JP6521289B2 - Retardation plate in which asymmetric openings are periodically arranged in metal film - Google Patents

Retardation plate in which asymmetric openings are periodically arranged in metal film Download PDF

Info

Publication number
JP6521289B2
JP6521289B2 JP2015029941A JP2015029941A JP6521289B2 JP 6521289 B2 JP6521289 B2 JP 6521289B2 JP 2015029941 A JP2015029941 A JP 2015029941A JP 2015029941 A JP2015029941 A JP 2015029941A JP 6521289 B2 JP6521289 B2 JP 6521289B2
Authority
JP
Japan
Prior art keywords
metal film
retardation plate
electromagnetic wave
band
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015029941A
Other languages
Japanese (ja)
Other versions
JP2016051162A (en
JP2016051162A5 (en
Inventor
山内 潤治
潤治 山内
雄平 高木
雄平 高木
椋亮 谷口
椋亮 谷口
中野 久松
久松 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hosei University
Original Assignee
Hosei University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hosei University filed Critical Hosei University
Priority to JP2015029941A priority Critical patent/JP6521289B2/en
Publication of JP2016051162A publication Critical patent/JP2016051162A/en
Publication of JP2016051162A5 publication Critical patent/JP2016051162A5/ja
Application granted granted Critical
Publication of JP6521289B2 publication Critical patent/JP6521289B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、金属膜に複数の非対称開口を周期的に配設し、表面プラズモンが励起される光波帯あるいは、疑似的表面プラズモンが生じるテラヘルツ帯、ギガヘルツ帯の電磁波を対象とする位相差板に関するものである。   The present invention relates to a retardation plate for electromagnetic waves in the light wave band in which a plurality of asymmetric apertures are periodically arranged in a metal film and surface plasmons are excited, or terahertz bands in which pseudo surface plasmons occur, and gigahertz bands. It is a thing.

直線偏光を円偏光に変換する従来の位相差板には、非特許文献1で提案されている異なる誘電体を交互に積層した構造がある。図17は非特許文献1に開示された従来の位相差板の透視図である。この位相差板は、透明度の高い高屈折率の誘電体と低屈折率の誘電体(実施例では空気層)とを交互に積層した周期構造から構成される。図中、Lは高屈折率誘電体の幅、Pは周期長、L/Pはフィリングファクターfで一周期における空間占有率、Hは誘電体の厚み、n1、n2は各誘電体の屈折率を表す。 A conventional retardation plate that converts linearly polarized light into circularly polarized light has a structure in which different dielectrics proposed in Non-Patent Document 1 are alternately stacked. FIG. 17 is a perspective view of a conventional retardation plate disclosed in Non-Patent Document 1. As shown in FIG. The retardation plate has a periodic structure in which a high-refractive-index dielectric having high transparency and a low-refractive-index dielectric (in the embodiment, an air layer) are alternately stacked. In the figure, L is the width of the high refractive index dielectric, P is the period length, L / P is the filling factor f, space occupancy in one period, H is the dielectric thickness, n 1 and n 2 are the respective dielectrics. Represents the refractive index.

同様な原理に基づいた他の構造としては、非特許文献2で提案されている図18に示す誘電体基板に三角形孔の周期列を設ける位相差板がある。図中、wは三角形の一辺の長さ、Λは周期長、hは誘電体基板の厚み、nH、nLは各誘電体の屈折率を表す。 As another structure based on the same principle, there is a retardation plate in which a periodic sequence of triangular holes is provided on the dielectric substrate shown in FIG. 18 proposed in Non-Patent Document 2. In the figure, w represents the length of one side of a triangle, Λ represents the period length, h represents the thickness of the dielectric substrate, n H and n L represent the refractive index of each dielectric.

他方、フォトニック結晶金属膜で生じる光学的異方性を利用した構造として、特許文献1で提案されている位相差板がある。図19は特許文献1に開示された従来の位相差板の透視図である。複数の円形の開口が金属膜に周期的に配置されている。この構造では、金属膜の厚みが開口を通過する電磁波の波長の0.3から2.0倍が必要となる。   On the other hand, as a structure utilizing optical anisotropy generated in a photonic crystal metal film, there is a retardation plate proposed in Patent Document 1. FIG. 19 is a perspective view of a conventional retardation plate disclosed in Patent Document 1. As shown in FIG. A plurality of circular openings are periodically arranged in the metal film. In this structure, the thickness of the metal film needs to be 0.3 to 2.0 times the wavelength of the electromagnetic wave passing through the opening.

一方、上記とは異なる原理に基づくものとして、金属表面に誘起される表面プラズモンを利用した光波帯での位相差板が提案されている。構成例として非特許文献3で開示された、複数の十字型スロットを設けた位相差板がある。図20は非特許文献3で開示された従来の位相差板の透視図である。この位相差板は、銀で構成される金属膜に長さがわずかに異なる直線状スロットを十字状に空け、この形状の複数のスロットを周期的に配設した構成となっている。Wは金属スロットの幅、lxとlyはスロット長、dは周期長を表す。 On the other hand, a retardation plate in a light wave band using surface plasmon induced on a metal surface has been proposed based on a principle different from the above. As a configuration example, there is a phase difference plate disclosed in Non-Patent Document 3 and provided with a plurality of cross-shaped slots. FIG. 20 is a perspective view of the conventional retardation plate disclosed in Non-Patent Document 3. As shown in FIG. This retardation plate has a configuration in which linear slots slightly different in length are formed in a cross shape in a metal film made of silver, and a plurality of slots of this shape are periodically disposed. W represents the width of the metal slot, l x and l y represent the slot length, and d represents the period length.

また、類似の原理に基づく光波帯での位相差板に関しては、非特許文献4で提案されたL字状の金属素子を用いるものがある。図21は非特許文献4で開示された従来の位相差板の構成図である。この位相差板は、誘電体基板の上に周期的にL字状の金からなる素子を配線した構成となっており、金属素子間で生じる表面プラズモンを利用している。図中、Hは金属の厚み、Wは金属の幅、Lは金属の長さ、Dは誘電体基板の厚さ、Pは周期長を表す。   Further, as a retardation plate in the light wave band based on the similar principle, there is one using an L-shaped metal element proposed in Non-Patent Document 4. FIG. 21 is a configuration diagram of a conventional retardation plate disclosed in Non-Patent Document 4. As shown in FIG. The retardation plate has a configuration in which an element made of L-shaped gold is periodically wired on a dielectric substrate, and utilizes surface plasmons generated between metal elements. In the figure, H represents the thickness of the metal, W represents the width of the metal, L represents the length of the metal, D represents the thickness of the dielectric substrate, and P represents the periodic length.

さらに、類似の原理に基づく光波帯の位相差板に関しては、特許文献2で提案された、複数個の金属構造体と、複数個の開口部を有する金属膜からなる偏光制御装置がある。図22は特許文献2で開示された従来の偏光制御装置(位相差板)の構成図である。この位相差板は、金属膜の開口部と、2個以上の金属構造体からなるユニットを、2次元的に配置しており、金属部で生じる表面プラズモンを利用して偏光制御を行っている。   Further, as a retardation plate of a light wave band based on the similar principle, there is a polarization control device which is proposed in Patent Document 2 and which comprises a plurality of metal structures and a metal film having a plurality of openings. FIG. 22 is a block diagram of a conventional polarization controller (retardation plate) disclosed in Patent Document 2. As shown in FIG. In this retardation plate, an opening of a metal film and a unit composed of two or more metal structures are two-dimensionally arranged, and polarization control is performed using surface plasmons generated in the metal portion. .

特開2004−117703号公報JP 2004-117703 A 特開2009−223123号公報JP, 2009-223123, A

齊藤真紀子他「RCWA法による広帯域1/4波長板の最適設計」、OPTRONICS, pp.179-186, No.12,2009Saito Makiko et al. "Optimal design of broadband quarter-wave plate by RCWA method", OPTRONICS, pp. 179-186, No. 12, 2009 山内潤治他「サブ波長三角形孔配列を用いた偏波変換器」、2013年電子情報通信学会エレクトロニクスソサイエティ大会、p.181(C-3-59)Junji Yamauchi et al., “Polarization Converters Using Sub-Wavelength Triangle Hole Arrays”, 2013 Electronics Society Conference of the Institute of Electronics, Information and Communication Engineers, p. 181 (C-3-59) A.Roberts and L.Lin 「Plasmonic quarter-wave plate」, Optics Letters, vol.37, No.11, pp.1820-1822, 2012A. Roberts and L. Lin "Plassonic quarter-wave plate", Optics Letters, vol. 37, No. 11, pp. 1820-1822, 2012 B.Yang他Design of ultrathin plasmonic quarter-wave plate based on period coupling」, Optics Letters, vol.38, No.5, pp.679-681, 2013B. Yang et al. Design of ultrathin plasmonic quarter-wave plate based on period coupling ", Optics Letters, vol. 38, No. 5, pp. 679-681, 2013

1/4波長板に代表される位相差板は、例えば、液晶・有機エレクトロルミネサンスディスプレイなどの画素のオン・オフ切り替えに利用でき、レーザー干渉計などの光学機器・計測機器などにも応用されている。厚さの薄い位相差板は、占有体積が限定された個別部品の小型化の観点から望まれる。しかしながら、図17に示した非特許文献1の構造では、厚さが約2μm(可視光帯で約3波長)程度ある。図17に示す構造で、x軸から45度傾いた方向に偏光した電磁波を入射すると、x軸とy軸方向に第1モードと第2モードが等振幅で生成される。第1モードと第2モードの伝搬定数をβ1、β2と表記すると、円偏光への変換長Lcは、Lc=π/2(β1−β2)で決定されるので、最適な位相差板の厚さは、伝搬定数差で決定される。一般にこの伝搬定数差は大きくできないため、位相差板は厚くなる。 A retardation plate represented by a quarter-wave plate can be used for on / off switching of pixels such as liquid crystal and organic electroluminescence display, and is also applied to optical instruments and measuring instruments such as laser interferometers. ing. A thin retardation plate is desired from the viewpoint of miniaturizing individual parts with a limited occupied volume. However, in the structure of Non-Patent Document 1 shown in FIG. 17, the thickness is about 2 μm (about 3 wavelengths in the visible light band). In the structure shown in FIG. 17, when an electromagnetic wave polarized in a direction inclined 45 degrees from the x-axis is incident, the first mode and the second mode are generated with equal amplitude in the x-axis and y-axis directions. If the propagation constants of the first mode and the second mode are expressed as β 1 and β 2 , the conversion length L c to circularly polarized light is determined by L c = π / 2 (β 1 −β 2 ). The thickness of the retardation plate is determined by the propagation constant difference. In general, the retardation plate becomes thicker because the propagation constant difference can not be increased.

また、図18で示した非特許文献2の構造では、誘電体基板に三角形孔の周期列を配しており、非特許文献1と同様な効果により、偏光変換が得られる。しかし、その厚みは2.36μm(光通信波長帯で約2波長)であり、水平直線偏光を垂直直線偏光へ変換する1/2波長板である。加えて、小さな三角形孔を周期的に深く穿孔する製作上の困難さがある。   Further, in the structure of Non-Patent Document 2 shown in FIG. 18, the periodic array of triangular holes is disposed in the dielectric substrate, and polarization conversion is obtained by the same effect as Non-Patent Document 1. However, its thickness is 2.36 μm (about 2 wavelengths in the optical communication wavelength band), and it is a half-wave plate that converts horizontal linear polarization to vertical linear polarization. In addition, there are fabrication difficulties in drilling small triangular holes periodically and deeply.

図19に示した特許文献1の構造では、金属膜とその面域を貫通する1個以上の開口を利用しており、二つの直交する偏波が同じパリティのときのモードカップリングすることを利用している。このため、入射波は金属膜に対してわずかに傾けることが必要であり、垂直入射では動作しない。また、パリティの整合を得るために、金属は少なくとも、波長の0.3倍以上の厚みを要する。   The structure of Patent Document 1 shown in FIG. 19 utilizes a metal film and one or more openings penetrating the surface area, and performs mode coupling when two orthogonal polarizations have the same parity. We are using. For this reason, the incident wave needs to be slightly tilted with respect to the metal film, and does not operate at normal incidence. Also, in order to obtain parity matching, the metal needs to be at least 0.3 times the thickness of the wavelength.

一方、図20で示した非特許文献3の構造は、金属膜のみで構成され、誘電体基板を必要としないため、薄型を達成しており、水平方向と垂直方向のスロット長をわずかに変化させることで、表面プラズモンモードの共振波長を調節し90度の位相差を得る構成となっている。しかし十字構造のスロット部で得られる開口面積が小さいため、透過する光波は大きくできず、透過率は40%程度である。   On the other hand, the structure of Non-Patent Document 3 shown in FIG. 20 is made of only a metal film and does not require a dielectric substrate, thus achieving thinness and slightly changing the slot length in the horizontal and vertical directions. By adjusting the resonance wavelength of the surface plasmon mode, the phase difference of 90 degrees is obtained. However, since the aperture area obtained by the slot portion of the cross structure is small, the transmitted light wave can not be increased, and the transmittance is about 40%.

また、表面プラズモンモードを利用した、図21に示した非特許文献4の従来の位相差板では、L字状金属素子を誘電体基板上に配置する必要があり、透過率はやはり40%程度である。 Also, in the conventional retardation plate of Non-Patent Document 4 shown in FIG. 21 utilizing the surface plasmon mode, it is necessary to dispose an L-shaped metal element on a dielectric substrate, and the transmittance is also about 40%. It is.

他方、図22に示した特許文献2の構造では、金属膜の開口部と、2個以上の金属構造体からなるユニットを、2次元的に配置し、この組み合わせにより表面プラズモンモードを発生させて光学的異方性を得ている。2次元的配置に伴い、厚みが増すことに加えて、製作の面倒さがともなう。   On the other hand, in the structure of Patent Document 2 shown in FIG. 22, an opening of a metal film and a unit consisting of two or more metal structures are two-dimensionally arranged, and a surface plasmon mode is generated by this combination. Optical anisotropy is obtained. In addition to the increase in thickness associated with the two-dimensional arrangement, the production is complicated.

また、非特許文献3及び非特許文献4のように、表面プラズモンモードを利用して、金属膜あるいは金属素子を用いて位相差板を構成すると、厚みが薄くでき、電磁波の垂直入射で動作する利点があるものの、透過率を上げるのが難しいという問題があった。   In addition, as in Non-Patent Document 3 and Non-Patent Document 4, when a phase difference plate is configured using a metal film or a metal element by using a surface plasmon mode, the thickness can be reduced and the device operates with vertical incidence of electromagnetic waves. Although there is an advantage, there is a problem that it is difficult to increase the transmittance.

本発明は、このような従来技術の事情に鑑みてなされたもので、製作が容易で、かつ極めて薄い膜厚で、電磁波の垂直入射で動作する透過率の高い位相差板を提供することを課題とする。   The present invention has been made in view of the circumstances of the prior art, and it is an object of the present invention to provide a retardation plate which is easy to manufacture, has an extremely thin film thickness, and operates with normal incidence of electromagnetic waves and has high transmittance. It will be an issue.

本発明によれば、上記課題を解決するため、第1に、金属膜に平面視で直角二等辺三角形である複数の開口が周期的に配設されてなり、各開口は入射電磁波直線偏光面に対して一定の傾斜角度をなす長辺部を有する非点対称形状であり、前記開口において周期的な結合に基づく二種類の直交する表面プラズモンモード又は疑似表面プラズモンモードが励起され、90度位相の異なる直交する界成分を利用して、直線偏光を円偏光に変換し、かつ、入射電磁波の波長帯により右旋円偏波及び左旋円偏波が得られることを特徴とする位相差板を提供する。 According to the present invention, in order to solve the above-mentioned problems, first , a plurality of openings which are a right-angled isosceles triangle in plan view are periodically arranged in a metal film, and each opening is an incident electromagnetic wave linear polarization plane against a point-asymmetrical shape with long sides forming a constant slope angle, the two orthogonal surface plasmon mode or pseudo-surface plasmon modes based on periodic coupling in opening is excited, the 90 degree phase A phase difference plate characterized in that linearly polarized light is converted into circularly polarized light by using orthogonal field components different from each other, and right-handed circularly polarized light and left-handed circularly polarized light are obtained by the wavelength band of incident electromagnetic waves. provide.

また、第2に、上記第1の発明において、前記長辺部の傾斜角度が前記入射電磁波直線偏光面に対して43度から47度であることを特徴とする位相差板を提供する。 Second , in the first aspect of the present invention, there is provided a retardation plate characterized in that the inclination angle of the long side portion is 43 degrees to 47 degrees with respect to the plane of linearly polarized incident electromagnetic waves.

また、第3に、上記第1又は第2の発明において、前記金属膜の厚みが電磁波の動作波長の0.1倍から0.3倍であり、電磁波の入射角が垂直入射を含み、±10度の範囲にあることを特徴とする位相差板を提供する。 Thirdly, in the first or second invention, the thickness of the metal film is 0.1 to 0.3 times the operating wavelength of the electromagnetic wave, and the incident angle of the electromagnetic wave includes vertical incidence, and ± Provided is a retardation plate characterized by being in a range of 10 degrees.

また、第4に、上記第1ないし第3のいずれかの発明において、前記開口が配設される周期長が電磁波の動作波長よりも小さく、フィリングファクターが0.7から0.9に設定されていることを特徴とする位相差板を提供する。 Fourth , in any one of the first to third inventions, the periodic length at which the opening is disposed is smaller than the operating wavelength of the electromagnetic wave, and the filling factor is set to 0.7 to 0.9. The present invention provides a phase difference plate characterized by

また、第5に、上記第1ないし第4のいずれかの発明において、前記金属膜の材質が、電磁波が光波帯の場合は銀、金、アルミニウム、ニッケル、銅からなる群より選ばれる1種であり、テラヘルツ帯又はギガヘルツ帯の場合はアルミニウム、銅、ニッケル、鉄からなる群より選ばれる1種であることを特徴とする位相差板を提供する。 Fifth , in the invention according to any one of the first to fourth inventions, the material of the metal film is one selected from the group consisting of silver, gold, aluminum, nickel and copper when the electromagnetic wave is in the light wave band. In the case of the terahertz band or gigahertz band, it is one kind selected from the group consisting of aluminum, copper, nickel and iron.

また、第6に、上記第1から第5のいずれかの発明において、複数の開口が周期的に配設された前記金属膜を一対の透光性の誘電体基板で挟みこんで一体化した構成を有することを特徴とする位相差板を提供する。 Sixth , in any one of the first to fifth inventions, the metal film in which a plurality of openings are periodically disposed is integrated by being sandwiched between a pair of translucent dielectric substrates. Provided is a retardation plate characterized by having a configuration.

本発明によれば、光波帯、テラヘルツ帯、ギガヘルツ帯における特定の波長帯で動作し、製作が容易で、かつ超薄金属膜からなり、電磁波の垂直入射で動作する透過率の高い位相差板の提供が可能となる。   According to the present invention, a retardation plate operating at a specific wavelength band in a light wave band, a terahertz band, and a gigahertz band, which is easy to manufacture, is made of an ultrathin metal film, and operates with normal incidence of electromagnetic waves. Can be provided.

本発明による第1の構成例の位相差板の構造を示す図であり、(a)は透視図、(b)は上面図、(c)は断面図である。It is a figure which shows the structure of the phase difference plate of the 1st structural example by this invention, (a) is a perspective view, (b) is a top view, (c) is sectional drawing. 三角形の開口の配列の二例を示す図である。It is a figure showing two examples of arrangement of a triangular opening. 本発明の原理となる固有モード界分布の図であり、(a)は対称モード、(b)は非対称モードの界分布図である。It is a figure of the eigenmode field distribution which becomes the principle of this invention, (a) is a symmetric mode, (b) is a field distribution diagram of an asymmetrical mode. 界分布をEx成分とEy成分に分解した図であり、(a)は対称モードのEx成分、(b)は対称モードのEy成分、(c)は非対称モードのEx成分、(d)は非対称モードのEy成分の界分布図である。Is a diagram to decompose field distribution E x component and E y component, (a) E x component of the symmetric mode, (b) E y component of the symmetric mode, (c) the E x component of the asymmetric mode, (D) is a field distribution diagram of the E y component of the asymmetric mode. 偏光変換動作の一例を示す伝搬界の図である。It is a figure of the propagation field which shows an example of polarization conversion operation | movement. 光通信波長帯での実施例の透過率、偏光角、楕円率の波長特性を示す図である。It is a figure which shows the wavelength characteristic of the transmittance | permeability of the Example in an optical communication wavelength range, a polarization angle, and an ellipticity. 可視光帯での実施例の透過率、偏光角、楕円率の波長特性を示す図である。It is a figure which shows the wavelength characteristic of the transmittance | permeability of the Example in a visible light zone, a polarization angle, and an ellipticity. 従来の非特許文献3の形態と対比した可視光帯での実施例の透過率、偏光角、楕円率の波長特性を示す図である。It is a figure which shows the wavelength characteristic of the transmittance | permeability of the Example in the visible light band contrasted with the form of the conventional nonpatent literature 3, a polarization angle, and an ellipticity. 三角形開口の辺長が、透過率、偏光角、楕円率の波長特性に与える影響を示す図である。It is a figure which shows the influence which the side length of a triangular aperture gives to the wavelength characteristic of the transmittance | permeability, a polarization angle, and an ellipticity. 金属膜の厚みが、透過率、偏光角、楕円率の波長特性に与える影響を示す図である。It is a figure which shows the influence which the thickness of a metal film gives to the wavelength characteristic of the transmittance | permeability, a polarization angle, and an ellipticity. 本発明の別の実施形態となる位相差板の構造を示す図であり、(a)は透視図、(b)上面図、(c)は断面図である。It is a figure which shows the structure of the phase difference plate which becomes another embodiment of this invention, (a) is a perspective view, (b) top view, (c) is sectional drawing. 本発明の別の実施形態における透過率、偏光角、楕円率の波長特性を示す図である。It is a figure which shows the wavelength characteristic of the transmittance | permeability in another embodiment of this invention, a polarization angle, and an ellipticity. 本発明による第2の構成例の位相差板の構造を示す図であり、(a)は透視図、(b)は上面図、(c)は断面図である。It is a figure which shows the structure of the phase difference plate of the 2nd structural example by this invention, (a) is a perspective view, (b) is a top view, (c) is sectional drawing. 長方形の開口の配列の二例を示す図である。It is a figure which shows two examples of arrangement of a rectangular opening. 第2の構成例の別の形態を示す図である。It is a figure which shows another form of a 2nd structural example. 第2の構成例の位相差板の透過率、偏光角、楕円率の波長特性を示す図である。It is a figure which shows the transmittance | permeability of the phase difference plate of a 2nd structural example, a polarization angle, and the wavelength characteristic of an ellipticity. 従来の誘電体を用いた位相差板の透視図である。It is a perspective view of the phase difference plate using the conventional dielectric. 従来の誘電体に三角形穿孔部を設けた位相差板の透視図である。It is a perspective view of the phase difference plate which provided the triangular perforation part in the conventional dielectric. 従来の金属膜とその貫通する開口からなる位相差板の透視図である。It is a perspective view of the phase difference plate which consists of the conventional metal film and its opening which penetrates. 従来の金属膜を用いた十字スロット型位相差板の透視図である。It is a perspective view of the cross slot type phase difference plate which used the conventional metal film. 従来のL字金属素子を誘電体基板に配設した位相差板の透視図である。It is a perspective view of the phase difference plate which arranged the conventional L character metal element in the dielectric substrate. 従来の複数の金属構造体と複数の金属開口部からなる偏光制御素子の透視図である。It is a perspective view of the polarization control element which consists of the conventional several metal structure and several metal opening part.

以下、本発明の実施の形態に係る位相差板について詳述する。
本発明の位相差板は、金属膜に複数の開口が周期的に配設されてなり、各開口は入射電磁波直線偏光面に対して一定の傾斜角度をなす長辺部を有する非対称形状であることを大きな特徴としている。ここで非対称とは、入射電磁波直線偏光面に対して、開口の形状が対称でないことを意味する。
Hereinafter, the phase difference plate according to the embodiment of the present invention will be described in detail.
In the retardation plate of the present invention, a plurality of openings are periodically arranged in a metal film, and each opening has an asymmetrical shape having long sides forming a predetermined inclination angle with respect to the incident electromagnetic wave linear polarization plane. Is a big feature. Here, asymmetry means that the shape of the aperture is not symmetrical with respect to the incident electromagnetic wave linear polarization plane.

本発明の位相差板は、特に、金属膜に周期的に形成した非対称開口の長辺部が、入射電磁波直線偏光面、すなわち入射電磁波直線偏光軸に対して45度となるように切り落とした形状とすることにより、周期的な結合に基づく二種類の直交する表面プラズモンモード(入射電磁波が光波帯の場合)又は疑似表面プラズモンモード(入射電磁波がテラヘルツ帯又はギガヘルツ帯の場合)が励起され、90度位相の異なる直交する界成分を利用して、直線偏光が円偏光に変換される。この2種類の表面プラズモンモード若しくは疑似表面プラズモンモードは、対称モードと非対称モードと称される。   In the retardation plate of the present invention, in particular, the long side of the asymmetric aperture periodically formed in the metal film is cut off to be 45 degrees with respect to the incident electromagnetic wave linear polarization plane, that is, the incident electromagnetic wave linear polarization axis In this case, two orthogonal surface plasmon modes (when the incident electromagnetic wave is in the light wave band) or pseudo surface plasmon modes (when the incident electromagnetic wave is in the terahertz band or the gigahertz band) are excited. Linear polarization is converted to circular polarization by using orthogonal field components different in phase. The two types of surface plasmon modes or pseudo surface plasmon modes are referred to as symmetric mode and asymmetric mode.

本発明の位相差板は、特に、金属膜に周期的に形成した非対称開口の長辺部が、入射電磁波直線偏光面、すなわち入射電磁波直線偏光軸に対して45度で切り落とした形状とすることで、直交する二つの表面プラズモンモード(入射電磁波が光波帯の場合)又は疑似表面プラズモンモード(入射電磁波がテラヘルツ帯あるいはギガヘルツ帯の場合)〔対称モードと非対称モード〕を励起する簡易な構造を有し、入射した直線偏光の電磁波を円偏光に変換できる1/4波長板として動作する。対称モードと非対称モードを等しく励起するには、入射電磁波直線偏光軸に対する長辺部の傾斜角度は、好ましくは43度から47度の範囲、更に好ましくは44度から46度の範囲、特に好ましくは45度であり、傾斜角度をこのような値にすることにより対称モードと非対称モードが等しく励起され、良好な偏光変換作用が維持される。両モードの等しい励起は、電磁波の垂直入射時に最も好ましく生じるが、入射角が金属膜に対して±10度の範囲であれば、位相差板として動作する。   In the retardation plate of the present invention, in particular, the long side portion of the asymmetric aperture periodically formed in the metal film is cut off at 45 degrees with respect to the incident electromagnetic wave linear polarization plane, that is, the incident electromagnetic wave linear polarization axis. Have a simple structure that excites two orthogonal surface plasmon modes (when the incident electromagnetic wave is in the light wave band) or pseudo surface plasmon modes (when the incident electromagnetic wave is in the terahertz band or gigahertz band) [symmetrical mode and asymmetric mode]. Operates as a quarter-wave plate capable of converting the incident linearly polarized electromagnetic wave into circularly polarized light. In order to excite the symmetric mode and the asymmetric mode equally, the inclination angle of the long side to the incident electromagnetic wave linear polarization axis is preferably in the range of 43 to 47 degrees, more preferably in the range of 44 to 46 degrees, particularly preferably By setting the tilt angle to such a value, the symmetric mode and the asymmetric mode are equally excited, and good polarization conversion action is maintained. Equal excitation of both modes most preferably occurs at normal incidence of the electromagnetic wave, but acts as a retarder if the angle of incidence is in the range of ± 10 degrees with respect to the metal film.

本発明では、金属膜の厚みを電磁波の動作波長の0.1倍から0.3倍とすることができる。金属膜の厚みがこのような範囲であると、良好な偏光変換作用を維持することができるとともに、入射電磁波の透過率を高いレベルに維持することが可能となる。   In the present invention, the thickness of the metal film can be set to 0.1 to 0.3 times the operating wavelength of the electromagnetic wave. When the thickness of the metal film is in such a range, it is possible to maintain a good polarization conversion action and to maintain the transmittance of the incident electromagnetic wave at a high level.

本発明では、開口面積を大きくした状態で表面プラズモン若しくは疑似表面プラズモンの良好な生成を可能とし、入射電磁波の透過率をより向上させる観点から、周期長Λに対する開口部底辺長の比であるフィリングファクターfを0.7から0.9の範囲に設定することが好ましい。   In the present invention, from the viewpoint of enabling the good generation of surface plasmons or pseudo surface plasmons in a state where the aperture area is increased and further improving the transmittance of incident electromagnetic waves, filling that is the ratio of the opening base length to the periodic length Λ It is preferable to set the factor f in the range of 0.7 to 0.9.

本発明では、開口の周期長Λは、動作波長λと等しくなると高次回折波の影響が生じるため、動作波長λより小さくすることが好ましく、0.5λから0.9λ程度が望ましい。   In the present invention, the period length 開口 of the aperture is preferably smaller than the operating wavelength λ because the effect of the higher order diffracted wave is generated when the operating wavelength λ is equal to about 0.5λ to about 0.9λ.

本発明の金属膜の開口の形状としては、典型的には直角三角形を例示することができるが、原理上、入射電磁波直線偏光面に対して非対称構造をしていればよく、頂角や底角が丸みを帯びた形状や、台形状、長方形状等であってもよい。台形状の場合、長辺部が上記のような傾斜角度となるように孔を形成し、長方形状の場合には長辺部が上記のような傾斜角度となるように孔を形成し、これらの開口を配列する構造とする。   The shape of the opening of the metal film of the present invention can typically be exemplified by a right triangle, but in principle, it only needs to have an asymmetric structure with respect to the incident electromagnetic wave linear polarization plane, and the apex angle and the bottom The corner may be rounded, trapezoidal, rectangular or the like. In the case of the trapezoidal shape, the holes are formed such that the long side portions have the above-described inclination angles, and in the case of the rectangular shape, the holes are formed such that the long side portions have the above-described inclination angles. To arrange the openings of.

本発明では、開口の配列数は図1では簡単のため9個としてあるが、良好な偏光変換を行うことができる適宜の数とすることができる。
本発明の位相差板の偏光変換部の大きさは、変換する直線偏光が十分照射される広さがあればよい。
In the present invention, the arrangement number of the openings is nine in FIG. 1 for the sake of simplicity, but it can be an appropriate number that can perform good polarization conversion.
The size of the polarization conversion portion of the retardation plate of the present invention may be wide enough to irradiate the linearly polarized light to be converted.

また、本発明の位相差板を構成する金属膜は、入射電磁波が光波帯の場合、表面プラズモンの生成が良好に行える材料であることが好ましく、このような材料としては、例えば、銀、金、アルミニウム、ニッケル、銅等を挙げることができる。また、入射電磁波がテラヘルツ帯あるいはギガヘルツ帯の場合、疑似表面プラズモンの生成が良好に行える材料であることが好ましく、このような材料としては、例えば、アルミニウム、銅、ニッケル、鉄等を挙げることができる。   The metal film constituting the retardation plate of the present invention is preferably a material capable of favorably generating surface plasmon when the incident electromagnetic wave is in the light wave band, and examples of such a material include silver and gold. , Aluminum, nickel, copper and the like. In the case where the incident electromagnetic wave is in the terahertz band or gigahertz band, it is preferably a material that can satisfactorily generate pseudo surface plasmons. Examples of such materials include aluminum, copper, nickel, iron and the like. it can.

本発明の金属膜は、入射電磁波がテラヘルツ帯、ギガヘルツ帯の場合、支持体を設けず単体で自立させることができるが、支持体を設けてもよく、入射電磁波が光波帯の場合、ガラスやポリマーなどの透明な基板上に形成させることができる。   The metal film of the present invention can stand alone without providing a support when the incident electromagnetic wave is in the terahertz band or gigahertz band, but a support may be provided, and when the incident electromagnetic wave is a light wave band, glass or It can be formed on a transparent substrate such as a polymer.

本発明の金属膜は、蒸着や化学的メッキ等の公知の成膜技術を用いて、所望の開口を有するものとして形成することができる。   The metal film of the present invention can be formed to have a desired opening by using a known film forming technique such as vapor deposition or chemical plating.

また、本発明の金属膜は、後述するように、一対の透光性を有する誘電体基板で挟みこんだ構造とすることもできる。   In addition, the metal film of the present invention may have a structure in which it is sandwiched between a pair of light transmitting dielectric substrates as described later.

本発明の位相差板を1/2波長板として動作させるには、位相差板を2枚、電磁波の入射方向に配列させればよい。   In order to operate the retardation plate of the present invention as a half-wave plate, two retardation plates may be arranged in the incident direction of the electromagnetic wave.

本発明の位相差板として、例えば金属膜に銀、開口に空気を用い、図1のような開口とした場合には、前記非特許文献1に比べて、約1/4の厚み、前記特許文献1に比べて約1/2の厚みで偏光変換を達成することができる。また、前記の非特許文献3に開示された十字スロット型の位相差板に比べて、開口部面積を大きくとれるため、透過率を約50%向上できる。さらに、金属素子が分割されて配置された前記非特許文献4とは異なり、厚みを薄くでき、製造が容易となることに加え、金属膜が連続しているため、電気的には導電性を維持したまま、特定の電磁波を透過し得る。   In the case of using, for example, silver for the metal film and air for the opening as the retardation plate of the present invention and forming the opening as shown in FIG. Polarization conversion can be achieved with a thickness of about 1/2 compared to Document 1. Further, as compared with the cruciform slot type phase difference plate disclosed in the above-mentioned Non-Patent Document 3, the aperture area can be made larger, so that the transmittance can be improved by about 50%. Furthermore, unlike the non-patent document 4 in which the metal element is divided and disposed, in addition to the fact that the thickness can be reduced and the manufacture becomes easy, since the metal film is continuous, it is electrically conductive. Specific electromagnetic waves can be transmitted while being maintained.

以下、本発明を図1(a)、(b)、(c)に示す第1の構成例の位相差板に基づき更に具体的に説明する。なお、ここでは、三角形の開口の配列が図2の(a)の形態のものについて述べるが、図2の(b)のような形態とすることができる。
この位相差板は、入射した直線偏光の電磁波を円偏光に変換するものである。図1(a)において、1は厚みtの平らな金属膜であり、平面視で二等辺直角三角形の開口3が複数、x方向及びy方向に周期的に配列して形成されている。この例では説明の簡単化のため9個の開口3が設けられているが、その数は偏光変換する入射電磁波に応じて適宜の数
に設定することができる。図1(b)は1ユニット(一素子)の偏光変換部の平面図であり、縦横Λの正方形のブロックの中に、破線で示す対角線に沿った長辺部(以下、傾斜部ともいう)2、x方向に沿った幅wの短辺部、及びy方向に沿った幅wの短辺部により形成される直角三角形状の開口3が形成されている。金属膜の比誘電率はnmであり、開口3は比誘電率nairの空気である。x方向が入射直線偏光軸であり、傾斜部2は入射直線
偏光軸に対し傾斜角度θ(本例では45度)をなしている。本例の位相差板は、1ユニットの偏光変換部をx方向とy方向にそれぞれ3つずつ配列した構成を有している。
Hereinafter, the present invention will be described more specifically based on the retardation plate of the first configuration example shown in FIGS. 1 (a), (b) and (c). Here, although the arrangement of the triangular openings is described in the form of (a) of FIG. 2, the form as shown in (b) of FIG. 2 can be employed.
The retardation plate is for converting the incident linearly polarized electromagnetic wave into circularly polarized light. In FIG. 1A, reference numeral 1 denotes a flat metal film having a thickness t, and a plurality of openings 3 of an isosceles right triangle are formed periodically in the x direction and the y direction in plan view. In this example, nine openings 3 are provided to simplify the explanation, but the number can be set to an appropriate number according to the incident electromagnetic wave to be polarization-converted. FIG. 1 (b) is a plan view of the polarization conversion unit of one unit (one element), and in a square block of vertical and horizontal ridges, a long side along a diagonal indicated by a broken line (hereinafter, also referred to as an inclined portion) 2. A right triangular opening 3 is formed which is formed by a short side of width w along the x direction and a short side of width w along the y direction. The dielectric constant of the metal film is nm , and the opening 3 is air having a dielectric constant n air . The x direction is the incident linear polarization axis, and the inclined portion 2 forms an inclination angle θ (45 degrees in this example) with the incident linear polarization axis. The retardation plate of this example has a configuration in which one unit of polarization conversion unit is arranged three each in the x direction and the y direction.

次に、図1に例示した構造の位相差板の動作原理を説明する。ここでは位相差板に進入する電磁波が水平直線偏光入射であるものとして説明するが、垂直直線偏光入射時でも同様な動作原理である。また、金属膜1の材料には一例として銀を用いるものとする。さらに、電磁波は、特許文献1とは異なり、金属膜1に対して垂直(法線)方向から入射するものとする。   Next, the operation principle of the retardation plate having the structure exemplified in FIG. 1 will be described. Here, the electromagnetic wave entering the retardation plate is described as horizontal linearly polarized light incident, but the operation principle is the same even when vertical linearly polarized light is incident. Further, silver is used as an example of the material of the metal film 1. Furthermore, unlike in Patent Document 1, the electromagnetic wave is assumed to be incident on the metal film 1 from the perpendicular (normal) direction.

金属膜1に進入した電磁波は、傾斜部2を有する周期的な非対称開口部3のそれぞれにおいて、図3(a)、(b)にそれぞれ示すように、斜めに偏光軸をもつ対称(S)モードと非対称(A)モードに分解される。ここでの対称、非対称の名称は、斜めの偏光軸に対して、開口の形状が対称か否かで呼称されている。ここで両モードはほぼ等位相、等振幅で励振されるが、それぞれのモードの電界のx成分(Ex)とy成分(Ey)は同位相で励起される。例として、金属膜に銀を用いて、動作波長λ=1.5μmとした場合を用いて説明する。各非対称開口に誘起される固有モードの解析には周期的境界条件を考慮したYee格子に基づくFDTD法を用い、無限周期を仮定する。 As shown in FIGS. 3A and 3B, the electromagnetic wave that has entered the metal film 1 has an oblique polarization axis (S) at each of the periodic asymmetric openings 3 having the inclined portions 2. It is decomposed into mode and asymmetric (A) mode. The names of symmetry and asymmetry herein are referred to as whether or not the shape of the aperture is symmetrical with respect to the oblique polarization axis. Here, both modes are excited with substantially equal phase and equal amplitude, but x component (E x ) and y component (E y ) of the electric field of each mode are excited with the same phase. As an example, the case where silver is used for the metal film and the operating wavelength λ = 1.5 μm is described. In the analysis of the eigenmodes induced in each asymmetric aperture, the FDTD method based on Yee lattice considering periodic boundary conditions is used, and an infinite period is assumed.

一素子で観察されるExとEy成分に分解した対称モードの界分布を図4(a)、(b)、非対称モードの界分布を図4(c)、(d)にそれぞれ示す。計算結果によると、対称モードにおけるEx成分とEy成分は、それぞれ表面プラズモンモードの特徴である、金属面に対して法線方向に強く励起される。非対称モードには、対称モードにはない界の分割が観察される。この結果、界振幅は対称モードよりも約2倍大きく、かつ180度の位相差が生じる。計算によると、対称モードと非対称モードには約90度の位相差が生じる。 The field distribution of the symmetric mode decomposed into E x and E y components observed by one element is shown in FIGS. 4A and 4B, and the field distribution of the asymmetric mode is shown in FIGS. 4C and 4D, respectively. According to calculation results, the E x component and the E y component in the symmetric mode are strongly excited in the direction normal to the metal surface, which is a feature of the surface plasmon mode. In the asymmetric mode, the division of the field which is not in the symmetric mode is observed. As a result, the field amplitude is about twice as large as that of the symmetric mode, and a phase difference of 180 degrees occurs. According to calculations, the symmetric mode and the asymmetric mode have a phase difference of about 90 degrees.

実際に位相差板に水平の直線偏光を入射した場合、図4に示す対称、非対称の合成の形で界分布が形成される。FDTD法で算出した、水平直線偏光入射時の各成分の界分布を図5に示す。界の振幅が大きな箇所は、水平辺と垂直辺にあり、両者の振幅はほぼ等しくかつ位相差は約90度である。この結果、入射された水平直線偏光は円偏光に変換される。垂直直線偏光が入射した場合にも構造の対称性から同一の効果が得られる。ただし、円偏光の回転方向は水平直線偏光の場合と逆になる。   When horizontal linearly polarized light is actually incident on the retardation plate, a field distribution is formed in the form of a combination of symmetry and asymmetry shown in FIG. The field distribution of each component at the time of incidence of horizontal linearly polarized light calculated by the FDTD method is shown in FIG. The places where the field amplitude is large are on the horizontal side and the vertical side, the amplitudes of the two are approximately equal, and the phase difference is about 90 degrees. As a result, the incident horizontal linearly polarized light is converted to circularly polarized light. The same effect can be obtained from the symmetry of the structure also when vertical linearly polarized light is incident. However, the rotational direction of circularly polarized light is opposite to that of horizontal linearly polarized light.

図6にt=0.36μm、w=0.82μm、Λ=1μm、f=w/Λ=0.82、θ=45度の場合の波長特性を示す。FDTD法のパルス波解析で算出している。図6は透過率、偏光角、楕円率を示している。楕円率が0.7以上又は−0.7以下であると、透過波は3dB以内の円偏光とみなせる。楕円率が0.7以上で右旋円偏波、−0.7以下で左旋円偏波となる。図6の波長−楕円率のデータからλ=1.458〜1.515μmの帯域で透過波は右旋円偏波とみなせる。3dB円偏光帯域幅を2(λL−λS)/(λL+λS)で定義すると、帯域幅は3.8%と計算される。この帯域で透過率は48%以上あり、最大の透過率は68%にもなる。特に、λ=1.483μmにおいて最も高い楕円率0.99が観察され、57%の透過率が得られる。なお、λLとλSはそれぞれ、楕円率が3dBとなる、長波長側および短波長側の波長である。また、λ=1.104〜1.113μmの帯域で透過波は左旋円偏波とみなせる。円偏波となる帯域は狭いが、70%から83%の高い透過率が得られる。特に、λ=1.109μmにおいて最も高い楕円率−0.9が観察され、78%の透過率が得られる。図6には、金属を完全導体とみなした場合の結果も併記している。完全導体においても、動作波長は低域に約15%移行するが、銀と同様に位相差板としての動作することがわかる。このことから、テラヘルツ帯、ギガヘルツ帯において、通常の導体金属膜を用いて位相差板として動作することがわかる。 FIG. 6 shows wavelength characteristics when t = 0.36 μm, w = 0.82 μm, m = 1 μm, f = w / == 0.82, θ = 45 degrees. It is calculated by pulse wave analysis of the FDTD method. FIG. 6 shows the transmittance, the polarization angle, and the ellipticity. When the ellipticity is 0.7 or more or -0.7 or less, the transmitted wave can be regarded as circularly polarized light within 3 dB. When the ellipticity is 0.7 or more, it is right-handed circularly polarized, and when it is -0.7 or less left-handed circularly polarized. From the data of wavelength-ellipticity in FIG. 6, the transmitted wave can be regarded as right-handed circularly polarized wave in a band of λ = 1.458 to 1.515 μm. If the 3 dB circular polarization bandwidth is defined as 2 (λ L −λ S ) / (λ L + λ S ), the bandwidth is calculated to be 3.8%. In this band, the transmittance is 48% or more, and the maximum transmittance is as high as 68%. In particular, the highest ellipticity of 0.99 is observed at λ = 1.483 μm, and a transmission of 57% is obtained. Here, λ L and λ S are respectively the wavelengths on the long wavelength side and the short wavelength side where the ellipticity is 3 dB. In addition, in the band of λ = 1.104 to 1.113 μm, the transmitted wave can be regarded as left-handed circular polarization. Although the band for circular polarization is narrow, high transmittance of 70% to 83% can be obtained. In particular, the highest ellipticity -0.9 is observed at λ = 1.109 μm, and a transmission of 78% is obtained. FIG. 6 also shows the result when metal is regarded as a perfect conductor. Even in the case of a perfect conductor, the operating wavelength shifts about 15% to the low band, but it can be seen that it operates as a retardation plate like silver. From this, it can be understood that a normal conductive metal film is used to operate as a retardation plate in the terahertz band and the gigahertz band.

ここで、透過波が反円偏波となる理由について考察する。金属板に進入した直線偏波は、三角形孔の斜辺に対して垂直、または、水平な偏光軸をもつ、対称モードと非対称モードに分解される。計算によると、楕円率がピークとなるλ=1.109μm、1.483μmで両モードは等振幅でかつその位相差が90度であることが確認され、さらにλ=1.109μmの非対称モードとλ=1.483μmの非対称モードとの位相差が180度であることも確認される、その結果、両波長で透過波の偏波の回転方向が逆になる。   Here, the reason why the transmitted wave is anti-circularly polarized is considered. The linearly polarized light entering the metal plate is decomposed into a symmetric mode and an asymmetric mode having polarization axes perpendicular or horizontal to the oblique side of the triangular hole. According to the calculation, it is confirmed that the ellipticity has a peak at λ = 1.109 μm and 1.483 μm, and that both modes have equal amplitude and the phase difference is 90 degrees, and further that an asymmetric mode with λ = 1.109 μm. It is also confirmed that the phase difference with the asymmetric mode of λ = 1.483 μm is 180 degrees, as a result, the rotation directions of the polarized waves of the transmitted waves are reversed at both wavelengths.

非特許文献3の実施例が可視光帯が対象であったので、比較を明確にするため、可視光帯での本発明による実施例を次に示す。図7は、t=0.14μm、w=0.28μm、Λ=0.4μm、f=w/Λ=0.82の場合の波長特性を示す。λ=0.692〜0.717μmの帯域で透過波は右旋円偏波とみなせる。3dB円偏光帯域幅は3.6%あり、この範囲における透過率は44%以上で最大は60%である。これらの値は、図8で示す非特許文献3の実施例で得られる3dB円偏光帯域幅2.4%、透過率41%以上で最大値47%よりも向上している。一方、図7の波長−楕円率のデータから、λ=0.506〜0.509μmの帯域で透過波は左旋円偏波とみなせる。3dB円偏光帯域幅は0.59%あり、この範囲における透過率は48%以上で最大は54%である。図8では反円偏波特性は生じていない。
図6と図7より、本実施例が、光波帯の広い帯域において、寸法の選定によって実施できることを示している。
Since the embodiment of Non-Patent Document 3 is directed to the visible light band, an embodiment according to the present invention in the visible light band will be shown next in order to clarify the comparison. FIG. 7 shows wavelength characteristics for t = 0.14 μm, w = 0.28 μm, Λ = 0.4 μm, and f = w / Λ = 0.82. The transmitted wave can be regarded as right-handed circularly polarized wave in a band of λ = 0.692 to 0.717 μm. The 3 dB circular polarization bandwidth is 3.6%, and the transmission in this range is at least 44% with a maximum of 60%. These values are higher than the maximum value of 47% at a transmittance of 41% or more and a 3 dB circular polarization bandwidth of 2.4% obtained in the example of Non-Patent Document 3 shown in FIG. On the other hand, from the data of wavelength-ellipticity in FIG. 7, the transmitted wave can be regarded as left-handed circularly polarized wave in a band of λ = 0.506 to 0.509 μm. The 3 dB circular polarization bandwidth is 0.59% and the transmission in this range is at least 48% with a maximum of 54%. In FIG. 8, the anti-circular polarization characteristic is not generated.
FIGS. 6 and 7 show that this embodiment can be implemented by the selection of dimensions in a wide band of the lightwave band.

以下の例では設計波長を光通信波長帯λ=1.5μm帯とした場合を示す。
構造パラメータの変化の影響を明らかにするために、wとtを変化したときの波長特性に及ぼす影響を調べる。光通信波長帯で特性を検討するため、Λ=1μm、f=0.82に固定する。
The following example shows the case where the design wavelength is the optical communication wavelength band λ = 1.5 μm band.
In order to clarify the influence of changes in structural parameters, the influence on wavelength characteristics when w and t are changed is examined. In order to study the characteristics in the optical communication wavelength band, Λ = 1 μm, f = 0.82 is fixed.

図9にtを0.36μmに固定した場合における、wの変化に伴う波長特性を示す。wが小さくなるにつれて、円偏光の得られる帯域は短波長側へ移行し、逆にwを大きくするにつれて、円偏光帯域は長波長側へ移行する。これより、wの大きさを変化させることで、所望の波長で動作する位相差板の設計ができる。なお、図9のデータから、反円偏波特性が生じていることがわかる。   FIG. 9 shows the wavelength characteristics with the change of w when t is fixed at 0.36 μm. As w becomes smaller, the obtainable band of circularly polarized light shifts to the short wavelength side, and conversely, as w is increased, the circular polarized band shifts to the long wavelength side. Thus, by changing the size of w, it is possible to design a retardation plate operating at a desired wavelength. It is understood from the data in FIG. 9 that the anti-circular polarization characteristic is generated.

図10は、wを0.82μmに固定し、tを変化させた場合の波長特性である。tの変化に対しては波長特性が鈍感であり、本実施例の目的であった薄膜化において、自由度の大きいことが実証される。厚みは波長の0.1倍から0.3倍の範囲にあり、特に、波長の0.1倍という超薄膜でも動作する特徴がある。なお、図10のデータから、反円偏波特性が生じていることがわかる。   FIG. 10 shows wavelength characteristics when w is fixed to 0.82 μm and t is changed. The wavelength characteristic is insensitive to the change of t, and it is demonstrated that the degree of freedom is large in the thinning as the object of the present embodiment. The thickness is in the range of 0.1 times to 0.3 times the wavelength, and in particular, it is characterized in that it operates with an ultra thin film of 0.1 times the wavelength. From the data in FIG. 10, it can be seen that anti-circular polarization characteristics are generated.

本発明を応用すれば、図11に示すように、位相差寄与部11を一対の誘電体基板12で挟み込む構成が可能である。この場合、金属膜のみの場合よりも、薄膜さを失うものの、衝撃などに対する耐久性を向上できる。   If the present invention is applied, as shown in FIG. 11, a configuration in which the phase difference contributing portion 11 is sandwiched between a pair of dielectric substrates 12 is possible. In this case, although the thin film is lost as compared with the case of using only the metal film, the durability against impact and the like can be improved.

図12は、図11の構成において誘電体基板厚みtd=0.7μmの場合の透過率、偏光角、楕円率の波長特性を示している。誘電体基板の屈折率は1.34である。誘電体基板を付加することで、プラズモンモードの波長短縮が生じるため、動作波長は長波長側に移行する。3dB円偏光帯域幅は2.6%と計算される。この帯域で透過率は48%以上、最大の透過率は67%になり、高透過性が維持されている。なお、図12のデータから、反円偏波特性が生じていることがわかる。 FIG. 12 shows wavelength characteristics of transmittance, polarization angle, and ellipticity in the case of the dielectric substrate thickness t d = 0.7 μm in the configuration of FIG. The refractive index of the dielectric substrate is 1.34. The addition of the dielectric substrate shortens the wavelength of the plasmon mode, so the operating wavelength shifts to the long wavelength side. The 3 dB circular polarization bandwidth is calculated to be 2.6%. In this zone, the transmittance is 48% or more, the maximum transmittance is 67%, and high transmittance is maintained. From the data in FIG. 12, it can be seen that anti-circular polarization characteristics are generated.

次に、本発明による第2の構成例の位相差板を説明する。
図13に本構成例の位相差板の構造を示す。この位相差板も、入射した直線偏光の電磁波を円偏光に変換するものである。図13(a)において、21は厚みtの平らな金属膜であり、平面視で長方形の開口23が複数、図示のごとく互いに直交する方向に周期的に配列して形成されている。この例では説明の簡単化のため9個の開口23が設けられているが、その数は良好な偏光変換を行うことができる適宜の数に設定することができる。図13(b)は1ユニット(一素子)の偏光変換部の平面図であり、縦横Λの正方形のブロックの中に、ユニットの左上角から右下角を結ぶ対角線に平行な2つの長辺部(以下、傾斜部ともいう)22a、22b、これら長辺部22a、22bに直角な幅lsの2つの短辺部により形成される長方形状の開口23が形成されている。金属膜の比誘電率はnmであり、開口23は比誘電率nairの空気である。x方向が入射直線偏光軸であり、傾斜部22a、22bは、入射電磁波直線偏光面に対して非対称性をもたせるため入射直線偏光軸に対し傾斜角度θc(本例では45度)をなしている。本例の位相差板は、1ユニットの偏光変換部を互いに直角な方向にそれぞれ3つずつ合計9個配列した構成を有している。
なお、ここでは、長方形の開口の配列が図14の(b)の形態のものについて述べるが、図14の(a)のような形態とすることができる。その場合の図13に相当する図は図15のようになる。
Next, a retardation plate of a second configuration example according to the present invention will be described.
FIG. 13 shows the structure of the retardation plate of this configuration example. This retardation plate also converts the incident linearly polarized electromagnetic wave into circularly polarized light. In FIG. 13A, reference numeral 21 denotes a flat metal film having a thickness t, and a plurality of rectangular openings 23 are periodically formed in a direction orthogonal to each other as shown in the drawing in plan view. In this example, nine openings 23 are provided to simplify the description, but the number can be set to an appropriate number that can perform good polarization conversion. FIG. 13 (b) is a plan view of the polarization conversion unit of one unit (one element), and in a square block of longitudinal and lateral sides, two long sides parallel to a diagonal connecting the upper left corner to the lower right corner of the unit (hereinafter also referred to as the inclined portion) 22a, 22b, these long side portions 22a, rectangular opening 23 formed by the two short sides of the rectangular width l s to 22b are formed. The dielectric constant of the metal film is nm , and the opening 23 is air having a dielectric constant n air . The x direction is the incident linear polarization axis, and the inclined portions 22a and 22b form an inclination angle θ c (45 degrees in this example) with respect to the incident linear polarization axis in order to have asymmetry with respect to the incident electromagnetic wave linear polarization plane. There is. The retardation plate of this example has a configuration in which nine polarization conversion portions of one unit are arranged in a direction perpendicular to each other, three each.
Here, although the arrangement of the rectangular openings is described in the form of FIG. 14 (b), the form may be as shown in FIG. 14 (a). A diagram corresponding to FIG. 13 in that case is as shown in FIG.

本構成例の位相差板の動作原理は第1の構成例の位相差板と同様である。   The operation principle of the retardation plate of this configuration example is the same as that of the retardation plate of the first configuration example.

金属膜21にはAgを使用し、Drude分散性媒質として扱う。位相差板の上部、下部、及び長方形の開口23の内部の媒質は空気とする。金属膜21の厚さtm=0.36μm、長方形の開口の長辺の長さlL=0.88μm、短辺の長さls=0.60μmとし、ユニットの周期Λ=1.0μmに設定する。入射偏波軸に対して構造に非対称性を持たせるために、開ロ部をθc=45度傾ける。 Ag is used for the metal film 21 and treated as a Drude dispersive medium. The medium inside the upper, lower, and rectangular openings 23 of the retardation plate is air. The thickness t m of the metal film 21 is 0.36 μm, the long side length l L of the rectangular opening is 0.88 μm, the short side length l s is 0.60 μm, and the unit period Λ = 1.0 μm Set to In order to make the structure asymmetric with respect to the incident polarization axis, the opening is inclined at θ c = 45 degrees.

透過波の波長特性を、透過率、偏光角、楕円率の観点から評価した。位相差板の下部の空気層より一様な振幅を持つ直線偏波(Ex)を入射し、位相差板の上部の空気層において透過波を観測した。解析には、周期的境界条件を適用したFDTD法を使用した。金属を含む構造を取り扱うため、PLRC法(Piecewise Linear Recursive Convolution method)を適用した。解析に用いる刻み幅を△x=△y=△z=0.01μmに選んだ。 The wavelength characteristics of the transmitted wave were evaluated in terms of transmittance, polarization angle, and ellipticity. A linearly polarized wave (E x ) having a uniform amplitude was incident from the air layer under the retardation plate, and a transmitted wave was observed in the air layer above the retardation plate. The analysis used the FDTD method which applied periodic boundary conditions. The PLRC method (Piecewise Linear Recursive Convolution method) was applied to handle structures containing metal. The step size used for analysis was selected as Δx = Δy = Δz = 0.01 μm.

図16に透過率、偏光角、楕円率の波長特性を示す。また、図16には、金属を完全導体とみなした場合の結果を併記している。ここで楕円率の絶対値が0.7以上となる波長において、透過波は3dB以下の円偏波とみなせる。図16の波長−楕円率のデータより2カ所で楕円率のピークが観察される。λ=1.046〜1.281μmの広帯域で円偏波が得られる。さらにこの帯域での透過率は61%以上あり、最大値は99%と増加する。加えてλ=1.080、1.164μmの2ヵ所のピークで楕円率0.99を得る。従って、本構成例の位相差板は、広帯域で動作し、且つ、透過率も高いことがわかる。   FIG. 16 shows wavelength characteristics of transmittance, polarization angle, and ellipticity. Further, FIG. 16 also shows the result when the metal is regarded as a perfect conductor. Here, at a wavelength at which the absolute value of the ellipticity is 0.7 or more, the transmitted wave can be regarded as circular polarization of 3 dB or less. Peaks of ellipticity are observed at two points from the data of wavelength-ellipticity of FIG. Circularly polarized light can be obtained in a wide band of λ = 1.046 to 1.281 μm. Furthermore, the transmittance in this band is 61% or more, and the maximum value increases to 99%. In addition, an ellipticity of 0.99 is obtained at two peaks of λ = 1.080 and 1.164 μm. Therefore, it is understood that the retardation plate of this configuration example operates in a wide band and has a high transmittance.

本発明は、可視光帯から光通信波長帯において占有厚みに限定がともなう光回路において好ましく適用することができる。さらに、本発明は、光波帯のみならず、導体板で形成される周期構造に伴う疑似的な表面プラズモンモードが発生し得る、テラヘルツ帯、ギガヘルツ帯においても適用することができ、耐熱性に優れた薄型位相差板を提供し得る。   The present invention can be preferably applied to an optical circuit having a limitation in occupied thickness in the visible light band to the optical communication wavelength band. Furthermore, the present invention can be applied not only to the lightwave band but also to the terahertz band and gigahertz band where pseudo surface plasmon modes associated with the periodic structure formed of the conductor plate can occur, and the heat resistance is excellent. Can provide a thin retardation plate.

1、21 金属膜
2、22a、22b 長辺部(傾斜部)
3、23 非対称開口部
11 位相差寄与部
12 誘電体基板
1, 21 metal film 2, 22a, 22b long side (inclined portion)
3, 23 Asymmetrical Opening 11 Retardation Contribution 12 Dielectric Substrate

Claims (6)

金属膜に平面視で直角二等辺三角形である複数の開口が周期的に配設されてなり、各開口は入射電磁波直線偏光面に対して一定の傾斜角度をなす長辺部を有する非点対称形状であり、前記開口において周期的な結合に基づく二種類の直交する表面プラズモンモード又は疑似表面プラズモンモードが励起され、90度位相の異なる直交する界成分を利用して、直線偏光を円偏光に変換し、かつ、入射電磁波の波長帯により右旋円偏波及び左旋円偏波が得られることを特徴とする位相差板。 A plurality of openings is a rectangular equilateral triangle in plan view the metal film is being periodically arranged, each opening point-asymmetrical having a long side portion which forms a constant inclination angle with respect to the incident electromagnetic wave linearly polarized light plane Two orthogonal surface plasmon modes or pseudo surface plasmon modes based on the shape and periodic coupling based on periodic coupling are excited, and the linearly polarized light is converted to circularly polarized light by using orthogonal field components different in phase by 90 degrees. A phase difference plate characterized in that it is converted, and right-handed circular polarization and left-handed circular polarization are obtained by the wavelength band of an incident electromagnetic wave . 前記長辺部の傾斜角度が前記入射電磁波直線偏光面に対して43度から47度であることを特徴とする請求項1に記載の位相差板。   The retardation plate according to claim 1, wherein the inclination angle of the long side portion is 43 degrees to 47 degrees with respect to the incident electromagnetic wave linearly polarized plane. 前記金属膜の厚みが電磁波の動作波長の0.1倍から0.3倍であり、電磁波の入射角が垂直入射を含み、±10度の範囲にあることを特徴とする請求項1又は2に記載の位相差板。   The thickness of the metal film is 0.1 times to 0.3 times the operating wavelength of the electromagnetic wave, and the incident angle of the electromagnetic wave is in the range of ± 10 degrees including the vertical incidence. Retardation plate described in. 前記開口が配設される周期長が電磁波の動作波長よりも小さく、フィリングファクターが0.7から0.9に設定されていることを特徴とする請求項1から3のいずれかに記載の位相差板。   The period length in which the said opening is arrange | positioned is smaller than the operating wavelength of electromagnetic waves, and the filling factor is set to 0.7 to 0.9, The position according to any one of Claim 1 to 3 characterized by the above-mentioned. Phase plate. 前記金属膜の材質が、電磁波が光波帯の場合は銀、金、アルミニウム、ニッケル、銅からなる群より選ばれる1種であり、テラヘルツ帯又はギガヘルツ帯の場合はアルミニウム、銅、ニッケル、鉄からなる群より選ばれる1種であることを特徴とする請求項1から4のいずれかに記載の位相差板。   The material of the metal film is one selected from the group consisting of silver, gold, aluminum, nickel and copper when the electromagnetic wave is in the light wave band, and in the case of the terahertz band or gigahertz band, it is made of aluminum, copper, nickel, iron The retardation plate according to any one of claims 1 to 4, which is one selected from the group consisting of 複数の開口が周期的に配設された前記金属膜を一対の透光性の誘電体基板で挟みこんで一体化した構成を有することを特徴とする請求項1から5のいずれかに記載の位相差板。 The structure according to any one of claims 1 to 5 , characterized in that the metal film in which a plurality of openings are periodically disposed is integrated by being sandwiched between a pair of light transmitting dielectric substrates . Retardation plate.
JP2015029941A 2014-08-29 2015-02-18 Retardation plate in which asymmetric openings are periodically arranged in metal film Active JP6521289B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015029941A JP6521289B2 (en) 2014-08-29 2015-02-18 Retardation plate in which asymmetric openings are periodically arranged in metal film

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014174956 2014-08-29
JP2014174956 2014-08-29
JP2015029941A JP6521289B2 (en) 2014-08-29 2015-02-18 Retardation plate in which asymmetric openings are periodically arranged in metal film

Publications (3)

Publication Number Publication Date
JP2016051162A JP2016051162A (en) 2016-04-11
JP2016051162A5 JP2016051162A5 (en) 2018-03-29
JP6521289B2 true JP6521289B2 (en) 2019-05-29

Family

ID=55658680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015029941A Active JP6521289B2 (en) 2014-08-29 2015-02-18 Retardation plate in which asymmetric openings are periodically arranged in metal film

Country Status (1)

Country Link
JP (1) JP6521289B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017195810A1 (en) * 2016-05-11 2019-03-07 Scivax株式会社 Phase difference element, phase difference element manufacturing method, and optical member
CN105911627B (en) * 2016-05-25 2019-06-07 陕西师范大学 A kind of asymmetric transmission structure and preparation method thereof
CN114047567B (en) * 2021-06-22 2023-07-18 重庆大学 Asymmetric surface plasmon mode generation and regulation method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5973316A (en) * 1997-07-08 1999-10-26 Nec Research Institute, Inc. Sub-wavelength aperture arrays with enhanced light transmission
KR100778887B1 (en) * 2006-01-18 2007-11-22 재단법인서울대학교산학협력재단 Shape Resonance Terahertz and Infrared Filters
JP5483800B2 (en) * 2006-02-28 2014-05-07 キヤノン株式会社 Design method of light transmission device
JP5116362B2 (en) * 2007-05-28 2013-01-09 株式会社リコー Biosensor
JP5741888B2 (en) * 2010-03-16 2015-07-01 株式会社豊田中央研究所 Optical filter and display device

Also Published As

Publication number Publication date
JP2016051162A (en) 2016-04-11

Similar Documents

Publication Publication Date Title
Fan et al. Constructing metastructures with broadband electromagnetic functionality
US8723145B2 (en) Plasmonic polarizer with a ring shaped waveguide
Sell et al. Visible light metasurfaces based on single-crystal silicon
Cui et al. Plasmonic and metamaterial structures as electromagnetic absorbers
TWI712182B (en) Resonant optical cavity light emitting device
Wen et al. Geometric metasurfaces for ultrathin optical devices
JP4856173B2 (en) Smith-Parcel radiation source using negative index metamaterial (NIM)
US11211761B2 (en) Laser beam steering device and system including the same
WO2014136607A1 (en) Two-dimensional photonic crystal surface-emitting laser
JP5741888B2 (en) Optical filter and display device
US20140332077A1 (en) Sub-wavelength structures, devices and methods for light control in material composites
US20140340732A1 (en) A planar optical component and its design method
US20210080631A1 (en) System and method for optical filtering
JP2011503664A (en) Method and apparatus for improving collimation of a radiation beam
JP6126490B2 (en) Optical filter
JP6521289B2 (en) Retardation plate in which asymmetric openings are periodically arranged in metal film
US10036839B2 (en) Direction-selective interferometric optical filter
JP2012027221A (en) Wire grid polarizer
Kim et al. Babinet-inverted optical Yagi–Uda antenna for unidirectional radiation to free space
Kim et al. Realizing vibrant and high-contrast reflective structural colors from lossy metals supporting dielectric gratings
US20070109639A1 (en) Electromagnetic polarizing structure and polarized electromagnetic device
JP2006330616A (en) Polarizer and method for manufacturing same, and liquid crystal display apparatus
Sabri et al. Quasi‐Static and Time‐Modulated Optical Phased Arrays: Beamforming Analysis and Comparative Study
JP2012093584A (en) Optical coupler, optical scanner and spectrometer
Cheng et al. Terahertz metagrating accordion for dynamic beam steering

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180213

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190417

R150 Certificate of patent or registration of utility model

Ref document number: 6521289

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250