JP6521824B2 - Energy supply system - Google Patents

Energy supply system Download PDF

Info

Publication number
JP6521824B2
JP6521824B2 JP2015198924A JP2015198924A JP6521824B2 JP 6521824 B2 JP6521824 B2 JP 6521824B2 JP 2015198924 A JP2015198924 A JP 2015198924A JP 2015198924 A JP2015198924 A JP 2015198924A JP 6521824 B2 JP6521824 B2 JP 6521824B2
Authority
JP
Japan
Prior art keywords
pressure
fuel gas
gas
power generation
reforming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015198924A
Other languages
Japanese (ja)
Other versions
JP2017022079A (en
Inventor
和秀 指原
和秀 指原
幸嗣 桝本
幸嗣 桝本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Publication of JP2017022079A publication Critical patent/JP2017022079A/en
Application granted granted Critical
Publication of JP6521824B2 publication Critical patent/JP6521824B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

本発明は、燃料ガスの通流量が設定判定量以下となる状態が設定継続時間に亘って継続する燃料ガス非消費状態が漏洩判定用期間の間に生じないときには、警報作動する又は燃料ガスの供給を遮断するマイコンメータと、当該マイコンメータを経由した燃料ガスを用いて発電する発電部を備えるエネルギ供給部と、当該エネルギ供給部の運転を制御する運転制御部とが設けられ、
前記発電部が、燃料ガスを水蒸気改質処理により水素ガスを生成する改質処理装置と、生成された水素ガスが供給される燃料電池とを備える形態に構成され、
前記運転制御部が、
前記発電部を停止する際には、前記改質処理装置の内部に前記マイコンメータを経由した燃料ガスを設定適正圧に充填して封止する充填処理を実行し、その後、燃料ガスの充填圧が下限充填圧に低下すると、前記設定適正圧に燃料ガスを補充する保圧処理を実行する停止保管処理を行うように構成され、且つ、
前記漏洩判定用期間が経過する前に、前記発電部の運転を設定解除条件が満たされるまで停止する漏洩判定回避用停止処理を実行するように構成されているエネルギ供給システムに関する。
According to the present invention, when the fuel gas non-consumption state in which the state in which the flow rate of the fuel gas becomes equal to or less than the set determination amount continues for the set duration time does not occur during the leak determination period, An energy supply unit including a microcomputer meter that shuts off supply, a power generation unit that generates electric power using fuel gas that passes through the microcomputer meter, and an operation control unit that controls the operation of the energy supply unit;
The power generation unit is configured to include a reforming processing device that generates hydrogen gas by steam reforming the fuel gas, and a fuel cell to which the generated hydrogen gas is supplied.
The operation control unit
When stopping the power generation unit, a filling process is performed to fill the inside of the reforming processing apparatus with the fuel gas having passed through the microcomputer meter to a set appropriate pressure and seal the fuel gas, and thereafter, the filling pressure of the fuel gas When the pressure drops to the lower limit filling pressure, it is configured to perform stop storage processing for performing pressure holding processing for replenishing the fuel gas to the set appropriate pressure, and
The present invention relates to an energy supply system configured to execute a leakage determination avoidance stop process for stopping the operation of the power generation unit until a setting cancellation condition is satisfied before the leakage determination period has elapsed.

かかるエネルギ供給システムは、例えば、一般家庭に設置されて、一般家庭で消費する電力を供給することになる。ちなみに、エネルギ供給部としては、発電部のみを備えた電力供給部として構成されるものや、発電部に加えて、発電部の排熱を回収した湯水を貯湯する貯湯タンクを有する熱源部を備えた熱電併給部として構成されるものがある。   Such an energy supply system is installed, for example, in a general household to supply power consumed by the general household. Incidentally, the energy supply unit includes a heat source unit having a hot water tank for storing hot and cold water from which the exhaust heat of the power generation unit has been recovered, in addition to the power supply unit configured as a power supply unit having only the power generation unit. There is one that is configured as a cogeneration unit.

また、かかるエネルギ供給システムは、改質処理装置と燃料電池とによって発電部を構成する場合において、発電部を停止する際には停止保管処理を行うことによって、改質処理装置の内部に外気が侵入して、改質処理装置が備える各種の触媒が劣化することを回避できるようにしたものである。   In addition, in the case where the energy supply system configures a power generation unit by the reforming processing device and the fuel cell, outside air is stored inside the reforming processing device by performing stop storage processing when stopping the power generation unit. It is made to be able to avoid that it invades and the various catalysts with which a reforming treatment device is equipped deteriorate.

また、運転制御部が、漏洩判定用期間が経過する前に、発電部の運転を設定解除条件が満たされるまで停止する漏洩判定回避用停止処理を実行することにより、マイコンメータが警報作動する又は燃料ガスの供給を遮断することを回避するようにしたものである。   In addition, the microcomputer controller performs an alarm operation by executing the leakage determination avoidance stop process in which the operation control unit stops the operation of the power generation unit until the setting cancellation condition is satisfied before the leakage determination period elapses. It is intended to avoid interrupting the supply of fuel gas.

つまり、発電部が漏洩判定用期間(例えば、30日)を超えて運転を継続すると、燃料ガスの通流量が設定判定量(例えば、1.0L/h)以下となる状態が設定継続時間(例えば、60分)に亘って継続する燃料ガス非消費状態が漏洩判定用期間の間に生じないため、マイコンメータが警報作動する又は燃料ガスの供給を遮断してしまうことになる。
ちなみに、マイコンメータによる警報作動としては、一般に、警報表示部(LED)を点滅作動させるように構成される。尚、警報表示部(LED)を点滅作動させることを継続すると、マイコンメータの電池が消費されて、電池容量が減少すると、マイコンメータが、燃料ガスの供給を遮断するように構成される。
That is, when the power generation unit continues the operation beyond the leakage determination period (for example, 30 days), the state where the flow rate of the fuel gas becomes equal to or less than the set determination amount (for example, 1.0 L / h) For example, since the fuel gas non-consumption state which continues over 60 minutes does not occur during the leak determination period, the microcomputer meter operates the alarm or shuts off the supply of the fuel gas.
Incidentally, as an alarm operation by the microcomputer meter, generally, an alarm display unit (LED) is operated to blink. When the alarm display unit (LED) continues to blink, the microcomputer meter battery is consumed, and when the battery capacity decreases, the microcomputer meter is configured to shut off the supply of the fuel gas.

マイコンメータが警報作動した場合には、例えば、通報を受けた作業員が、ガスの供給を遮断して、実際に燃料ガスが漏れていないか否かの点検を行わなければならない面倒があり、また、マイコンメータが燃料ガスの供給を遮断した場合には、マイコンメータを燃料ガスの供給状態に復旧する操作を行わなければならない面倒があるばかりでなく、燃料ガスの供給停止により停止した発電部を再起動するための面倒な処理を必要とするものとなるため、運転制御部が漏洩判定回避用停止処理を実行することにより、マイコンメータが燃料ガスの供給を遮断することを回避することになる(例えば、特許文献1、特許文献2参照。)。
尚、特許文献1及び特許文献2には、エネルギ供給部が、発電部及び熱源部を備えた熱電併給部として構成される場合が記載されている。
In the case where the microcomputer meter issues an alarm, for example, the worker who receives the notification has the trouble of shutting off the gas supply and checking whether the fuel gas actually leaks or not. In addition, when the microcomputer meter shuts off the fuel gas supply, not only there is a need to restore the microcomputer meter to the fuel gas supply state, but the power generation unit stopped by stopping the fuel gas supply. Since the operation control unit executes the leakage determination avoidance stop process to prevent the microcomputer meter from interrupting the supply of the fuel gas, it is necessary to perform complicated processes for restarting the engine. (See, for example, Patent Literature 1 and Patent Literature 2).
Patent Document 1 and Patent Document 2 describe the case where the energy supply unit is configured as a heat and power supply unit including a power generation unit and a heat source unit.

特許文献1においては、運転制御部が、漏洩判定用期間(30日)の2日前に相当する日(28日)又は1日前に相当する日(29日)に発電部の運転を停止させ、そして、発電部の運転を停止した後においては、エネルギ供給部へ燃料ガスを供給しない時間が設定継続時間(60分)に対応する所定時間(60分)を継続したか否かを判断し、所定時間を継続した場合には、設定解除条件が満たされたとして、発電部を再起動するように構成されている。   In Patent Document 1, the operation control unit stops the operation of the power generation unit on a day (28 days) equivalent to 2 days before the leak determination period (30 days) or a day (29 days) equivalent to 1 day Then, after stopping the operation of the power generation unit, it is determined whether the time during which the fuel gas is not supplied to the energy supply unit continues for a predetermined time (60 minutes) corresponding to the setting continuation time (60 minutes), When the predetermined time is continued, it is configured to restart the power generation unit on the assumption that the setting cancellation condition is satisfied.

特許文献2においては、漏洩判定用期間(30日)の3日前に相当する日(27日)において、発電部を1日中停止させ、そして、1日が経過すると、設定解除条件が満たされた状態として、発電部の運転が許可されるように構成されている。   In Patent Document 2, the power generation unit is stopped throughout the day on the day (27th) equivalent to 3 days before the leak judgment period (30th), and when 1 day elapses, the setting cancellation condition is satisfied. In this condition, the operation of the power generation unit is permitted.

特許文献1及び特許文献2には、漏洩判定回避用停止処理を実行する際に、発電部を停止させることについての詳細な説明は省略されているが、一般には、漏洩判定回避用停止処理を実行する際にも、通常の停止保管処理を実行することになる(例えば、特許文献3及び特許文献4参照)。   Although Patent Document 1 and Patent Document 2 omit the detailed description of stopping the power generation unit when the leakage determination avoidance stop process is executed, the leakage determination avoidance stop process is generally performed. Also when executing, a normal stop storage process will be performed (see, for example, Patent Document 3 and Patent Document 4).

すなわち、特許文献3及び特許文献4には、発電部を停止させる際に、改質処理装置の内部にマイコンメータを経由した燃料ガスを設定適正圧に充填して封止する充填処理を実行し、その後、燃料ガスの充填圧が下限充填圧に低下すると、設定適正圧に燃料ガスを補充する保圧処理を実行する停止保管処理を行うように構成されている。
したがって、漏洩判定回避用停止処理としても、充填処理を実行し、その後、燃料ガスの充填圧が下限充填圧に低下すると、設定適正圧に燃料ガスを補充する保圧処理が実行されることになる。
That is, according to Patent Document 3 and Patent Document 4, when stopping the power generation unit, a filling process is performed in which the fuel gas passed through the microcomputer meter is filled to a set appropriate pressure and sealed inside the reforming treatment apparatus. After that, when the filling pressure of the fuel gas drops to the lower limit filling pressure, the stop storage process of performing the pressure holding process of replenishing the fuel gas to the set appropriate pressure is performed.
Therefore, even in the leakage judgment avoidance stop process, the filling process is performed, and thereafter, when the filling pressure of the fuel gas decreases to the lower limit filling pressure, the pressure holding process of replenishing the fuel gas to the set appropriate pressure is performed. Become.

このように、充填処理の後で保圧処理を行うのは、充填処理によって改質処理装置の内部に燃料ガスを設定適正圧に充填しても、改質処理装置の温度低下によって、充填された燃料ガスが収縮して燃料ガスの充填圧が低下するからである。   As described above, the reason that the pressure holding process is performed after the filling process is that even if the fuel gas is filled to the set appropriate pressure inside the reforming process apparatus by the filling process, the filling process is performed because the temperature of the reforming process apparatus is lowered. This is because the fuel gas contracts and the fuel gas filling pressure decreases.

ちなみに、特許文献3においては、充填処理の前に、燃料ガスの供給を停止した状態で、改質処理装置の内部に水蒸気を供給して装置内ガスを排出する水蒸気供給処理を行い、次に、水蒸気の供給を停止した状態で、充填処理を行うことが記載されている。   Incidentally, in Patent Document 3, before filling processing, steam supply processing is performed to supply steam inside the reforming processing apparatus and discharge the gas in the apparatus while stopping supply of fuel gas, and then It is described that the filling process is performed with the supply of water vapor stopped.

特開2005−353292号公報Unexamined-Japanese-Patent No. 2005-353292 特開2008−190755号公報JP 2008-190755 A 特許第4909339号公報Patent No. 4909339 特許第5607951号公報Patent No. 5607951

従来のエネルギ供給システムにおいては、発電部を停止してからかなりの時間(例えば、数時間)が経過するまでは、保圧処理の実行により、エネルギ供給部に対して燃料ガスを供給しない時間が、設定継続時間(例えば、60分)を超える状態とならない虞があり、改善が望まれるものであった。   In the conventional energy supply system, the time during which no fuel gas is supplied to the energy supply unit by execution of the pressure holding process until a considerable time (for example, several hours) elapses after the power generation unit is stopped There is a possibility that the state does not exceed the set duration (for example, 60 minutes), and improvement is desired.

すなわち、保圧処理が、燃料ガスの充填圧が下限充填圧に低下すると、設定適正圧に燃料ガスを補充する形態で実行されることになるが、設定適正圧が、改質処理装置のシール圧等を考慮して低めの圧力(例えば、1.0kPa)に設定されることになるため、発電部を停止してからかなりの時間が経過するまでは、設定適正圧に燃料ガスを補充した後、設定継続時間(例えば、60分)が経過する前に、燃料ガスの充填圧が下限充填圧(例えば、0.5kPa)に低下して、燃料ガスの充填が開始される現象が生じることになり、その結果、漏洩判定回避用停止処理の実行により、発電部を停止する時間が長くなる虞があった。   That is, although the pressure holding process is performed in such a mode that the fuel gas is replenished to the set appropriate pressure when the filling pressure of the fuel gas decreases to the lower limit charged pressure, the set appropriate pressure is the seal of the reforming device. Since the pressure is set to a lower pressure (for example, 1.0 kPa) in consideration of the pressure etc., the fuel gas is replenished to the setting appropriate pressure until a considerable time elapses after the power generation unit is stopped. After that, before the set duration time (for example, 60 minutes) elapses, the fuel gas filling pressure decreases to the lower limit filling pressure (for example, 0.5 kPa), and the phenomenon that the fuel gas filling starts is generated. As a result, there is a risk that the time for stopping the power generation unit may become longer due to the execution of the leakage determination avoidance stop process.

つまり、改質処理装置の温度は、停止直後は高温であるが、時間経過に伴って低温になり、時間が経過すると温度の低下が少なくなるものであるから、設定適正圧に燃料ガスを補充した後、燃料ガスの充填圧が下限充填圧(例えば、0.5kPa)に低下するまでのインターバル時間は、発電部の停止時点から時間が経過するほど長くなる。   That is, although the temperature of the reforming treatment apparatus is high immediately after stopping, it becomes low as time passes, and the decrease in temperature decreases as time passes, so the fuel gas is replenished to the set appropriate pressure After that, the interval time until the filling pressure of the fuel gas decreases to the lower limit filling pressure (for example, 0.5 kPa) becomes longer as time passes from the time when the power generation unit stops.

したがって、発電部を停止してからかなりの時間(例えば、数時間)が経過すると、インターバル時間が設定継続時間(例えば、60分)よりも長くなるものの、発電部を停止して改質処理装置の温度が高い間においては、インターバル時間が設定継続時間(例えば、60分)よりも長くならないことになる。   Therefore, when a considerable amount of time (for example, several hours) elapses after the power generation unit is stopped, the power generation unit is stopped and the reforming processing apparatus is performed although the interval time is longer than the setting continuation time (for example, 60 minutes) While the temperature is high, the interval time will not be longer than the set duration (e.g., 60 minutes).

要するに、従来においては、発電部を停止してからかなりの時間が経過しないと、エネルギ供給部に対して燃料ガスを供給しない時間が、設定継続時間(例えば、60分)を超える状態とならないため、漏洩判定回避用停止処理の実行により発電部を停止させる時間がかなり長くなる虞があった。   In short, conventionally, the time in which the fuel gas is not supplied to the energy supply unit does not exceed the set duration (for example, 60 minutes) unless a considerable time has elapsed since the power generation unit was stopped. Due to the execution of the leakage determination avoidance stop process, the time for stopping the power generation unit may be considerably long.

本発明は、上記実状に鑑みて為されたものであって、その目的は、漏洩判定回避用停止処理の実行により発電部を停止させる時間の短縮化を図ることができるエネルギ供給システムを提供する点にある。   The present invention has been made in view of the above situation, and an object thereof is to provide an energy supply system capable of shortening the time for stopping a power generation unit by executing a leakage determination avoidance stop process. It is on the point.

本発明のエネルギ供給システムは、燃料ガスの通流量が設定判定量以下となる状態が設定継続時間に亘って継続する燃料ガス非消費状態が漏洩判定用期間の間に生じないときには、警報作動する又は燃料ガスの供給を遮断するマイコンメータと、当該マイコンメータを経由した燃料ガスを用いて発電する発電部を備えるエネルギ供給部と、当該エネルギ供給部の運転を制御する運転制御部とが設けられ、
前記発電部が、燃料ガスを水蒸気改質処理により水素ガスを生成する改質処理装置と、生成された水素ガスが供給される燃料電池とを備える形態に構成され、
前記運転制御部が、
前記発電部を停止する際には、前記改質処理装置の内部に前記マイコンメータを経由した燃料ガスを設定適正圧に充填して封止する充填処理を実行し、その後、燃料ガスの充填圧が下限充填圧に低下すると、前記設定適正圧に燃料ガスを補充する保圧処理を実行する停止保管処理を行うように構成され、且つ、
前記漏洩判定用期間が経過する前に、前記発電部の運転を設定解除条件が満たされるまで停止する漏洩判定回避用停止処理を実行するように構成されているものであって、その特徴構成は、
前記運転制御部が、前記漏洩判定回避用停止処理として、前記充填処理を実行し、その後、燃料ガスの充填圧が前記下限充填圧に低下すると、前記設定適正圧よりも高い高圧用設定圧に燃料ガスを補充する高圧用保圧処理を実行するように構成されている点にある。
The energy supply system according to the present invention operates as an alarm when there is no fuel gas non-consumption state in which the state in which the flow rate of the fuel gas becomes equal to or less than the set determination amount continues for the set duration time during the leak determination period. Alternatively, a microcomputer meter for interrupting the supply of fuel gas, an energy supply unit including a power generation unit for generating power using fuel gas via the microcomputer meter, and an operation control unit for controlling the operation of the energy supply unit are provided. ,
The power generation unit is configured to include a reforming processing device that generates hydrogen gas by steam reforming the fuel gas, and a fuel cell to which the generated hydrogen gas is supplied.
The operation control unit
When stopping the power generation unit, a filling process is performed to fill the inside of the reforming processing apparatus with the fuel gas having passed through the microcomputer meter to a set appropriate pressure and seal the fuel gas, and thereafter, the filling pressure of the fuel gas When the pressure drops to the lower limit filling pressure, it is configured to perform stop storage processing for performing pressure holding processing for replenishing the fuel gas to the set appropriate pressure, and
It is configured to execute a leakage determination avoidance stop process for stopping the operation of the power generation unit until the setting cancellation condition is satisfied before the leakage determination period elapses, and the characteristic configuration is ,
The operation control unit executes the filling process as the leakage determination avoidance stop process, and thereafter, when the filling pressure of the fuel gas decreases to the lower limit filling pressure, the high pressure setting pressure is higher than the setting appropriate pressure. The point is that it is configured to execute a high pressure holding process for replenishing the fuel gas.

すなわち、漏洩判定回避用停止処理として、充填処理が実行され、その後、高圧用保圧処理が実行されることになる。
そして、高圧用保圧処理として、燃料ガスの充填圧が下限充填圧に低下すると、設定適正圧よりも高い高圧用設定圧に燃料ガスを補充する処理が実行されることになる。
That is, the filling process is performed as the leakage determination avoidance stop process, and then the high pressure holding process is performed.
Then, when the filling pressure of the fuel gas decreases to the lower limit filling pressure as the high-pressure holding process, a process of replenishing the fuel gas to the high-pressure setting pressure higher than the setting appropriate pressure is performed.

このように、漏洩判定回避用停止処理においては、燃料ガスの充填圧が下限充填圧に低下すると、設定適正圧よりも高い高圧用設定圧に燃料ガスを補充する高圧用保圧処理が実行されることになるから、設定適正圧よりも高い高圧用設定圧に燃料ガスを補充した後、燃料ガスの充填圧が下限充填圧に低下するまでのインターバル時間が、設定適正圧に燃料ガスを補充した後、燃料ガスの充填圧が下限充填圧に低下するまでのインターバル時間よりも長くなる。   As described above, in the leakage determination avoidance stop process, when the filling pressure of the fuel gas is lowered to the lower limit filling pressure, the high pressure holding pressure process of replenishing the fuel gas to the high pressure setting pressure higher than the setting appropriate pressure is executed. Therefore, after the fuel gas is replenished to the high pressure setting pressure higher than the setting appropriate pressure, the interval time until the filling pressure of the fuel gas decreases to the lower limit filling pressure is replenished with the fuel gas to the setting appropriate pressure After that, it becomes longer than the interval time until the filling pressure of the fuel gas decreases to the lower limit filling pressure.

したがって、高圧用設定圧に燃料ガスを補充した後、燃料ガスの充填圧が下限充填圧に低下するまでのインターバル時間が長くなるから、発電部の停止時点から長時間が経過しなくても、インターバル時間が設定継続時間よりも長くなる状態を現出させることができ、その結果、漏洩判定回避用停止処理によって、発電部を停止させる時間の短縮化を図ることができる。   Therefore, after the fuel gas is replenished to the high pressure setting pressure, the interval time until the filling pressure of the fuel gas decreases to the lower limit filling pressure becomes long, so long time does not elapse from the stopping time of the power generation unit. A state in which the interval time is longer than the setting continuation time can be realized, and as a result, the leakage determination avoidance stop process can shorten the time for stopping the power generation unit.

要するに、本発明のエネルギ供給システムによれば、漏洩判定回避用停止処理の実行により発電部を停止させる時間の短縮化を図ることができる。   In short, according to the energy supply system of the present invention, the time for stopping the power generation unit can be shortened by the execution of the leakage determination avoidance stop process.

また、本発明のエネルギ供給システムの更なる特徴構成は、前記エネルギ供給部に、前記発電部の排熱を回収した湯水を貯湯する貯湯タンクを有する熱源部を備える点にある。   Further, a still further characterizing feature of the energy supply system according to the present invention is that the energy supply unit includes a heat source unit having a hot water storage tank for storing hot and cold water from which the exhaust heat of the power generation unit is recovered.

すなわち、エネルギ供給部が熱源部を備えるので、発電部の排熱を回収した湯水を貯湯タンクに貯湯して、貯湯した湯水を用いて給湯することができる。   That is, since the energy supply unit includes the heat source unit, the hot water recovered from the exhaust heat of the power generation unit can be stored in the hot water storage tank, and the hot water can be used to supply hot water.

要するに、本発明のエネルギ供給システムによれば、発電部の排熱を回収した湯水を用いて給湯することができる。   In short, according to the energy supply system of the present invention, it is possible to supply hot water using the hot water collected from the exhaust heat of the power generation unit.

また、本発明のエネルギ供給システムの更なる特徴構成は、前記運転制御部が、前記漏洩判定回避用停止処理の実行中において、設定処理予定時間が経過しても、前記エネルギ供給部に対して燃料ガスが供給されない状態の継続時間である非供給継続時間が前記設定継続時間を超える状態が生じないときには、前記高圧用保圧処理、及び、燃料ガスの消費を停止する警告を行う警告処理を実行するように構成されている点にある。   Further, according to a still further characterizing feature of the energy supply system of the present invention, the operation control unit is configured to send the energy supply unit to the energy supply unit even if a set processing scheduled time has elapsed while the leakage determination avoidance stop process is being executed. When the non-supply continuation time which is the continuation time of the state where the fuel gas is not supplied does not occur that the state where the setting continuation time does not occur, the high pressure pressure holding process and the warning process performing the warning to stop the consumption of the fuel gas It is in a point that is configured to run.

すなわち、漏洩判定回避用停止処理の実行中において、設定処理予定時間(例えば、12時間)が経過しても、エネルギ供給部に対して燃料ガスが供給されない状態の継続時間である非供給継続時間が設定継続時間(例えば、60分)を超える状態が生じないときには、高圧用保圧処理、及び、燃料ガスの消費を停止する警告を行う警告処理が実行される。   That is, during the execution of the leakage judgment avoidance stop process, the non-supply continuation time which is the continuation time of the state where the fuel gas is not supplied to the energy supply unit even if the set processing scheduled time (for example, 12 hours) elapses. When the condition does not exceed the set duration (for example, 60 minutes), the high pressure holding process and the warning process for giving a warning to stop the consumption of the fuel gas are executed.

したがって、警告処理が実行されることによって、使用者が、燃料ガスの消費を控えることによって、エネルギ供給部に対して燃料ガスが供給されない状態の継続時間である非供給継続時間が設定継続時間(例えば、60分)を超える状態を適切に現出させることができるため、エネルギ供給部に対して燃料ガスを供給しない時間が設定継続時間以上となる状態を現出させ易いものとなる。   Therefore, by performing the warning process, the user refrains from consuming the fuel gas, and the non-supply duration is the duration of the state where the fuel gas is not supplied to the energy supply unit. For example, since a state exceeding 60 minutes can be appropriately manifested, it becomes easy to reveal a state in which the time during which the fuel gas is not supplied to the energy supply unit becomes equal to or longer than the set continuation time.

しかも、警告処理を行うときには、高圧用保圧処理が実行されることになるから、警告処理が実行されることによって、使用者が、燃料ガスの消費を控えているときに、燃料ガスの充填圧が下限充填圧になることを回避することが可能となるため、エネルギ供給部に対して燃料ガスを供給しない時間が設定継続時間以上となる状態を適切に現出させることができる。   Moreover, since the high pressure holding processing is performed when the warning processing is performed, the fuel gas filling can be performed when the user refrains from consuming the fuel gas by the execution of the warning processing. Since it is possible to prevent the pressure from becoming the lower limit filling pressure, it is possible to properly reveal a state in which the time during which the fuel gas is not supplied to the energy supply unit is equal to or longer than the set continuation time.

尚、漏洩判定回避用停止処理の実行中において、設定処理予定時間が経過しても、非供給継続時間が設定継続時間を超える状態が生じないときに、高圧用保圧処理、及び、警告処理を実行する際には、高圧用保圧処理と警告処理とを同時に開始してもよいし、高圧用保圧処理及び警告処理の何れか一方の処理を先に開始し、その処理の開始時点から予め設定した遅延時間が経過した時点において他方の処理を開始してもよい。また、高圧用保圧処理を先に開始した場合においては、高圧用保圧処理の終了時点において警告処理を開始する、つまり、警告処理を行う前に、高圧用保圧処理を開始してもよい。   During the execution of the leakage judgment avoidance stop process, the high pressure holding process and the warning process are performed when the non-supply continuation time does not exceed the setting continuation time even if the set processing scheduled time has elapsed. When executing the high pressure holding process and the warning process may be started at the same time, either one of the high pressure holding process and the warning process may be started first, and the start time of the process may be started. The other process may be started when a preset delay time has elapsed since the time t. In addition, when high pressure holding processing is started first, warning processing is started at the end of high pressure holding processing, that is, even if high pressure holding processing is started before warning processing is performed. Good.

要するに、本発明のエネルギ供給システムの更なる特徴構成によれば、エネルギ供給部に対して燃料ガスを供給しない時間が設定継続時間以上となる状態を適切に現出させることができる。   In short, according to the further characterizing feature of the energy supply system of the present invention, it is possible to appropriately reveal a state in which the time during which the fuel gas is not supplied to the energy supply unit becomes equal to or longer than the set duration.

また、本発明のエネルギ供給システムの更なる特徴構成は、前記改質処理装置に充填された燃料ガスの圧力を検出する圧力センサが設けられ、
前記運転制御部が、前記圧力センサの検出情報に基づいて、前記保圧処理及び前記高圧用保圧処理を実行するように構成されている点にある。
Further, according to a further characterizing feature of the energy supply system of the present invention, a pressure sensor for detecting the pressure of the fuel gas charged in the reforming treatment apparatus is provided.
The operation control unit is configured to execute the pressure holding process and the high pressure pressure holding process based on the detection information of the pressure sensor.

すなわち、改質処理装置に充填される燃料ガスの圧力を圧力センサにて検出しながら、その圧力センサの検出情報に基づいて、停止保管処理における保圧処理、及び、漏洩判定回避用停止処理における高圧用保圧処理が実行されることになる。   That is, while the pressure of the fuel gas with which the reforming processing apparatus is filled is detected by the pressure sensor, based on the detection information of the pressure sensor, the pressure holding process in the stop storage process and the stop process for leakage judgment avoidance The high pressure holding processing will be performed.

このように、改質処理装置に充填される燃料ガスの圧力を検出する圧力センサの検出情報に基づいて、保圧処理及び高圧用保圧処理を行うのであるから、改質処理装置に充填される燃料ガスの圧力を的確に把握しながら、保圧処理及び高圧用保圧処理を適切に行うことができる。   As described above, since the pressure holding process and the high pressure pressure holding process are performed based on the detection information of the pressure sensor that detects the pressure of the fuel gas with which the reforming treatment apparatus is charged, The pressure holding process and the high pressure pressure holding process can be appropriately performed while accurately grasping the pressure of the fuel gas.

要するに、本発明のエネルギ供給システムの更なる特徴構成によれば、保圧処理及び高圧用保圧処理を適切に行うことができる。   In short, according to the further characterizing feature of the energy supply system of the present invention, the pressure holding process and the high pressure holding process can be appropriately performed.

エネルギ供給システムの概略構成図Schematic diagram of energy supply system 改質処理装置の構成を示すブロック図Block diagram showing the configuration of the reformer 改質処理装置の停止保管処理を示すフローチャートFlow chart showing stop storage processing of the reformer 改質処理装置の停止保管処理におけるバルブ開閉状態を示す表A table showing valve open / close states in stop storage processing of the reformer 第1実施形態の漏洩判定回避処理を示すフローチャートFlow chart showing leakage judgment avoidance processing of the first embodiment 第1実施形態の高圧用保圧処理を示すフローチャートFlow chart showing high pressure holding processing of the first embodiment 第1実施形態の保圧処理における燃料ガスの充填タイミングを示す図FIG. 6 is a diagram showing the fuel gas charging timing in the pressure holding process of the first embodiment. 第1実施形態の高圧用保圧処理における燃料ガスの充填タイミングを示す図FIG. 6 is a diagram showing the fuel gas charging timing in the high pressure holding pressure processing of the first embodiment. 第2実施形態の漏洩判定回避処理を示すフローチャートFlow chart showing leakage judgment avoidance processing of the second embodiment エネルギ供給システムの別実施形態を示す概略構成図Schematic block diagram showing another embodiment of the energy supply system 別実施形態の保圧処理における燃料ガスの充填タイミングを示す図The figure which shows the filling timing of the fuel gas in the pressure-holding process of another embodiment 別実施形態の高圧用保圧処理における燃料ガスの充填タイミングを示す図A diagram showing the fuel gas charging timing in the high pressure holding processing of another embodiment

〔第1実施形態〕
以下、本発明に係るエネルギ供給システムについて図面に基づいて説明する。
(エネルギ供給部の全体構成)
図1に示すように、エネルギ供給システムには、マイコンメータMを経由した燃料ガスGを用いて発電する発電部Ha及び熱源部Hbを備えるエネルギ供給部Hとしての熱電併給部が備えられ、熱源部Hbには、発電部Haの排熱を回収した湯水を貯湯する貯湯タンク1と、マイコンメータMを経由した燃料ガスGを用いて燃焼する補助熱源機2とが備えられている。
First Embodiment
Hereinafter, an energy supply system according to the present invention will be described based on the drawings.
(Overall configuration of the energy supply unit)
As shown in FIG. 1, the energy supply system includes a heat and power supply unit as an energy supply unit H including a power generation unit Ha that generates electric power using fuel gas G via a microcomputer meter M and a heat source unit Hb. The section Hb is provided with a hot water storage tank 1 for storing hot water obtained by recovering the exhaust heat of the power generation section Ha, and an auxiliary heat source unit 2 for burning using a fuel gas G via a microcomputer meter M.

マイコンメータMは、燃料ガスGの通流量が設定判定量(例えば、1.0L/h)以下となる状態が設定継続時間(例えば、60分)に亘って継続する燃料ガス非消費状態が漏洩判定用期間(例えば、30日)の間に生じないときには、警報作動する又は燃料ガスGの供給を遮断する機能を備えており、その詳細は周知であるので、本実施形態においては詳細な説明を省略する。
ちなみに、燃料ガスGは、都市ガス、プロパンガス等の炭化水素を含むガスである。
The microcomputer meter M leaks the fuel gas non-consumption state in which the state in which the flow rate of the fuel gas G becomes equal to or less than the set determination amount (for example, 1.0 L / h) continues over the set duration (for example, 60 minutes) If it does not occur during the judgment period (for example, 30 days), it has a function to alarm or shut off the supply of the fuel gas G, the details of which are well known, and therefore the detailed description in this embodiment. Omit.
Incidentally, the fuel gas G is a gas containing hydrocarbons such as city gas and propane gas.

発電部Haには、燃料ガスGを水蒸気改質処理により水素含有ガスを生成する改質処理装置3と、生成された水素含有ガスが供給される固体高分子型の燃料電池4とが備えられている。
燃料電池4は、燃料極4n及び酸素極4sを備えるセルを積層して構成されるものであって、燃料極4nと酸素極4sとの間には、冷却水が通流する通流部4dが設けられている。
The power generation unit Ha is provided with a reforming device 3 that generates a hydrogen-containing gas by steam reforming the fuel gas G, and a solid polymer fuel cell 4 to which the generated hydrogen-containing gas is supplied. ing.
The fuel cell 4 is configured by stacking cells provided with a fuel electrode 4n and an oxygen electrode 4s, and a flowing portion 4d through which cooling water flows between the fuel electrode 4n and the oxygen electrode 4s. Is provided.

燃料電池4が発生する熱を冷却水にて回収する冷却水循環路5Aと、貯湯タンク1の湯水を循環する湯水循環路5Bと、冷却水循環路5Aを循環する冷却水と湯水循環路5Bを循環する湯水とを熱交換する熱交換部5Cとが設けられている。
冷却水循環路5Aには、冷却水循環ポンプPa及び冷却水貯留タンクQが設けられ、湯水循環路5Bには、湯水循環ポンプPbが設けられている。
Cooling water circulating through the cooling water circulation passage 5A that collects the heat generated by the fuel cell 4 with cooling water, hot water circulating passage 5B circulating the hot water of the hot water storage tank 1, and cooling water circulating through the cooling water circulation passage 5A A heat exchange unit 5C is provided to exchange heat with the hot and cold water.
A cooling water circulation pump Pa and a cooling water storage tank Q are provided in the cooling water circulation path 5A, and a hot water circulation pump Pb is provided in the hot water circulation path 5B.

そして、湯水循環路5Bを通流する湯水を、冷却水循環路5Aを循環する冷却水にて加熱することにより、貯湯タンク1に高温の湯水を貯湯し、貯湯した湯水を用いて、給湯、暖房、及び、浴槽水の追焚を行うように構成され、貯湯タンク1に貯湯した熱量では不足する場合には、補助熱源機2を作動させるように構成されており、その詳細は後述する。   Then, by heating the hot water flowing through the hot water circulation path 5B with the cooling water circulating through the cooling water circulation path 5A, high temperature hot water is stored in the hot water storage tank 1, and hot water is stored using the stored hot water. And when it is comprised so that a pursuit of bath water may be performed and the calorie | heat amount stored in the hot water storage tank 1 runs short, it is comprised so that the auxiliary | assistant heat source machine 2 may be operated, The detail is mentioned later.

燃料電池4の電力の出力側には、系統連系用のインバータ6が設けられており、このインバータ6は、燃料電池4の発電電力を商用電源7から受電する受電電力と同じ電圧及び同じ周波数にするように構成されている。
商用電源7は、例えば、単相3線式100/200Vであり、受電電力供給ライン8を介して、テレビ、冷蔵庫、洗濯機などの電力負荷9に電気的に接続されている。
インバータ6は、発電電力供給ライン10を介して受電電力供給ライン8に電気的に接続され、燃料電池4からの発電電力がインバータ6及び発電電力供給ライン10を介して電力負荷9に供給されるように構成されている。
An inverter 6 for grid connection is provided on the power output side of the fuel cell 4, and the inverter 6 has the same voltage and the same frequency as the received power for receiving the generated power of the fuel cell 4 from the commercial power source 7. It is configured to be.
The commercial power supply 7 is, for example, a single-phase three-wire 100/200 V, and is electrically connected to a power load 9 such as a television, a refrigerator, or a washing machine via a received power supply line 8.
Inverter 6 is electrically connected to received power supply line 8 via generated power supply line 10, and the generated power from fuel cell 4 is supplied to electric power load 9 via inverter 6 and generated power supply line 10. Is configured as.

受電電力供給ライン8には、電力負荷9の負荷電力を計測する電力負荷計測部11が設けられている。この電力負荷計測部11は、受電電力供給ライン8において商用電源7側に電流が流れる、いわゆる逆潮流が発生するか否かをも検出するように構成されている。
そして、逆潮流が生じないように、インバータ6により燃料電池4から受電電力供給ライン8に供給される電力が制御され、そして、燃料電池4による発電電力の余剰電力は、その余剰電力を熱に換えて回収する電気ヒータ12に供給されるように構成されている。
The received power supply line 8 is provided with a power load measurement unit 11 that measures the load power of the power load 9. The power load measurement unit 11 is also configured to detect whether or not so-called reverse power flow occurs in which current flows to the commercial power supply 7 side in the received power supply line 8.
Then, the power supplied from the fuel cell 4 to the received power supply line 8 is controlled by the inverter 6 so that no reverse power flow occurs, and the surplus power of the power generated by the fuel cell 4 is converted into heat by the surplus power. It is configured to be supplied to the electric heater 12 to be changed and collected.

電気ヒータ12は、複数の電気ヒータ部分から構成され、電気ヒータ12は、上述した湯水循環路5Bを通流する湯水を加熱するように設けられている。
電気ヒータ12の複数の電気ヒータ部分は、スイッチ回路13によりON/OFFが切り換えられる。スイッチ回路13は、余剰電力の大きさが大きくなるほど、電気ヒータ12の消費電力が大きくなるように、余剰電力の大きさに応じて電気ヒータ12の消費電力を調整するように構成されている。
The electric heater 12 is composed of a plurality of electric heater parts, and the electric heater 12 is provided to heat the hot water flowing through the above-described hot water circulation path 5B.
The plurality of electric heater portions of the electric heater 12 are switched ON / OFF by the switch circuit 13. The switch circuit 13 is configured to adjust the power consumption of the electric heater 12 according to the size of the surplus power so that the power consumption of the electric heater 12 increases as the size of the surplus power increases.

発電部Haには、改質処理装置3や燃料電池4の運転を制御する発電用制御部Caが設けられ、熱源部Hbには、熱源部Hbの運転を制御する熱源用制御部Cbが設けられており、エネルギ供給部Hの運転を制御する運転制御部Cが、発電用制御部Caと熱源用制御部Cbとから構成されている。
発電用制御部Caと熱源用制御部Cbとは、各種の情報を通信自在に構成され、また、発電用制御部Caと熱源用制御部Cbとに対して、運転開始指令や運転停止指令等の各種の情報を指令するリモコンRが設けられている。
The power generation unit Ha is provided with a power generation control unit Ca for controlling the operation of the reforming treatment apparatus 3 and the fuel cell 4. The heat source unit Hb is provided with a heat source control unit Cb for controlling the operation of the heat source unit Hb. The operation control unit C that controls the operation of the energy supply unit H is configured of a power generation control unit Ca and a heat source control unit Cb.
The control unit for power generation Ca and the control unit for heat source Cb are configured to be able to communicate various types of information, and to the control unit for power generation Ca and the control unit for heat source Cb, an operation start instruction, an operation stop instruction, etc. A remote control R is provided to command various information.

(改質処理装置)
次に、改質処理装置3について説明を加える
図2に示すように、マイコンメータMを経由した燃料ガスGを燃料ポンプ15にて圧送する燃料供給路16が設けられ、その燃料供給路16にて供給される燃料ガスGに対して脱硫作用する脱硫器17が設けられている。
供給される水を気化させて水蒸気を生成する水蒸気生成器18が設けられ、脱硫器17からの脱硫燃料ガスを水蒸気生成器18からの水蒸気にて改質処理して水素含有ガスを生成する改質器19が設けられている。
(Reforming equipment)
Next, a description will be given of the reforming treatment apparatus 3. As shown in FIG. 2, a fuel supply passage 16 for pressure-feeding the fuel gas G passed through the microcomputer meter M by the fuel pump 15 is provided. A desulfurizer 17 is provided which desulfurizes the fuel gas G supplied.
A steam generator 18 is provided to vaporize the supplied water to generate steam, and the desulfurized fuel gas from the desulfurizer 17 is reformed with the steam from the steam generator 18 to generate a hydrogen-containing gas A texture machine 19 is provided.

また、改質器19にて改質処理された改質ガス中に含まれる一酸化炭素を二酸化炭素に変成処理する変成器20、変成器20にて変成処理された変成ガスの全量が供給されて、その供給される変成ガス中の水蒸気を凝縮させるべく冷却するガス冷却器21、及び、ガス冷却器21による冷却にて変成ガス中の水蒸気が凝縮した凝縮水を分離する気水分離器22が設けられている。   In addition, the total amount of the metamorphic gas subjected to the metamorphic processing by the metamorphic device 20 and the metamorphic device 20 that transform the carbon monoxide contained in the reformed gas reformed by the reformer 19 into carbon dioxide is supplied. The gas cooler 21 cools to condense the water vapor in the supplied metamorphic gas, and the vapor-water separator 22 separates the condensed water in which the vapor in the metamorphic gas is condensed by the cooling by the gas cooler 21. Is provided.

気水分離器22にて凝縮水が分離された変成ガスの一部が一酸化炭素選択酸化器23に供給されて、その供給される変成ガス中に含まれる一酸化炭素が選択酸化され、一酸化炭素選択酸化器23からの水素含有ガスが、発電用燃料ガスとして、燃料電池用供給路24を通して燃料電池4の燃料極4nに供給されるように構成されている。
また、気水分離器22にて凝縮水が分離された変成ガスの残部が、脱硫処理用の水素含有ガスとして、脱硫リサイクル路25を通して燃料供給路16の燃料ガスGに混合供給されるように構成されている。
A portion of the metamorphic gas from which condensed water has been separated by the vapor-water separator 22 is supplied to the carbon monoxide selective oxidizer 23, and the carbon monoxide contained in the supplied metamorphic gas is selectively oxidized. The hydrogen-containing gas from the carbon monoxide selective oxidizer 23 is configured to be supplied as a fuel gas for power generation to the fuel electrode 4 n of the fuel cell 4 through the fuel cell supply passage 24.
Also, the remaining portion of the metamorphic gas from which the condensed water has been separated by the steam / water separator 22 is mixed and supplied to the fuel gas G of the fuel supply passage 16 through the desulfurization recycling passage 25 as a hydrogen-containing gas for desulfurization treatment. It is configured.

ちなみに、ガス冷却器21と気水分離器22とは、通常運転時においては、上述の如く、変成器20にて変成処理された変成ガス中の水蒸気を分離させることになり、そして、後述するガスパージ処理においては、改質処理装置3の内部に残留する水蒸気を分離するように構成されている。   Incidentally, during normal operation, the gas cooler 21 and the air-water separator 22 separate the water vapor in the metamorphic gas transformed by the metamorphic device 20 as described above, and will be described later. In the gas purge process, the water vapor remaining in the reformer 3 is separated.

以上の通り、改質処理装置3は、燃料供給路16を通して供給される燃料ガスGを改質器19において水蒸気改質処理して水素含有ガスを発生させ、改質器19にて発生させた水素含有ガスを、変成器20、一酸化炭素選択酸化器23の順に通過させて、水素含有ガスに含まれる一酸化炭素濃度を低減させるようにし、一酸化炭素濃度の低い水素含有ガスを、発電用燃料ガスとして、燃料電池用供給路24にて燃料電池4に供給するように構成されている。   As described above, the reforming processing apparatus 3 steam-reforms the fuel gas G supplied through the fuel supply passage 16 in the reformer 19 to generate a hydrogen-containing gas, and generates the hydrogen-containing gas in the reformer 19. The hydrogen-containing gas is passed through the shift converter 20 and the carbon monoxide selective oxidizer 23 in this order to reduce the concentration of carbon monoxide contained in the hydrogen-containing gas, thereby generating a hydrogen-containing gas having a low carbon monoxide concentration. The fuel cell 4 is configured to be supplied with the fuel cell supply passage 24 as a fuel gas.

(改質処理装置の詳細)
以下、改質処理装置3の各部について説明を加える。
上述の説明から明らかな如く、燃料供給路16を通して供給される燃料ガスGが、脱硫器17、改質器19、変成器20、ガス冷却器21、気水分離器22、一酸化炭素選択酸化器23を通して流動することになるから、脱硫器17、改質器19、変成器20、ガス冷却器21、気水分離器22、一酸化炭素選択酸化器23が、記載順にガス処理流路27にて接続されている。
(Details of the reformer)
Hereinafter, each part of the reforming treatment apparatus 3 will be described.
As apparent from the above description, the fuel gas G supplied through the fuel supply passage 16 is desulfurizer 17, reformer 19, shift converter 20, gas cooler 21, gas-water separator 22, carbon monoxide selective oxidation Since the desulfurizer 17, the reformer 19, the shift converter 20, the gas cooler 21, the gas-water separator 22, and the carbon monoxide selective oxidizer 23 flow in the order listed, the desulfurizer 17, the reformer 19, the It is connected by.

燃料電池用供給路24を通して燃料電池4の燃料極4nに供給された水素含有ガスのうちの発電に使用されない残部ガスが、燃料電池4の燃料極4nから排燃料ガス(以下、オフガスと略称)として排出され、そのオフガスを燃焼用ガスとして、改質器19の改質器バーナ19aに供給するオフガス路26が設けられている。
つまり、燃料電池4から排出される発電反応後のオフガスを、改質器バーナ19aにて燃焼用空気路29からの燃焼用空気にて燃焼させて、改質触媒を改質反応が可能な状態に加熱するように構成されている。
Of the hydrogen-containing gas supplied to the fuel electrode 4n of the fuel cell 4 through the fuel cell supply passage 24, the remaining gas not used for power generation is discharged from the fuel electrode 4n of the fuel cell 4 as exhaust fuel gas (hereinafter abbreviated as off gas) An off gas passage 26 is provided which supplies the off gas as combustion gas to the reformer burner 19 a of the reformer 19.
That is, the off-gas after the power generation reaction discharged from the fuel cell 4 is burned with the combustion air from the combustion air passage 29 by the reformer burner 19a, and the reforming catalyst can be subjected to the reforming reaction. It is configured to heat.

水蒸気生成器18からの水蒸気を導く水蒸気路28が、脱硫器17と改質器19とを接続するガス処理流路27に接続されて、脱硫器17にて脱硫された燃料ガスGと水蒸気生成器18にて生成された水蒸気とを改質器19に供給するように構成されている。   A steam passage 28 for introducing the steam from the steam generator 18 is connected to a gas processing passage 27 connecting the desulfurizer 17 and the reformer 19 so that the fuel gas G and the steam generated by the desulfurizer 17 are desulfurized. The steam generated by the vessel 18 is supplied to the reformer 19.

燃料供給路16には、燃料ガスGの供給を断続する燃料バルブV1が設けられ、燃料電池用供給路24には、生成ガス出口バルブV2が設けられ、オフガス路26には、改質器バーナ19aへのオフガスの供給を断続する電池出口バルブV6が設けられ、燃焼用空気路29には、改質器バーナ19aへの燃焼用空気の供給を断続する燃焼用空気バルブV10が設けられている。   The fuel supply passage 16 is provided with a fuel valve V1 for intermittently supplying the fuel gas G, the fuel cell supply passage 24 is provided with a generated gas outlet valve V2, and the off gas passage 26 is provided with a reformer burner. A battery outlet valve V6 for interrupting the supply of off gas to 19a is provided, and a combustion air valve V10 for interrupting the supply of combustion air to the reformer burner 19a is provided in the combustion air passage 29. .

尚、図示は省略するが、起動時等において、マイコンメータMを経由した燃料ガスGを改質器バーナ19aに供給する燃料供給路が設けられ、その燃料供給路には、燃料の供給を断続する断続弁が装備される。   Although not shown, a fuel supply passage for supplying the fuel gas G via the microcomputer meter M to the reformer burner 19a at the time of start-up, etc. is provided, and the fuel supply passage is intermittently supplied with fuel. The on-off valve is equipped.

燃料電池用供給路24における生成ガス出口バルブV2よりも上流側の箇所から、電池バイパス路30が分岐され、その電池バイパス路30が、オフガス路26における電池出口バルブV6よりも下流側の箇所に接続されている。
また、電池バイパス路30には、その流路を開閉する電池バイパスバルブV7が設けられている。
The cell bypass passage 30 is branched from a point upstream of the generated gas outlet valve V 2 in the fuel cell supply passage 24, and the cell bypass passage 30 is located downstream of the cell outlet valve V 6 in the off gas passage 26. It is connected.
Further, the battery bypass passage 30 is provided with a battery bypass valve V7 for opening and closing the flow passage.

水蒸気生成器18には、改質器バーナ19aから排出された燃焼ガスを通流させる燃焼ガス通流部18aと改質水供給路31にて水が供給される蒸発部18bとが熱交換可能に設けられて、改質器19の改質器バーナ19aから排出される燃焼ガスを熱源として水を気化させて、水蒸気を生成するように構成されている。   Heat exchange is possible between the combustion gas flow passage portion 18a through which the combustion gas discharged from the reformer burner 19a flows and the evaporation portion 18b to which water is supplied in the reforming water supply passage 31 in the steam generator 18 The combustion gas discharged from the reformer burner 19a of the reformer 19 is used as a heat source to vaporize water to generate water vapor.

改質水供給路31には水の供給を断続する改質水バルブV3が設けられている。
また、水蒸気生成器18には、内部の水を排出する改質水排出路32が設けられ、その改質水排出路32には、その流路を開閉する改質水排出バルブV4が設けられている。
The reforming water supply path 31 is provided with a reforming water valve V3 for interrupting the supply of water.
Further, the water vapor generator 18 is provided with a reforming water discharge passage 32 for discharging the water inside, and the reforming water discharge passage 32 is provided with a reforming water discharge valve V4 for opening and closing the flow passage. ing.

脱硫リサイクル路25は、気水分離器22の気相部と燃料供給路16とを接続する形態で設けられ、その脱硫リサイクル路25には、その流路を開閉する脱硫リサイクルバルブV8が設けられている。
選択酸化用の空気を一酸化炭素選択酸化器23に供給する選択酸化用空気路33が設けられ、その選択酸化用空気路33にはその流路を開閉する選択酸化用空気バルブV9が設けられている。
The desulfurization recycle path 25 is provided in such a form as to connect the gas phase portion of the steam / water separator 22 and the fuel supply path 16, and the desulfurization recycle path 25 is provided with a desulfurization recycle valve V8 for opening and closing the flow path. ing.
A selective oxidation air passage 33 for supplying selective oxidation air to the carbon monoxide selective oxidizer 23 is provided, and the selective oxidation air passage 33 is provided with a selective oxidation air valve V9 for opening and closing the flow passage. ing.

改質器19には、その内部の改質反応領域において温度が最も高くなる箇所の温度を検出するように、改質器温度センサ34が設けられ、燃料電池用供給路24には、流路内の圧力を改質処理装置3の内部の圧力として検出する圧力センサ35が設けられている。   The reformer 19 is provided with a reformer temperature sensor 34 so as to detect the temperature of the portion where the temperature is highest in the reforming reaction region inside, and the fuel cell supply passage 24 has a flow passage A pressure sensor 35 is provided which detects the internal pressure as the internal pressure of the reforming treatment apparatus 3.

ちなみに、燃料供給路16、ガス処理流路27、水蒸気路28、改質水供給路31、改質水排出路32、脱硫器17、水蒸気生成器18、改質器19、変成器20、一酸化炭素選択酸化器23及び燃料電池用供給路24等により形成されるガス処理経路、つまり、脱硫器17及び水蒸気生成器18から改質器19、変成器20を経由して一酸化炭素選択酸化器23に至るガス処理経路中において、改質器19は、最も高温となるので、改質器温度センサ34は、ガス処理経路中における最高温部の温度を検出することになる。   Incidentally, the fuel supply passage 16, the gas processing passage 27, the steam passage 28, the reforming water supply passage 31, the reforming water discharge passage 32, the desulfurizer 17, the steam generation device 18, the reformer 19, the transformer 20, A gas processing path formed by the carbon monoxide selective oxidizer 23 and the fuel cell supply passage 24 etc., that is, from the desulfurizer 17 and the steam generator 18 to the carbon monoxide selective oxidation via the reformer 19 and the shift converter 20 In the gas processing path leading to the vessel 23, since the reformer 19 has the highest temperature, the reformer temperature sensor 34 detects the temperature of the highest temperature portion in the gas processing path.

改質器温度センサ34及び圧力センサ35の検出情報が、発電用制御部Caに入力され、発電用制御部Caが、改質処理装置3の起動運転、定常運転(通常運転)、停止運転等において、上記の各バルブV1〜V4、及び、V6〜V10の開閉制御を行うように構成されている。   The detection information of the reformer temperature sensor 34 and the pressure sensor 35 is input to the control unit for power generation Ca, and the control unit for power generation Ca performs start-up operation, steady-state operation (normal operation), stop operation, etc. In the above, the opening and closing control of each of the valves V1 to V4 and V6 to V10 is performed.

(発電部の停止保管運転)
次に、改質処理装置3及び燃料電池4の運転を停止させて保管するときの停止保管運転について説明する。
発電用制御部Caが、改質処理装置3及び燃料電池4の運転を停止させて保管する停止保管運転を行うときには、燃料供給路16による燃料ガスGの供給を停止した状態で、水蒸気生成器18による水蒸気の生成を継続することにより、改質処理装置3の内部に水蒸気を供給して、改質処理装置3の内部の装置内ガスを排出する水蒸気供給処理(以下、水蒸気パージ処理と呼称)を行い、次に、水蒸気生成器18への水の供給を停止して、水蒸気生成器18の内部から水を排出し、且つ、改質処理装置3の内部に、マイコンメータMを経由した燃料ガスGをパージガスとして充填して封止する充填処理(以下、ガスパージ処理と呼称)を行うように構成されている。
(Stop storage operation of the power generation unit)
Next, the stop and storage operation when the reforming processing device 3 and the fuel cell 4 are stopped and stored will be described.
When the control unit for power generation Ca stops the operation of the reforming treatment device 3 and the fuel cell 4 and performs the stop storage operation, the water vapor generator is stopped in a state where the supply of the fuel gas G by the fuel supply passage 16 is stopped. The steam supply process for supplying the steam to the inside of the reforming treatment apparatus 3 by continuing the production of the steam by 18 and discharging the gas in the apparatus inside the reforming treatment apparatus 3 (hereinafter referred to as a steam purge process) Then, the water supply to the steam generator 18 was stopped, the water was discharged from the inside of the steam generator 18, and the microcomputer meter M was A filling process (hereinafter referred to as a gas purge process) is performed to fill and seal the fuel gas G as a purge gas.

更に、発電用制御部Caが、ガスパージ処理の後で、改質処理装置3の内部の圧力を設定圧に保つべく、マイコンメータMを経由した燃料ガスGを改質処理装置3の内部に補充する保圧処理を行うように構成されている。   Furthermore, after the gas purge process, the power generation control unit Ca supplements the fuel gas G via the microcomputer meter M to the inside of the reforming apparatus 3 so as to maintain the internal pressure of the reforming apparatus 3 at the set pressure. It is configured to perform a pressure holding process.

尚、水蒸気パージ処理の終期においては、改質処理装置3を降温させる降温処理が行われ、また、ガスパージ処理の終期においては、燃料ガスGを充填した状態に封止する密閉処理が行われることになる。   At the end of the steam purge process, the temperature lowering process for lowering the temperature of the reforming treatment apparatus 3 is performed, and at the end of the gas purge process, the sealing process for sealing the fuel gas G is performed. become.

以下、図3に基づいて、改質処理装置3及び燃料電池4の運転を停止させて保管する停止保管運転における発電用制御部Caの制御動作を説明する。尚、図4には、発電用制御部Caの制御動作による各バルブV1〜V4、及び、V6〜V10の開閉状態を示す。
また、発電用制御部Caには、第1設定時間、第2設定時間、設定温度Ts、設定適正圧としての第1設定圧力Ps1、及び、下限充填圧としての第2設定圧力Ps2の夫々が記憶されており、その詳細は後述する。
Hereinafter, based on FIG. 3, the control operation of the power generation control unit Ca in the stop storage operation by stopping the operation of the reforming processing device 3 and the fuel cell 4 will be described. FIG. 4 shows the open / close states of the valves V1 to V4 and V6 to V10 by the control operation of the power generation control unit Ca.
Further, in the control unit for power generation Ca, each of the first set time, the second set time, the set temperature Ts, the first set pressure Ps1 as the set appropriate pressure, and the second set pressure Ps2 as the lower limit filling pressure are provided. It is stored, the details of which will be described later.

ちなみに、改質処理装置3及び燃料電池4の定常運転中(通常運転中)は、燃料バルブV1、生成ガス出口バルブV2、改質水バルブV3、電池出口バルブV6、脱硫リサイクルバルブV8、選択酸化用空気バルブV9及び燃焼用空気バルブV10は開弁状態であり、改質水排出バルブV4及び電池バイパスバルブV7は閉弁状態である(図4参照)。   Incidentally, during steady operation (in normal operation) of the reforming treatment device 3 and the fuel cell 4, the fuel valve V1, the generated gas outlet valve V2, the reforming water valve V3, the battery outlet valve V6, the desulfurization recycle valve V8, selective oxidation The air valve V9 for combustion and the air valve V10 for combustion are opened, and the reforming water discharge valve V4 and the battery bypass valve V7 are closed (see FIG. 4).

つまり、改質処理装置3の定常運転中(通常運転中)は、燃料ガスGが脱硫器17に流入し、且つ、水が水蒸気生成器18に供給されて水蒸気が生成され、そのように生成された水蒸気が脱硫器17にて脱硫された燃料ガスGに流入して、改質器19、変成器20、一酸化炭素選択酸化器23にて低一酸化炭素濃度の水素含有ガスが生成され、生成された水素含有ガスが燃料電池4に供給される。
そして、改質器バーナ19aには、燃料電池4から排出されたオフガスと燃焼用空気が供給されて、オフガスの燃焼により改質触媒が加熱され、並びに、変成器20から流出した水素含有ガスの一部が、脱硫用として脱硫器17に供給される形態で、改質処理装置3が運転される。
That is, during steady operation (during normal operation) of the reforming apparatus 3, the fuel gas G flows into the desulfurizer 17 and water is supplied to the steam generator 18 to produce steam, which is produced as such The steam thus generated flows into the fuel gas G desulfurized by the desulfurizer 17. The reformer 19, the shift converter 20, and the carbon monoxide selective oxidizer 23 generate a hydrogen-containing gas having a low carbon monoxide concentration. The generated hydrogen-containing gas is supplied to the fuel cell 4.
Then, the off gas and combustion air discharged from the fuel cell 4 are supplied to the reformer burner 19a, the combustion of the off gas heats the reforming catalyst, and the hydrogen-containing gas that has flowed out of the shift converter 20. The reforming processing apparatus 3 is operated in such a form that a part of the fuel is supplied to the desulfurizer 17 for desulfurization.

リモコンRから運転停止指令が指令される等により、停止条件が満たされると、発電用制御部Caは、水蒸気パージ処理を開始する。すなわち、燃料バルブV1、生成ガス出口バルブV2、電池出口バルブV6、脱硫リサイクルバルブV8及び選択酸化用空気バルブV9を閉じ、且つ、電池バイパスバルブV7を開いて、水蒸気パージ処理開始動作を行って、水蒸気パージ処理(水蒸気供給処理)を開始する(#1)。   When the stop condition is satisfied, for example, when the operation stop command is issued from the remote control R, the power generation control unit Ca starts the water vapor purge process. That is, the water vapor purge processing start operation is performed by closing the fuel valve V1, the generated gas outlet valve V2, the battery outlet valve V6, the desulfurization recycle valve V8 and the selective oxidation air valve V9 and opening the battery bypass valve V7. The steam purge process (steam supply process) is started (# 1).

水蒸気パージ処理開始動作を行った後、第1設定時間が経過すると(#2)、電池バイパスバルブV7を閉じる降温処理開始動作を行う(#3)。
降温処理開始動作の後、改質器温度センサ34の検出温度Tが設定温度Ts以下になると(#4)、改質水バルブV3を閉じると共に改質水排出バルブV4を開き、且つ、燃料バルブV1を開くと共に燃焼用空気バルブV10を閉じるガスパージ処理開始動作を行なって、ガスパージ処理を開始する(#5)。
After the water vapor purge processing start operation is performed, when the first set time has elapsed (# 2), a temperature decrease processing start operation for closing the battery bypass valve V7 is performed (# 3).
After the temperature decrease processing start operation, when the detected temperature T of the reformer temperature sensor 34 becomes lower than or equal to the set temperature Ts (# 4), the reforming water valve V3 is closed and the reforming water discharge valve V4 is opened, and the fuel valve A gas purge process start operation is performed to open V1 and close the combustion air valve V10, and start gas purge process (# 5).

第2設定時間が経過すると(#6)、改質水排出バルブV4を閉じて、水蒸気生成器18からの水の排出を終了する水排出終了動作を行い(#7)、その後、圧力センサ35の検出圧力Pが第1設定圧力Ps1以上になると(#8)、燃料バルブV1を閉じて密閉処理を行って、ガスパージ処理を終了する(#9)。   When the second set time has elapsed (# 6), the reforming water discharge valve V4 is closed, and the water discharge end operation of ending the discharge of water from the steam generator 18 is performed (# 7), and then the pressure sensor 35 When the detected pressure P is higher than or equal to the first set pressure Ps1 (# 8), the fuel valve V1 is closed to perform the sealing process, and the gas purge process is finished (# 9).

以降、保圧処理を実行することになる。つまり、圧力センサ35の検出圧力Pが第1設定圧力Ps1よりも低い第2設定圧力Ps2以下になると(#10)、燃料バルブV1を開き(#11)、第1設定圧力Ps1以上になると(#12)、燃料バルブV1を閉じることになり(#13)、その後、#10からの処理を繰り返すことになり、且つ、停止保管の終了が指令されると(#14)、停止保管処理を終了することになる。   From then on, pressure holding processing will be performed. That is, when the pressure P detected by the pressure sensor 35 becomes less than or equal to the second set pressure Ps2 lower than the first set pressure Ps1 (# 10), the fuel valve V1 is opened (# 11) and becomes greater than or equal to the first set pressure Ps1 # 12) The fuel valve V1 will be closed (# 13), and then the processing from # 10 will be repeated, and if termination of stop storage is instructed (# 14), stop storage processing will be performed. It will end.

ちなみに、改質処理装置3の運転が停止されると、生成ガス出口バルブV2及び電池出口バルブV6が閉じられて、燃料電池4内には、水素含有ガスが封入されるので、改質処理装置3の運転を停止させるのに合わせて燃料電池4の運転を停止させるときの処理としては、放電操作を行って、残留水素含有ガスを消費する燃料消費処理を行うことになる。   Incidentally, when the operation of the reforming treatment device 3 is stopped, the product gas outlet valve V2 and the battery outlet valve V6 are closed, and the hydrogen-containing gas is enclosed in the fuel cell 4, so that the reforming treatment device As a process for stopping the operation of the fuel cell 4 in accordance with the stop of the operation 3, a discharge operation is performed to perform a fuel consumption process for consuming the residual hydrogen-containing gas.

(発電部の停止保管運転の補足説明)
改質処理装置3や燃料電池4を停止させて保管する停止保管運転における水蒸気パージ処理(水蒸気供給処理)では、脱硫器17への燃料ガスG及び脱硫処理用の水素ガスの供給、並びに、一酸化炭素選択酸化器23への選択酸化用空気の供給が停止されて、水素含有ガスの生成が停止されるが、水蒸気生成器18への水の供給は継続されるので、水蒸気の生成が継続される。
このように、水蒸気の生成が継続されることから、生成される水蒸気によりガス処理経路内に残留していた装置内ガスが、電池バイパス路30を通じて改質器バーナ19aに供給される。
(Supplementary explanation of stop storage operation of the power generation unit)
In the water vapor purge process (water vapor supply process) in the stop storage operation for stopping and storing the reforming treatment apparatus 3 and the fuel cell 4, supply of the fuel gas G to the desulfurizer 17 and hydrogen gas for the desulfurization process, and The supply of air for selective oxidation to the carbon monoxide selective oxidizer 23 is stopped to stop the generation of the hydrogen-containing gas, but the supply of water to the steam generator 18 is continued, so the generation of steam is continued. Be done.
As described above, since the generation of water vapor is continued, the in-apparatus gas remaining in the gas processing path by the generated water vapor is supplied to the reformer burner 19a through the battery bypass passage 30.

そして、改質器バーナ19aへの燃焼用空気の供給が継続されているため、改質器バーナ19aにて装置内ガス中の燃料ガスG、水素ガス等の可燃性ガスが燃焼し、その燃焼ガスが、水蒸気生成器18の燃焼ガス通流部18aを通流して水蒸気生成に寄与した後、排出されることになり、このような水蒸気パージ処理(水蒸気供給処理)によって、改質処理装置3の内部が水蒸気にて置換されることとなる。   Then, since the supply of combustion air to the reformer burner 19a is continued, the combustible gas such as the fuel gas G and hydrogen gas in the gas in the apparatus is burned by the reformer burner 19a, and the combustion is performed. After the gas flows through the combustion gas flow passage portion 18a of the steam generator 18 to contribute to the steam generation, it is discharged, and the reformer 3 is treated by such a steam purge process (steam supply process). The inside of will be replaced by water vapor.

ちなみに、水蒸気パージ処理開始動作を行った時点でガス処理経路内に残留していた装置内ガスの全量又は略全量が改質器バーナ19aに供給されて、可燃性ガスが燃焼処理されることが望ましいため、第1設定時間は、水蒸気パージ処理開始動作を行った時点の残留装置内ガスの全量又は略全量が改質器バーナ19aに供給されるのに要する時間以上に設定することになる。   By the way, all or almost all of the in-apparatus gas remaining in the gas processing path at the time when the steam purge processing start operation is performed is supplied to the reformer burner 19a to burnt the flammable gas. Since it is desirable, the first set time is set to be longer than the time required for supplying the entire device internal gas or substantially the entire amount to the reformer burner 19a at the time of the steam purge processing start operation.

第1設定時間が経過した後は、改質器バーナ19aへの装置内ガスの供給が停止された状態で降温処理が行われ、その降温処理では、水蒸気生成器18への水の供給が継続されているので、改質処理装置3の蓄熱により水が気化して、水蒸気が改質処理装置3の内部に充満するので、改質処理装置3の内部が負圧となって外気が改質処理装置3の内部に侵入するのが防止される。
又、改質器バーナ19aへの燃焼用空気の供給が継続されているので、改質器19の熱が燃焼用空気にて運ばれて、水の気化の熱源として使用されるので、改質処理装置3の降温が促進されることとなる。
After the first set time has elapsed, the temperature lowering process is performed in a state where the supply of the in-apparatus gas to the reformer burner 19a is stopped, and the water supply to the steam generator 18 is continued in the temperature lowering process. Since the heat is stored in the reforming device 3 and the water vaporizes and the steam fills the inside of the reforming device 3, the inside of the reforming device 3 becomes negative pressure and the outside air is reformed. Intrusion inside the processing device 3 is prevented.
Further, since the supply of combustion air to the reformer burner 19a is continued, the heat of the reformer 19 is carried by the combustion air and used as a heat source of water vaporization, so Cooling of the processing device 3 is promoted.

降温処理の後に、燃料ガスGをパージガスとして装置内に供給するガスパージ処理が行われることになるが、パージガスとしての燃料ガスGの供給は、燃料ガスGの熱分解による炭素の析出を防止でき且つ水蒸気の凝縮を防止できる温度で行う必要がある。   Although the gas purge process of supplying the fuel gas G as a purge gas into the apparatus is performed after the temperature lowering process, the supply of the fuel gas G as the purge gas can prevent the deposition of carbon due to the thermal decomposition of the fuel gas G and It is necessary to carry out at the temperature which can prevent condensation of water vapor.

つまり、高温でしかも水蒸気の存在量が改質反応には不足するようなところに燃料ガスGが供給されると、燃料ガスGが熱分解して炭素が析出して、改質触媒をはじめとする諸々の触媒に付着して劣化させる虞があるので、パージガスとしての燃料ガスGの供給は、改質処理装置3の内部温度が熱分解による炭素の析出が防止できる温度にまで降下した状態で行う必要がある。
しかも、温度が降下し過ぎると、改質処理装置3の内部の残留水蒸気が凝縮して各触媒に付着する虞があるので、パージガスとしての燃料ガスGの供給は、改質処理装置3の内部温度が水蒸気の凝縮を防止できる温度に維持した状態で行う必要がある。
That is, when the fuel gas G is supplied to a place where the amount of water vapor is insufficient for reforming reaction at high temperature, the fuel gas G is thermally decomposed to precipitate carbon, and the reforming catalyst and the like are As the supply of the fuel gas G as a purge gas is reduced to a temperature at which the internal temperature of the reforming treatment apparatus 3 can prevent the deposition of carbon due to thermal decomposition. There is a need to do.
Moreover, if the temperature drops too much, there is a risk that the residual steam inside the reforming treatment device 3 condenses and adheres to each catalyst, so the supply of the fuel gas G as a purge gas is performed inside the reforming treatment device 3 The temperature needs to be maintained at a temperature that can prevent the condensation of water vapor.

そこで、設定温度Tsは、燃料ガスGの熱分解による炭素の析出を防止でき且つ水蒸気の凝縮を防止できる温度に設定することになり、例えば、燃料ガスGとして13Aの都市ガスを用いる場合、設定温度Tsは、150〜450℃の範囲で設定するのが好ましく、250〜350℃の範囲で設定するのが更に好ましい。   Therefore, the set temperature Ts is set to a temperature that can prevent deposition of carbon due to thermal decomposition of the fuel gas G and prevent condensation of water vapor. For example, when using 13A city gas as the fuel gas G, setting is performed The temperature Ts is preferably set in the range of 150 to 450 ° C., and more preferably set in the range of 250 to 350 ° C.

ガスパージ処理では、水蒸気生成器18及び改質水排出路32内に残留していた水が排出されることから、改質器19内にはほとんど水蒸気が存在しないので、燃料ガスGが供給されても改質反応が進行することが無く、水素が発生しなくなり、改質処理装置3の内部の圧力が上昇するのを防止することができる。
又、ガスパージ処理では、水蒸気生成器18及び改質水排出路32内に残留していた水が排出されるのと並行して、ガスの出口が無い状態で燃料ガスGがパージ用ガスとして改質処理装置3の内部に供給されることになる。
In the gas purge process, since the water remaining in the steam generator 18 and the reforming water discharge path 32 is discharged, almost no steam is present in the reformer 19, so the fuel gas G is supplied. Also, the reforming reaction does not proceed, hydrogen is not generated, and the pressure inside the reforming treatment apparatus 3 can be prevented from rising.
Further, in the gas purge process, in parallel with the discharge of water remaining in the steam generator 18 and the reforming water discharge path 32, the fuel gas G is changed as a purge gas in the state where there is no gas outlet. It will be supplied to the inside of the quality processing device 3.

ちなみに、燃料ガスGがパージガスとして供給される前に改質処理装置3の内部に残留していた水蒸気の大部分は、ガスパージ処理を実行するに伴って、ガス冷却器21にて凝縮されると共に、その凝縮水が気水分離器22にて分離されて、外部に排出されることになるので、運転を停止して改質処理装置3の内部の温度が低下しても、水蒸気が各触媒上に凝縮するといった不具合を防止することができる。   Incidentally, most of the water vapor remaining inside the reforming device 3 before the fuel gas G is supplied as a purge gas is condensed by the gas cooler 21 as the gas purge is performed. Since the condensed water is separated by the gas-water separator 22 and discharged to the outside, even if the operation is stopped and the temperature inside the reforming treatment apparatus 3 is reduced, the water vapor can be used as each catalyst. It is possible to prevent problems such as condensation on the top.

また、保圧処理により、改質処理装置3の内部温度が低下して圧力センサ35の検出圧力Pが第2設定圧力Ps2以下になると、燃料ガスGが注入されることから、改質処理装置3の内部の水分の濃度が更に低くなるので、水蒸気が各触媒上に凝縮するといった不具合をより確実に防止することができる。   In addition, since the fuel gas G is injected when the internal temperature of the reforming processing device 3 is lowered by the pressure holding processing and the detection pressure P of the pressure sensor 35 becomes equal to or lower than the second set pressure Ps2, the reforming processing device Since the concentration of water inside 3 is further lowered, it is possible to more reliably prevent the problem that water vapor condenses on each catalyst.

ちなみに、改質処理装置3の内部をパージガスでパージしている状態では、外気が改質処理装置3の内部に侵入するのを防止する必要があることから、第1設定圧力Ps1及び第2設定圧力Ps2はいずれも、正圧で、しかも装置設計圧力以下に設定する。   By the way, in the state where the inside of the reforming apparatus 3 is purged with the purge gas, it is necessary to prevent the outside air from invading the inside of the reforming apparatus 3, so the first set pressure Ps1 and the second setting Ps1 are set. The pressure Ps2 is set to a positive pressure and equal to or less than the device design pressure.

尚、停止している改質処理装置3を起動する起動運転は、先ず、改質器バーナ19aに燃料ガスGを供給して、改質器バーナ19aの燃焼を開始する燃焼開始処理を行い、その後、改質器19の温度が燃料ガスGの熱分解を防止でき且つ水蒸気の凝縮を防止できる水蒸気供給開始温度に上昇すると、水蒸気生成器18からの水蒸気を供給して、改質処理装置3の内部に充填されている燃料ガスGを水蒸気に置換する水蒸気置換処理を行い、その後、改質器19の温度が改質処理開始温度に上昇すると、燃料ガスGを供給する燃料供給処理を開始することになるが、その詳細は周知であるので、本実施形態においては詳細な説明を省略する。   In the start-up operation for starting the reforming processing device 3 which has been stopped, first, the fuel gas G is supplied to the reformer burner 19a, and the combustion start processing for starting the combustion of the reformer burner 19a is performed. Thereafter, when the temperature of the reformer 19 rises to a steam supply start temperature that can prevent the thermal decomposition of the fuel gas G and prevent condensation of steam, the steam from the steam generator 18 is supplied to the reforming device 3. The water vapor replacement process is performed to replace the fuel gas G filled inside with water vapor, and thereafter, when the temperature of the reformer 19 rises to the reforming process start temperature, the fuel supply process for supplying the fuel gas G is started However, since the details are well known, the detailed description will be omitted in the present embodiment.

(熱源部の構成)
図1に示すように、熱源部Hbには、上述した貯湯タンク1及び補助熱源機2に加えて、多機能循環ポンプ40、暖房用循環ポンプ41、風呂追焚用循環ポンプ42、暖房用熱交換器43、風呂追焚用熱交換器44が備えられている。
また、熱源部Hbには、給湯用混合弁45、暖房用電磁弁46、風呂追焚用電磁弁47、三方弁48、タンク比例弁49、及び、蓄熱切換弁50が設けられている。
(Composition of heat source part)
As shown in FIG. 1, in addition to the hot water storage tank 1 and the auxiliary heat source machine 2 described above, the heat source unit Hb includes the multifunctional circulation pump 40, the heating circulation pump 41, the bath following circulation pump 42, and the heating heat. An exchanger 43 and a heat exchanger 44 for bathing are provided.
Further, the heat source section Hb is provided with a hot water supply mixing valve 45, a heating solenoid valve 46, a bath follow solenoid valve 47, a three-way valve 48, a tank proportional valve 49, and a heat storage switching valve 50.

貯湯タンク1の上部には、湯水取出路51が設けられ、貯湯タンク1の底部には、湯水供給路52が設けられ、湯水取出路51が、給湯用混合弁45に接続されている。
水道水等の給水源からの湯水を供給する給水路53が、給湯用混合弁45に接続される第1給水路53aと、湯水供給路52に設けた蓄熱切換弁50に接続される第2給水路53bとに分岐されている。
A hot water extraction passage 51 is provided at the top of the hot water storage tank 1, a hot water supply passage 52 is provided at the bottom of the hot water storage tank 1, and the hot water extraction passage 51 is connected to the hot water supply mixing valve 45.
A water supply passage 53 for supplying hot and cold water from a water supply source such as tap water is connected to a first water supply passage 53a connected to the hot water supply mixing valve 45 and a second heat storage switching valve 50 provided on the hot water supply passage 52 It is branched into the water supply channel 53b.

多機能循環ポンプ40が配置される多機能循環路54が、補助熱源機2、暖房用熱交換器43、風呂追焚用熱交換器44、及び、三方弁48を経由する状態で設けられ、三方弁48には、湯水取出路51から分岐した分岐路51aが接続され、湯水供給路52が、多機能循環路54に接続されている。
暖房用熱交換器43と風呂追焚用熱交換器44とは、多機能循環路54に並列状態で配置され、暖房用電磁弁46が、暖房用熱交換器43を通した湯水の通流を断続し、且つ、風呂追焚用電磁弁47が、風呂追焚用熱交換器44を通した湯水の通流を断続する形態で、多機能循環路54に配置されている。
A multifunctional circulation path 54 in which the multifunctional circulation pump 40 is disposed is provided in a state of passing through the auxiliary heat source machine 2, the heating heat exchanger 43, the bath follow-up heat exchanger 44, and the three-way valve 48, The three-way valve 48 is connected to a branch passage 51 a branched from the hot water extraction passage 51, and the hot water supply passage 52 is connected to the multifunctional circulation passage 54.
The heating heat exchanger 43 and the bath follow-up heat exchanger 44 are disposed in parallel to the multi-function circulation path 54, and the heating solenoid valve 46 is a flow of hot and cold water passing through the heating heat exchanger 43. And a bath memorizing solenoid valve 47 is disposed in the multifunctional circulation path 54 in a manner to interrupt the flow of hot and cold water passing through the bath memorial heat exchanger 44.

多機能循環路54における補助熱源機2の下流側箇所と湯水取出路51とを接続する合流路55が設けられ、この合流路55に、タンク比例弁49が設けられている。
暖房用循環路56が、暖房用熱交換器43を経由する状態で設けられ、暖房用循環ポンプ41が、暖房用循環路56に設けられている。
風呂用循環路57が、風呂追焚用熱交換器44を経由する状態で設けられ、風呂追焚用循環ポンプ42が、風呂用循環路57に設けられている。
A combined flow passage 55 is provided to connect the downstream side portion of the auxiliary heat source unit 2 in the multi-functional circulation passage 54 to the hot water extraction passage 51, and a tank proportional valve 49 is provided in the combined flow passage 55.
The heating circuit 56 is provided via the heating heat exchanger 43, and a heating circulation pump 41 is provided in the heating circuit 56.
A bath circulation path 57 is provided in a state of passing through the bath reserving heat exchanger 44, and a bath reserving circulation pump 42 is provided in the bath circulation path 57.

そして、熱源部Hbは、湯水取出路51からの湯水と第1給水路53aからの湯水を混合させて給湯路58から供給する給湯運転、暖房用循環路56を通して暖房端末に熱媒を供給する暖房運転、及び、風呂用循環路57を通して浴槽水を循環させながら加熱する風呂追焚運転を行うように構成されている。   Then, the heat source unit Hb mixes the hot water from the hot water extraction path 51 and the hot water from the first water supply path 53a and supplies the heat medium to the heating terminal through the hot water supply operation supplied from the hot water supply path 58 and the heating circulation path 56. A heating operation and a bath follow-up operation of heating while circulating bath water through the bath circulation path 57 are configured to be performed.

給湯運転、暖房運転、風呂追焚運転の夫々は、貯湯タンク1の湯水を用いて行われることになるが、貯湯タンク1の貯湯熱量が不足する場合には、補助熱源機2が燃焼作動されるように構成されている。
例えば、給湯運転を行う場合に、貯湯タンク1の貯湯熱量が多いときには、貯湯タンク1の湯水が湯水取出路51を通して給湯用混合弁45に供給されることになる。尚、この場合、第2給水路53bからの湯水が、蓄熱切換弁50を経由しながら、湯水供給路52を通して貯湯タンク1に供給されることになる。
The hot water supply operation, the heating operation, and the bath remembrance operation are performed using the hot and cold water of the hot water storage tank 1, but when the hot water storage heat amount of the hot water storage tank 1 is insufficient, the auxiliary heat source machine 2 is operated to burn Are configured to
For example, when the hot water storage heat amount of the hot water storage tank 1 is large when the hot water supply operation is performed, the hot water of the hot water storage tank 1 is supplied to the hot water supply mixing valve 45 through the hot water discharge path 51. In this case, the hot and cold water from the second water supply passage 53 b is supplied to the hot water storage tank 1 through the hot and cold water supply passage 52 while passing through the heat storage switching valve 50.

給湯運転を行う場合に、貯湯タンク1の貯湯熱量が少ないときには、第2給水路53bからの湯水を、蓄熱切換弁50を経由しながら、湯水供給路52を通して多機能循環路54に供給し、補助熱源機2にて加熱した後、合流路55を通して湯水取出路51に流動させることになる。   When the hot water storage heat amount of the hot water storage tank 1 is small when the hot water supply operation is performed, the hot water from the second water supply passage 53b is supplied to the multifunctional circulation passage 54 through the hot water supply passage 52 via the heat storage switching valve 50, After heating by the auxiliary heat source unit 2, it is made to flow to the hot and cold water takeoff passage 51 through the combined flow passage 55.

暖房運転や風呂追焚運転を行う場合に、貯湯タンク1の貯湯熱量が多いときには、多機能循環ポンプ40を作動させた状態で、貯湯タンク1の湯水を、分岐路51aを通して多機能循環路54に供給し、暖房用熱交換器43や風呂追焚用熱交換器44を流動させた後に、湯水供給路52を通して貯湯タンク1に戻す形態で流動させることになる。   When heating operation or bath remembrance operation is performed, when the amount of heat storage of the hot water storage tank 1 is large, the hot water of the hot water storage tank 1 is passed through the branch passage 51a while operating the multifunctional circulation pump 40. , And the heat exchanger 43 for heating and the heat exchanger 44 for bath remembrance are made to flow, and then flow in the form of being returned to the hot water storage tank 1 through the hot water supply path 52.

暖房運転や風呂追焚運転を行う場合に、貯湯タンク1の貯湯熱量が少ないときには、分岐路51aを閉じるように三方弁48を切替えた状態で、多機能循環ポンプ40を作動させて、多機能循環路54の湯水を循環させ、且つ、循環される湯水を補助熱源機2にて加熱することになる。   When heating operation or bath remembrance operation is performed, when the amount of heat stored in the hot water storage tank 1 is small, the multi-function circulating pump 40 is operated with the three-way valve 48 switched to close the branch passage 51a. The hot and cold water in the circulation path 54 is circulated, and the circulating hot and cold water is heated by the auxiliary heat source unit 2.

(漏洩判定回避処理)
発電用制御部Caが、マイコンメータMの漏洩判定用期間(例えば、30日)の4日前に相当する26日が経過した時点において、発電部Haの運転を設定解除条件が満たされるまで停止する漏洩判定回避用停止処理、及び、燃料ガスGの消費を控えることを促すメッセージを、設定解除条件が満たされるまでリモコンRに表示する警告処理を、漏洩判定回避処理として実行するように構成されている。
(Leakage judgment avoidance process)
The power generation control unit Ca stops the operation of the power generation unit Ha until the setting cancellation condition is satisfied, when 26 days corresponding to 4 days before the leakage determination period (for example, 30 days) of the microcomputer meter M have elapsed. A leak judgment avoidance process and a warning process for displaying on the remote control R a message prompting to refrain from consumption of the fuel gas G until the setting cancellation condition is satisfied are configured as leakage judgment avoidance stop process and a warning process. There is.

発電部Haが、燃料ガスGを水蒸気改質処理により水素ガスを生成する改質処理装置3と、生成された水素含有ガスが供給される燃料電池4とを備える形態に構成されるものであるから、発電用制御部Caが、漏洩判定回避用停止処理として、改質処理装置3及び燃料電池4に対して、上述した停止保管運転処理を行うことになる。
ちなみに、燃料電池4については、上述した燃料消費処理を実行することになる。
The power generation unit Ha is configured to include the reforming processing device 3 that generates hydrogen gas by steam reforming the fuel gas G, and the fuel cell 4 to which the generated hydrogen-containing gas is supplied. Thus, the power generation control unit Ca performs the above-described stop storage operation process on the reforming processing apparatus 3 and the fuel cell 4 as the leakage determination avoidance stop process.
Incidentally, the fuel consumption process described above is performed for the fuel cell 4.

但し、本実施形態においては、漏洩判定回避用停止処理においては、上述した保圧処理に代えて、燃料ガスGの充填圧が下限充填圧としての第2設定圧力Ps2に低下すると、設定適正圧としての第1設定圧力Ps1よりも高い高圧用設定圧Ps3に燃料ガスGを補充する高圧用保圧処理を実行するように構成されている。   However, in the present embodiment, in the leakage determination avoidance stop process, when the filling pressure of the fuel gas G decreases to the second set pressure Ps2 as the lower limit filling pressure, instead of the above-described pressure holding process, the setting appropriate pressure The high-pressure holding pressure process for replenishing the fuel gas G to the high-pressure set pressure Ps3 higher than the first set pressure Ps1 is executed.

すなわち、燃料ガスGの供給を停止した状態で、改質処理装置3の内部に水蒸気を供給して装置内ガスを排出する水蒸気パージ処理(水蒸気供給処理)、及び、水蒸気の供給を停止した状態で、改質処理装置3の内部にマイコンメータMを経由した燃料ガスGを充填して封止するガスパージ処理(充填処理)を順次実行し、その後、燃料ガスGの充填圧が下限充填圧としての第2設定圧力Ps2に低下すると、マイコンメータMを経由した燃料ガスGを高圧用設定圧Ps3になるまで改質処理装置3の内部に補充する高圧保圧処理を実行することになる。   That is, in the state where supply of fuel gas G is stopped, steam purge processing (steam supply processing) of supplying steam inside the reforming processing device 3 to discharge the gas in the device, and the state where supply of steam is stopped Then, the gas purge process (filling process) of filling and sealing the fuel gas G through the microcomputer meter M inside the reforming treatment apparatus 3 is sequentially performed, and thereafter, the filling pressure of the fuel gas G is set as the lower limit filling pressure When the pressure drops to the second set pressure Ps2, the high pressure holding process is performed to supplement the fuel gas G passed through the microcomputer meter M to the inside of the reforming processing apparatus 3 until the set pressure Ps3 for high pressure is reached.

また、設定解除条件が、エネルギ供給部H(発電部Ha及び熱源部Hb)に対して燃料ガスGを供給しない状態の継続時間である非供給継続時間が設定継続時間(例えば、60分)に対応する所定時間(例えば、60分)に達する条件に定められている。
本実施形態においては、図1に示すように、発電部Ha及び熱源部Hbの夫々に燃料ガスGの通流量を計測する発電側流量計59a及び熱源側流量計59bが設けられている。
そして、発電用制御部Caが、発電側流量計59a及び熱源側流量計59bの検出情報に基づいて、発電部Ha及び熱源部Hbの夫々に対して燃料ガスGを供給しない時間が所定時間(例えば、60分)に達しているか否かを判断するように構成されている。
In addition, the non-supply continuation time, which is the continuation time of the state where the fuel gas G is not supplied to the energy supply unit H (the power generation unit Ha and the heat source unit Hb), is set to the setting continuation time (for example, 60 minutes). It is set as the conditions which reach the corresponding predetermined time (for example, 60 minutes).
In the present embodiment, as shown in FIG. 1, a power generation side flow meter 59 a and a heat source side flow meter 59 b for measuring the flow rate of the fuel gas G are provided in each of the power generation unit Ha and the heat source unit Hb.
Then, based on the detection information of the power generation side flow meter 59a and the heat source side flow meter 59b, the power generation control unit Ca does not supply the fuel gas G to each of the power generation unit Ha and the heat source unit Hb. For example, it is configured to determine whether or not it has reached 60 minutes.

ちなみに、本実施形態においては、上述の如く、発電側流量計59a及び熱源側流量計59bを設けているが、例えば、発電部Haについては、燃料バルブV1を開き状態に操作したか否かにより、燃料ガスGを供給したか否かが判断でき、また、熱源部Hbについては、補助熱源機2が作動したか否かにより、燃料ガスGを供給したか否かを判断できるものであるから、発電側流量計59a及び熱源側流量計59bを設置しない形態で、発電部Ha及び熱源部Hbの夫々に対して燃料ガスGを供給しない時間が所定時間(例えば、60分)に達しているか否かを判断するようにしてもよい。   Incidentally, in the present embodiment, as described above, the power generation side flow meter 59a and the heat source side flow meter 59b are provided, but for the power generation unit Ha, for example, depending on whether or not the fuel valve V1 is operated open. Since it can be determined whether the fuel gas G has been supplied, and whether the fuel gas G has been supplied can be determined based on whether or not the auxiliary heat source unit 2 has operated for the heat source Hb. Whether the time during which the fuel gas G is not supplied to each of the power generation unit Ha and the heat source Hb reaches a predetermined time (for example, 60 minutes) without installing the power generation side flow meter 59a and the heat source side flow meter 59b It may be determined whether or not.

警告処理は、漏洩判定回避用停止処理の実行中において、設定処理予定時間(例えば、12時間)が経過しても、エネルギ供給部Hに対して燃料ガスGを供給しない状態の継続時間である非供給継続時間が設定継続時間(例えば、60分)に対応する所定時間(例えば、60分)を超える状態が生じないときには、燃料ガスGの消費を停止するように警告を行うものである。   The warning process is a continuation time of the state where the fuel gas G is not supplied to the energy supply unit H even if the set process scheduled time (for example, 12 hours) elapses while the leakage determination avoidance stop process is being executed. When the state where the non-supply continuation time does not exceed the predetermined time (for example, 60 minutes) corresponding to the setting continuation time (for example, 60 minutes) does not occur, a warning is given to stop the consumption of the fuel gas G.

(漏洩判定回避処理の詳細)
次に、発電用制御部Caが実行する漏洩判定回避処理を、図5のフローチャートに基づいて説明する。
先ず、発電部Haが停止済であるか否かを判定し(#20)、停止済でない場合には、マイコンメータMの漏洩判定用期間(例えば、30日)の4日前に相当する26日が経過しているか否かを判定する(#21)。
(Details of leak judgment avoidance process)
Next, the leakage determination avoidance process executed by the power generation control unit Ca will be described based on the flowchart of FIG.
First, it is determined whether or not the power generation unit Ha has been stopped (# 20), and if it has not been stopped, 26 days equivalent to 4 days before the leak judgment period of the microcomputer meter M (for example, 30 days) Is judged (# 21).

#21にて、26日が経過していると判定したときには、発電部Haの起動を禁止する起動禁止をセットし(#22)、次に、改質処理装置3及び燃料電池4の運転を停止する運転停止処理(水蒸気パージ処理、ガスパージ処理、燃料消費処理)を実行し(#23)、続いて、高圧用保圧処理を実行する(#24)。   When it is determined in # 21 that 26 days have elapsed, the activation prohibition to prohibit the activation of the power generation unit Ha is set (# 22), and then the operation of the reforming treatment device 3 and the fuel cell 4 is performed. The operation stop process (water vapor purge process, gas purge process, fuel consumption process) to be stopped is executed (# 23), and then the high pressure holding pressure process is executed (# 24).

この高圧用保圧処理は、上述の如く、圧力センサ35の検出圧力Pが第1設定圧力Ps1よりも低い第2設定圧力Ps2以下になると、燃料バルブV1を開き、第1設定圧力Ps1よりも高い高圧用設定圧Ps3以上になると、燃料バルブV1を閉じることを、繰り返す処理であり、その詳細は後述する。
ちなみに、#20にて、発電部Haが停止済であると判定した場合には、運転停止処理(#23)を実行する必要がないので、#24の高圧用保圧処理に移行することになる。
As described above, when the detected pressure P of the pressure sensor 35 becomes equal to or lower than the second set pressure Ps2 lower than the first set pressure Ps1, the high-pressure storage pressure processing opens the fuel valve V1 and makes the pressure higher than the first set pressure Ps1. When the high-pressure set pressure Ps3 or more is reached, closing the fuel valve V1 is repeated, the details of which will be described later.
Incidentally, when it is determined that the power generation unit Ha has been stopped at # 20, there is no need to execute the operation stop process (# 23), so that the process proceeds to the high pressure holding process of # 24. Become.

次に、エネルギ供給部H(発電部Ha及び熱源部Hb)に対して燃料ガスGが供給されない状態の継続時間である非供給継続時間が設定継続時間(例えば、60分)に対応する所定時間(例えば、60分)を経過しているか否かを判定し(#25)、非供給継続時間が所定時間(例えば、60分)を経過していると判定した場合には、発電部Haの起動を許可するために起動禁止を解除することになる(#26)。   Next, the non-supply continuation time which is the continuation time of the state where the fuel gas G is not supplied to the energy supply unit H (the power generation unit Ha and the heat source unit Hb) is a predetermined time corresponding to the setting continuation time (for example, 60 minutes) It is determined whether (for example, 60 minutes) has passed (# 25), and if it is determined that the non-supply continuation time has passed a predetermined time (for example, 60 minutes), In order to allow the start, the start prohibition is released (# 26).

#25にて、非供給継続時間が所定時間を経過していないと判定した場合には、処理予定時間(例えば、12時間)が経過しているか否かを判定し(#27)、処理予定時間を経過している場合には、燃料ガスGの消費を控えることを促すメッセージをリモコンRに表示する警告処理を実行する(#28)。   If it is determined in # 25 that the non-supply continuation time has not exceeded the predetermined time, it is determined whether the scheduled processing time (for example, 12 hours) has elapsed (# 27), and the processing schedule is determined. If the time has elapsed, a warning process is executed to display a message prompting the user to refrain from consuming the fuel gas G on the remote control R (# 28).

尚、図5のフローチャートは、発電部Haが運転中であることを前提として記載するものであるが、26日が経過した時点で発電部Haが停止中である場合を考慮する場合には、#20にて停止済であると判定した後に、26日が経過しているか否かを判定し、26日が経過しているときには、発電部Haの起動を禁止する起動禁止をセットする処理を追加することになる。   Although the flowchart of FIG. 5 is described on the premise that the power generation unit Ha is in operation, when considering the case where the power generation unit Ha is stopped when 26 days have passed, After it is determined that the operation has been stopped in # 20, it is determined whether or not the 26th day has elapsed, and when the 26th day has elapsed, the process of setting the start prohibition to prohibit the start of the power generation unit Ha is performed It will be added.

次に、発電用制御部Caが実行する高圧用保圧処理を、図6のフローチャートに基づいて説明する。
先ず、燃料ガスGの供給中であるか否かを判定し(#30)、燃料ガスGの供給中で無い場合には、圧力センサ35の検出圧力Pが第1設定圧力Ps1よりも低い第2設定圧力Ps2以下であるか否かを判定し(#31)、圧力センサ35の検出圧力Pが第2設定圧力Ps2以下である場合には、燃料バルブV1を開いて、燃料ガスGの充填を開始する(#32)。
Next, the high-pressure holding pressure process performed by the power generation control unit Ca will be described based on the flowchart of FIG.
First, it is determined whether the fuel gas G is being supplied (# 30). If the fuel gas G is not being supplied, the detected pressure P of the pressure sensor 35 is lower than the first set pressure Ps1. (2) It is determined whether or not the set pressure Ps2 or lower (# 31). If the detected pressure P of the pressure sensor 35 is lower than the second set pressure Ps2, the fuel valve V1 is opened to fill the fuel gas G To start (# 32).

次に、圧力センサ35の検出圧力Pが第1設定圧力Ps1よりも高い高圧用設定圧Ps3以上であるか否かを判定し(#33)、圧力センサ35の検出圧力Pが高圧用設定圧Ps3以上であるになると、燃料バルブV1を閉じて、燃料ガスGの充填を終了する(#34)。
また、#30にて、燃料ガスGの供給中であると判定したときには、#33の処理に移行することになる。
Next, it is determined whether the detected pressure P of the pressure sensor 35 is higher than the first set pressure Ps1 for the high pressure setting pressure Ps3 (# 33), and the detected pressure P of the pressure sensor 35 is the high pressure setting pressure If Ps3 or more, the fuel valve V1 is closed to complete the filling of the fuel gas G (# 34).
When it is determined at # 30 that the fuel gas G is being supplied, the process proceeds to # 33.

(第1実施形態のまとめ)
第1実施形態においては、漏洩判定回避用停止処理として、水蒸気供給処理及び充填処理が順次実行され、その後、燃料ガスGの充填圧が下限充填圧としての第2設定圧力Ps2以下に低下すると、設定適正圧としての第1設定圧力Ps1よりも高い高圧用設定圧Ps3に燃料ガスGを補充する高圧用保圧処理が実行されることになる。
(Summary of the first embodiment)
In the first embodiment, the steam supply process and the filling process are sequentially performed as the leakage determination avoidance stop process, and thereafter, when the filling pressure of the fuel gas G decreases to the second set pressure Ps2 or lower as the lower limit filling pressure, A high pressure holding pressure process is performed in which the fuel gas G is replenished to the high pressure setting pressure Ps3 which is higher than the first setting pressure Ps1 as the setting appropriate pressure.

このように、漏洩判定回避用停止処理においては、高圧用保圧処理が実行されることになるから、高圧用設定圧Ps3に燃料ガスGを補充した後、燃料ガスGの充填圧が下限充填圧としての第2設定圧力Ps2に低下するまでのインターバル時間(図8参照)が、設定適正圧としての第1設定圧力Ps1に燃料ガスGを補充した後、燃料ガスGの充填圧が下限充填圧としての第2設定圧力Ps2に低下するまでのインターバル時間(図7参照)よりも長くなる。   As described above, in the leakage judgment avoidance stop process, the high pressure holding pressure process is executed. Therefore, after the fuel gas G is replenished to the high pressure setting pressure Ps3, the filling pressure of the fuel gas G is lower than the lower limit filling. After the fuel gas G is replenished to the first set pressure Ps1 as the set appropriate pressure, an interval time until the second set pressure Ps2 as the pressure decreases (see FIG. 8), the filling pressure of the fuel gas G becomes lower limit filling It becomes longer than the interval time (refer FIG. 7) until it reduces to 2nd setting pressure Ps2 as a pressure.

ちなみに、図7及び図8において、Tで示す時間間隔は、1時間であり、また、図7においては、第1設定圧力Ps1に燃料ガスGを補充する際の供給量を、通常時の燃料ガス供給量として記載し、また、図8においては、高圧用設定圧Ps3に燃料ガスGを補充する際の供給量を、高圧時の燃料ガス供給量として記載している。   Incidentally, in FIGS. 7 and 8, the time interval indicated by T is one hour, and in FIG. 7, the supply amount at the time of supplementing the fuel gas G to the first set pressure Ps1 is the fuel amount at normal times. The gas supply amount is described, and in FIG. 8, the supply amount at the time of supplementing the fuel gas G to the high-pressure set pressure Ps3 is described as the fuel gas supply amount at high pressure.

そして、図7に示すように、設定適正圧としての第1設定圧力Ps1に燃料ガスGを補充した後、燃料ガスGの充填圧が下限充填圧としての第2設定圧力Ps2に低下するまでのインターバル時間が、保圧処理を開始した初期では、30分〜1時間程度である。
これに対して、図8に示すように、高圧用設定圧Ps3に燃料ガスGを補充した後、燃料ガスGの充填圧が下限充填圧としての第2設定圧力Ps2に低下するまでのインターバル時間が、高圧用保圧処理を開始した初期では、1〜2時間程度である。
Then, as shown in FIG. 7, after the fuel gas G is replenished to the first set pressure Ps1 as the set appropriate pressure, the filling pressure of the fuel gas G decreases to the second set pressure Ps2 as the lower limit filling pressure. The interval time is about 30 minutes to 1 hour at the beginning of the pressure holding process.
On the other hand, as shown in FIG. 8, after the fuel gas G is replenished to the high pressure setting pressure Ps3, an interval time until the filling pressure of the fuel gas G decreases to the second setting pressure Ps2 as the lower limit filling pressure However, it is about 1 to 2 hours at the beginning of starting the high pressure holding treatment.

したがって、高圧用設定圧Ps3に燃料ガスGを補充した後、燃料ガスGの充填圧が下限充填圧としての第2設定圧力Ps2に低下するまでのインターバル時間が、高圧用保圧処理の初期から1時間よりも長くなる傾向となるから、発電部Haの停止時点から長時間が経過しなくても、インターバル時間を設定継続時間(例えば、60分)よりも長くなる状態を現出させることができる。   Therefore, after the fuel gas G is replenished to the high pressure setting pressure Ps3, the interval time until the filling pressure of the fuel gas G decreases to the second setting pressure Ps2 as the lower limit filling pressure is from the beginning of the high pressure pressure holding process. Since it tends to be longer than one hour, a state in which the interval time is longer than the set duration time (for example, 60 minutes) may appear even if a long time does not elapse from the stopping time of the power generation unit Ha. it can.

また、改質処理装置3に充填される燃料ガスGの圧力を圧力センサ35にて検出しながら、その圧力センサ35の検出情報に基づいて、停止保管処理における保圧処理、及び、漏洩判定回避用停止処理における高圧用保圧処理が実行されることになるから、改質処理装置3に充填される燃料ガスGの圧力を的確に把握しながら、保圧処理及び高圧用保圧処理を適切に行うことができる。   Moreover, while detecting the pressure of the fuel gas G with which the reforming processing apparatus 3 is filled with the pressure sensor 35, based on the detection information of the pressure sensor 35, pressure holding processing in stop storage processing, and leakage judgment avoidance Because the high pressure holding process is executed in the stop process, the pressure holding process and the high pressure holding process are properly performed while accurately grasping the pressure of the fuel gas G filled in the reforming treatment apparatus 3. Can be done.

さらに、本実施形態においては、漏洩判定回避用停止処理の実行中において、設定処理予定時間(例えば、12時間)が経過しても、エネルギ供給部Hに対して燃料ガスGが供給されない状態の継続時間である非供給継続時間が設定継続時間(例えば、60分)を超える状態が生じないときには、燃料ガスGの消費を停止するように警告を行う警告処理が実行される。   Furthermore, in the present embodiment, the fuel gas G is not supplied to the energy supply unit H even if the set processing scheduled time (for example, 12 hours) has elapsed while the leakage determination avoidance stop process is being executed. When the state where the non-supply continuation time which is the continuation time does not occur exceeds the setting continuation time (for example, 60 minutes), a warning process is performed to warn the user to stop the consumption of the fuel gas G.

したがって、警告処理が実行されることによって、使用者が、燃料ガスGの消費を控えることによって、エネルギ供給部Hに対して燃料ガスGが供給されない状態の継続時間である非供給継続時間が設定継続時間(例えば、60分)を超える状態を適切に現出させることができるため、エネルギ供給部Hに対して燃料ガスGを供給しない時間が設定継続時間以上となる状態を現出させ易いものとなる。   Therefore, by performing the warning process, the user refrains from consuming the fuel gas G, thereby setting the non-supply duration which is the duration of the state in which the fuel gas G is not supplied to the energy supply unit H. A state in which the time for which the fuel gas G is not supplied to the energy supply unit H is more than the set continuation time can be easily realized since the state exceeding the duration (for example, 60 minutes) can be appropriately manifested It becomes.

ちなみに、一般には、マイコンメータMからの燃料ガスGは、ガスコンロ等の一般のガス器具にも供給されることになるが、この場合には、上述の警告処理によって、一般のガス器具の使用も控えられることになる。   By the way, in general, the fuel gas G from the microcomputer meter M is also supplied to a general gas appliance such as a gas stove, but in this case, the use of the general gas appliance is also carried out by the above-mentioned warning processing. It will be reserved.

〔第2実施形態〕
次に、第2実施形態を説明するが、この第2実施形態は、発電用制御部Caが実行する漏洩判定回避処理の別実施形態を示すものであって、その他の構成は第1実施形態と同様であるので、第1実施形態と異なる部分についてのみ説明して、第1実施形態と同様な構成については、詳細な説明を省略する。
Second Embodiment
Next, although a second embodiment will be described, this second embodiment shows another embodiment of the leakage determination avoidance process executed by the power generation control unit Ca, and the other configuration is the first embodiment. Therefore, only the parts different from the first embodiment will be described, and the detailed description of the same configuration as the first embodiment will be omitted.

この第2実施形態においては、運転制御部Cを構成する発電用制御部Caが、漏洩判定回避用停止処理の実行中において、設定処理予定時間(例えば、12時間)が経過しても、エネルギ供給部Hに対して燃料ガスGを供給しない状態の継続時間である非供給継続時間が設定継続時間を超える状態が生じないときには、第1実施形態と同様に、警告処理を行うことになるが、警告処理を行う前に、高圧用保圧処理を実行することになる。   In the second embodiment, even if the set processing scheduled time (for example, 12 hours) has elapsed while the power generation control unit Ca constituting the operation control unit C is executing the leakage determination avoidance stop process, the energy When the non-supply continuation time which is the continuation time of the state where the fuel gas G is not supplied to the supply unit H does not occur, the warning process is performed as in the first embodiment. Before performing warning processing, high pressure holding processing will be performed.

つまり、圧力センサ35の検出圧力Pが第1設定圧力Ps1よりも高い高圧用設定圧Ps3以上となるまで、改質処理装置3に燃料ガスGを充填した後、燃料ガスGの消費を停止するように警告を行う警告処理を実行するように構成されている。
ちなみに、警告処理は、燃料ガスGの消費を控えることを促すメッセージをリモコンRに表示する処理である。
That is, the fuel gas G is charged into the reforming processing apparatus 3 until the pressure P detected by the pressure sensor 35 becomes higher than or equal to the high pressure setting pressure Ps3 higher than the first setting pressure Ps1, and then the consumption of the fuel gas G is stopped. It is configured to perform alert processing to alert you.
By the way, the warning process is a process of displaying on the remote control R a message prompting to refrain from the consumption of the fuel gas G.

(漏洩判定回避処理の詳細)
次に、第2実施形態において発電用制御部Caが実行する漏洩判定回避処理を、図9のフローチャートに基づいて説明する。尚、図9のフローチャートにおける#60〜#67の処理は、図6のフローチャートにおける#20〜#27に対応する処理である。
(Details of leak judgment avoidance process)
Next, a leakage determination avoidance process executed by the power generation control unit Ca in the second embodiment will be described based on the flowchart of FIG. The processes of # 60 to # 67 in the flowchart of FIG. 9 are processes corresponding to # 20 to # 27 in the flowchart of FIG. 6.

先ず、発電部Haが停止済であるか否かを判定し(#60)、停止済でない場合には、マイコンメータMの漏洩判定用期間(例えば、30日)の4日前に相当する26日が経過しているか否かを判定する(#61)。   First, it is determined whether or not the power generation unit Ha has been stopped (# 60), and if it has not been stopped, 26 days equivalent to 4 days before the leak judgment period of the microcomputer meter M (for example, 30 days) Is determined (# 61).

#61にて、26日が経過していると判定したときには、発電部Haの起動を禁止する起動禁止をセットし(#62)、次に、改質処理装置3及び燃料電池4の運転を停止する運転停止処理(水蒸気パージ処理、ガスパージ処理、燃料消費処理)を実行し(#63)、続いて、高圧用保圧処理を実行する(#64)。
ちなみに、#60にて、発電部Haが停止済であると判定した場合には、運転停止処理(#63)を実行する必要がないので、#64の高圧用保圧処理に移行することになる。
When it is determined in # 61 that 26 days have passed, the activation prohibition to prohibit the activation of the power generation unit Ha is set (# 62), and then the operation of the reforming treatment device 3 and the fuel cell 4 is performed. The operation stop process (water vapor purge process, gas purge process, fuel consumption process) to be stopped is executed (# 63), and then the high-pressure holding process is executed (# 64).
By the way, if it is determined at # 60 that the power generation unit Ha has been stopped, there is no need to execute the operation stop process (# 63), so that the process proceeds to # 64 high pressure holding process. Become.

次に、エネルギ供給部H(発電部Ha及び熱源部Hb)に対して燃料ガスGが供給されない状態の継続時間である非供給継続時間が設定継続時間(例えば、60分)に対応する所定時間(例えば、60分)を経過しているか否かを判定し(#65)、非供給継続時間が所定時間(例えば、60分)を経過していると判定した場合には、発電部Haの起動を許可するために起動禁止を解除し(#66)、その後、#60の処理に移行することになる。   Next, the non-supply continuation time which is the continuation time of the state where the fuel gas G is not supplied to the energy supply unit H (the power generation unit Ha and the heat source unit Hb) is a predetermined time corresponding to the setting continuation time (for example, 60 minutes) It is determined whether (for example, 60 minutes) has elapsed (# 65), and when it is determined that the non-supply continuation time has elapsed for a predetermined time (for example, 60 minutes), In order to allow the activation, the activation prohibition is released (# 66), and thereafter, the process proceeds to # 60.

#65にて、非供給継続時間が所定時間(例えば、60分)を経過していないと判定した場合には、続いて、設定処理予定時間(例えば、12時間)が経過しているか否かを判定する(#67)。
設定処理予定時間が経過していると判定した場合には、高圧用保圧処理、つまり、圧力センサ35の検出圧力Pが高圧用設定圧Ps3以上となるまで、改質処理装置3に燃料ガスGを充填する処理を実行し(#68)、その後、燃料ガスGの消費を控えることを促すメッセージをリモコンRに表示する警告処理を実行する(#71)。
If it is determined at # 65 that the non-supply continuation time has not exceeded the predetermined time (for example, 60 minutes), then whether or not the set processing scheduled time (for example, 12 hours) has elapsed Is determined (# 67).
When it is determined that the set processing scheduled time has elapsed, the high pressure storage pressure processing, that is, the fuel gas in the reforming device 3 until the detection pressure P of the pressure sensor 35 becomes equal to or higher than the high pressure setting pressure Ps3. A process of filling G is executed (# 68), and then a warning process of displaying on the remote control R a message prompting to refrain from consumption of the fuel gas G is executed (# 71).

また、#67にて、設定処理予定時間(例えば、12時間)が経過していないと判定した場合には、#60の処理に移行することになる。   If it is determined in # 67 that the set processing scheduled time (for example, 12 hours) has not elapsed, the process proceeds to # 60.

尚、図9のフローチャートは、発電部Haが運転中であることを前提として記載するものであるが、26日が経過した時点で発電部Haが停止中である場合を考慮する場合には、#60にて停止済であると判定した後に、26日が経過しているか否かを判定し、26日が経過しているときには、発電部Haの起動を禁止する起動禁止をセットする処理を追加することになる。   Although the flowchart of FIG. 9 is described on the premise that the power generation unit Ha is in operation, when considering the case where the power generation unit Ha is stopped when 26 days have passed, After it is determined that the vehicle has been stopped in # 60, it is determined whether or not the 26th day has elapsed, and when the 26th day has elapsed, the process of setting the start prohibition to prohibit the start of the power generation unit Ha is performed It will be added.

(第2実施形態のまとめ)
第2実施形態は、第1実施形態と同様の構成を備えるものであるから、第1実施形態と同様に、漏洩判定回避用停止処理として、水蒸気供給処理及び充填処理が順次実行され、その後、燃料ガスGの充填圧が下限充填圧としての第2設定圧力Ps2以下に低下すると、第1設定圧力Ps1よりも高い高圧用設定圧Ps3に燃料ガスGを補充する高圧用保圧処理が実行されることになるから、発電部Haの停止時点から長時間が経過しなくても、高圧用保圧処理の初期からインターバル時間を設定継続時間(例えば、60分)よりも長くなる状態を現出させることができる。
(Summary of the second embodiment)
Since the second embodiment has the same configuration as the first embodiment, the water vapor supply process and the filling process are sequentially executed as the leakage determination avoidance stop process as in the first embodiment, and thereafter, When the filling pressure of the fuel gas G falls below the second set pressure Ps2 as the lower limit filling pressure, the high-pressure holding pressure process of replenishing the fuel gas G to the high-pressure set pressure Ps3 higher than the first set pressure Ps1 is executed. As a result, even if a long time does not elapse from the stopping time of the power generation unit Ha, the interval time from the initial stage of high-pressure holding processing becomes longer than the setting duration (for example, 60 minutes). It can be done.

また、改質処理装置3に充填される燃料ガスGの圧力を圧力センサ35にて検出しながら、その圧力センサ35の検出情報に基づいて、停止保管処理における保圧処理、及び、漏洩判定回避用停止処理における高圧用保圧処理が実行されることになるから、改質処理装置3に充填される燃料ガスGの圧力を的確に把握しながら、保圧処理及び高圧用保圧処理を適切に行うことができる。   Moreover, while detecting the pressure of the fuel gas G with which the reforming processing apparatus 3 is filled with the pressure sensor 35, based on the detection information of the pressure sensor 35, pressure holding processing in stop storage processing, and leakage judgment avoidance Because the high pressure holding process is executed in the stop process, the pressure holding process and the high pressure holding process are properly performed while accurately grasping the pressure of the fuel gas G filled in the reforming treatment apparatus 3. Can be done.

しかも、漏洩判定回避用停止処理の実行中において、設定処理予定時間(例えば、12時間)が経過しても、エネルギ供給部Hに対して燃料ガスGが供給されない状態の継続時間である非供給継続時間が設定継続時間(例えば、60分)を超える状態が生じないときには、燃料ガスGの消費を停止する警告を行う警告処理が実行されるから、エネルギ供給部Hに対して燃料ガスGを供給しない時間が設定継続時間以上となる状態を現出させ易いものとなる。   Moreover, during the execution of the leakage determination avoidance stop process, the fuel gas G is not supplied to the energy supply unit H even if the set processing scheduled time (for example, 12 hours) has elapsed. When the state where the duration does not exceed the setting duration (for example, 60 minutes) does not occur, the warning process is performed to warn the consumption of the fuel gas G, so the fuel gas G is sent to the energy supply unit H It becomes easy to make the state where the non-supplying time is longer than the set continuation time appear.

さらに、本実施形態によれば、警告処理を行う前には、高圧用保圧処理が実行されることになるから、警告処理が実行されることによって、使用者が、燃料ガスGの消費を控えているときに、燃料ガスGの充填圧が下限充填圧として第2設定圧力Ps2以下になることを回避することが可能となるため、エネルギ供給部Hに対して燃料ガスGを供給しない時間が設定継続時間以上となる状態を適切に現出させることができる。   Furthermore, according to the present embodiment, the high-pressure pressure holding process is performed before the warning process is performed, so that the user consumes the fuel gas G by performing the warning process. It is possible to avoid that the filling pressure of the fuel gas G becomes equal to or lower than the second set pressure Ps2 as the lower limit filling pressure when the fuel gas G is being stored. It is possible to properly bring out the state in which the time duration is not less than the set duration time.

尚、第2実施形態においては、設定処理予定時間が経過していると判定した場合において、先に高圧用保圧処理を行い、その終了時点において警告処理を開始する例について説明したが、設定処理予定時間が経過していると判定した場合において、高圧用保圧処理と警告処理とを同時に開始してもよい。また、第2実施形態のように、警告処理よりも高圧用保圧処理を先に開始する場合においては、その高圧用保圧処理の開始時点から予め設定した遅延時間が経過した時点において警告処理を開始してもよい。その他、高圧用保圧処理よりも先に警告処理を開始する場合においては、その警告処理の開始時点から予め設定した遅延時間が経過した時点において高圧用保圧処理を開始してもよい。   In the second embodiment, when it is determined that the scheduled setting processing time has elapsed, an example in which the high-pressure holding processing is performed first and the warning processing is started at the end time is described. When it is determined that the scheduled processing time has elapsed, the high-pressure holding processing and the warning processing may be started simultaneously. Also, as in the second embodiment, when the high pressure holding process is started earlier than the warning process, the warning process is performed when a preset delay time has elapsed from the start time of the high pressure holding process. You may start In addition, when the warning process is started prior to the high pressure holding process, the high pressure holding process may be started when a preset delay time has elapsed from the start of the warning process.

〔第3実施形態〕
次に、第3実施形態を説明するが、この第3実施形態は、エネルギ供給システムの別実施形態を示すものであって、その他の構成は第1実施形態と同様であるので、第1実施形態と異なる部分についてのみ説明して、第1実施形態と同様な構成については、詳細な説明を省略する。
Third Embodiment
Next, a third embodiment will be described. The third embodiment shows another embodiment of the energy supply system, and the other configuration is the same as that of the first embodiment. Only the portions different from the embodiment will be described, and the detailed description of the same configuration as the first embodiment will be omitted.

すなわち、図10に示すように、エネルギ供給部Hが、発電部Haのみを備える電力供給部として構成されている。   That is, as shown in FIG. 10, the energy supply unit H is configured as a power supply unit including only the power generation unit Ha.

図10に示した発電部Haでは、燃料電池4が発生する熱を冷却水にて回収する冷却水循環路5Aに、冷却水を冷却するラジエターFが設けられている。このラジエターFは、燃料電池4の下流側であって冷却水貯留タンクQの上流側に設けられている。
また、燃料電池4の余剰電力を熱に換えて消費する電気ヒータ12が、冷却水循環路5Aを通流する冷却水を加熱するように、冷却水循環路5Aにおいて、燃料電池4の下流側であってラジエターFの上流側に設けられている。
In the power generation unit Ha shown in FIG. 10, a radiator F for cooling the cooling water is provided in the cooling water circulation passage 5A for recovering the heat generated by the fuel cell 4 with the cooling water. The radiator F is provided downstream of the fuel cell 4 and upstream of the cooling water storage tank Q.
In addition, in the cooling water circulation passage 5A, the electric heater 12 that consumes the surplus power of the fuel cell 4 by converting it into heat heats the cooling water flowing through the cooling water circulation passage 5A, which is downstream of the fuel cell 4 It is provided on the upstream side of the radiator F.

ラジエターFは、燃料電池4の運転中において、冷却水循環路5Aを通流する冷却水が保有する熱を外部に放出することにより、その冷却水を冷却する動作を行うように構成されている。また、ラジエターFは、燃料電池4の運転が停止されているときには冷却水を冷却する動作を停止するように構成されている。   The radiator F is configured to perform an operation of cooling the cooling water by discharging the heat held by the cooling water flowing through the cooling water circulation passage 5A to the outside during the operation of the fuel cell 4. In addition, the radiator F is configured to stop the operation of cooling the cooling water when the operation of the fuel cell 4 is stopped.

〔別実施形態〕
次に、その他の別実施形態を列記する。
(1)上記第1及び第2実施形態においては、エネルギ供給部Hの運転を制御する運転制御部Cが、発電部Haの運転を制御する発電用制御部Caと熱源部Hbの運転を制御する熱源用制御部Cbとから構成される場合を例示したが、発電用制御部Caと熱源用制御部Cbとを一つの制御部としてまとめて、運転制御部Cを一つの制御部として構成する形態で実施してもよい。
[Another embodiment]
Next, other alternative embodiments will be listed.
(1) In the first and second embodiments, the operation control unit C that controls the operation of the energy supply unit H controls the operation of the power generation control unit Ca that controls the operation of the power generation unit Ha and the heat source unit Hb. Although the case where the control unit Cb for generating heat source is configured is illustrated, the control unit for power generation Ca and the control unit for heat source Cb are combined as one control unit, and the operation control unit C is configured as one control unit. You may implement in a form.

(2)上記第1及び第2実施形態においては、発電部Haと熱源部Hbとを別体のユニットとして構成する場合を例示したが、発電部Haと熱源部Hbとを一つのユニットとして構成する形態で実施してもよい。 (2) In the first and second embodiments, the power generation unit Ha and the heat source unit Hb are configured as separate units. However, the power generation unit Ha and the heat source unit Hb are configured as one unit. You may implement in the form which

(3)上記第1〜第3実施形態においては、ガスパージ処理(充填処理)の密閉処理においては、燃料ガスGを適正設定圧としての第1設定圧力Ps1に充填する場合を例示したが、密閉処理において、燃料ガスGを高圧用設定圧Ps3に充填する形態で実施してもよい。 (3) In the sealing process of the gas purge process (filling process) in the first to third embodiments, the fuel gas G is filled to the first set pressure Ps1 as the appropriate set pressure. In the process, the fuel gas G may be charged to the high pressure setting pressure Ps3.

(4)上記第1〜第3実施形態においては、保圧処理及び高圧用保圧処理を、圧力センサ35の検出情報に基づいて行う場合を例示したが、例えば、図11及び図12に示すように、改質器温度センサ34の検出温度Tが設定温度低下する毎に、燃料バルブV1を設定時間だけ開弁して、燃料ガスGを設定量ずつ充填する形態で実施する等、保圧処理及び高圧用保圧処理の具体構成は各種変更できる。 (4) In the first to third embodiments, the pressure holding process and the high pressure holding process are performed based on the detection information of the pressure sensor 35. For example, as shown in FIGS. Thus, each time the temperature T detected by the reformer temperature sensor 34 decreases by the set temperature, the fuel valve V1 is opened for the set time, and the fuel gas G is filled by the set amount, etc. The specific configuration of the treatment and the high pressure holding treatment can be variously changed.

ちなみに、上述の設定温度Tsとしては、保圧処理においては、例えば、30℃であり、高圧用保圧処理においては、例えば、50℃である。
尚、このように検出温度Tに基づいて燃料ガスGを充填する場合、発電部Haを停止してから設定時間(例えば、24時間)が経過する、又は、改質器温度センサ34の検出温度Tが外気温度と平衡すると、燃料ガスGの充填を停止することになる。
Incidentally, the above-described set temperature Ts is, for example, 30 ° C. in the pressure holding process, and is 50 ° C. in the high pressure pressure holding process.
When the fuel gas G is charged based on the detected temperature T as described above, a set time (for example, 24 hours) elapses after the power generation unit Ha is stopped, or the detected temperature of the reformer temperature sensor 34 When T equilibrates with the outside air temperature, the filling of the fuel gas G will be stopped.

ちなみに、保圧処理及び高圧用保圧処理を、改質器温度センサ34の検出温度Tに基づいて行う場合には、ガスパージ処理(充填処理)の密閉処理を、改質水排出バルブV4を閉じる水排出終了動作の後で、設定充填時間が経過すると、燃料バルブV1を閉じる形態で実施するとよい。   Incidentally, when the pressure holding process and the high pressure holding process are performed based on the detected temperature T of the reformer temperature sensor 34, the sealing process of the gas purge process (filling process) is closed and the reforming water discharge valve V4 is closed. After the water discharge end operation, when the set filling time has elapsed, the fuel valve V1 may be closed.

(5)上記第1〜第3実施形態においては、発電部Haの燃料電池4として、固体高分子型の燃料電池を例示したが、例えば、固体酸化物型の燃料電池等、種々の形式の燃料電池を装備することができ、また、改質処理装置3についても、装備する燃料電池4に合わせて、各種構成のものを装備することができる。 (5) In the first to third embodiments, a solid polymer fuel cell was illustrated as the fuel cell 4 of the power generation unit Ha, but various types of fuel cells such as a solid oxide fuel cell may be used. A fuel cell can be equipped, and the reformer 3 can also be equipped with various configurations according to the fuel cell 4 to be equipped.

(6)上記第1〜第3実施形態においては、発電部Haを停止する際には、燃料ガスGの供給を停止した状態で、改質処理装置3の内部に水蒸気を供給して装置内ガスを排出する水蒸気供給処理、及び、水蒸気の供給を停止した状態で、Cの内部にマイコンメータMを経由した燃料ガスGを設定適正圧に充填して封止する充填処理を順次実行し、その後、保圧処理を実行する場合を例示したが、改質処理装置3の構成によっては、発電部Haを停止する際に、水蒸気供給処理を省略して、充填処理を実行し、その後、保圧処理を実行する形態で実施してもよい。 (6) In the first to third embodiments, when the power generation unit Ha is stopped, water vapor is supplied to the inside of the reforming processing device 3 in a state where the supply of the fuel gas G is stopped, and the inside of the device is stopped. The steam supply process for discharging the gas, and the filling process for filling and sealing the fuel gas G through the microcomputer meter M at a set appropriate pressure inside the C are sequentially performed in a state where the steam supply is stopped, Then, although the case where a pressure holding process is performed was illustrated, depending on the structure of the reforming processing apparatus 3, when stopping the power generation unit Ha, the water vapor supply process is omitted, the filling process is performed, and then the pressure holding process is performed. You may implement in the form which performs pressure processing.

(7)上記第1〜第3実施形態においては、発電部Haの改質処理装置3及び燃料電池4のうちの改質処理装置3についてのみ、充填処理及び保圧処理を実行する場合を例示したが、改質処理装置3と燃料電池4の燃料極4nとに燃料ガスGを充填する形態で、つまり、改質処理装置3に併せて燃料電池4の燃料極4nについても一挙に燃料ガスGを充填する形態で、充填処理及び保圧処理を行うように実施してもよい。 (7) In the first to third embodiments, the case where the filling process and the pressure holding process are performed only for the reforming apparatus 3 of the power generation unit Ha and the reforming apparatus 3 of the fuel cell 4 is illustrated. However, in the form of filling the fuel gas G into the reforming device 3 and the fuel electrode 4n of the fuel cell 4, that is, the fuel electrode 4n of the fuel cell 4 together with the reforming device 3 is also a fuel gas at once. It may be implemented to perform the filling process and the pressure holding process in the form of filling G.

(8)上記第3実施形態においては、発電部Haにおいて、燃料電池4を冷却する冷却水が保有する熱を、ラジエターFにより外部に放出したが、これに限らず、燃料電池4を冷却する冷却水が保有する熱を回収した湯水を貯留する蓄熱タンクを設けてもよい。 (8) In the third embodiment, although the heat held by the cooling water for cooling the fuel cell 4 is released to the outside by the radiator F in the power generation unit Ha, the invention is not limited thereto, and the fuel cell 4 is cooled. You may provide the thermal storage tank which stores the hot water which collect | recovered the heat | fever which a cooling water holds.

尚、上記実施形態(別実施形態を含む、以下同じ)で開示される構成は、矛盾が生じない限り、他の実施形態で開示される構成と組み合わせて適用することが可能であり、また、本明細書において開示された実施形態は例示であって、本発明の実施形態はこれに限定されず、本発明の目的を逸脱しない範囲内で適宜改変することが可能である。   The configurations disclosed in the above embodiment (including the other embodiments, the same applies hereinafter) can be applied in combination with the configurations disclosed in the other embodiments as long as no contradiction arises. The embodiment disclosed in the present specification is an exemplification, and the embodiment of the present invention is not limited thereto, and can be appropriately modified without departing from the object of the present invention.

1 貯湯タンク
3 改質処理装置
4 発電部
C 運転制御部
H エネルギ供給部
Ha 発電部
Hb 熱源部
M マイコンメータ
Reference Signs List 1 hot water storage tank 3 reforming processing device 4 power generation unit C operation control unit H energy supply unit Ha power generation unit Hb heat source unit M microcomputer meter

Claims (4)

燃料ガスの通流量が設定判定量以下となる状態が設定継続時間に亘って継続する燃料ガス非消費状態が漏洩判定用期間の間に生じないときには、警報作動する又は燃料ガスの供給を遮断するマイコンメータと、当該マイコンメータを経由した燃料ガスを用いて発電する発電部を備えるエネルギ供給部と、当該エネルギ供給部の運転を制御する運転制御部とが設けられ、
前記発電部が、燃料ガスを水蒸気改質処理により水素ガスを生成する改質処理装置と、生成された水素ガスが供給される燃料電池とを備える形態に構成され、
前記運転制御部が、
前記発電部を停止する際には、前記改質処理装置の内部に前記マイコンメータを経由した燃料ガスを設定適正圧に充填して封止する充填処理を実行し、その後、燃料ガスの充填圧が下限充填圧に低下すると、前記設定適正圧に燃料ガスを補充する保圧処理を実行する停止保管処理を行うように構成され、且つ、
前記漏洩判定用期間が経過する前に、前記発電部の運転を設定解除条件が満たされるまで停止する漏洩判定回避用停止処理を実行するように構成されているエネルギ供給システムであって、
前記運転制御部が、前記漏洩判定回避用停止処理として、前記充填処理を実行し、その後、燃料ガスの充填圧が前記下限充填圧に低下すると、前記設定適正圧よりも高い高圧用設定圧に燃料ガスを補充する高圧用保圧処理を実行するように構成されているエネルギ供給システム。
If the fuel gas nonconsumption state in which the flow rate of the fuel gas becomes equal to or less than the set determination amount continues for the set duration time does not occur during the leak determination period, an alarm is activated or the fuel gas supply is shut off. An energy supply unit including a microcomputer meter, a power generation unit generating electric power using fuel gas via the microcomputer meter, and an operation control unit controlling an operation of the energy supply unit;
The power generation unit is configured to include a reforming processing device that generates hydrogen gas by steam reforming the fuel gas, and a fuel cell to which the generated hydrogen gas is supplied.
The operation control unit
When stopping the power generation unit, a filling process is performed to fill the inside of the reforming processing apparatus with the fuel gas having passed through the microcomputer meter to a set appropriate pressure and seal the fuel gas, and thereafter, the filling pressure of the fuel gas When the pressure drops to the lower limit filling pressure, it is configured to perform stop storage processing for performing pressure holding processing for replenishing the fuel gas to the set appropriate pressure, and
The energy supply system is configured to execute a leakage determination avoidance stop process that stops the operation of the power generation unit until the setting cancellation condition is satisfied before the leakage determination period elapses.
The operation control unit executes the filling process as the leakage determination avoidance stop process, and thereafter, when the filling pressure of the fuel gas decreases to the lower limit filling pressure, the high pressure setting pressure is higher than the setting appropriate pressure. An energy supply system configured to perform a high pressure holding process to replenish fuel gas.
前記エネルギ供給部に、前記発電部の排熱を回収した湯水を貯湯する貯湯タンクを有する熱源部を備える請求項1記載のエネルギ供給システム。   The energy supply system according to claim 1, wherein the energy supply unit includes a heat source unit having a hot water storage tank for storing hot water obtained by recovering exhaust heat of the power generation unit. 前記運転制御部が、前記漏洩判定回避用停止処理の実行中において、設定処理予定時間が経過しても、前記エネルギ供給部に対して燃料ガスが供給されない状態の継続時間である非供給継続時間が前記設定継続時間を超える状態が生じないときには、前記高圧用保圧処理、及び、燃料ガスの消費を停止する警告を行う警告処理を実行するように構成されている請求項1又は2記載のエネルギ供給システム。   The non-supply continuation time which is the continuation time of the state where fuel gas is not supplied to the energy supply unit even if the set processing scheduled time has elapsed while the operation control unit is executing the leakage determination avoidance stop process 3. The high-pressure holding process and the warning process for giving a warning for stopping the consumption of the fuel gas are executed when no condition exceeding the setting continuation time occurs. Energy supply system. 前記改質処理装置に充填された燃料ガスの圧力を検出する圧力センサが設けられ、
前記運転制御部が、前記圧力センサの検出情報に基づいて、前記保圧処理及び前記高圧用保圧処理を実行するように構成されている請求項1〜3の何れか1項に記載のエネルギ供給システム。
There is provided a pressure sensor for detecting the pressure of the fuel gas charged in the reforming device.
The energy according to any one of claims 1 to 3, wherein the operation control unit is configured to execute the pressure holding process and the high pressure pressure holding process based on detection information of the pressure sensor. Supply system.
JP2015198924A 2015-07-14 2015-10-06 Energy supply system Active JP6521824B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015140618 2015-07-14
JP2015140618 2015-07-14

Publications (2)

Publication Number Publication Date
JP2017022079A JP2017022079A (en) 2017-01-26
JP6521824B2 true JP6521824B2 (en) 2019-05-29

Family

ID=57888534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015198924A Active JP6521824B2 (en) 2015-07-14 2015-10-06 Energy supply system

Country Status (1)

Country Link
JP (1) JP6521824B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018141516A (en) * 2017-02-28 2018-09-13 株式会社サンコー Hose connection branch joint, hose branch joint with device connection plug, device connection plug with hose connection universal joint, gas distribution device to multiple gas consumption devices, and fuel cell cogeneration system having gas distribution device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4909339B2 (en) * 2002-02-18 2012-04-04 大阪瓦斯株式会社 Operation method of hydrogen-containing gas generator
JP4511878B2 (en) * 2004-06-08 2010-07-28 株式会社荏原製作所 Fuel cell system
JP5178188B2 (en) * 2005-01-31 2013-04-10 パナソニック株式会社 Fuel cell power generation system and method of operating fuel cell power generation system
JP5048354B2 (en) * 2007-02-02 2012-10-17 大阪瓦斯株式会社 Cogeneration system
US8906564B2 (en) * 2009-03-30 2014-12-09 Panasonic Corporation Hydrogen generator, fuel cell system, and method for operating hydrogen generator
US8232014B2 (en) * 2009-12-11 2012-07-31 GM Global Technology Operations LLC Fuel cell operational methods for hydrogen addition after shutdown
JP2014107236A (en) * 2012-11-29 2014-06-09 Noritz Corp Fuel cell unit and cogeneration system
JP5667252B2 (en) * 2013-07-19 2015-02-12 大阪瓦斯株式会社 Solid oxide fuel cell system

Also Published As

Publication number Publication date
JP2017022079A (en) 2017-01-26

Similar Documents

Publication Publication Date Title
JP5008613B2 (en) Fuel cell system
JP3975052B2 (en) Start-up control device for fuel cell for electric vehicle
US20100248047A1 (en) Fuel cell system
JP2009272158A (en) Fuel cell system
JP2017068913A (en) Fuel battery system
JP2013105612A (en) Fuel cell system and method for controlling fuel cell system
JP5422780B1 (en) Fuel cell system
JP6552372B2 (en) Energy supply system
JP6703926B2 (en) Energy supply system
JP6771356B2 (en) Energy supply system
JP6521824B2 (en) Energy supply system
JP6731833B2 (en) Energy supply system
JP6703928B2 (en) Energy supply system
JP4106356B2 (en) Fuel cell system
JP2017079196A (en) Energy supply system
JP6694802B2 (en) Energy supply system
JP6124598B2 (en) Cogeneration system and method of operating cogeneration system
WO2013145761A1 (en) Electricity generation system and operating method therefor
JP6800029B2 (en) Energy supply system
JP2010257870A (en) Fuel cell system and its operation method
JP5274003B2 (en) Fuel cell system
JP2005116257A (en) Starting method of fuel cell system
JP2010150119A (en) Hydrogen generation apparatus and fuel cell system having the same
JP5501750B2 (en) Fuel cell system
JP2004311337A (en) Fuel cell system and its starting method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190423

R150 Certificate of patent or registration of utility model

Ref document number: 6521824

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150