B content is preferably 0.02% or more, more preferably 0.03% or more, still more preferably 0.05% or more, and still more preferably 0.075% or more. On the other hand, when the B content is excessive, borides are formed, the tensile strength is reduced and the elongation is also reduced, and furthermore, cracking tends to occur during hot forging. In addition, when the B content is excessive, borides are formed, and the amount of B present in the solid solution state in the alloy decreases, an oxide layer is easily formed. Therefore, the B content is 0.110% or less. The B content is preferably 0.10% or less.

尚、Co−Cr基合金へBを4質量%程度添加させた技術としてロウ材への応用例がある。しかしこれは、Co−Cr基合金の融点を低下させる目的でBを添加しており、本発明とは課題、用途およびB含有量のいずれもが異なる技術である。   In addition, there exists an application example to a brazing material as a technique which added about 4 mass% B to Co-Cr base alloy. However, this adds B for the purpose of lowering the melting point of the Co-Cr base alloy, and the present invention is a technology which is different from the present invention in all of the problem, the application and the B content.

図1は、後述する実施例で製造した各Co−Cr基合金のSEM顕微鏡観察写真である。各写真に付しているNo.は後述する実施例の試料No.である。図1のNo.8の写真では化合物(析出物)を矢印で示している。更にこの試料No.8で認められた化合物のEPMA元素マッピングを行った。該マッピングは、日本電子社製のX線マイクロアナライザー「JXA−8430F」を用い、加速電圧15kVで行った。その結果を図2に示す。尚、図2の視野は前記図1のSEM顕微鏡観察写真の視野とは異なる。この図2から、上記化合物は、主にCrとWとBの化合物であることがわかる。   FIG. 1 is a SEM micrograph of each of the Co-Cr based alloys manufactured in Examples described later. No. attached to each photo. Is the sample No. of the example described later. It is. No. 1 in FIG. The compound (precipitate) is shown by the arrow in the photograph of 8. Furthermore, this sample No. EPMA elemental mapping of the compound recognized in 8 was performed. The mapping was performed at an accelerating voltage of 15 kV using an X-ray microanalyzer "JXA-8430F" manufactured by JEOL. The results are shown in FIG. The field of view of FIG. 2 is different from the field of view of the SEM micrograph of FIG. From this FIG. 2, it can be seen that the above compound is mainly a compound of Cr, W and B.

試料No.8の様にB含有量が過剰になると、上記図1および上記図2の写真の通り粗大な化合物が析出し、この化合物により、上記引張特性や熱間鍛造性が低下すると考えられる。   Sample No. When the B content is excessive as shown in FIG. 8, coarse compounds are precipitated as shown in FIG. 1 and the photograph of FIG. 2 above, and it is considered that the tensile properties and the hot forgeability are lowered by this compound.

本発明のCo−Cr基合金は、上記量のBを含む点に特徴があるが、歯科補綴物としての強度確保等のためには、Cr、周期表の第6族元素および第14族元素をそれぞれ規定量含む必要がある。   The Co-Cr base alloy of the present invention is characterized in that it contains B in the above amount, but for securing the strength as a dental prosthesis, etc., Cr, the element of group 6 and the element 14 of the periodic table Each must be included in the specified amount.

[Cr:20%以上40%以下]
Crは、固溶強化と耐食性の確保に必要な元素であり、20%以上含有させる。Cr含有量は、好ましくは22.5%以上、より好ましくは25%以上である。一方、Cr含有量が多過ぎても、金属間化合物が形成され易くなり、強度の低下等が生じうるため、Cr含有量は40%以下とする。Cr含有量は、好ましくは35%以下、より好ましくは32.5%以下である。
[Cr: 20% or more and 40% or less]
Cr is an element necessary for solid solution strengthening and securing corrosion resistance, and is contained by 20% or more. The Cr content is preferably 22.5% or more, more preferably 25% or more. On the other hand, since an intermetallic compound is easily formed even if the Cr content is too large and the strength may be reduced, the Cr content is 40% or less. The Cr content is preferably 35% or less, more preferably 32.5% or less.

[周期表の第6族元素:合計で5%以上20%以下]
周期表の第6族元素も、上記Crと同様に固溶強化に寄与する。この第6族元素は、更に熱膨張係数の調整に寄与する元素でもある。これらの効果を発揮させるため、第6族元素を合計で5%以上含有させる。尚、この含有量は、第6族元素として1元素を含む場合は、単独量をいい、第6族元素として2以上の元素を含む場合は、該2以上の元素の合計量をいう。上記第6族元素の含有量は、好ましくは合計で6%以上、より好ましくは合計で7%以上である。一方、上記第6族元素が過剰に含まれると、金属間化合物が形成しやすくなる。よって、上記第6族元素の含有量は、合計で20%以下、好ましくは合計で15%以下、より好ましくは合計で10%以下とする。
[Group 6 elements of periodic table: 5% or more and 20% or less in total]
The Group 6 element in the periodic table also contributes to solid solution strengthening, as in the case of Cr described above. The Group 6 element is also an element that contributes to the adjustment of the thermal expansion coefficient. In order to exert these effects, the Group 6 element is contained in a total amount of 5% or more. The content refers to a single amount when one element is contained as a group 6 element, and refers to the total amount of the two or more elements when two or more elements are contained as a group 6 element. The total content of the group 6 elements is preferably 6% or more in total, more preferably 7% or more in total. On the other hand, if the above-mentioned Group 6 element is contained in excess, intermetallic compounds are easily formed. Therefore, the content of the group 6 element is 20% or less in total, preferably 15% or less in total, and more preferably 10% or less in total.

前記第6族元素として、好ましくはMoとWよりなる群から選択される1種以上の元素がよい。上記CrとWの含有量の比率を適宜調整することにより、市販の陶材に近い熱膨張係数を示す合金とすることができる。   The Group 6 element is preferably one or more elements selected from the group consisting of Mo and W. By appropriately adjusting the ratio of the content of Cr and W, an alloy exhibiting a thermal expansion coefficient close to that of a commercially available porcelain can be obtained.

[周期表の第14族元素:合計で0%超3%以下]
第14族元素は、酸化されやすい元素であるため、この第14族元素を含有させることによって、Co−Cr基合金の特にCrの酸化が抑制され、Co−Cr基合金の耐酸化性を高めることができる。更には、合金溶製時の溶湯の流動性向上にも寄与するため、良好な鋳造に必要な元素でもある。これらの観点から、周期表の第14族元素を合計で0%超3%以下含有させる。尚、この含有量は、第14族元素として1元素を含む場合は、単独量をいい、第14族元素として2以上の元素を含む場合は、該2以上の元素の合計量をいう。前記第14族元素として、SiおよびCよりなる群から選択される1種以上の元素が好ましい。特にはSiが好ましい。上記第14族元素の好ましい含有量は元素の種類による。以下では、SiとCの好ましい各含有量について述べる。
[Group 14 elements of periodic table: more than 0% and up to 3% in total]
Since the Group 14 element is an element susceptible to oxidation, the inclusion of the Group 14 element suppresses the oxidation of the Co-Cr-based alloy, particularly Cr, and enhances the oxidation resistance of the Co-Cr-based alloy. be able to. Furthermore, it is also an element necessary for good casting because it contributes to the improvement of the flowability of the molten metal at the time of alloy melting. From these points of view, the group 14 elements of the periodic table are contained in total of more than 0% and 3% or less. The content refers to a single amount when one element is included as a Group 14 element, and refers to the total amount of the two or more elements when two or more elements are included as a Group 14 element. The Group 14 element is preferably one or more elements selected from the group consisting of Si and C. In particular, Si is preferred. The preferable content of the above-mentioned Group 14 element depends on the kind of the element. Hereinafter, preferable contents of Si and C will be described.

上記Siを含有させる場合、Si含有量は0.5%以上3%未満であることが好ましい。該Si含有量の下限は、より好ましくは1.0%以上であり、更に好ましくは1.25%以上である。一方、Si含有量が過剰になると、良好な熱間鍛造性を確保し難くなるため、Si含有量は、3%未満とすることが好ましく、より好ましくは2%以下、更に好ましくは1.8%以下である。   When the above Si is contained, the Si content is preferably 0.5% or more and less than 3%. The lower limit of the Si content is more preferably 1.0% or more, still more preferably 1.25% or more. On the other hand, when the Si content is excessive, it is difficult to ensure good hot forgeability, so the Si content is preferably less than 3%, more preferably 2% or less, and still more preferably 1.8. % Or less.

上記Cを含有させる場合も、上記Siと同様の上下限規定理由から、C含有量は0.01%以上0.4%以下とすることが好ましい。該C含有量の下限は、より好ましくは0.015%以上、更に好ましくは0.020%以上である。また上記C含有量の上限は、より好ましくは0.35%以下であり、更に好ましくは0.30%以下である。尚、上記第6族元素としてWを含む場合であって、上記第14族元素としてCを用いる場合は、上記C含有量を上記範囲内において少なめとすることが好ましい。硬質であるタングステンカーバイドの形成により熱間鍛造性等が低下し易いからである。   When C is contained, the C content is preferably 0.01% or more and 0.4% or less because of the same upper and lower limit reasons as in the case of Si. The lower limit of the C content is more preferably 0.015% or more, and still more preferably 0.020% or more. The upper limit of the C content is more preferably 0.35% or less, and still more preferably 0.30% or less. In the case where W is contained as the above-mentioned Group 6 element and C is used as the above-mentioned Group 14 element, it is preferable to reduce the above-mentioned C content in the above-mentioned range. This is because the formation of hard tungsten carbide tends to lower the hot forgeability and the like.

本発明の歯科用合金は、上記元素を含み、残部がCoおよび不可避不純物からなる。不可避不純物として、Mn、Ga、Nb、N、Fe等を含みうる。 The dental alloy of the present invention contains the above-described elements, with the balance being Co and unavoidable impurities. As inevitable impurities, including Miuru Mn, Ga, Nb, N, and Fe and the like.

(歯科補綴物)
本発明には、上記歯科陶材焼付用合金を用いて得られる歯科補綴物、具体的には、陶材焼き付け前の合金フレームと、該合金フレームの表面に歯科陶材を焼き付け被覆して得られる陶材被覆物が含まれる。該歯科補綴物として、クラウン、インレー、オンレー、コーピング、デンチャー等が挙げられる。
(Dental prosthesis)
In the present invention, a dental prosthesis obtained by using the above-described dental porcelain baking alloy, specifically, an alloy frame before the porcelain baking and a surface obtained by baking the dental porcelain on the surface of the alloy frame are obtained. Ceramic coverings are included. Examples of the dental prosthesis include crowns, inlays, onlays, copings, dentures and the like.

(歯科陶材焼付用合金および歯科補綴物の製造方法)
本発明の歯科陶材焼付用合金の製造方法は特に限定されず、上記成分組成を満たすように溶製し、一般的に行われている方法で鋳造すればよい。
(Method for manufacturing dental porcelain baking alloy and dental prosthesis)
The method for producing the dental porcelain baking alloy of the present invention is not particularly limited, and the alloy may be melted so as to satisfy the above-mentioned component composition and may be cast by a generally practiced method.

また歯科補綴物として、上記合金フレームを製造するには次の方法が挙げられる。まず従来より行われている方法として精密鋳造が挙げられる。該方法では、溶融合金を鋳型に注入し鋳造して製造する。   Moreover, as a dental prosthesis, the following method may be mentioned to manufacture the above-mentioned alloy frame. First of all, precision casting is mentioned as a method conventionally used. In the method, a molten alloy is poured into a mold and cast to manufacture.

また近年では次の製造方法も挙げられる。鋳造によりインゴットを製造した後、鋳造欠陥の消失と強度向上を目的に熱間鍛造し、ディスクを作製する。該ディスクを用い、CAD/CAMシステムを活用し、ミリングまたは積層造形法(アディティブ・マニュファクチャリング)等を用いて複雑形状の合金フレームを製造する方法である。上記熱間鍛造は、例えば温度:1000〜1250℃、プレス圧:100〜10000tの条件で行うことが挙げられる。尚、後述する実施例では、サンプルサイズが小さいため、最大プレス圧125kgfのエアハンマーを用いている。   Moreover, the following manufacturing methods are also mentioned in recent years. After an ingot is manufactured by casting, it is hot forged to eliminate casting defects and improve strength, and a disc is manufactured. Using the disk, it is a method of manufacturing an alloy frame of a complicated shape using milling, additive manufacturing, etc., utilizing a CAD / CAM system. The hot forging may be performed, for example, under the conditions of a temperature of 1000 to 1250 ° C. and a pressing pressure of 100 to 10000 t. In the embodiment to be described later, since the sample size is small, an air hammer with a maximum press pressure of 125 kgf is used.

前記精密鋳造後や、前記インゴット製造後には、後述する実施例に示す通り、均質加熱処理を必要に応じて行ってもよい。   After the precision casting or after the ingot production, as shown in the examples to be described later, the homogeneous heat treatment may be performed as necessary.

上記合金フレームを用い、陶材焼き付けを行うが、その条件は一般的に行われている条件を採用すればよい。上記陶材も市販のものを使用することができる。焼成条件は、使用する陶材にもよるが、例えば大気雰囲気、温度:940〜960℃、時間:1〜2分とすることが挙げられる。尚、本発明では、熱処理後の酸化層の厚さや色調の評価のために、上記焼成条件よりも厳しい焼成条件として、1000℃で15分間の熱処理を実施している。   Porcelain baking is performed using the above-mentioned alloy frame, and the conditions may be those generally used. The said porcelain can also use a commercially available thing. Firing conditions depend on the porcelain to be used, but for example, atmospheric atmosphere, temperature: 940 to 960 ° C., time: 1 to 2 minutes can be mentioned. In the present invention, in order to evaluate the thickness and color tone of the oxide layer after heat treatment, heat treatment at 1000 ° C. for 15 minutes is performed as firing conditions more severe than the above-described firing conditions.

本発明の合金であれば、上記焼き付けを模擬して、大気雰囲気中にて1000℃で15分間熱処理を行った場合であっても酸化が抑制される。焼き付け前の合金表面の色調は金属光沢を呈している。本発明の合金は、上記の通り焼き付けによる酸化が抑制されるため、合金表面の色調は灰黒色に変化せず、金属光沢が維持される。本発明では、この様に熱処理前後の色調を金属光沢の有無で判断しており、色相は特に問わない。色相は、合金に含まれる合金元素の種類によって異なり、下記の実施例の様に緑色を呈する場合もあれば、ピンク色を呈する場合もある。   In the case of the alloy of the present invention, the above-mentioned baking is simulated, and oxidation is suppressed even when heat treatment is performed at 1000 ° C. for 15 minutes in the air atmosphere. The color tone of the alloy surface before baking exhibits metallic luster. In the alloy of the present invention, since the oxidation by baking is suppressed as described above, the color tone of the alloy surface does not change to gray black, and the metallic gloss is maintained. In the present invention, the color tone before and after heat treatment is thus judged by the presence or absence of metallic gloss, and the hue is not particularly limited. The hue varies depending on the type of alloying element contained in the alloy, and may exhibit a green color or a pink color as in the following examples.

また、本発明の合金は酸化が抑制されるため、上記熱処理を行った後の合金表面に形成される酸化層の厚さが850nm未満に抑えられる。上記酸化層の厚さは、好ましくは800nm以下、より好ましくは700nm以下、更に好ましくは650nm以下、より更に好ましくは600nm以下、特に好ましくは500nm以下である。   Further, the oxidation of the alloy of the present invention is suppressed, so that the thickness of the oxide layer formed on the alloy surface after the heat treatment is suppressed to less than 850 nm. The thickness of the oxide layer is preferably 800 nm or less, more preferably 700 nm or less, still more preferably 650 nm or less, still more preferably 600 nm or less, particularly preferably 500 nm or less.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。   EXAMPLES Hereinafter, the present invention will be more specifically described by way of examples. However, the present invention is of course not limited by the following examples, and appropriate modifications may be made as long as the present invention can be applied to the purpose. Of course, implementation is also possible, and all of them are included in the technical scope of the present invention.

表1に示す化学成分組成を有する8種類のCo−Cr基合金を作製した。なお、表1のNo.1、7および8は、B含有量が規定範囲外の比較例である。詳細には、高周波誘導溶解にて、表1に示す化学成分組成を満たす1kg、直径30mmのインゴットを溶製した。次いで真空中にて1200℃で6時間の均質加熱処理を施した。その後1150℃まで加熱してから、エアーハンマー(最大プレス圧125kgf)を用い、15mm角となるまで熱間鍛造し供試材を得た。   Eight Co-Cr based alloys having the chemical composition shown in Table 1 were produced. In addition, No. 1 of Table 1 1, 7 and 8 are comparative examples in which the B content is out of the specified range. Specifically, an ingot having a diameter of 30 mm and 1 kg satisfying the chemical composition shown in Table 1 was melted by high frequency induction melting. It was then subjected to homogeneous heat treatment at 1200 ° C. for 6 hours in vacuum. Thereafter, the sample was heated to 1150 ° C., and hot forged to a 15 mm square using an air hammer (maximum press pressure 125 kgf) to obtain a test material.

この熱間鍛造をクラックが発生することなく良好に行うことができた場合を熱間鍛造性が良好(OK)と評価し、熱間鍛造途中で割れが生じた場合を熱間鍛造性に劣る(NG)と評価した。その結果を下記表2に示す。   The hot forgeability is evaluated as good (OK) when the hot forging can be favorably performed without the occurrence of cracks, and the case where a crack occurs during the hot forging is inferior to the hot forgeability It was evaluated as (NG). The results are shown in Table 2 below.

更に上記供試材を用い、下記要領で引張試験の評価を行うと共に、下記要領で、陶材焼成を模擬した熱処理を行い耐酸化性と色調を評価した。   Furthermore, while using the said test material, while evaluating the tension test in the following way, the heat processing which simulated porcelain firing was performed in the following way, and oxidation resistance and color tone were evaluated.

(引張試験)
上記供試材を用い、評点間長さが10.5mm、評点部断面積が2mm×1mmの試験片を作製して引張試験を行い、0.2%耐力、引張強度および伸びを測定した。各試料No.につき上記試験片を少なくとも3個用意して測定を行い、その平均値を求めた。
(Tensile test)
Using the above-mentioned test material, a test piece having a length between marks of 10.5 mm and a cross-sectional area of a mark portion of 2 mm × 1 mm was prepared and subjected to a tensile test to measure 0.2% proof stress, tensile strength and elongation. Each sample No. At least three of the above test pieces were prepared and measured, and the average value was determined.

(熱処理後の酸化層の厚さと色調の評価)
上記供試材に対し、陶材焼成を模擬して、大気雰囲気にて1000℃で15分間の熱処理を行った。そして、この大気熱処理後の供試材表面に形成された酸化層の厚さを、XPSで測定した。詳細には、KRATOS AXIS Ultra DLDを使用し、単色化したAl Kα線を用いて測定した。分析範囲は300μm×700μmであり、アルゴンイオンにてスパッタしながらXPS測定を行い、得られた元素プロファイルから酸化層の厚さをSiO換算で求めた。
(Evaluation of oxide thickness and color after heat treatment)
The above-described sample material was subjected to heat treatment at 1000 ° C. for 15 minutes in the air atmosphere to simulate porcelain firing. Then, the thickness of the oxide layer formed on the surface of the test material after the atmospheric heat treatment was measured by XPS. In detail, it measured using KRATOS AXIS Ultra DLD and using the monochromatized Al K alpha ray. The analysis range is 300 μm × 700 μm, and XPS measurement is performed while sputtering with argon ions, and the thickness of the oxide layer is determined in terms of SiO 2 from the obtained element profile.

詳細には次の方法で酸化層の厚さを求めた。上記元素プロファイルから酸化層の厚さを求める方法を、図3に例示するXPS結果を用いて説明する。上記図3のXPSによる元素濃度分布測定において、両矢印で示す通り、表面から、Co濃度を示す破線(Co2p M)と酸素濃度を示す点線(O 1s)の交点までの深さを、酸化層の厚さと定義した。この酸化層の厚さが850nm未満の場合を合格とし、該酸化層の厚さが850nm以上の場合を不合格とした。   In detail, the thickness of the oxide layer was determined by the following method. The method of obtaining the thickness of the oxide layer from the above-mentioned element profile will be described using the XPS result illustrated in FIG. In the elemental concentration distribution measurement by XPS in FIG. 3 described above, the depth from the surface to the intersection point of the broken line (Co2pM) indicating the Co concentration and the dotted line (O1s) indicating the oxygen concentration is shown in FIG. It was defined as the thickness of The case where the thickness of the oxide layer was less than 850 nm was accepted, and the case where the thickness of the oxide layer was 850 nm or more was rejected.

また、上記大気熱処理後の供試材表面を目視で観察し、色調を評価した。本実施例では「金属光沢のある緑色」を合格とし、それ以外を不合格とした。   In addition, the surface of the test material after the atmospheric heat treatment was visually observed to evaluate the color tone. In this example, “metallic-lustrous green color” was accepted, and the others were rejected.

これらの結果を表2に示す。   The results are shown in Table 2.

上記表1および表2の結果を用い、B含有量と酸化層の厚さとの関係を整理した図を図4に示す。   The figure which arranged the relationship between B content and the thickness of an oxide layer using the result of said Table 1 and Table 2 is shown in FIG.

また、上記表1および表2の結果を用い、B含有量と0.2%耐力、引張強度との関係を整理した図を図5Aに示し、B含有量と伸びとの関係を整理した図を図5Bに示す。   Moreover, the figure which arranged the relationship between B content, 0.2% proof stress, and tensile strength using the result of said Table 1 and Table 2 is shown to FIG. 5A, and the figure which arranged the relationship between B content and elongation Is shown in FIG. 5B.

上記図3〜5から次のことがわかる。まず図4から、B含有量が0.005%を下回る場合は、大気熱処理後の酸化層が厚くなり、またB含有量が0.110%を超える場合も、酸化層の厚みが増大することがわかる。これに対しB含有量が、規定範囲内、即ち0.005%以上0.110%以下の範囲内にある場合は、酸化層の厚さが850nm未満に抑えられていることがわかる。   The following can be understood from FIGS. First, from FIG. 4, when the B content is less than 0.005%, the oxide layer after the atmospheric heat treatment becomes thicker, and when the B content exceeds 0.110%, the thickness of the oxide layer also increases. I understand. On the other hand, when the B content is in the specified range, that is, in the range of 0.005% to 0.110%, it can be seen that the thickness of the oxide layer is suppressed to less than 850 nm.

この図4から、酸化層をより薄く、例えば厚さ650nm以下とするにはB含有量の下限を0.01%以上とすることや、上限を0.10%以下とすることが好ましいことがわかる。また図4から、例えば580nm以下とするにはB含有量の下限を0.02%以上とすることが好ましく、例えば550nm以下とするにはB含有量の下限を0.03%以上とすることがより好ましいことがわかる。   From FIG. 4, in order to make the oxide layer thinner, for example, to have a thickness of 650 nm or less, it is preferable that the lower limit of the B content be 0.01% or more, and the upper limit be 0.10% or less. Recognize. Further, from FIG. 4, it is preferable to set the lower limit of B content to 0.02% or more, for example, to 580 nm or less, for example, to set the lower limit of B content to 0.03% or more, to be 550 nm or less. Is found to be more preferable.

尚、前記図3は、B量が規定範囲内の例であり、この図3の酸化層内において、B量を示すラインにやや起伏がみられる。これは、酸化層中にB濃縮領域が形成されていることを意味すると思われる。規定量のBを含有させることにより酸化層の厚みが薄くなる理由として、Bが酸化物と結びついて上記B濃縮領域が形成され、酸化物の成長が抑制されることが考えられる。   Note that FIG. 3 is an example in which the B amount is within the specified range, and in the oxide layer of FIG. 3, a slight unevenness is observed in the line indicating the B amount. This seems to mean that a B-enriched region is formed in the oxide layer. The reason why the thickness of the oxide layer is reduced by containing a specified amount of B is considered that B is combined with the oxide to form the B-enriched region, thereby suppressing the growth of the oxide.

次に、図5Aからは、B含有量が0.110%を超えると引張強度が低下しており、B含有量が約0.30%では引張強度が著しく低下していることがわかる。図5Aから、B含有量が0.110%以下である本発明例では、引張強度1200MPa以上、特には引張強度1300MPa以上を確保できることがわかる。また図5Aから、0.2%耐力はB含有量によらずほぼ一定であることがわかる。   Next, FIG. 5A shows that when the B content exceeds 0.110%, the tensile strength decreases, and when the B content is about 0.30%, the tensile strength decreases significantly. It can be seen from FIG. 5A that, in the example of the present invention in which the B content is 0.110% or less, a tensile strength of 1200 MPa or more, in particular, a tensile strength of 1300 MPa or more can be secured. Moreover, FIG. 5A shows that 0.2% proof stress is substantially constant irrespective of B content.

図5Bから、B含有量が0.110%を超えると伸びが急激に低下していることがわかる。B含有量が約0.30%では伸びが数%であり非常に小さくなっている。図5Bから、B含有量が0.110%以下である本発明例では、伸びが30%以上であり、B含有量が0.10%以下では伸びが40%以上、特には45%以上を達成できることがわかる。   It can be seen from FIG. 5B that when the B content exceeds 0.110%, the elongation sharply decreases. When the B content is about 0.30%, the elongation is a few% and is very small. From FIG. 5B, in the example of the present invention in which the B content is 0.110% or less, the elongation is 30% or more, and when the B content is 0.10% or less, the elongation is 40% or more, particularly 45% or more We see that we can achieve it.

表2に示す通りB含有量が0.110%を超える場合は、熱間鍛造時に割れも認められた。これに対し、B含有量が0.110%以下の場合は、熱間鍛造を良好に行うことができた。   As shown in Table 2, when the B content exceeds 0.110%, cracking was also observed during hot forging. On the other hand, when the B content was 0.110% or less, hot forging could be performed well.

また表2に示す通り、B含有量が不足しているNo.1では、上記大気熱処理により合金表面の色調が金属光沢を失い灰黒色に変化した。一方、B含有量が過剰であるNo.7やNo.8においても、上記大気熱処理後の合金表面は金属光沢のやや失われた色調となった。これに対し、規定量のBを含む場合には、大気熱処理後も金属光沢が維持された。   In addition, as shown in Table 2, the No. 1 in which the B content is insufficient. In the case of No. 1, the color tone of the alloy surface loses metallic luster due to the above-mentioned atmospheric heat treatment and changed to gray black. On the other hand, No. 1 in which the B content is excessive. 7 and No. Even in the case of No. 8, the alloy surface after the atmospheric heat treatment had a color tone with a slight loss of metallic gloss. On the other hand, when the specified amount of B was contained, the metallic gloss was maintained even after the atmospheric heat treatment.

以上の結果から、No.2〜6の通り、特に規定量のBを含む場合には、良好な引張特性と熱間鍛造性を示すと共に、1000℃×15分間の大気熱処理後も色調は金属光沢を維持し、かつ大気熱処理後の酸化層形成も抑えられることがわかる。   From the above results, no. As described in 2 to 6, particularly when the specified amount of B is contained, the film exhibits good tensile properties and hot forgeability, and the color tone maintains metallic gloss even after atmospheric heat treatment at 1000 ° C. for 15 minutes, and It can be seen that the formation of an oxide layer after heat treatment can also be suppressed.

またこの実施例から、Co−Cr基合金の合金元素として、特に第14族元素と共に規定量のBを含有させることにより、高温で焼き付け後に形成される酸化層の厚さが格段に減少しており、酸化層の削除といった後加工を簡略または省略しても、高い審美性および他部品との高い形状適合性が得られうることがわかる。   In addition, according to this example, the thickness of the oxide layer formed after baking at a high temperature is remarkably reduced by containing a specified amount of B as an alloy element of a Co-Cr base alloy, especially with a Group 14 element. Also, it is understood that high aesthetics and high form compatibility with other parts can be obtained even if post processing such as removal of the oxide layer is simplified or omitted.

Claims (6)

Crを22.5%以上35%以下(%は質量%の意味。化学成分について以下同じ)と、
Wを5%以上15%以下と、
Siを0.5%以上3%未満と、
Cを0.01%以上0.4%以下と、
B(ホウ素)を0.005%以上0.085%以下とを含み、
残部がCoおよび不可避不純物からなることを特徴とする耐酸化性に優れた歯科陶材焼付用合金。
22.5% or more and 35% or less of Cr (% means mass%. The same applies to chemical components hereinafter),
W is 5 % or more and 15% or less,
0.5% or more and less than 3% of Si,
0.01% or more and 0.4% or less of C,
B (boron) is included at 0.005% or more and 0.085% or less,
An oxidation-resistant dental porcelain baking alloy characterized in that the balance is made of Co and unavoidable impurities.
大気雰囲気中にて1000℃で15分間熱処理を行った後の合金表面の色調は金属光沢を有する請求項1に記載の歯科陶材焼付用合金。   The dental porcelain baking alloy according to claim 1, wherein the color tone of the alloy surface after heat treatment at 1000 ° C for 15 minutes in an air atmosphere has metallic luster. 大気雰囲気中にて1000℃で15分間熱処理を行った後の合金表面に形成される酸化層の厚さが、850nm未満である請求項1または2に記載の歯科陶材焼付用合金。   The dental porcelain baking alloy according to claim 1 or 2, wherein the thickness of the oxide layer formed on the alloy surface after heat treatment at 1000 ° C for 15 minutes in an air atmosphere is less than 850 nm. 請求項1〜3のいずれかに記載の合金を用いた歯科陶材焼付用熱間鍛造材。   The hot forging material for dental porcelain baking using the alloy in any one of Claims 1-3. 前記熱間鍛造材は引張強度が1200MPa以上、伸びが30%以上である請求項4に記載の歯科陶材焼付用熱間鍛造材。   The hot forging material for dental porcelain baking according to claim 4, wherein the hot forging material has a tensile strength of 1200 MPa or more and an elongation of 30% or more. 請求項1〜3のいずれかに記載の歯科陶材焼付用合金、または請求項4または5のいずれかに記載の歯科陶材焼付用熱間鍛造材を用いた歯科補綴物。   The dental prosthesis using the dental porcelain baking alloy according to any one of claims 1 to 3 or the hot forging material for dental porcelain baking according to any one of claims 4 or 5.
JP2014137775A 2014-07-03 2014-07-03 Alloys and dental prostheses for baking dental porcelain excellent in oxidation resistance Active JP6524500B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014137775A JP6524500B2 (en) 2014-07-03 2014-07-03 Alloys and dental prostheses for baking dental porcelain excellent in oxidation resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014137775A JP6524500B2 (en) 2014-07-03 2014-07-03 Alloys and dental prostheses for baking dental porcelain excellent in oxidation resistance

Publications (2)

Publication Number Publication Date
JP2016014182A JP2016014182A (en) 2016-01-28
JP6524500B2 true JP6524500B2 (en) 2019-06-05

Family

ID=55230601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014137775A Active JP6524500B2 (en) 2014-07-03 2014-07-03 Alloys and dental prostheses for baking dental porcelain excellent in oxidation resistance

Country Status (1)

Country Link
JP (1) JP6524500B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116586635B (en) * 2023-05-17 2024-01-19 成都科宁达科技有限公司 Method for improving bonding performance of TC4 titanium alloy gold porcelain through selective laser cladding

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090058565A (en) * 2006-09-15 2009-06-09 이보클라 비바덴트 아게 Palladium-cobalt based alloys and dental articles including the same
JP6497689B2 (en) * 2012-09-14 2019-04-10 国立大学法人東北大学 Co-Cr-W base alloy hot-worked material, annealed material, cast material, homogenized heat treatment material, Co-Cr-W-based alloy hot-worked material manufacturing method, and annealed material manufacturing method

Also Published As

Publication number Publication date
JP2016014182A (en) 2016-01-28

Similar Documents

Publication Publication Date Title
KR20180040513A (en) Ni-based superalloy powder for lamination molding
JP6646885B2 (en) Manufacturing method of hot forging dies and forged products
WO2019106922A1 (en) Ni-BASED ALLOY FOR HOT-WORKING DIE, AND HOT-FORGING DIE USING SAME
US10751446B2 (en) Use of a precipitation-hardening or solid-solution-strengthening, biocompatible cobalt-based alloy and method for producing implants or prostheses by means of material-removing machining
JP6108260B1 (en) Mold for hot forging, method for producing forged product using the same, and method for producing hot forging die
JP6524500B2 (en) Alloys and dental prostheses for baking dental porcelain excellent in oxidation resistance
JP2010105022A (en) Surface-modified steel and precision casting method for casting having modified surface
KR101634132B1 (en) A method for preparing molding material for dental prosthesis
JP5060077B2 (en) Gold alloy for casting
JP2010275218A (en) Dental alloy material and production method thereof
KR101814631B1 (en) NiCKEL-CHROMIUM-COBALT BASE ALLOYS SHOWING AN EXCELLENT COMBINATION OF BONDING CHARACTER
KR101753094B1 (en) Co-Cr BASED DENTAL ALLOY WITH EXCELLENT MACHINABILITY, OXIDATION RESISTANCE AND AESTHETICS
KR101345332B1 (en) Ni-cr-co dental alloys having an excellent bond strength between the porcelain and the metal
US20120207645A1 (en) Dental alloy for machining by cad/cam system
CA1227954A (en) Dental prostheses alloy
KR101703255B1 (en) Cobalt chromium alloy metal block for dental CAD/CAM and its manufacturing method
JPS58110633A (en) Dental alloy
KR20220118148A (en) Cobalt-based dental alloy capable of manufacturing ceramic parts and dentures and manufacturing method thereof
JP5753683B2 (en) Dental alloy
JP5019600B2 (en) Gold alloy for casting
RU2284363C1 (en) Nickel-base alloy for ceramic-mimic stomatological articles
RU2009243C1 (en) Nickel-base alloy for denture frames having ceramic lining
RU2277602C1 (en) Casting alloy for stomatology
KR20200068910A (en) Metal Alloy For Dental Use
JP2013017803A (en) Palladium-cobalt based alloy

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20170607

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190111

TRDD Decision of grant or rejection written
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20190225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190225

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190416

R150 Certificate of patent or registration of utility model

Ref document number: 6524500

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250