JP6520375B2 - Molten glass transfer device - Google Patents

Molten glass transfer device Download PDF

Info

Publication number
JP6520375B2
JP6520375B2 JP2015100078A JP2015100078A JP6520375B2 JP 6520375 B2 JP6520375 B2 JP 6520375B2 JP 2015100078 A JP2015100078 A JP 2015100078A JP 2015100078 A JP2015100078 A JP 2015100078A JP 6520375 B2 JP6520375 B2 JP 6520375B2
Authority
JP
Japan
Prior art keywords
molten glass
flanges
glass
insulating layer
pipes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015100078A
Other languages
Japanese (ja)
Other versions
JP2016216275A (en
Inventor
達 櫻林
達 櫻林
周作 玉村
周作 玉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2015100078A priority Critical patent/JP6520375B2/en
Publication of JP2016216275A publication Critical patent/JP2016216275A/en
Application granted granted Critical
Publication of JP6520375B2 publication Critical patent/JP6520375B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Glass Melting And Manufacturing (AREA)

Description

本発明は、内部に溶融ガラスを流通させる白金又は白金合金からなる管材を有する溶融ガラス移送装置に関するものである。   The present invention relates to a molten glass transfer apparatus having a tube made of platinum or a platinum alloy through which molten glass flows.

ガラスリボン等のガラス物品の成形の際、ガラス溶融炉でガラス原料を溶融して得られた溶融ガラスは、清澄工程や撹拌工程等の各種工程を経て成形部へ供給される。このとき、ガラス溶融炉内の溶融ガラスは、所定の流路を流通して成形部まで移送されるが、その流路としては、例えば特許文献1に開示されるように、耐熱性や耐酸化性を確保する観点から、白金や白金合金等からなる管材を用いるのが一般的である。   At the time of shaping | molding of glass articles | goods, such as a glass ribbon, the molten glass obtained by fuse | melting glass-making feedstock with a glass melting furnace is supplied to a shaping | molding part through various processes, such as a clarification process and a stirring process. At this time, the molten glass in the glass melting furnace flows through the predetermined flow path and is transferred to the forming portion, and as the flow path, for example, heat resistance and oxidation resistance as disclosed in Patent Document 1 From the viewpoint of securing the properties, it is general to use a pipe made of platinum, platinum alloy or the like.

特開2013−216535号公報JP, 2013-216535, A

ところで、上記のような溶融ガラス移送装置では、白金又は白金合金からなる管材に電流を流すことで生じる抵抗加熱(ジュール熱)によって、管材内を流れる溶融ガラスの温度、ひいては流量の調節が可能である。   By the way, in the molten glass transfer device as described above, it is possible to adjust the temperature of the molten glass flowing in the tube, and hence the flow rate, by resistance heating (Joule heat) generated by applying an electric current to the tube made of platinum or platinum alloy. is there.

また、上記特許文献1の溶融ガラス移送装置では、溶融ガラスの流路が複数の管材で形成されている。このような構成では、各管材に流す電流を個別に制御することで、溶融ガラスの流路における各管材に対応する区間毎の温度調節が可能となり、流路を流れる溶融ガラスのより好適な温度制御を実現できるが、その場合、各管材間の電気的絶縁を如何にして確保するかが課題となる。   Moreover, in the molten glass transfer apparatus of the said patent document 1, the flow path of molten glass is formed with several pipe material. In such a configuration, by individually controlling the current supplied to each tube, temperature control for each section corresponding to each tube in the flow path of the molten glass becomes possible, and a more preferable temperature of the molten glass flowing through the flow path Although control can be realized, in that case, it becomes an issue how to secure the electrical insulation between the pipes.

本発明は、上記課題を解決するためになされたものであって、その目的は、溶融ガラスの流路を構成する複数の管材毎の温度調節を可能とすべく、各管材間を電気的に絶縁することができる溶融ガラス移送装置を提供することにある。   The present invention has been made to solve the above-mentioned problems, and an object thereof is to electrically control the temperature of each of a plurality of tubes constituting a flow path of molten glass. An object of the present invention is to provide a molten glass transfer device that can be insulated.

上記課題を解決する溶融ガラス移送装置は、軸方向端部にフランジを有する少なくとも2つの白金製又は白金合金製の管材を備え、前記フランジ同士を向き合わせて並設された前記各管材にて溶融ガラスを流通させる流路が構成されており、前記各管材の前記フランジ同士の間には、前記各管材の間の電気的絶縁を図るための絶縁層が設けられている。   The molten glass transfer apparatus for solving the above problems comprises at least two platinum or platinum alloy pipes having a flange at an axial end, and melting is carried out by the pipes arranged side by side with the flanges facing each other. The flow path which distribute | circulates glass is comprised, and the insulating layer for aiming at the electrical insulation between each said piping material is provided between said flanges of each said piping material.

この構成によれば、互いに向き合う各管材のフランジの間に絶縁層が設けられ、その絶縁層によって各管材間の電気的絶縁が図られる。このため、管材毎に流す電流の制御が可能となり、その結果、管材毎の温度調節が可能となる。   According to this configuration, the insulating layer is provided between the flanges of the pipes facing each other, and the insulating layer is used to achieve electrical insulation between the pipes. For this reason, control of the electric current sent for every pipe material is attained, As a result, temperature control for every pipe material is attained.

上記溶融ガラス移送装置において、前記絶縁層として、絶縁性を有する材質からなる繊維集合体を備えることが好ましい。
この構成によれば、繊維集合体よりなる絶縁層によって、各管材間の電気的絶縁を図ることができる。また、繊維集合体の持つ弾性によって各管材の伸縮変形が許容されるため、管材の変形破損や位置ずれ等を抑制することができる。
In the molten glass transfer apparatus, it is preferable that the insulating layer includes a fiber assembly made of an insulating material.
According to this configuration, it is possible to achieve electrical insulation between the tubes by the insulating layer made of the fiber assembly. In addition, since the elasticity of the fiber assembly allows the expansion and contraction of each tube, deformation and breakage of the tube and the positional deviation can be suppressed.

上記溶融ガラス移送装置において、前記繊維集合体は、繊維状耐火物を編み込んだクロス状部材、繊維状耐火物を抄造したペーパー状部材、及び繊維状耐火物を圧縮成形したブランケット状部材のいずれかよりなることが好ましい。   In the molten glass transfer device, the fiber assembly is any of a cloth-like member obtained by knitting a fibrous refractory, a paper-like member obtained by forming the fibrous refractory, and a blanket-like member obtained by compression molding a fibrous refractory. It is preferable to consist of.

この構成によれば、繊維集合体が、繊維状耐火物を編み込んだクロス状部材、繊維状耐火物を抄造したペーパー状部材、及び繊維状耐火物を圧縮成形したブランケット状部材のいずれかよりなり、それらは軽量であり、また柔軟性が高い。そのため、繊維集合体を各管材のフランジ間に組み付ける際の施工性を向上させることができる。また、前記クロス状部材、ペーパー状部材及びブランケット状部材は比較的安価で製造可能であるため、溶融ガラス移送装置の製造コストの低減に寄与できる。   According to this configuration, the fiber assembly comprises any one of a cloth-like member in which a fibrous refractory is woven, a paper-like member in which the fibrous refractory is formed, and a blanket-like member in which the fibrous refractory is compression molded. , They are lightweight and flexible. Therefore, the workability at the time of assembling | attaching a fiber assembly between the flanges of each pipe material can be improved. Further, since the cross-like member, the paper-like member and the blanket-like member can be manufactured relatively inexpensively, they can contribute to the reduction of the manufacturing cost of the molten glass transfer device.

上記溶融ガラス移送装置において、前記管材の前記フランジの間には、前記流路を流通する溶融ガラスの流入を促進するガラス流入促進部が形成され、前記絶縁層として、前記ガラス流入促進部に流入して冷却固化されたガラスを備えることが好ましい。   In the molten glass transfer device, a glass inflow promoting portion for promoting the inflow of molten glass flowing through the flow path is formed between the flanges of the pipe material, and flows into the glass inflow promoting portion as the insulating layer. It is preferable to provide a glass which has been cooled and solidified.

この構成によれば、フランジ形状による対応で溶融ガラスをフランジ間に引き込み、そのフランジ間で固化したガラスが各管材間の絶縁層を形成するため、各管材間を絶縁するための部材を特段必要とせず、製造コストの削減に貢献できる。   According to this configuration, the molten glass is drawn between the flanges according to the flange shape, and the glass solidified between the flanges forms an insulating layer between the tubes, so a member for insulating the tubes is particularly required. In addition, it can contribute to the reduction of manufacturing costs.

上記溶融ガラス移送装置において、前記ガラス流入促進部が、前記管材の筒部から前記フランジへと移行する屈曲部位に形成されたテーパ部を含むことが好ましい。
この構成によれば、ガラス流入促進部が管材の筒部からフランジへと移行する屈曲部位に形成されたテーパ部を含むため、管材内を流れる溶融ガラスをガラス流入促進部に好適に流入させることが可能となる。
In the molten glass transfer device, it is preferable that the glass inflow promoting portion includes a tapered portion formed at a bent portion where the tubular portion of the pipe member shifts to the flange.
According to this configuration, since the glass inflow promoting portion includes the tapered portion formed at the bent portion where the tubular portion of the pipe moves from the cylindrical portion to the flange, the molten glass flowing in the pipe is suitably flowed into the glass inflow promoting portion. Is possible.

上記溶融ガラス移送装置において、前記ガラス流入促進部が、前記管材の筒部から前記フランジへと移行する屈曲部位に形成された段差部を含むことが好ましい。
この構成によれば、ガラス流入促進部が管材の筒部からフランジへと移行する屈曲部位に形成された段差部を含むため、管材内を流れる溶融ガラスをガラス流入促進部に好適に流入させることが可能となる。
In the molten glass transfer device, it is preferable that the glass inflow promoting portion includes a step portion formed at a bent portion where the tubular portion of the pipe member is shifted to the flange.
According to this configuration, since the glass inflow promoting portion includes the step portion formed at the bent portion where the tubular portion of the pipe moves from the cylindrical portion to the flange, the molten glass flowing in the pipe is suitably made to flow into the glass inflow promoting portion. Is possible.

本発明の溶融ガラス移送装置によれば、溶融ガラスの流路を構成する複数の管材毎の温度調節を可能とすべく、各管材間を電気的に絶縁することができる。   According to the molten glass transfer apparatus of the present invention, it is possible to electrically insulate the respective pipes in order to enable temperature control of each of the plurality of pipes constituting the flow path of the molten glass.

実施形態における溶融ガラス移送装置の概略構成図である。It is a schematic block diagram of the molten glass transfer apparatus in embodiment. 同形態の溶融ガラス移送装置の製造方法を説明するための説明図である。It is explanatory drawing for demonstrating the manufacturing method of the molten glass transfer apparatus of the form. 同形態の溶融ガラス移送装置の製造方法を説明するための模式図である。It is a schematic diagram for demonstrating the manufacturing method of the molten glass transfer apparatus of the form. 別例の溶融ガラス移送装置の製造方法を説明するための説明図である。It is explanatory drawing for demonstrating the manufacturing method of the molten glass transfer apparatus of another example. 別例の溶融ガラス移送装置における管材同士の境界部分を示す模式図である。It is a schematic diagram which shows the boundary part of the pipes in the molten glass transfer apparatus of another example. 別例の溶融ガラス移送装置における管材同士の境界部分を示す模式図である。It is a schematic diagram which shows the boundary part of the pipes in the molten glass transfer apparatus of another example. 別例の溶融ガラス移送装置における管材同士の境界部分を示す模式図である。It is a schematic diagram which shows the boundary part of the pipes in the molten glass transfer apparatus of another example.

以下、溶融ガラス移送装置の一実施形態について説明する。
図1に示すように、本実施形態の溶融ガラス移送装置10は、ガラスリボン等のガラス物品を製造する製造装置に用いられ、ガラス溶融炉Mでガラス原料を溶融させて得られた溶融ガラスを例えば成形部へ移送するためのものである。溶融ガラス移送装置10から成形部に移送された溶融ガラスは、該成形部にてガラスリボン等のガラス物品に成形される。
Hereinafter, an embodiment of a molten glass transfer apparatus will be described.
As shown in FIG. 1, the molten glass transfer apparatus 10 of this embodiment is used in a manufacturing apparatus for manufacturing a glass article such as a glass ribbon, and a molten glass obtained by melting a glass material in a glass melting furnace M is used. For example, it is for transferring to a forming unit. The molten glass transferred from the molten glass transfer device 10 to the forming unit is formed into a glass article such as a glass ribbon in the forming unit.

溶融ガラス移送装置10は、溶融ガラスが流通される流路Fを構成する第1及び第2の管材11,12を備えている。第1及び第2の管材11,12は共に白金又は白金合金にて形成されている。第1及び第2の管材11,12は円筒状をなし、第1の管材11の軸方向両端部にはフランジ11a,11bがそれぞれ形成され、第2の管材12の軸方向両端部にはフランジ12a,12bがそれぞれ形成されている。本実施形態では、第1の管材11の各フランジ11a,11bは、第1の管材11の軸線に対して垂直な平板状をなしている。第2の管材12の各フランジ12a,12bも同様に、第2の管材12の軸線に対して垂直な平板状をなしている。そして、第1の管材11の一方のフランジ11bと第2の管材12の一方のフランジ12aとをそれらの板面同士が略平行となるように向かい合わせて、第1及び第2の管材11,12が軸方向に並設されている。   The molten-glass transfer apparatus 10 is equipped with the 1st and 2nd pipings 11 and 12 which comprise the flow path F through which molten glass distribute | circulates. The first and second tubes 11 and 12 are both formed of platinum or platinum alloy. The first and second tubular members 11 and 12 have a cylindrical shape, and flanges 11a and 11b are formed on both axial ends of the first tubular member 11, and flanges on both axial ends of the second tubular member 12 12a and 12b are respectively formed. In the present embodiment, the flanges 11 a and 11 b of the first pipe member 11 have a flat plate shape perpendicular to the axis of the first pipe member 11. Similarly, the respective flanges 12 a and 12 b of the second pipe member 12 also have a flat plate shape perpendicular to the axis of the second pipe member 12. Then, one flange 11 b of the first pipe member 11 and one flange 12 a of the second pipe member 12 face each other so that the plate surfaces thereof are substantially parallel, and the first and second pipe members 11, 12 are juxtaposed in the axial direction.

これらフランジ11b,12aの間には、第1の管材11と第2の管材12との間の電気絶縁を図るための絶縁層13が介装されている。なお、フランジ11b,12a同士は、図示しないボルト等によって電気的絶縁を確保しつつ互いに固定されている。   An insulating layer 13 is provided between the flanges 11 b and 12 a to provide electrical insulation between the first pipe material 11 and the second pipe material 12. The flanges 11b and 12a are fixed to each other while securing electrical insulation by means of a bolt or the like (not shown).

本実施形態では、絶縁層13は、アルミナやシリカ等の耐火性材料からなるシート状の繊維集合体にて構成されている。より具体的には、絶縁層13としては、繊維状耐火物を編み込んだクロス状部材や、繊維状耐火物を抄造したペーパー状部材、繊維状耐火物を圧縮成形したブランケット状部材等を用いることができる。絶縁層13には、第1及び第2の管材11,12の内径以上の径の貫通孔13aが流路Fに対応して形成されている。なお、貫通孔13aの径は、第1及び第2の管材11,12の内径と略同一であることがより好ましい。   In the present embodiment, the insulating layer 13 is formed of a sheet-like fiber assembly made of a refractory material such as alumina or silica. More specifically, as the insulating layer 13, a cloth-like member obtained by knitting a fibrous refractory, a paper-like member obtained by forming the fibrous refractory, a blanket-like member obtained by compression molding a fibrous refractory, or the like may be used. Can. In the insulating layer 13, a through hole 13 a having a diameter equal to or larger than the inner diameter of the first and second pipes 11 and 12 is formed corresponding to the flow path F. The diameter of the through hole 13a is more preferably substantially the same as the inner diameter of the first and second tubular members 11 and 12.

この絶縁層13の厚み(フランジ11b,12aの間隔)は、第1及び第2の管材11,12の間の絶縁性を高めることを考えた場合には、1mm以上に設定することが好ましく、絶縁層13が介装されたフランジ11b,12a間からの溶融ガラスの漏れにくさを考えた場合には、100mm以下に設定することが好ましい。つまり、絶縁層13の厚みは、絶縁性と溶融ガラスの漏れにくさの両方を考慮して、1mm〜100mm以下に設定されることが好ましい。また、絶縁層13の厚みのより好ましい設定範囲は1.5〜10mmであり、さらに好ましい設定範囲は2〜5mmである。   The thickness of the insulating layer 13 (the distance between the flanges 11 b and 12 a) is preferably set to 1 mm or more in consideration of enhancing the insulation between the first and second pipes 11 and 12, In consideration of leakage of molten glass from between the flanges 11b and 12a in which the insulating layer 13 is interposed, it is preferable to set to 100 mm or less. That is, the thickness of the insulating layer 13 is preferably set to 1 mm to 100 mm or less in consideration of both the insulating property and the resistance to leakage of the molten glass. Further, a more preferable setting range of the thickness of the insulating layer 13 is 1.5 to 10 mm, and a further preferable setting range is 2 to 5 mm.

上記溶融ガラス移送装置10では、第1及び第2の管材11,12に電流を流すことで生じる抵抗加熱(ジュール熱)によって、それらの内側を流れる溶融ガラスの温度調節(流量調節)が可能となっている。電源14からの電流は、制御回路15にて制御されるリレー16を介して第1及び第2の管材11,12に供給され、該リレー16によって第1及び第2の管材11,12に対して個別に、且つ選択的に電流を供給可能とされている。なお、リレー16からの接続線は、第1及び第2の管材11,12の各フランジ11a,11b,12a,12bに接続されている。   In the molten glass transfer device 10, it is possible to control the temperature (flow rate) of the molten glass flowing inside by resistance heating (Joule heat) generated by applying an electric current to the first and second pipes 11 and 12 It has become. The current from the power source 14 is supplied to the first and second pipes 11 and 12 through the relay 16 controlled by the control circuit 15, and the relay 16 supplies the current to the first and second pipes 11 and 12. Thus, it is possible to supply current separately and selectively. The connection line from the relay 16 is connected to the flanges 11a, 11b, 12a, 12b of the first and second pipe members 11, 12, respectively.

次に、フランジ11b,12a間への絶縁層13の組み付け方法について説明する。
図2に示すように、まず、各管材11,12に電流を流して該管材11,12を加熱する加熱工程S1を行う。この加熱工程S1によって、各管材11,12が膨張し、該膨張によって各管材11,12の軸方向の長さが長くなる。
Next, a method of assembling the insulating layer 13 between the flanges 11 b and 12 a will be described.
As shown in FIG. 2, first, a heating step S1 is performed in which a current is supplied to each of the pipes 11 and 12 to heat the pipes 11 and 12. In the heating step S1, the pipes 11 and 12 expand, and the axial length of the pipes 11 and 12 increases due to the expansion.

次に、図2及び図3に示すように、第1の管材11のフランジ11bと第2の管材12のフランジ12aとで絶縁層13を挟み込む挟み込み工程S2を行う。挟み込み工程S2では、まず、ガラス溶融炉M側のガラス供給口に第1の管材11のフランジ11a側の開口を突き合わせ、その後、各管材11,12のフランジ11b,12aにて絶縁層13が挟み込まれる。このとき、各管材11,12の端部の各開口11c,12cと絶縁層13の貫通孔13aとが対応するように、絶縁層13がフランジ11b,12aに挟み込まれる。また、このとき、フランジ11b,12aと絶縁層13とは隙間無く当接される。なお、この挟み込み工程S2の前に、絶縁層13をフランジ11b,12aのいずれかの板面に仮固定することが好ましい。   Next, as shown in FIGS. 2 and 3, a sandwiching step S2 is performed in which the insulating layer 13 is sandwiched between the flange 11 b of the first pipe member 11 and the flange 12 a of the second pipe member 12. In the sandwiching step S2, first, the opening on the flange 11a side of the first pipe member 11 abuts the glass supply port on the glass melting furnace M side, and then the insulating layer 13 is sandwiched by the flanges 11b and 12a of the respective pipe members 11 and 12 Be At this time, the insulating layer 13 is sandwiched between the flanges 11 b and 12 a such that the openings 11 c and 12 c at the end of the tubular members 11 and 12 correspond to the through holes 13 a of the insulating layer 13. Further, at this time, the flanges 11 b and 12 a and the insulating layer 13 are in contact without a gap. In addition, it is preferable to temporarily fix the insulating layer 13 to any plate surface of the flanges 11b and 12a before the sandwiching step S2.

次に、図2に示すように、前記ボルト等によってフランジ11b,12a同士を固定する固定工程S3を行う。これにより、第1及び第2の管材11,12が互いに固定され、各管材11,12の内側に溶融ガラスが流通する流路Fが構成される。   Next, as shown in FIG. 2, a fixing step S3 of fixing the flanges 11b and 12a to each other by the bolt or the like is performed. As a result, the first and second pipes 11 and 12 are fixed to each other, and a flow path F in which the molten glass flows is formed inside the pipes 11 and 12.

次に、本実施形態の作用について説明する。
各管材11,12に流す電流値を制御回路15及びリレー16によって管材11,12毎に制御することで、各管材11,12内(流路F)を流通する溶融ガラスの温度を好適に調節可能となる。そして、溶融ガラスの温度を調節することで、流路Fを流通する溶融ガラスの流量の調節が可能となっている。この電流による管材11,12の個別の加熱は、フランジ11b,12a間に介在する絶縁層13によって第1及び第2の管材11,12間の電気的絶縁性が確保されていることで可能となっている。
Next, the operation of the present embodiment will be described.
The temperature of the molten glass flowing in each of the pipes 11 and 12 (flow path F) is suitably adjusted by controlling the value of the current flowing through each pipe 11 and 12 for each of the pipes 11 and 12 by the control circuit 15 and the relay 16. It becomes possible. And by adjusting the temperature of a molten glass, adjustment of the flow volume of the molten glass which distribute | circulates the flow path F is attained. The individual heating of the tubular members 11 and 12 by this current is possible by ensuring the electrical insulation between the first and second tubular members 11 and 12 by the insulating layer 13 interposed between the flanges 11b and 12a. It has become.

また、本実施形態では、各管材11,12及び絶縁層13の組み付けの際、加熱工程S1で各管材11,12を加熱膨張させた後、挟み込み工程S2で各管材11,12のフランジ11b,12aで絶縁層13を挟み込むようにしている。このため、各管材11,12の軸方向への線膨張を考慮して隙間を設けつつ各管材11,12を配置するといった処置が不要となり、各管材11,12及び絶縁層13の組み付けが容易となる。   Further, in the present embodiment, at the time of assembling the respective tubular members 11, 12 and the insulating layer 13, after the respective tubular members 11, 12 are thermally expanded in the heating step S1, the flanges 11b of the respective tubular members 11, 12 in the sandwiching step S2, The insulating layer 13 is sandwiched by 12a. For this reason, in consideration of linear expansion in the axial direction of each of the pipes 11, 12, there is no need to dispose the pipes 11, 12 while providing a gap, and the assembling of the pipes 11, 12 and the insulating layer 13 is easy. It becomes.

次に、本実施形態の特徴的な効果を記載する。
(1)溶融ガラスの流路Fを構成する各管材11,12は、それらのフランジ11b,12a同士を向き合わせて並設され、該フランジ11b,12aの間には、各管材11,12の間の電気的絶縁を図るための絶縁層13が設けられる。これにより、絶縁層13によって各管材11,12間の電気的絶縁が図られるため、各管材11,12に流す電流を個別に制御することが可能となり、その結果、管材11,12毎の温度調節が可能となる。
Next, characteristic effects of the present embodiment will be described.
(1) The pipes 11 and 12 constituting the flow path F of the molten glass are arranged side by side with their flanges 11b and 12a facing each other, and between the flanges 11b and 12a An insulating layer 13 is provided to provide electrical insulation therebetween. As a result, since the insulation layer 13 electrically insulates each of the pipes 11, 12, it is possible to control the current flowing through each of the pipes 11, 12 individually, and as a result, the temperature of each of the pipes 11, 12 Adjustment is possible.

(2)絶縁層13は、絶縁性を有する材質からなる繊維集合体であり、その繊維集合体よりなる絶縁層13によって、各管材11,12間の電気的絶縁を図ることができる。また、繊維集合体で構成されている絶縁層13を所定以上の厚さで構成した場合、適度な弾性を有するため、各管材11,12の伸縮変形を許容するスペーサとしても絶縁層13を機能させることができる。すなわち、管材11,12の変形破損や位置ずれ等を抑制できる。なお、この繊維集合体に用いる材料としては、耐火性に優れたアルミナやシリカ等を用いることが好ましい。   (2) The insulating layer 13 is a fiber assembly made of a material having an insulating property, and the electrical insulation between the tubes 11 and 12 can be achieved by the insulating layer 13 made of the fiber assembly. In addition, when the insulating layer 13 made of a fiber assembly is formed to have a predetermined thickness or more, the insulating layer 13 functions as a spacer that allows expansion and contraction of each of the tubes 11 and 12 because it has appropriate elasticity. It can be done. That is, it is possible to suppress deformation and breakage, positional deviation and the like of the pipe members 11 and 12. In addition, as a material used for this fiber assembly, it is preferable to use the alumina, the silica, etc. which were excellent in fire resistance.

(3)絶縁層13を構成する繊維集合体は、繊維状耐火物を編み込んだクロス状部材、繊維状耐火物を抄造したペーパー状部材、及び繊維状耐火物を圧縮成形したブランケット状部材のいずれかよりなることが好ましい。これらクロス状部材、ペーパー状部材及びブランケット状部材は軽量であり、また柔軟性が高いため、絶縁層13(繊維集合体)を各管材11,12のフランジ11b,12a間に組み付ける際の施工性を向上させることができる。また、クロス状部材、ペーパー状部材及びブランケット状部材は比較的安価で製造可能であるため、溶融ガラス移送装置10の製造コストの低減に寄与できる。   (3) The fiber assembly constituting the insulating layer 13 is any of a cloth-like member obtained by knitting a fibrous refractory, a paper-like member obtained by forming the fibrous refractory, and a blanket-like member obtained by compression molding the fibrous refractory. It is preferable to be made of a gum. Since these cross-like members, paper-like members and blanket-like members are light in weight and high in flexibility, the workability when assembling the insulating layer 13 (fiber assembly) between the flanges 11b and 12a of the respective tubes 11 and 12 Can be improved. In addition, since the cross-like member, the paper-like member and the blanket-like member can be manufactured relatively inexpensively, they can contribute to the reduction of the manufacturing cost of the molten glass transfer apparatus 10.

なお、上記実施形態は、以下のように変更してもよい。
・図4に示すように、各管材11,12及び絶縁層13の組み付けにおいて、各管材11,12のフランジ11b,12aで絶縁層13を挟み込む挟み込み工程S11の後に、各管材11,12を加熱する加熱工程S12を行ってもよい。この場合、挟み込み工程S11において、フランジ11b,12aの間や、第1の管材11のフランジ11aとガラス溶融炉M側の前記ガラス供給口との間等に、各管材11,12の軸方向への線膨張分を考慮した隙間を設けることが好ましい。また、この場合、挟み込み工程S11後の加熱工程S12では、各管材11,12の軸方向への線膨張によって絶縁層13がフランジ11b,12aにて圧縮されるが、その圧縮後の絶縁層13の厚みは、各管材11,12間の絶縁性を高めることを考えた場合には、1mm以上に設定することが好ましい。また、フランジ11b,12a間からの溶融ガラスの漏れにくさを考えた場合には、圧縮後の絶縁層13の厚みを10mm以下に設定することが好ましい。更に、加熱工程S12時の各管材11,12の軸方向への線膨張の許容性を考えた場合には、圧縮後の絶縁層13の厚みを5mm以上に設定することが好ましい。つまり、挟み込み工程S11の後に加熱工程S12を行う場合には、圧縮後の絶縁層13の厚みは、絶縁性、溶融ガラスの漏れにくさ、及び線膨張の許容性の全てを考慮して、5mm以上、10mm以下に設定されることが好ましい。
The above embodiment may be modified as follows.
· As shown in FIG. 4, in assembling the pipes 11 and 12 and the insulating layer 13, the pipes 11 and 12 are heated after the sandwiching step S 11 in which the flanges 11 b and 12 a of the pipes 11 and 12 sandwich the insulating layer 13. The heating step S12 may be performed. In this case, in the sandwiching step S11, between the flanges 11b and 12a or between the flange 11a of the first tube 11 and the glass supply port on the glass melting furnace M side, in the axial direction of the tubes 11 and 12 It is preferable to provide a gap in consideration of the linear expansion of the Further, in this case, in the heating step S12 after the sandwiching step S11, the insulating layer 13 is compressed by the flanges 11b and 12a by the linear expansion in the axial direction of each of the pipes 11 and 12, but the insulating layer 13 after the compression is performed. It is preferable to set the thickness of 1 mm or more in consideration of enhancing the insulation between the pipes 11 and 12. Further, in consideration of leakage of molten glass from between the flanges 11b and 12a, it is preferable to set the thickness of the insulating layer 13 after compression to 10 mm or less. Furthermore, in consideration of the tolerance of the linear expansion in the axial direction of each of the pipes 11 and 12 in the heating step S12, the thickness of the insulating layer 13 after compression is preferably set to 5 mm or more. That is, in the case where the heating step S12 is performed after the sandwiching step S11, the thickness of the insulating layer 13 after compression is 5 mm in consideration of all of the insulation property, the leakage resistance of the molten glass, and the linear expansion tolerance. As mentioned above, it is preferable to set to 10 mm or less.

・上記実施形態では、絶縁層13を繊維集合体としたが、フランジ11b,12a間の電気的絶縁を図れるものであれば、繊維集合体以外のものに変更してもよい。
例えば、図5に示すように、各管材11,12のフランジ11b,12aの間に、流路Fを流通する溶融ガラスの流入を促進するガラス流入促進部20を形成し、そのガラス流入促進部20に流入して冷却固化されたガラス栓21を絶縁層として構成してもよい。
In the embodiment described above, the insulating layer 13 is a fiber assembly, but may be changed to other than a fiber assembly as long as electrical insulation between the flanges 11b and 12a can be achieved.
For example, as shown in FIG. 5, a glass inflow promoting portion 20 is formed between the flanges 11b and 12a of the pipes 11 and 12 to promote the inflow of molten glass flowing through the flow path F, and the glass inflow promoting portion The glass plug 21 which has flowed into 20 and has been cooled and solidified may be configured as an insulating layer.

同図に示す例では、各管材11,12の筒部(本体部分)からフランジ11b,12aへと移行する屈曲部位にテーパ部11d,12dが形成されている。各テーパ部11d,12dは、フランジ11b,12aの内周縁部の全周に亘って形成され、軸方向外側に向かって拡径する傾斜状をなしている。また、フランジ11b,12aにおいて、テーパ部11d,12dの外周側には平坦部23が形成されている。平坦部23は、第1及び第2の管材11,12の軸線に対して垂直な平板状をなしている。フランジ11bの平坦部23とフランジ12aの平坦部23とは、互いに略平行となるように構成されるとともに、所定間隔だけ空けて互いに対向している。なお、フランジ11b,12a同士は、上記実施形態と同様に、図示しないボルト等によって電気的絶縁を確保しつつ互いに固定されている。   In the example shown in the figure, tapered portions 11d and 12d are formed at bent portions where the tubular portions (body portions) of the respective tubular members 11 and 12 transition to the flanges 11b and 12a. Each of the tapered portions 11d and 12d is formed over the entire circumference of the inner peripheral edge portion of the flanges 11b and 12a, and has an inclined shape in which the diameter is expanded outward in the axial direction. In the flanges 11b and 12a, flat portions 23 are formed on the outer peripheral side of the tapered portions 11d and 12d. The flat portion 23 has a flat plate shape perpendicular to the axes of the first and second pipes 11 and 12. The flat portion 23 of the flange 11b and the flat portion 23 of the flange 12a are configured to be substantially parallel to each other, and are opposed to each other at a predetermined interval. The flanges 11b and 12a are fixed to each other while securing electrical insulation by bolts or the like (not shown) as in the above embodiment.

このような構成では、各管材11,12のフランジ11b,12aが互いに対向する組み付け状態において、フランジ11b,12aの各テーパ部11d,12dの対向間隔が外周側に向かって狭くなるように構成されている。つまり、各テーパ部11d,12dの対向間隔は内周側で広くなっているため、流路Fを流れる溶融ガラスが各テーパ部11d,12dの間に容易に流入可能となっている。即ち、同例では、各テーパ部11d,12dによって流路Fを流通する溶融ガラスの流入を促進するガラス流入促進部20が形成されている。   In such a configuration, in the assembled state in which the flanges 11b and 12a of the respective pipe members 11 and 12 face each other, the opposing distance between the tapered portions 11d and 12d of the flanges 11b and 12a is narrowed toward the outer peripheral side. ing. That is, since the opposing space | interval of each taper part 11d, 12d is wide in the inner peripheral side, the molten glass which flows through the flow path F can be easily flowed in between each taper part 11d, 12d. That is, in the same example, the glass inflow promotion part 20 which promotes inflow of the molten glass which distribute | circulates the flow path F by each taper part 11d and 12d is formed.

上記のように構成された溶融ガラス移送装置10では、第1及び第2の管材11,12にて形成される流路Fに溶融ガラスを流通させると、その溶融ガラスがフランジ11b,12aの各テーパ部11d,12dの間(即ち、ガラス流入促進部20)に流入する。各テーパ部11d,12dの間に流入した溶融ガラスは、外周側に向かうにつれて冷却され、各テーパ部11d,12dの間で固化されてガラス栓21となる。なお、各テーパ部11d,12dの間に流入した溶融ガラスは、各テーパ部11d,12dの対向間隔が外周側ほど狭くなっていることで流入抵抗が増加することから、フランジ11b,12aの間においてテーパ部11d,12d(ガラス流入促進部20)よりも外周側に侵入しにくくなっている。また、各テーパ部11d,12dは、フランジ11b,12aの内周縁部の全周に亘って形成されているため、その各テーパ部11d,12d内で固化されたガラス栓21も周方向の全体に亘って形成される。   In the molten glass transfer device 10 configured as described above, when the molten glass is caused to flow through the flow path F formed by the first and second pipe members 11 and 12, the molten glass becomes each of the flanges 11b and 12a. It flows in between the taper parts 11 d and 12 d (that is, the glass inflow promoting part 20). The molten glass flowing into the space between the tapered portions 11 d and 12 d is cooled toward the outer peripheral side, and solidified between the tapered portions 11 d and 12 d to form a glass plug 21. Between the flanges 11b and 12a, the molten glass flowing into the space between the tapered portions 11d and 12d has an increase in inflow resistance because the opposing distance between the tapered portions 11d and 12d becomes narrower toward the outer periphery. In the case of the first embodiment, it is more difficult to intrude into the outer peripheral side than the tapered portions 11d and 12d (glass inflow promoting portion 20). Further, since each taper portion 11d, 12d is formed over the entire circumference of the inner peripheral edge portion of the flanges 11b, 12a, the glass plug 21 solidified in each of the taper portions 11d, 12d is also the entire circumferential direction. Are formed over the

このような構成によれば、フランジ11b,12aの各テーパ部11d,12dの間(ガラス流入促進部20)に、各管材11,12の間の電気的絶縁を図る絶縁層としてのガラス栓21が形成されるため、各管材11,12に流す電流を個別に制御することが可能となり、その結果、管材11,12毎の温度調節が可能となる。また、フランジ11b,12aの形状による対応で溶融ガラスをフランジ11b,12a間に引き込み、そのフランジ11b,12a間で固化したガラス栓21が各管材11,12間の絶縁層を構成するため、各管材11,12間を絶縁するための特段の部材を必要とせず、製造コストの削減に貢献できる。また、フランジ11b,12a間がガラス栓21にて閉塞されるため、流路Fを流れる溶融ガラスがフランジ11b,12a間から外部に漏れ出すことを抑制することができる。また、ガラス流入促進部20が、管材11,12の筒部からフランジ11b,12aへと移行する屈曲部位に形成されたテーパ部11d,12dを含むため、管材11,12内を流れる溶融ガラスをガラス流入促進部20に好適に流入させることが可能となっている。   According to such a configuration, the glass plug 21 as an insulating layer for achieving electrical insulation between the tubular members 11 and 12 between the tapered portions 11d and 12d of the flanges 11b and 12a (glass inflow promoting portion 20) As a result, it becomes possible to control the current supplied to each of the tubes 11 and 12 individually, and as a result, it is possible to adjust the temperature of each tube 11 and 12. In addition, the molten glass is drawn between the flanges 11b and 12a by the shape of the flanges 11b and 12a, and the glass plug 21 solidified between the flanges 11b and 12a constitutes the insulating layer between the tubes 11 and 12, It is possible to contribute to the reduction of the manufacturing cost without requiring a special member for insulating between the pipe members 11 and 12. Further, since the space between the flanges 11 b and 12 a is closed by the glass plug 21, it is possible to suppress the molten glass flowing in the flow path F from leaking between the flanges 11 b and 12 a to the outside. Further, since the glass inflow promoting portion 20 includes the tapered portions 11d and 12d formed at the bending portions moving from the cylindrical portions of the tubes 11 and 12 to the flanges 11b and 12a, the molten glass flowing in the tubes 11 and 12 is It is possible to suitably flow the glass inflow promoting portion 20.

なお、図5の例において、図6に示すように、フランジ11b,12aの各平坦部23の間に上記実施形態の絶縁層13(絶縁性を有する材質からなる繊維集合体)を介装してもよい。これにより、フランジ11b,12a間の絶縁性をより確実に確保することができる。また、繊維集合体に溶融ガラスが染み込んで成る複合材によって絶縁層を構成してもよい。   In the example of FIG. 5, as shown in FIG. 6, the insulating layer 13 (fiber assembly made of a material having insulation properties) of the above embodiment is interposed between the flat portions 23 of the flanges 11b and 12a. May be Thereby, the insulation between the flanges 11b and 12a can be ensured more reliably. In addition, the insulating layer may be made of a composite material in which molten glass penetrates into the fiber assembly.

また、図5の例では、フランジ11b,12aに形成したテーパ部11d,12dによってガラス流入促進部20が形成されたが、これ以外に例えば、図7に示すような、フランジ11b,12aにそれぞれ形成した段差部11e,12eによってガラス流入促進部20を形成してもよい。フランジ11b,12aは、段差部11e,12e間においては平坦部23よりも対向間隔が広く構成されている。このような構成によっても、上記の図5の例と同様の効果を得ることができる。また、この構成では、ガラス流入促進部20が、管材11,12の筒部からフランジ11b,12aへと移行する屈曲部位に形成された段差部11e,12eを含むため、管材11,12内を流れる溶融ガラスをガラス流入促進部20に好適に流入させることが可能となっている。   Further, in the example of FIG. 5, the glass inflow promoting portion 20 is formed by the tapered portions 11d and 12d formed on the flanges 11b and 12a, but other than this, for example, the flanges 11b and 12a as shown in FIG. You may form the glass inflow promotion part 20 by the level | step-difference parts 11e and 12e which were formed. The flanges 11 b and 12 a are configured to have a wider facing distance than the flat portion 23 between the step portions 11 e and 12 e. With such a configuration, the same effect as the example of FIG. 5 can be obtained. Further, in this configuration, since the glass inflow promoting portion 20 includes the step portions 11e and 12e formed at the bent portions where the cylindrical portions of the pipes 11 and 12 shift to the flanges 11b and 12a, It is possible to suitably flow the flowing molten glass into the glass inflow promoting unit 20.

また、図5と図7を組合せて、段差部の一部のみをテーパ状(傾斜面)とした形状でガラス流入促進部20を構成してもよい。
また、図5の例では、フランジ11b,12aの両方にテーパ部11d,12dをそれぞれ形成したが、これに特に限定されるものではなく、フランジ11b,12aのいずれか一方のみにテーパ部を形成し、他方のフランジ11b,12aを上記実施形態のようなテーパ部の無い平板状としてもよい。また、図5の例では、フランジ11b,12aは、テーパ部11d,12dの外周側に平坦部23を有しているが、この平坦部23を省略した形状としてもよい。
Moreover, you may comprise the glass inflow promotion part 20 in the shape which made one part of the level | step-difference part taper-shaped (inclined surface) combining FIG. 5 and FIG.
Moreover, although the taper parts 11d and 12d were respectively formed in both flanges 11b and 12a in the example of FIG. 5, it is not specifically limited to this, A taper part is formed only in any one of flanges 11b and 12a Alternatively, the other flanges 11b and 12a may be in the form of a flat plate without a tapered portion as in the above embodiment. Moreover, in the example of FIG. 5, although the flanges 11b and 12a have the flat part 23 in the outer peripheral side of taper part 11d, 12d, it is good also as a shape which abbreviate | omitted this flat part 23. FIG.

・上記実施形態の加熱工程S1では、電流を流すことで各管材11,12を加熱するが、それ以外の手段によって各管材11,12を加熱してもよい。
・上記実施形態では、特に言及していないが、第1及び第2の管材11,12を同軸上に配置してもよく、また、それ以外に、第1の管材11に対して第2の管材12を傾斜させて配置してもよい。なお、第1の管材11に対して第2の管材12を傾斜させて配置する場合においても、フランジ11b,12a同士を略平行に構成することが好ましい。
-In heating process S1 of the said embodiment, although each pipe material 11 and 12 is heated by sending an electric current, you may heat each pipe material 11 and 12 by other means.
In the above embodiment, although not particularly mentioned, the first and second pipes 11 and 12 may be disposed coaxially, and in addition to that, the second pipe 11 and the second pipe 11 may be disposed. The pipe material 12 may be disposed at an angle. Even when the second pipe member 12 is arranged to be inclined with respect to the first pipe member 11, it is preferable to configure the flanges 11b and 12a substantially in parallel with each other.

・溶融ガラス移送装置10の流路Fを構成する管材11,12の個数は上記実施形態の2つに限定されるものではなく、構成に応じて3つ以上に変更してもよい。
・上記実施形態では特に言及していないが、管材11,12間だけでなく、管材11,12と接続される他の設備との間にさらに絶縁層13を設けてもよい。例えば、ガラス溶融炉Mと管材11との間にさらに絶縁層13を設けてもよいし、管材12と下流設備(図示せず)との間にさらに絶縁層13を設けてもよい。
The number of the pipes 11 and 12 constituting the flow path F of the molten glass transfer device 10 is not limited to two in the above embodiment, and may be changed to three or more depending on the configuration.
Although not particularly mentioned in the above embodiment, the insulating layer 13 may be further provided not only between the pipes 11 and 12 but also between other pipes connected with the pipes 11 and 12. For example, the insulating layer 13 may be further provided between the glass melting furnace M and the pipe member 11, and the insulating layer 13 may be further provided between the pipe member 12 and the downstream equipment (not shown).

・上記実施形態のガラス物品の製造工程においてガラス溶融炉Mから成形部までに任意の工程を設けてもよい。例えば、溶融ガラスを加熱して脱泡する清澄部や、溶融ガラスを撹拌する撹拌部等の工程をさらに設け、これらの工程間において溶融ガラス移送装置10を任意に配置可能である。また、上記実施形態の溶融ガラス移送装置10は、ガラス物品の製造装置におけるガラス溶融炉Mと成形部との間以外の箇所に用いるガラス移送装置に適用してもよい。例えば、複数の溶融炉を備えるガラス物品の製造装置において、各溶融炉間で溶融ガラスを移送する装置として、本発明の溶融ガラス移送装置を用いてもよい。   -In the manufacturing process of the glass article of the said embodiment, you may provide arbitrary processes from the glass melting furnace M to a shaping | molding part. For example, it is possible to further provide processes such as a clear section for degassing the molten glass by heating it and a stirring section for stirring the molten glass, and the molten glass transfer device 10 can be optionally disposed between these processes. Moreover, the molten glass transfer apparatus 10 of the said embodiment may be applied to the glass transfer apparatus used in locations other than between the glass melting furnace M and shaping | molding part in the manufacturing apparatus of a glass article. For example, in a glass article manufacturing apparatus provided with a plurality of melting furnaces, the molten glass transfer apparatus of the present invention may be used as an apparatus for transferring molten glass between the melting furnaces.

次に、上記実施形態及び別例から把握できる技術的思想を以下に追記する。
(イ)前記ガラス流入促進部は、互いに対向する前記各管材の前記フランジにおいて対向間隔が外周側ほど狭まるように形成されたテーパ部にて構成されていることを特徴とする請求項3に記載の溶融ガラス移送装置。
Next, technical ideas that can be grasped from the above embodiment and another example will be additionally described below.
(A) The glass inflow promoting portion is formed by a tapered portion formed in the flanges of the mutually opposing pipe members so that the opposing distance is narrowed toward the outer peripheral side. Glass transfer equipment.

この構成によれば、ガラス流入促進部を構成するテーパ部では、フランジの対向間隔が外周側ほど狭いことから溶融ガラスの流入抵抗が外周側ほど増加する。このため、フランジの間においてガラス流入促進部よりも外周側に溶融ガラスを侵入しにくくすることが可能となる。   According to this configuration, in the tapered portion that constitutes the glass inflow promoting portion, the inflow resistance of the molten glass is increased toward the outer peripheral side because the facing distance of the flanges is narrower toward the outer peripheral side. For this reason, it becomes possible to make it difficult to infiltrate the molten glass to the outer peripheral side than the glass inflow promoting portion between the flanges.

(ロ)請求項2の溶融ガラス移送装置を製造する製造方法であって、
前記各管材を加熱する加熱工程と、
前記加熱工程の後、前記各管材の前記フランジの間に前記絶縁層を挟み込む挟み込み工程と、を備えたことを特徴とする溶融ガラス移送装置の製造方法。
(B) A manufacturing method for manufacturing the molten glass transfer device according to claim 2;
A heating step of heating each of the pipes;
After the heating step, the sandwiching step of sandwiching the insulating layer between the flanges of the respective tube members.

この構成によれば、各管材の線膨張を考慮して隙間を設けつつ各管材を配置するといった処置が不要となり、各管材及び絶縁層の組み付けが容易となる。   According to this configuration, it is not necessary to dispose the pipes while providing gaps in consideration of the linear expansion of the pipes, and the assembly of the pipes and the insulating layer becomes easy.

10…溶融ガラス移送装置、11…第1の管材、12…第2の管材、11a,11b,12a,12b…フランジ、11d,12d…テーパ部、11e,12e…段差部、13…絶縁層、20…ガラス流入促進部、21…絶縁層としてのガラス栓、F…流路。   DESCRIPTION OF SYMBOLS 10 ... Molten glass transfer apparatus, 11 ... 1st pipe material, 12 ... 2nd pipe material, 11a, 11b, 12a, 12b ... flange, 11d, 12d ... taper part, 11e, 12e ... level | step-difference part, 13 ... insulating layer, 20: Glass inflow promoting portion, 21: Glass stopper as an insulating layer, F: Flow path.

Claims (5)

軸方向端部にフランジを有する少なくとも2つの白金製又は白金合金製の管材を備え、
前記フランジ同士を向き合わせて並設された前記各管材にて溶融ガラスを流通させる流路が構成されており、
前記各管材の前記フランジ同士の間には、前記各管材の間の電気的絶縁を図るための絶縁層が設けられ
前記絶縁層として、絶縁性を有する材質からなる繊維集合体を備えていることを特徴とする溶融ガラス移送装置。
At least two platinum or platinum alloy tubes with flanges at their axial ends,
A flow path for circulating the molten glass is constituted by each of the pipes arranged in parallel with the flanges facing each other,
Between the flanges of the pipes, an insulating layer is provided to provide electrical insulation between the pipes ;
A molten glass transfer apparatus comprising: a fiber assembly made of an insulating material as the insulating layer .
前記繊維集合体は、繊維状耐火物を編み込んだクロス状部材、繊維状耐火物を抄造したペーパー状部材、及び繊維状耐火物を圧縮成形したブランケット状部材のいずれかよりなることを特徴とする請求項に記載の溶融ガラス移送装置。 The fiber assembly is characterized in that it comprises any one of a cloth-like member obtained by knitting a fibrous refractory, a paper-like member obtained by forming the fibrous refractory, and a blanket-like member obtained by compression molding of the fibrous refractory. The molten glass transfer apparatus according to claim 1 . 前記管材の前記フランジの間には、前記流路を流通する溶融ガラスの流入を促進するガラス流入促進部が形成され、
前記絶縁層として、前記ガラス流入促進部に流入して冷却固化されたガラスを備えることを特徴とする請求項1又は2に記載の溶融ガラス移送装置。
Between the flanges of the pipe material, a glass inflow promoting portion is formed which promotes the inflow of molten glass flowing through the flow path,
Wherein the insulating layer, the molten glass transport apparatus according to claim 1 or 2, characterized in that it comprises a glass that has been cooled and solidified flows into the glass flowing promoting portion.
前記ガラス流入促進部が、前記管材の筒部から前記フランジへと移行する屈曲部位に形成されたテーパ部を含むことを特徴とする請求項に記載の溶融ガラス移送装置。 The molten glass transfer apparatus according to claim 3 , wherein the glass inflow promoting portion includes a tapered portion formed at a bent portion where the tubular portion of the pipe member shifts to the flange. 前記ガラス流入促進部が、前記管材の筒部から前記フランジへと移行する屈曲部位に形成された段差部を含むことを特徴とする請求項に記載の溶融ガラス移送装置。 The molten glass transfer apparatus according to claim 3 , wherein the glass inflow promoting portion includes a step portion formed at a bent portion where the tubular portion of the pipe member is shifted to the flange.
JP2015100078A 2015-05-15 2015-05-15 Molten glass transfer device Active JP6520375B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015100078A JP6520375B2 (en) 2015-05-15 2015-05-15 Molten glass transfer device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015100078A JP6520375B2 (en) 2015-05-15 2015-05-15 Molten glass transfer device

Publications (2)

Publication Number Publication Date
JP2016216275A JP2016216275A (en) 2016-12-22
JP6520375B2 true JP6520375B2 (en) 2019-05-29

Family

ID=57579770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015100078A Active JP6520375B2 (en) 2015-05-15 2015-05-15 Molten glass transfer device

Country Status (1)

Country Link
JP (1) JP6520375B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7319316B2 (en) * 2021-03-29 2023-08-01 AvanStrate株式会社 Glass substrate equipment
JP2023084387A (en) * 2021-12-07 2023-06-19 日本電気硝子株式会社 Glass transfer device, device for manufacturing glass article and method for manufacturing glass article

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4726831A (en) * 1987-01-12 1988-02-23 Corning Glass Works Molten glass delivery and conditioning system
JP2006278094A (en) * 2005-03-29 2006-10-12 Sumitomo Electric Ind Ltd Heat resistant insulating cover material
US8695378B2 (en) * 2008-11-26 2014-04-15 Corning Incorporated Apparatus for making glass and methods
JP2013199385A (en) * 2010-07-21 2013-10-03 Asahi Glass Co Ltd Molten glass conveying device, and method of producing glass using the same

Also Published As

Publication number Publication date
JP2016216275A (en) 2016-12-22

Similar Documents

Publication Publication Date Title
TW565877B (en) Electric heater for heat-treatment furnace
JP6520375B2 (en) Molten glass transfer device
US8833401B2 (en) Fluid transfer assembly
JP2013512171A (en) Method and apparatus for producing a glass sheet having a controlled thickness
JP5310832B2 (en) Fluid heating device
CN106813393A (en) A kind of heating means of high-temperature roller and realize the high-temperature roller of the heating means
JP6596782B1 (en) Welding equipment
CN102744879B (en) Method and device for welding thin-wall micropipes of fluoroplastic heat exchanger
CN102389906A (en) Prestressed wire winding recipient
JP2018094917A (en) Molding device for executing hot-molding method and cold-molding method
CN102225463A (en) Honeycomb type heat exchanger casting and forming method
CN105813771B (en) Rotary press modelling device
CN208604006U (en) A kind of glass furnace heating electrode connecting structure
CN209971487U (en) Fuse-element pipeline heating device
JP2013251086A (en) Support member, heating plate support device, and heating device
CN102489908A (en) Prestressed elongation heating device for rapid cooling heat exchanger
WO2024048298A1 (en) Device and method for producing glass article
CN107130091A (en) The heating arrangement of annealing furnace
US20060237180A1 (en) Air heat exchanger
CN104455435B (en) High-temperature seal assembly
CN108448207A (en) A kind of heat-exchanging component and battery modules
CN106288821B (en) A kind of bionics core heating element structure and its installation method
KR20230090260A (en) Bellows unit with cooling jacket
CN203680781U (en) Heat pipe fusion equipment for thin film production
CN202400954U (en) Energy-saving heating furnace for double-spiral glass lamp tube

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190415

R150 Certificate of patent or registration of utility model

Ref document number: 6520375

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150