JP6518094B2 - Glass fiber sheet for sealed lead-acid battery separator and sealed lead-acid battery separator - Google Patents

Glass fiber sheet for sealed lead-acid battery separator and sealed lead-acid battery separator Download PDF

Info

Publication number
JP6518094B2
JP6518094B2 JP2015052430A JP2015052430A JP6518094B2 JP 6518094 B2 JP6518094 B2 JP 6518094B2 JP 2015052430 A JP2015052430 A JP 2015052430A JP 2015052430 A JP2015052430 A JP 2015052430A JP 6518094 B2 JP6518094 B2 JP 6518094B2
Authority
JP
Japan
Prior art keywords
fiber
mass
glass
diameter
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015052430A
Other languages
Japanese (ja)
Other versions
JP2016173901A (en
Inventor
智彦 楚山
智彦 楚山
純司 根本
純司 根本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokuetsu Corp
Original Assignee
Hokuetsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokuetsu Corp filed Critical Hokuetsu Corp
Priority to JP2015052430A priority Critical patent/JP6518094B2/en
Publication of JP2016173901A publication Critical patent/JP2016173901A/en
Application granted granted Critical
Publication of JP6518094B2 publication Critical patent/JP6518094B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Separators (AREA)

Description

本発明は密閉型鉛蓄電池セパレータ用ガラス繊維シート及び密閉型鉛蓄電池セパレータに関するものである。   The present invention relates to a glass fiber sheet for a sealed lead-acid battery separator and a sealed lead-acid battery separator.

密閉型鉛蓄電池は、正極板及び負極板をガラス繊維製のシートを介して積層して極板群を構成し、該極板群を電槽に挿入して組み立てるのが一般的である。この密閉式鉛蓄電池用ガラス繊維シートは、正極板と負極板との間を短絡させないこと、鉛蓄電池の電解液である硫酸をシートの空隙に保持すること、電池反応が起こる際に、正極板と負極板との間のイオン伝導を、保持した電解液を通じてスムースに行うことが重要な特性である。   In a sealed lead-acid battery, it is general to assemble an electrode plate group by laminating a positive electrode plate and a negative electrode plate through a sheet made of glass fiber, and inserting the electrode plate group into a battery case. The glass fiber sheet for a sealed lead storage battery does not short circuit between the positive electrode plate and the negative electrode plate, holds sulfuric acid which is an electrolyte solution of the lead storage battery in a gap of the sheet, and causes a battery reaction. It is an important characteristic to smoothly conduct ion conduction between the electrode and the negative electrode plate through the held electrolyte.

密閉型鉛蓄電池セパレータ用ガラス繊維シートは、基本的にガラス繊維を主体に構成されているが、ガラス繊維自体に接着性がなく繊維が絡みあっているだけなので、ガラス繊維シート自体の強度が低い。このため、シートを粗雑に扱うとシートの一部が破損したり、穴になってしまう場合がある。破損したシートや穴が開いたシートは正極板と負極板とが短絡するため、使用できなくなってしまう。   The glass fiber sheet for sealed lead-acid battery separator is basically composed mainly of glass fiber, but the glass fiber sheet itself is not adhesive and the fibers are only entangled, so the strength of the glass fiber sheet itself is low. . For this reason, if the sheet is treated roughly, a part of the sheet may be damaged or may become a hole. A damaged sheet or a sheet with an open hole can not be used because the positive electrode plate and the negative electrode plate short-circuit.

このため、ガラス繊維シートの強度を向上させる方策として、ガラス繊維、吸水性を有する合成繊維及びこれらの繊維を接着するアクリル系液体バインダーを含む密閉式鉛蓄電池用セパレータが提案されている(例えば、特許文献1を参照。)。   For this reason, as a measure for improving the strength of the glass fiber sheet, a separator for a lead-acid battery including a glass fiber, a synthetic fiber having water absorbency, and an acrylic liquid binder for bonding these fibers has been proposed (for example, See Patent Document 1).

また、平均繊維径1μm以下のガラス繊維70〜95重量%と、有機繊維5〜30重量%とを混抄し、前記有機繊維として少なくともモノフィラメント状合成繊維を5重量%以上混抄した密閉形鉛蓄電池用セパレータが提案されている(例えば、特許文献2を参照)。   In addition, 70 to 95 wt% of glass fibers having an average fiber diameter of 1 μm or less and 5 to 30 wt% of organic fibers are mixed, and at least 5 wt% of monofilament synthetic fibers are mixed as organic fibers. A separator has been proposed (see, for example, Patent Document 2).

また、芯鞘構造の熱融着繊維が2〜50質量%、無機粉体が0〜35質量%、ガラス繊維が15〜98質量%で構成されており、密度が0.15〜0.25g/cmである密閉式鉛蓄電池用セパレータが提案されている(例えば、特許文献3を参照。)。 Moreover, the heat-fusion fiber of core-sheath structure is comprised by 2 to 50 mass%, 0 to 35 mass% of inorganic powder, and 15 to 98 mass% of glass fiber, and the density is 0.15 to 0.25 g There has been proposed a separator for a sealed lead storage battery, which has a density of 1 / cm 3 (see, for example, Patent Document 3).

特開昭62−252065号公報Japanese Patent Application Laid-Open No. 62-252065 特開平11−16560号公報Japanese Patent Application Laid-Open No. 11-16560 特開2002−8621号公報JP, 2002-8621, A

しかし、特許文献1に開示された密閉式鉛蓄電池用セパレータでは、吸水性を有する合成繊維自体に接着力がなく、また、アクリル系液体バインダーの親水性が低いことから、電解液の吸収性ならびに保液性が劣るという問題があった。また、特許文献2の場合には、モノフィラメント状合成繊維を配合するため、圧縮破断強度の向上には効果があるももの、モノフィラメント状合成繊維自体に接着力がないため、シート強度全体の強度向上には効果が低い。また、特許文献3の場合には、シート強度物性が向上するものの、熱融着繊維を配合するとガラス繊維シートの電解液通液性のばらつきが大きくなる問題がある。すなわち、強度物性を向上させようとして熱溶融型バインダー繊維を配合するとガラス繊維シート中における熱溶融型バインダー繊維の分散状態とガラス繊維の分散状態が異なるため、繊維が構成するネットワーク構造に歪が生じて、空隙間のばらつきが大きくなり、電解液の通液性にばらつきが生じてしまう。結果として、電池特性に悪影響を及ぼしてしまう問題があった。   However, in the separator for a sealed lead storage battery disclosed in Patent Document 1, the synthetic fiber having water absorbability itself has no adhesive force, and since the hydrophilicity of the acrylic liquid binder is low, the absorbability of the electrolytic solution and There is a problem that the liquid retention is inferior. Further, in the case of Patent Document 2, since monofilamentous synthetic fibers are blended, there is an effect to improve the compression rupture strength, but since the monofilamentary synthetic fibers themselves have no adhesive force, the strength improvement of the entire sheet strength is achieved. The effect is low. Further, in the case of Patent Document 3, although the sheet strength physical properties are improved, there is a problem that the dispersion of the electrolyte passing property of the glass fiber sheet becomes large when the heat fusible fiber is blended. That is, when the heat melting binder fiber is blended to improve the strength property, the dispersion state of the heat melting binder fiber and the dispersion state of the glass fiber in the glass fiber sheet are different, and thus the network structure formed by the fiber is distorted. As a result, the variation among the gaps becomes large, and variation occurs in the liquid permeability of the electrolytic solution. As a result, there is a problem that the battery characteristics are adversely affected.

本発明は、このような問題に鑑みてなされたものであり、その目的とするところは、従来のガラス繊維を主体とするシートに適度な強度物性を付与させながら、なおかつ電解液通液性のばらつきが少ない鉛蓄電池セパレータ用ガラス繊維シートを提供することにある。   The present invention has been made in view of such problems, and the object of the present invention is to impart an appropriate strength physical property to a conventional glass fiber-based sheet, and yet to pass electrolyte. An object of the present invention is to provide a glass fiber sheet for a lead-acid battery separator with less variation.

上記課題を解決するために、本発明に係る密閉型鉛蓄電池セパレータ用ガラス繊維シー
トは、平均繊維径3μm以下のガラスウールと、繊維径14μm以下、繊維長2〜10mmの熱溶融型バインダー繊維とからなり、前記熱溶融型バインダー繊維の質量が全体質量の4%以上12%以下であることを特徴とする。
In order to solve the above-mentioned subject, the glass fiber sheet for sealed type lead acid battery separators concerning the present invention is glass wool with an average fiber diameter of 3 micrometers or less, heat fusion type binder fiber of 14 micrometers or less of fiber diameters, and 2-10 mm of fiber length. It consists, wherein the mass of the pre-Symbol hot melt binder fibers is 12% or less than 4% of the total mass.

また、本発明に係る密閉型鉛蓄電池セパレータ用ガラス繊維シートは平均繊維径3μm以下のガラスウールと、繊維径14μm以下、繊維長2〜10mmの熱溶融型バインダー繊維と、繊維径5〜15μmのガラスチョップド繊維とからなり前記ガラスウールと前記熱溶融型バインダー繊維との質量比が96/4〜88/12であり、前記熱溶融型バインダー繊維の質量が全体質量の4%以上12%以下であり、かつ、前記ガラスチョップド繊維の質量が全体質量の0%を超え20%以下であることを特徴とする。ガラスウールの一部をガラスチョップド繊維に置き換えて引張強さを高めることができる。 Further, sealed lead-acid battery fiberglass sheet separator according to the present invention, the average fiber diameter 3μm or less of the glass wool, fiber diameter 14μm or less, and hot melt binder fibers having a fiber length of 2 to 10 mm, fiber diameter 5 consists of a 15μm glass chopped fibers of the glass wool and the mass ratio of 96 / 4-88 / 12 of the hot melt binder fibers, the mass of the hot melt binder fiber than 4% of the total mass 12 % or less, and the and wherein the weight of the glass chopped fiber is 20% or less than 0% of the total mass. A portion of the glass wool can be replaced with glass chopped fibers to increase tensile strength.

また、本発明に係る密閉型鉛蓄電池セパレータ用ガラス繊維シートでは、前記熱溶融型バインダー繊維を5質量%以上9質量%以下含有することが好ましい。電解液通液性のばらつきを特に少なくすることができる。   Further, in the glass fiber sheet for a sealed lead-acid battery according to the present invention, it is preferable to contain 5% by mass or more and 9% by mass or less of the heat melting type binder fiber. It is possible to particularly reduce the variation in electrolytic solution permeability.

また、本発明に係る密閉型鉛蓄電池セパレータ用ガラス繊維シートでは、前記熱溶融型熱溶融型バインダー繊維が鞘芯構造を有し、鞘部が変成ポリエステル樹脂であり、芯部がポリエステル樹脂であり、繊維径が11μm以下であることが好ましい。電解液通液性のばらつきを特に少なくすることができる。   Further, in the glass fiber sheet for sealed lead-acid battery according to the present invention, the heat melting type heat melting type binder fiber has a sheath-core structure, the sheath part is a modified polyester resin, and the core part is a polyester resin The fiber diameter is preferably 11 μm or less. It is possible to particularly reduce the variation in electrolytic solution permeability.

また、本発明に係る密閉型鉛蓄電池セパレータ用ガラス繊維シートでは、バインダー液
として濾材に付与される合成樹脂系バインダーを含有していないことが好ましい。電解液
の吸収性ならびに保液性が劣るという問題が生じにくい。本発明に係る密閉型鉛電池セパレータ用ガラス繊維シートでは、数1により算出される通気度ばらつきが、高くても6.1%であることが好ましい。
[数1]
通気度ばらつき(%)=〔(σn−1)/X〕×100
〔式中、σn−1は、JIS P 8117:2009「紙及び板紙‐透気度及び透気抵抗度試験方法(中間領域)‐ガーレー法」に準ずるガーレー法にて、測定端直径10mmのガーレー通気度測定器を用いて、前記密閉型鉛電池セパレータ用ガラス繊維シート内の1cm以上相互に離れた任意の箇所10点を300ml通気させた際にかかる時間(秒)の母集団標準偏差を示し、Xは、前記時間(秒)の平均値を示す。〕
Moreover, in the glass fiber sheet for sealed type lead acid battery separators which concerns on this invention, it is preferable not to contain the synthetic resin type binder provided to a filter medium as a binder liquid. It is hard to produce the problem that the absorptivity and electrolyte retention property of electrolyte solution are inferior. In the glass fiber sheet for a sealed lead battery separator according to the present invention, it is preferable that the variation in air permeability calculated by Equation 1 is at most 6.1%.
[Equation 1]
Permeability variation (%) = [(σ n -1) / X] × 100
[Wherein, σn-1 is a Gurley having a measuring end diameter of 10 mm according to the Gurley according to JIS P 8117: 2009 "Paper and paperboard-air permeability and air resistance test method (intermediate range)-Gurley method"] Indicates the population standard deviation of the time (seconds) taken when 300 ml of 10 arbitrary points apart from each other within 1 cm of each other in the glass fiber sheet for a sealed lead battery separator are ventilated using an air permeability meter. , X represents an average value of the time (seconds). ]

本発明に係る密閉型鉛蓄電池セパレータは、本発明に係る密閉型鉛電池セパレータ用ガラス繊維シートを用いたことを特徴とする。   The sealed lead-acid battery separator according to the present invention is characterized by using the glass fiber sheet for a sealed lead-acid battery separator according to the present invention.

本発明により、従来のガラス繊維を主体とするシートに適度な強度物性を付与させながら、なおかつ電解液通液性のばらつきが少ない鉛蓄電池セパレータ用ガラス繊維シートを得ることができる。   According to the present invention, it is possible to obtain a glass fiber sheet for a lead-acid battery separator with less variation in liquid electrolyte permeability while imparting appropriate strength physical properties to a conventional sheet mainly made of glass fiber.

次に本発明について実施形態を示して詳細に説明するが、本発明はこれらの記載に限定して解釈されない。本発明の効果を奏する限り、実施形態は種々の変形をしてもよい。   EXAMPLES The present invention will next be described in detail by way of embodiments, which should not be construed as limiting the present invention. The embodiment may be variously modified as long as the effects of the present invention are exhibited.

本実施形態で使用されるガラスウールは、耐酸性を有するホウケイ酸ガラスで構成されている原綿状のもので、ガラス短繊維とも呼称されている。その製造方法としては火焔法や遠心法などがある。   The glass wool used in the present embodiment is a raw cotton-like one made of borosilicate glass having acid resistance, and is also referred to as a short glass fiber. As the manufacturing method, there are a flame method and a centrifugal method.

本実施形態において、ガラスウールはその平均繊維径が過度に大きいとガラス繊維シートの最大細孔径が大きくなり、毛細管現象による電解液保持力が低下するおそれがあるので、平均繊維径を3μm以下とすることが好ましく、より好ましくは2μm以下とする。また、逆にガラスウールの繊維径が小さ過ぎることはコスト高となってしまうので、0.5μm以上とするのが好適である。すなわち、本実施形態で使用されるガラスウールの平均繊維径は、3μm以下とすることが好ましく、特に0.5〜2μmであることが望ましい。   In the present embodiment, when the average fiber diameter of the glass wool is excessively large, the maximum pore diameter of the glass fiber sheet may be increased, and the electrolytic solution holding power due to the capillary phenomenon may be reduced. Preferably, and more preferably 2 μm or less. On the contrary, if the fiber diameter of the glass wool is too small, the cost becomes expensive. Therefore, it is preferable to set the diameter to 0.5 μm or more. That is, the average fiber diameter of the glass wool used in the present embodiment is preferably 3 μm or less, and particularly preferably 0.5 to 2 μm.

本実施形態において、ガラスウールは平均繊維径が3μm以下とすることが好ましく、3μm以下のガラスウールのみでなく、トータルの平均繊維径が3μm以下であるならば、繊維径が3μmを超え30μm以下のガラスウールを使用しても構わない。このようなガラスウールを配合することによってガラスウールの低コスト化を図ることができるが、繊維径が3μmを超えるガラスウールの配合量が多くなるにつれガラス繊維シートの平均細孔径が大きくなり、毛細管現象による電解液保持力が低下しやすくなる。従って、繊維径が3μmを超えるガラスウールの配合量は、ガラスウールの全量を基準として20質量%以下とすることが好ましい。   In the present embodiment, the glass wool preferably has an average fiber diameter of 3 μm or less, and not only 3 μm or less glass wool, but if the total average fiber diameter is 3 μm or less, the fiber diameter exceeds 3 μm and 30 μm or less You may use the glass wool of Although the cost reduction of glass wool can be achieved by blending such glass wool, the average pore diameter of the glass fiber sheet becomes larger as the blending amount of glass wool having a fiber diameter exceeding 3 μm increases, and the capillary tube The electrolyte retention by the phenomenon is likely to be reduced. Therefore, it is preferable that the compounding quantity of the glass wool in which a fiber diameter exceeds 3 micrometers sets it as 20 mass% or less on the basis of whole quantity of glass wool.

本実施形態において、ガラスウールの繊維長は、繊維長と繊維径との比の分布{繊維長(μm)/繊維径(μm)}で500/1〜3000/1が好ましい。500/1より比が小さいとシートの空隙が小さくなり、電解液保持力が低下したり、シート自体の強度が低下したりする恐れがある。3000/1より比が大きいと、シート抄紙工程でガラスウールの分散性が悪くなり、シートが不均一になる恐れがある。   In the present embodiment, the fiber length of the glass wool is preferably 500/1 to 3000/1 as the distribution of the ratio of fiber length to fiber diameter {fiber length (μm) / fiber diameter (μm)}. When the ratio is smaller than 500/1, the space of the sheet becomes small, and there is a possibility that the electrolytic solution holding power may be lowered or the strength of the sheet itself may be lowered. When the ratio is larger than 3000/1, the dispersibility of the glass wool in the sheet paper making process is deteriorated, and the sheet may be nonuniform.

ガラスウールの配合量は68〜96質量%とする。78〜95質量%が好ましく、88〜91質量%がより好ましい。ガラスウールの配合量が68質量%未満となると、ガラス繊維シートの平均細孔径が非常に大きくなり、前記同様に電解液保持力が低下しやすくなるとともに正極、負極間が短絡しやすくなる問題がある。ガラスウールの配合量が96質量%を超えると、相対的に熱溶融型バインダー繊維の配合量が少なくなりすぎ、ガラス繊維シートの強度物性がほとんど向上せず、配合効果が得られない。   The compounding quantity of glass wool shall be 68-96 mass%. 78-95 mass% is preferable, and 88-91 mass% is more preferable. When the blending amount of glass wool is less than 68% by mass, the average pore diameter of the glass fiber sheet becomes very large, and in the same manner as described above, the electrolyte retention tends to be reduced and the positive electrode and the negative electrode are easily shorted. is there. If the content of the glass wool exceeds 96% by mass, the content of the heat melting binder fiber becomes relatively small relatively, the strength properties of the glass fiber sheet are hardly improved, and the composition effect can not be obtained.

本実施形態において使用される熱溶融型バインダー繊維は有機合成繊維であり、ガラス繊維シート製造工程中の熱乾燥工程において、有機合成繊維の融点以上の熱によって溶融して、ガラス繊維シートの繊維間を接着するものである。熱溶融型バインダー繊維としては、構成する合成樹脂全てが溶融するもの、2成分以上の合成樹脂で構成されており、その一部の成分のみ溶融するものがある。特に後者は、異なった合成樹脂が繊維断面から見て重なった構造のもの、繊維断面がオレンジ断面の様に互い違いに異なった合成樹脂となったもの、断面の内側と外側が異なった合成樹脂となったいわゆる芯鞘構造と呼ばれるものなどがある。本実施形態においては、芯鞘構造の熱溶融型バインダー繊維を使用することがより好ましい。   The heat melting type binder fiber used in the present embodiment is an organic synthetic fiber, and it is melted by heat of the melting point or more of the organic synthetic fiber in the heat drying step in the glass fiber sheet manufacturing process, Adhesive. As the heat melting type binder fiber, there are a type in which all constituting synthetic resins are melted and a type in which only a part of components are melted. In particular, the latter has a structure in which different synthetic resins overlap each other as viewed from the fiber cross section, one in which the fiber cross sections are alternately different synthetic resins as in an orange cross section, and another in which the inner and outer cross sections are different. There is a so-called core-sheath structure or the like. In the present embodiment, it is more preferable to use a core-sheath type hot-melt binder fiber.

熱溶融型バインダー繊維の合成樹脂成分としては、ポリエチレン樹脂、ポリプロピレン樹脂、ポリスチレン樹脂、ポリメチルメタクリレート樹脂、ポリアクリロニトリル樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ナイロン樹脂、ポリエステル樹脂、ポリフルオロエチレン樹脂などの合成樹脂であり、このうち熱溶融成分となるものは、ポリエチレン樹脂、ポリプロピレン樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリエステル樹脂である。このうち、ポリエステル樹脂は変性して融点を低減した変性ポリエステル樹脂がある。熱溶融型バインダー繊維は、ガラス繊維シート製造工程の熱乾燥工程に合ったものが適宜選択される。特に、本実施形態においては、熱溶融型バインダー繊維として、芯部がポリエステル樹脂で鞘部が変性ポリエステル樹脂の芯鞘構造、芯部がポリプロピレン樹脂で鞘部がポリエチレン樹脂の芯鞘構造、あるいは芯部がポリエステル樹脂で鞘部がポリエチレン樹脂の芯鞘構造、を有する熱溶融型バインダー繊維が好適に用いられる。   As a synthetic resin component of the heat melting type binder fiber, polyethylene resin, polypropylene resin, polystyrene resin, polymethyl methacrylate resin, polyacrylonitrile resin, polyvinyl chloride resin, polyvinylidene chloride resin, nylon resin, polyester resin, polyfluoroethylene resin And the like, and among them, those which become the heat melting component are polyethylene resin, polypropylene resin, polyvinyl chloride resin, polyvinylidene chloride resin, and polyester resin. Among these, there are modified polyester resins in which the polyester resin is modified to reduce the melting point. The heat melting type binder fiber is appropriately selected according to the heat drying process of the glass fiber sheet manufacturing process. In particular, in the present embodiment, as the heat melting type binder fiber, the core is a polyester resin, the sheath is a core-sheath structure of a modified polyester resin, the core is a polypropylene resin, and the sheath is a polyethylene resin A heat-melting binder fiber having a core-sheath structure in which the sheath part is a polyester resin and the sheath part is a polyethylene resin is preferably used.

本実施形態において、熱溶融型バインダー繊維の配合率は重要である。熱溶融型バインダー繊維の配合率は4〜12質量%であり、5〜9質量%がより好ましい。4質量%より少ないとガラス繊維シートの強度物性がほとんど向上せず、配合効果が得られず、12質量%より多いと強度物性がより高くなるが、電解液通液性のばらつきが大きくなってしまう。本実施形態の熱溶融型バインダー繊維を4〜12質量%の範囲で含有させることでガラス繊維シートに電解液通液性のばらつき低減効果と強度物性とを同時に付与することができる。   In the present embodiment, the blending ratio of the thermal melting binder fiber is important. The blending ratio of the hot-melt binder fiber is 4 to 12% by mass, and more preferably 5 to 9% by mass. When the content is less than 4% by mass, the strength properties of the glass fiber sheet are hardly improved, and the blending effect is not obtained. When the content is more than 12% by mass, the strength properties become higher, but the dispersion of the electrolyte passing property becomes large. I will. By containing the heat melting type binder fiber of the present embodiment in the range of 4 to 12% by mass, it is possible to simultaneously impart the dispersion reduction effect of electrolyte solution permeability and the strength property to the glass fiber sheet.

また、驚くべきことに、本実施形態の熱溶融型バインダー繊維の配合率ならば、ガラスウールのみのガラス繊維シートよりも電解液通液性のばらつきを低減できることがわかった。詳細な作用は不明であるが、この範囲の少量な配合率ならばガラス繊維シート中のガラスウールのネットワークを整合化させる効果があると見られる。熱溶融型バインダー繊維が12質量%より多い配合率になると、整合化効果よりも熱溶融型バインダー繊維の分散性が勝ってネットワークに歪が生じて電解液通液性のばらつきが大きくなってしまうと推測される。   In addition, it has been surprisingly found that the blending ratio of the hot-melt binder fiber of the present embodiment can reduce the variation in electrolyte solution permeability more than a glass fiber sheet made of only glass wool. Although the detailed action is unknown, it is considered that a small blending ratio in this range has the effect of aligning the glass wool network in the glass fiber sheet. When the content ratio of the heat melting binder fiber is more than 12% by mass, the dispersibility of the heat melting binder fiber is superior to that of the matching effect, distortion occurs in the network, and the variation in electrolyte solution permeability becomes large. It is guessed.

本発明における熱溶融型バインダー繊維の繊維径は重要である。繊維径は14μm以下とし、13μm以下であることが好ましく、11μm以下であることがさらに好ましい。繊維径を14μm以下とすることで、ガラス繊維シートの細孔径が小さくなり、毛細管現象による電解液保持力が高まった状態となりやすい。また、繊維径の下限は特に限定はされないが、2μmとすることが好ましく、より好ましくは5μmである。そして、熱溶融型バインダー繊維が、芯部がポリエステル樹脂で鞘部が変性ポリエステル樹脂の芯鞘構造を有する場合は繊維径11μm以下であることがより好ましく、10μmとすることがさらに好ましくい。繊維径の下限は特に限定はされないが、2μmとすることが好ましく、より好ましくは3μmである。また、熱溶融型バインダー繊維が、芯部がポリプロピレン樹脂で鞘部がポリエチレン樹脂の芯鞘構造を有する場合は繊維径11μm以下であることがより好ましく、10μmとすることがさらに好ましくい。繊維径の下限は特に限定はされないが、2μmとすることが好ましく、より好ましくは3μmである。また、熱溶融型バインダー繊維の繊維径が14μmより大きいと、例え配合率が本発明の範囲内となったとしてもガラス繊維シートの細孔径の低減効果が発揮できず、毛細管現象による電解液保持力が低下しやすくなる。熱溶融型バインダー繊維を2種類以上配合する場合には、どの熱溶融型バインダー繊維も繊維径は14μm以下とし、13μm以下であることが好ましく、11μm以下であることがさらに好ましい。   The fiber diameter of the heat melting binder fiber in the present invention is important. The fiber diameter is 14 μm or less, preferably 13 μm or less, and more preferably 11 μm or less. By setting the fiber diameter to 14 μm or less, the pore diameter of the glass fiber sheet becomes small, and the electrolytic solution retention by capillary phenomenon tends to be in a state of being enhanced. The lower limit of the fiber diameter is not particularly limited, but is preferably 2 μm, more preferably 5 μm. When the core part is a polyester resin and the sheath part has a core-sheath structure of a modified polyester resin, the fiber diameter is preferably 11 μm or less, and more preferably 10 μm. The lower limit of the fiber diameter is not particularly limited, but is preferably 2 μm, more preferably 3 μm. When the heat melting type binder fiber has a core-sheath structure in which the core part is a polypropylene resin and the sheath part is a polyethylene resin, the fiber diameter is more preferably 11 μm or less, and further preferably 10 μm. The lower limit of the fiber diameter is not particularly limited, but is preferably 2 μm, more preferably 3 μm. In addition, when the fiber diameter of the heat melting type binder fiber is larger than 14 μm, the reduction effect of the pore diameter of the glass fiber sheet can not be exhibited even if the compounding ratio falls within the range of the present invention. Force is likely to decrease. When two or more types of heat melting binder fibers are blended, the diameter of each heat melting binder fiber is 14 μm or less, preferably 13 μm or less, and more preferably 11 μm or less.

本実施形態において、熱溶融型バインダー繊維の長さは、2〜10mmとし、好ましくは3〜6mmである。長さが10mmを超えると、ガラス繊維シート内での熱溶融型バインダー繊維の分散が悪くなって電解液通液性が悪化するおそれがあり、また、長さが2mm未満であると繊維長が短すぎてシートの強度物性が低下するおそれがある。   In the present embodiment, the length of the heat melting binder fiber is 2 to 10 mm, preferably 3 to 6 mm. When the length is more than 10 mm, the dispersion of the heat melting binder fiber in the glass fiber sheet may be deteriorated to deteriorate the electrolyte solution permeability, and when the length is less than 2 mm, the fiber length may If it is too short, the strength and physical properties of the sheet may be reduced.

本実施形態のガラス繊維シートは、ガラスウールを主体とするが、本発明の効果を損なわない限り、異種繊維や粉体材料などの副資材を配合することが可能である。副資材の配合率は20質量%以下が好ましく、10質量%以下がより好ましい。ここで、本実施形態のガラス繊維シートでは、ガラスウールと、熱溶融型バインダー繊維との配合比は、質量比で96/4〜88/12である。好ましくは94/6〜90/10である。ガラスウールの割合が96を超えても、88未満となっても、電解液通液性のばらつきが大きくなってしまう。また、熱溶融型バインダー繊維の質量は全体質量の4〜12%であり、ガラスウールと熱溶融型バインダー繊維との合計質量は全体質量の80〜100%である。このとき、副資材の質量は全体質量の0〜20%となる。すなわち、ガラスウールの一部を副資材に置換して配合することとなる。したがって、ガラスウール及び副資材の合計質量と熱溶融型バインダー繊維との質量比が96/4〜88/12を満たす。また、副資材を配合しない場合は、ガラスウールの質量は全体質量の88〜96%となる。   The glass fiber sheet of the present embodiment is mainly made of glass wool, but secondary materials such as different fibers and powder materials can be blended unless the effect of the present invention is impaired. 20 mass% or less is preferable, and, as for the compounding ratio of an auxiliary material, 10 mass% or less is more preferable. Here, in the glass fiber sheet of the present embodiment, the compounding ratio of the glass wool to the thermal melting binder fiber is 96/4 to 88/12 by mass ratio. Preferably it is 94/6-90/10. Even if the proportion of glass wool exceeds 96 or falls below 88, the variation in the electrolyte solution permeability becomes large. In addition, the mass of the heat melting binder fiber is 4 to 12% of the total mass, and the total mass of the glass wool and the heat melting binder fiber is 80 to 100% of the total mass. At this time, the mass of the auxiliary material is 0 to 20% of the total mass. That is, a part of glass wool will be substituted to an auxiliary material, and it will mix | blend. Therefore, the mass ratio of the total mass of the glass wool and the auxiliary material to the heat melting binder fiber satisfies 96/4 to 88/12. Moreover, when not blending an auxiliary material, the mass of glass wool will be 88 to 96% of the whole mass.

異種繊維としては、繊維径5μm以上のガラスチョップド繊維、本発明の製造工程で熱溶融しないポリプロピレン樹脂、ポリスチレン樹脂、ポリメチルメタクリレート樹脂、ポリアクリロニトリル樹脂、ナイロン樹脂、ポリエステル樹脂、ポリフルオロエチレン樹脂などの合成樹脂繊維、木材やコットンなどのセルロールパルプなどが挙げられる。粉体材料としては、シリカ、タルク、カオリン等の粘土鉱物粉体などが挙げられる。これらの材料については、電解液である硫酸に対する耐酸性のあるものを選択すべきである。なお、110℃以下で熱溶融しないとは、110℃で15分加熱したときに、合成樹脂繊維の繊維間で熱融着が生じていないことをいう。また、ガラスチョップド繊維を2種類以上配合する場合には、どのガラスチョップド繊維も繊維径は5μm以上が好ましい。より好ましくは、繊維径が6μm以上15μm以下である。   The different kinds of fibers include glass chopped fibers having a fiber diameter of 5 μm or more, polypropylene resin which is not heat-melted in the production process of the present invention, polystyrene resin, polymethyl methacrylate resin, polyacrylonitrile resin, nylon resin, polyester resin, polyfluoroethylene resin, etc. Synthetic resin fibers, cellulose pulp such as wood and cotton, etc. may be mentioned. Examples of the powder material include clay mineral powder such as silica, talc, kaolin and the like. For these materials, materials should be selected that are resistant to the sulfuric acid electrolyte. The term “not thermally melted at 110 ° C. or lower” means that thermal fusion does not occur between the fibers of the synthetic resin fiber when heated at 110 ° C. for 15 minutes. When two or more types of glass chopped fibers are mixed, the fiber diameter of each glass chopped fiber is preferably 5 μm or more. More preferably, the fiber diameter is 6 μm to 15 μm.

本実施形態のガラス繊維シートでは、ガラスチョップド繊維をさらに含有し、ガラスチョップド繊維の質量が全体質量の0%を超え20%以下であってもよい。ガラスウールの一部をガラスチョップド繊維に置き換えて引張強さを高めることができる。   The glass fiber sheet of the present embodiment may further contain glass chopped fibers, and the mass of the glass chopped fibers may be more than 0% and 20% or less of the total mass. A portion of the glass wool can be replaced with glass chopped fibers to increase tensile strength.

本実施形態のガラス繊維シートの坪量は、電解液保持性、電極間の短絡防止などの観点から、50〜500g/mが好ましく、より好ましくは100〜400g/mである。 The basis weight of the glass fiber sheet of the present embodiment is preferably 50 to 500 g / m 2 , more preferably 100 to 400 g / m 2 , from the viewpoint of electrolyte retention, short circuit between electrodes, and the like.

本実施形態のガラス繊維シートにおける電解液通液性のばらつきは、シート通気性のばらつきで評価することができる。シート通気性は、JIS P 8117:2009「紙及び板紙‐透気度及び透気抵抗度試験方法(中間領域)‐ガーレー法」に準ずるガーレー法にて行い、測定端直径10mmのガーレー通気度測定器を用いて、300ml通気させた際にかかる時間(秒)について、シート内の1cm以上相互に離れた任意の箇所10点を測定する。通気度ばらつき(%)は、得られた測定値の平均値Xと母集団標準偏差σn−1から、以下の数1で求めた値で定義したものである。
(数1)
(通気度ばらつき)=(母集団標準偏差σn−1)/(平均値X)×100;単位%
The variation in electrolytic solution permeability in the glass fiber sheet of the present embodiment can be evaluated by the variation in sheet air permeability. Sheet air permeability is measured by the Gurley method according to JIS P 8117: 2009 "Paper and board-Air permeability and air resistance test method (intermediate region)-Gurley method", and Gurley air permeability measurement of measurement diameter 10 mm Using an instrument, measure 10 arbitrary points mutually separated by 1 cm or more in the sheet for the time (seconds) taken when ventilating 300 ml. The air permeability fluctuation (%) is defined as a value obtained by the following equation 1 from the average value X of the obtained measured values and the population standard deviation σ n -1.
(1)
(Ventilation variation) = (population standard deviation σ n -1) / (average value X) x 100; unit%

本発明のガラス繊維シートの強度物性は、JIS P 8113:2006「紙及び板紙-引張特性の試験方法‐第2部:定速伸張法」に準じた引張強さによるものである。   The strength properties of the glass fiber sheet of the present invention are those according to JIS P 8113: 2006 "Paper and paperboard-Test method of tensile properties-Part 2: Constant speed elongation method".

本実施形態のガラス繊維シートは、一般の湿式抄紙法で製造できる。湿式抄紙法としては、ガラスウールを水に分散させたスラリーの一定量について金網などの網上に抄き上げて、この湿紙シートを乾燥機で乾燥させてシート化する方法が挙げられる。乾燥機における乾燥条件は、例えば、100〜180℃が好ましく、110〜160℃がより好ましい。乾燥時間は、1〜15分が好ましく、3〜10分がより好ましい。乾燥さ工業的に大量生産する方法としては、長網抄紙機、円網抄紙機、傾斜型抄紙機で分散スラリーを連続的に抄きあげて、この湿紙シートを熱風乾燥機、赤外線乾燥機、ドラム式乾燥機などで乾燥させ、乾燥シートを巻き取る方法が挙げられる。   The glass fiber sheet of this embodiment can be manufactured by a general wet papermaking method. As a wet papermaking method, there is a method of forming a fixed amount of a slurry in which glass wool is dispersed in water on a mesh such as a wire mesh, and drying this wet paper sheet with a drier to form a sheet. 100-180 degreeC is preferable, for example, and, as for the drying conditions in a dryer, 110-160 degreeC is more preferable. The drying time is preferably 1 to 15 minutes, more preferably 3 to 10 minutes. Dryness As a method of mass production industrially, the dispersed slurry is continuously made up with a Fourdrinier paper machine, a cylinder paper machine, an inclined paper machine, and this wet paper sheet is subjected to a hot air drier, an infrared drier And drying with a drum-type drier, etc., and winding up the dried sheet.

本実施形態に係る密閉型鉛電池セパレータは、密閉型鉛蓄電池における正極板及び負極板が、本実施形態に係るガラス繊維シートを挟んだ状態となっている。ここで、密閉型鉛電池セパレータは、正極板と負極板との間を短絡させないこと、鉛蓄電池の電解液である硫酸をシートの空隙に保持すること、電池反応が起こる際に、正極板と負極板との間のイオン伝導を、保持した電解液を通じてスムースに行うことを実現している。   The sealed lead battery separator according to the present embodiment is in a state in which the positive electrode plate and the negative electrode plate in the sealed lead storage battery sandwich the glass fiber sheet according to the present embodiment. Here, the sealed lead battery separator does not short circuit between the positive electrode plate and the negative electrode plate, holds the sulfuric acid which is an electrolyte solution of the lead storage battery in the space of the sheet, and when the battery reaction occurs, It is realized that ion conduction with the negative electrode plate can be smoothly performed through the held electrolytic solution.

以下、本発明を実施例に基づいて説明するが、本発明は下記実施例に限定されるものではなく、その要旨を変更しない範囲において、適宜変更して実施することができる。また、例中の「部」及び「%」は、特に断らない限り「質量部」及び「質量%」を示す。   Hereinafter, the present invention will be described based on examples, but the present invention is not limited to the following examples, and can be appropriately changed and implemented without departing from the scope of the present invention. Moreover, unless otherwise indicated, "part" and "%" in an example show a "mass part" and "mass%."

(実施例1)
ガラスウールとして、平均繊維径0.8μmのボロシリケートガラスウール(ジョンズマンビル社製、Type253、グレード206)96質量部と、熱溶融型バインダー繊維として、繊維径1.1dtex(推定径10.1μm)、繊維長5mmの芯鞘タイプ熱溶融型バインダー繊維(芯:ポリエステル樹脂、鞘:変性ポリエステル樹脂、帝人ファイバー社製)4質量部とを、硫酸酸性pH3の酸性水を加えて濃度0.5質量%の原料スラリーとし、これら原料スラリーを食品用ミキサー(松下電器産業社製:品番MX‐V200)内で1分間離解した。次いで、離解後の原料スラリーを硫酸酸性pH3の酸性水で濃度0.1質量%まで希釈し、手抄装置を用いて抄紙することによって湿紙を得た。この湿紙を130℃のロールドライヤーで乾燥し、坪量304g/mのガラス繊維シートを得た。
Example 1
As glass wool, 96 parts by mass of borosilicate glass wool having an average fiber diameter of 0.8 μm (manufactured by Johns Manville, Type 253, grade 206), and as a heat melting binder fiber, fiber diameter of 1.1 dtex (estimated diameter 10.1 μm) ) 4 parts by mass of core-sheath type heat melting type binder fiber (core: polyester resin, sheath: modified polyester resin, manufactured by Teijin Fibers Ltd.) with 5 mm of fiber length, acid water with sulfuric acid pH 3 and a concentration of 0.5 The raw material slurry was made into a mass% raw material slurry, and the raw material slurry was disintegrated for 1 minute in a food mixer (manufactured by Matsushita Electric Industrial Co., Ltd .: product number MX-V200). Subsequently, the raw material slurry after disaggregation was diluted to a concentration of 0.1 mass% with acidic water of sulfuric acid acidity pH 3 and wet paper was obtained by paper making using a hand paper machine. The wet paper was dried by a roll dryer at 130 ° C. to obtain a glass fiber sheet having a basis weight of 304 g / m 2 .

(実施例2)
実施例1において、平均繊維径0.8μmのボロシリケートガラスウール(ジョンズマンビル社製、Type253、グレード206)の配合量を94質量部とし、繊維径1.1dtex(推定径10.1μm)、繊維長5mmの芯鞘タイプ熱溶融型バインダー繊維(芯:ポリエステル樹脂、鞘:変性ポリエステル樹脂、帝人ファイバー社製)の配合量を6質量部とした以外は、実施例1と同様にして坪量301g/mのガラス繊維シートを得た。
(Example 2)
In Example 1, 94 parts by mass of borosilicate glass wool having an average fiber diameter of 0.8 μm (manufactured by Johns Manville, Type 253, grade 206) is used, and the fiber diameter is 1.1 dtex (estimated diameter: 10.1 μm) Basic weight in the same manner as in Example 1 except that the blending amount of core-sheath type heat melting type binder fiber (core: polyester resin, sheath: modified polyester resin, manufactured by Teijin Fibers Co., Ltd.) of fiber length is 6 parts by mass. A glass fiber sheet of 301 g / m 2 was obtained.

(実施例3)
実施例1において、平均繊維径0.8μmのボロシリケートガラスウール(ジョンズマンビル社製、Type253、グレード206)の配合量を92質量部とし、繊維径1.1dtex(推定径10.1μm)、繊維長5mmの芯鞘タイプ熱溶融型バインダー繊維(芯:ポリエステル樹脂、鞘:変性ポリエステル樹脂繊維、帝人ファイバー社製)の配合量を8質量部とした以外は、実施例1と同様にして坪量301g/mのガラス繊維シートを得た。
(Example 3)
In Example 1, 92 parts by mass of borosilicate glass wool having an average fiber diameter of 0.8 μm (Type 253, grade 206, manufactured by Johns Manville Co., Ltd.) is used, and a fiber diameter is 1.1 dtex (estimated diameter 10.1 μm) The basis weight is the same as in Example 1 except that the blending amount of core-sheath type heat melting type binder fiber (core: polyester resin, sheath: modified polyester resin fiber, manufactured by Teijin Fibers Co., Ltd.) having a fiber length of 5 mm is 8 parts by mass. A glass fiber sheet having a quantity of 301 g / m 2 was obtained.

(実施例4)
実施例1において、平均繊維径0.8μmのボロシリケートガラスウール(ジョンズマンビル社製、Type253、グレード206)の配合量を90質量部とし、繊維径1.1dtex(推定径10.1μm)、繊維長5mmの芯鞘タイプ熱溶融型バインダー繊維(芯:ポリエステル樹脂、鞘:変性ポリエステル樹脂、帝人ファイバー社製)の配合量を10質量部とした以外は、実施例1と同様にして坪量298g/mのガラス繊維シートを得た。
(Example 4)
In Example 1, 90 parts by mass of a borosilicate glass wool having an average fiber diameter of 0.8 μm (Type 253, grade 206, manufactured by Johns Manville Co., Ltd.) is used, and a fiber diameter is 1.1 dtex (estimated diameter 10.1 μm) Basic weight in the same manner as in Example 1 except that the blending amount of core-sheath type heat melting type binder fiber (core: polyester resin, sheath: modified polyester resin, manufactured by Teijin Fibers Co., Ltd.) of fiber length is 10 parts by mass. A glass fiber sheet of 298 g / m 2 was obtained.

(実施例5)
実施例1において、平均繊維径0.8μmのボロシリケートガラスウール(ジョンズマンビル社製、Type253、グレード206)の配合量を88質量部とし、繊維径1.1dtex(推定径10.1μm)、繊維長5mmの芯鞘タイプ熱溶融型バインダー繊維(芯:ポリエステル樹脂、鞘:変性ポリエステル樹脂、帝人ファイバー社製)の配合量を12質量部とした以外は、実施例1と同様にして坪量301g/mのガラス繊維シートを得た。
(Example 5)
In Example 1, 88 parts by mass of borosilicate glass wool having an average fiber diameter of 0.8 μm (manufactured by Johns Manville, Type 253, grade 206) is 88 parts by mass, and the fiber diameter is 1.1 dtex (estimated diameter 10.1 μm) Basic weight in the same manner as in Example 1 except that the blending amount of core-sheath type heat melting binder fiber (core: polyester resin, sheath: modified polyester resin, manufactured by Teijin Fibers Co., Ltd.) having a fiber length of 5 mm was 12 parts by mass. A glass fiber sheet of 301 g / m 2 was obtained.

(実施例6)
実施例1において、熱溶融型バインダー繊維を、繊維径0.8dtex(推定径10.5μm)、繊維長5mmの芯鞘タイプ熱溶融型バインダー繊維(芯:ポリプロピレン樹脂、鞘:ポリエチレン樹脂、ダイワボウ社製)4質量部に変更した以外は、実施例1と同様にして坪量300g/mのガラス繊維シートを得た。
(Example 6)
In Example 1, a core-sheath type hot-melt binder fiber having a fiber diameter of 0.8 dtex (estimated diameter 10.5 μm) and a fiber length of 5 mm (core: polypropylene resin, sheath: polyethylene resin, Daiwabo Co., Ltd.) A glass fiber sheet having a basis weight of 300 g / m 2 was obtained in the same manner as in Example 1 except that the product was changed to 4 parts by mass.

(実施例7)
実施例6において、平均繊維径0.8μmのボロシリケートガラスウール(ジョンズマンビル社製、Type253、グレード206)の配合量を93質量部とし、繊維径0.8dtex(推定径10.5μm)、繊維長5mmの芯鞘タイプ熱溶融型バインダー繊維(芯:ポリプロピレン樹脂、鞘:ポリエチレン樹脂、ダイワボウ社製)の配合量を7質量部とした以外は、実施例6と同様にして坪量300g/mのガラス繊維シートを得た。
(Example 7)
In Example 6, 93 parts by mass of borosilicate glass wool having an average fiber diameter of 0.8 μm (manufactured by Johns Manville, Type 253, grade 206) is used, and the fiber diameter is 0.8 dtex (estimated diameter 10.5 μm), The basis weight was 300 g / w in the same manner as in Example 6 except that the blend amount of core-sheath type heat melting type binder fibers (core: polypropylene resin, sheath: polyethylene resin, manufactured by Daiwabo Co., Ltd.) was 7 parts by mass. A glass fiber sheet of m 2 was obtained.

(実施例8)
実施例6において、平均繊維径0.8μmのボロシリケートガラスウール(ジョンズマンビル社製、Type253、グレード206)の配合量を91質量部とし、繊維径0.8dtex(推定径10.5μm)、繊維長5mmの芯鞘タイプ熱溶融型バインダー繊維(芯:ポリプロピレン樹脂、鞘:ポリエチレン樹脂、ダイワボウ社製)の配合量を9質量部とした以外は、実施例6と同様にして坪量303g/mのガラス繊維シートを得た。
(Example 8)
In Example 6, 91 parts by mass of borosilicate glass wool having an average fiber diameter of 0.8 μm (manufactured by Johns Manville, Type 253, grade 206) is used, and the fiber diameter is 0.8 dtex (estimated diameter 10.5 μm), The basis weight is 303 g / p in the same manner as Example 6, except that the blending amount of core / sheath type heat melting type binder fiber (core: polypropylene resin, sheath: polyethylene resin, manufactured by Daiwabo Co., Ltd.) is 9 parts by mass. A glass fiber sheet of m 2 was obtained.

(実施例9)
実施例6において、平均繊維径0.8μmのボロシリケートガラスウール(ジョンズマンビル社製、Type253、グレード206)の配合量を89質量部とし、繊維径0.8dtex(推定径10.5μm)、繊維長5mmの芯鞘タイプ熱溶融型バインダー繊維(芯:ポリプロピレン樹脂、鞘:ポリエチレン樹脂、ダイワボウ社製)の配合量を11質量部とした以外は、実施例6と同様にして坪量302g/mのガラス繊維シートを得た。
(Example 9)
In Example 6, 89 parts by mass of borosilicate glass wool having an average fiber diameter of 0.8 μm (manufactured by Johns Manville, Type 253, grade 206) is used, and the fiber diameter is 0.8 dtex (estimated diameter 10.5 μm), Basic weight 302 g / w in the same manner as Example 6 except that the blend amount of core-sheath type heat melting type binder fiber (core: polypropylene resin, sheath: polyethylene resin, manufactured by Daiwabo Co., Ltd.) is 11 parts by mass. A glass fiber sheet of m 2 was obtained.

(実施例10)
実施例1において、平均繊維径0.8μmのボロシリケートガラスウール(ジョンズマンビル社製、Type253、グレード206)の配合量を93質量部とし、熱溶融型バインダー繊維を、繊維径1.7dtex(推定径13.8μm)、繊維長5mmの芯鞘タイプ熱溶融型バインダー繊維(芯:ポリエステル樹脂、鞘:ポリエチレン樹脂、帝人ファイバー社製)7質量部に変更した以外は、実施例1と同様にして坪量301g/mのガラス繊維シートを得た。
(Example 10)
In Example 1, 93 parts by mass of borosilicate glass wool having an average fiber diameter of 0.8 μm (Type 253, grade 206, manufactured by Johns Manville Co., Ltd.) is used, and the thermally melting binder fiber has a fiber diameter of 1.7 dtex ( Same as Example 1 except that core-sheath type heat melting binder fiber (core: polyester resin, sheath: polyethylene resin, manufactured by Teijin Fibers Co., Ltd.) is changed to 7 parts by mass with an estimated diameter of 13.8 μm) and a fiber length of 5 mm. A glass fiber sheet having a basis weight of 301 g / m 2 was obtained.

(実施例11)
実施例1において、平均繊維径0.8μmのボロシリケートガラスウール(ジョンズマンビル社製、Type253、グレード206)の配合量を92質量部とし、熱溶融型バインダー繊維を、繊維径1.7dtex(推定径12.5μm)、繊維長5mmの芯鞘タイプ熱溶融型バインダー繊維(芯:ポリエステル樹脂、鞘:変性ポリエステル樹脂、帝人ファイバー社製)8質量部に変更した以外は、実施例1と同様にして坪量301g/mのガラス繊維シートを得た。
(Example 11)
In Example 1, 92 parts by mass of borosilicate glass wool having an average fiber diameter of 0.8 μm (Type 253, grade 206, manufactured by Johns Manville Co., Ltd.) is used, and the heat melting type binder fiber has a fiber diameter of 1.7 dtex ( Same as Example 1 except that core-sheath type heat melting binder fiber (core: polyester resin, sheath: modified polyester resin, manufactured by Teijin Fibers Co., Ltd.) is changed to 8 parts by mass with an estimated diameter of 12.5 μm) and a fiber length of 5 mm. Thus, a glass fiber sheet having a basis weight of 301 g / m 2 was obtained.

(実施例12)
実施例1において、平均繊維径0.8μmのボロシリケートガラスウール(ジョンズマンビル社製、Type253、グレード206)の配合量を87質量部とし、繊維径1.1dtex(推定径10.1μm)、繊維長5mmの芯鞘タイプ熱溶融型バインダー繊維(芯:ポリエステル樹脂、鞘:変性ポリエステル樹脂、帝人ファイバー社製)の配合量を8質量部とし、更に繊維径13μmのガラスチョップド繊維(Cガラス、ジョンズマンビル社製)5質量部を配合した以外は、実施例1と同様にして坪量300g/mのガラス繊維シートを得た。
(Example 12)
In Example 1, 87 parts by mass of borosilicate glass wool having an average fiber diameter of 0.8 μm (manufactured by Johns Manville, Type 253, grade 206) is used, and the fiber diameter is 1.1 dtex (estimated diameter: 10.1 μm) Glass chopped fiber (C glass, fiber diameter 13 μm), containing 8 parts by mass of core-sheath type heat melting type binder fiber (core: polyester resin, sheath: modified polyester resin, manufactured by Teijin Fibers Ltd.) A glass fiber sheet having a basis weight of 300 g / m 2 was obtained in the same manner as in Example 1 except that 5 parts by mass of Johns Manville Co., Ltd. was added.

(実施例13)
実施例1において、平均繊維径0.8μmのボロシリケートガラスウール(ジョンズマンビル社製、Type253、グレード206)の配合量を82質量部とし、繊維径1.1dtex(推定径10.1μm)、繊維長5mmの芯鞘タイプ熱溶融型バインダー繊維(芯:ポリエステル樹脂、鞘:変性ポリエステル樹脂、帝人ファイバー社製)の配合量を8質量部とし、更に繊維径13μmのガラスチョップド繊維(Cガラス、ジョンズマンビル社製)10質量部を配合した以外は、実施例1と同様にして坪量300g/mのガラス繊維シートを得た。
(Example 13)
In Example 1, 82 parts by mass of borosilicate glass wool having an average fiber diameter of 0.8 μm (Type 253, grade 206, manufactured by Johns Manville Co., Ltd.), and a fiber diameter of 1.1 dtex (estimated diameter: 10.1 μm), Glass chopped fiber (C glass, fiber diameter 13 μm), containing 8 parts by mass of core-sheath type heat melting type binder fiber (core: polyester resin, sheath: modified polyester resin, manufactured by Teijin Fibers Ltd.) A glass fiber sheet having a basis weight of 300 g / m 2 was obtained in the same manner as in Example 1 except that 10 parts by mass of Johns Manville Co., Ltd. was added.

(実施例14)
実施例6において、平均繊維径0.8μmのボロシリケートガラスウール(ジョンズマンビル社製、Type253、グレード206)の配合量を93質量部とし、繊維径0.8dtex(推定径10.5μm)、繊維長2mmの芯鞘タイプ熱溶融型バインダー繊維(芯:ポリプロピレン樹脂、鞘:ポリエチレン樹脂、ダイワボウ社製)の配合量を7質量部とした以外は、実施例6と同様にして坪量298g/mのガラス繊維シートを得た。
(Example 14)
In Example 6, 93 parts by mass of borosilicate glass wool having an average fiber diameter of 0.8 μm (manufactured by Johns Manville, Type 253, grade 206) is used, and the fiber diameter is 0.8 dtex (estimated diameter 10.5 μm), The basis weight is 298 g / in the same manner as in Example 6 except that the blend amount of core / sheath type heat melting type binder fiber (core: polypropylene resin, sheath: polyethylene resin, manufactured by Daiwabo Co., Ltd.) is 7 parts by mass. A glass fiber sheet of m 2 was obtained.

(実施例15)
実施例6において、平均繊維径0.8μmのボロシリケートガラスウール(ジョンズマンビル社製、Type253、グレード206)の配合量を93質量部とし、繊維径0.8dtex(推定径10.5μm)、繊維長10mmの芯鞘タイプ熱溶融型バインダー繊維(芯:ポリプロピレン樹脂、鞘:ポリエチレン樹脂、ダイワボウ社製)の配合量を7質量部とした以外は、実施例6と同様にして坪量300g/mのガラス繊維シートを得た。
(Example 15)
In Example 6, 93 parts by mass of borosilicate glass wool having an average fiber diameter of 0.8 μm (manufactured by Johns Manville, Type 253, grade 206) is used, and the fiber diameter is 0.8 dtex (estimated diameter 10.5 μm), The basis weight is 300 g / w in the same manner as Example 6, except that the blending amount of core / sheath type heat melting type binder fiber (core: polypropylene resin, sheath: polyethylene resin, manufactured by Daiwabo Co., Ltd.) is 7 parts by mass. A glass fiber sheet of m 2 was obtained.

参考例16
実施例6において、平均繊維径0.8μmのボロシリケートガラスウール(ジョンズマンビル社製、Type253、グレード206)の配合量を83質量部とし、繊維径0.8dtex(推定径10.5μm)、繊維長5mmの芯鞘タイプ熱溶融型バインダー繊維(芯:ポリプロピレン樹脂、鞘:ポリエチレン樹脂、ダイワボウレーヨン社製)の配合量を7質量部、副資材として繊維径1.7dtex(推定径12μm)、繊維長5mmのレーヨン繊維の配合量を10質量部とした以外は、実施例6と同様にして坪量300g/mのガラス繊維シートを得た。
( Example 16 )
In Example 6, 83 parts by mass of borosilicate glass wool having an average fiber diameter of 0.8 μm (manufactured by Johns Manville, Type 253, grade 206) is used, and the fiber diameter is 0.8 dtex (estimated diameter 10.5 μm), 7 parts by mass of core-sheath type heat melting type binder fiber (core: polypropylene resin, sheath: polyethylene resin, manufactured by Daiwabo Rayon Co., Ltd.) with a fiber length of 7 parts, fiber diameter of 1.7 dtex (estimated diameter 12 μm) as auxiliary material, A glass fiber sheet having a basis weight of 300 g / m 2 was obtained in the same manner as in Example 6, except that the blending amount of rayon fibers having a fiber length of 5 mm was changed to 10 parts by mass.

(比較例1)
実施例1において、平均繊維径0.8μmのボロシリケートガラスウール(ジョンズマンビル社製、Type253、グレード206)の配合量を100質量部とし、熱溶融型バインダー繊維を配合しなかった以外は、実施例1と同様にして坪量299g/mのガラス繊維シートを得た。
(Comparative example 1)
In Example 1, the blending amount of borosilicate glass wool having an average fiber diameter of 0.8 μm (Type 253, grade 206, manufactured by Johns Manville Co., Ltd.) is 100 parts by mass, and no heat melting type binder fiber is blended, In the same manner as in Example 1, a glass fiber sheet having a basis weight of 299 g / m 2 was obtained.

(比較例2)
実施例1において、平均繊維径0.8μmのボロシリケートガラスウール(ジョンズマンビル社製、Type253、グレード206)の配合量を95質量部とし、熱溶融型バインダー繊維を配合せず、更に繊維径13μmのガラスチョップド繊維(Cガラス、ジョンズマンビル社製)5質量部を配合した以外は、実施例1と同様にして坪量298g/mのガラス繊維シートを得た。
(Comparative example 2)
In Example 1, 95 parts by mass of borosilicate glass wool having an average fiber diameter of 0.8 μm (Type 253, grade 206, manufactured by Johns Manville Co., Ltd.) was used, and no heat melting binder fiber was added, and further, the fiber diameter was A glass fiber sheet having a basis weight of 298 g / m 2 was obtained in the same manner as Example 1, except that 5 parts by mass of 13 μm glass chopped fiber (C glass, manufactured by Johns Manville) was blended.

(比較例3)
実施例1において、平均繊維径0.8μmのボロシリケートガラスウール(ジョンズマンビル社製、Type253、グレード206)の配合量を98質量部とし、繊維径1.1dtex(推定径10.1μm)、繊維長5mmの芯鞘タイプ熱溶融型バインダー繊維(芯:ポリエステル樹脂、鞘:変性ポリエステル樹脂、帝人ファイバー社製)の配合量を2質量部とした以外は、実施例1と同様にして坪量301/mのガラス繊維シートを得た。
(Comparative example 3)
In Example 1, 98 parts by mass of borosilicate glass wool having an average fiber diameter of 0.8 μm (manufactured by Johns Manville, Type 253, grade 206) is used, and the fiber diameter is 1.1 dtex (estimated diameter: 10.1 μm) Basic weight in the same manner as in Example 1 except that the blending amount of core-sheath type heat melting type binder fiber (core: polyester resin, sheath: modified polyester resin, manufactured by Teijin Fibers Co., Ltd.) having a fiber length of 5 mm was 2 parts by mass. A glass fiber sheet of 301 / m 2 was obtained.

(比較例4)
実施例1において、平均繊維径0.8μmのボロシリケートガラスウール(ジョンズマンビル社製、Type253、グレード206)の配合量を86質量部とし、繊維径1.1dtex(推定径10.1μm)、繊維長5mmの芯鞘タイプ熱溶融型バインダー繊維(芯:ポリエステル樹脂、鞘:変性ポリエステル樹脂、帝人ファイバー社製)の配合量を14質量部とした以外は、実施例1と同様にして坪量300/mのガラス繊維シートを得た。
(Comparative example 4)
In Example 1, 86 parts by mass of borosilicate glass wool having an average fiber diameter of 0.8 μm (manufactured by Johns Manville, Type 253, grade 206) is used, and the fiber diameter is 1.1 dtex (estimated diameter: 10.1 μm) Basic weight in the same manner as in Example 1 except that the blending amount of core-sheath type heat melting type binder fiber (core: polyester resin, sheath: modified polyester resin, manufactured by Teijin Fibers Co., Ltd.) having a fiber length of 14 mm. A glass fiber sheet of 300 / m 2 was obtained.

(比較例5)
実施例1において、平均繊維径0.8μmのボロシリケートガラスウール(ジョンズマンビル社製、Type253、グレード206)の配合量を84質量部とし、繊維径1.1dtex(推定径10.1μm)、繊維長5mmの芯鞘タイプ熱溶融型バインダー繊維(芯:ポリエステル樹脂、鞘:変性ポリエステル樹脂、帝人ファイバー社製)の配合量を16質量部とした以外は、実施例1と同様にして坪量299/mのガラス繊維シートを得た。
(Comparative example 5)
In Example 1, 84 parts by mass of borosilicate glass wool having an average fiber diameter of 0.8 μm (manufactured by Johns Manville, Type 253, grade 206) is 84 parts by mass, and the fiber diameter is 1.1 dtex (estimated diameter 10.1 μm) The basis weight is the same as in Example 1 except that the blending amount of core-sheath type heat melting type binder fiber (core: polyester resin, sheath: modified polyester resin, manufactured by Teijin Fibers Co., Ltd.) having a fiber length of 5 mm is 16 parts by mass. A glass fiber sheet of 299 / m 2 was obtained.

(比較例6)
実施例1において、平均繊維径0.8μmのボロシリケートガラスウール(ジョンズマンビル社製、Type253、グレード206)の配合量を80質量部とし、繊維径1.1dtex(推定径10.1μm)、繊維長5mmの芯鞘タイプ熱溶融型バインダー繊維(芯:ポリエステル樹脂、鞘:変性ポリエステル樹脂、帝人ファイバー社製)の配合量を20質量部とした以外は、実施例1と同様にして坪量302/mのガラス繊維シートを得た。
(Comparative example 6)
In Example 1, the compounding amount of borosilicate glass wool (Type 253, grade 206, manufactured by Johns Manville Co., Ltd .; grade 206) having an average fiber diameter of 0.8 μm is 80 parts by mass, and the fiber diameter is 1.1 dtex (estimated diameter 10.1 μm) The basis weight is the same as in Example 1 except that the blending amount of core-sheath type heat melting type binder fiber (core: polyester resin, sheath: modified polyester resin, manufactured by Teijin Fibers Co., Ltd.) having a fiber length of 5 mm is 20 parts by mass. A glass fiber sheet of 302 / m 2 was obtained.

(比較例7)
実施例6において、平均繊維径0.8μmのボロシリケートガラスウール(ジョンズマンビル社製、Type253、グレード206)の配合量を98質量部とし、繊維径0.8dtex(推定径10.5μm)、繊維長5mmの芯鞘タイプ熱溶融型バインダー繊維(芯:ポリプロピレン樹脂、鞘:ポリエチレン樹脂、ダイワボウ社製)2質量部とした以外は、実施例6と同様にして坪量302g/mのガラス繊維シートを得た。
(Comparative example 7)
In Example 6, 98 parts by mass of borosilicate glass wool (Type 253, grade 206, manufactured by Johns Manville Co., Ltd .; grade 206) having an average fiber diameter of 0.8 dtex (estimated diameter: 10.5 μm) A glass having a basis weight of 302 g / m 2 in the same manner as in Example 6, except that the core-sheath type heat melting binder fiber (fiber core: polypropylene resin, sheath: polyethylene resin, manufactured by Daiwabo) is 2 parts by mass. A fiber sheet was obtained.

(比較例8)
実施例6において、平均繊維径0.8μmのボロシリケートガラスウール(ジョンズマンビル社製、Type253、グレード206)の配合量を86質量部とし、繊維径0.8dtex(推定径10.5μm)、繊維長5mmの芯鞘タイプ熱溶融型バインダー繊維(芯:ポリプロピレン樹脂、鞘:ポリエチレン樹脂、ダイワボウ社製)14質量部とした以外は、実施例6と同様にして坪量302g/mのガラス繊維シートを得た。
(Comparative example 8)
In Example 6, 86 parts by mass of borosilicate glass wool having an average fiber diameter of 0.8 μm (manufactured by Johns Manville, Type 253, grade 206) is used, and the fiber diameter is 0.8 dtex (estimated diameter 10.5 μm), A glass having a basis weight of 302 g / m 2 in the same manner as in Example 6, except that the core-sheath type heat melting binder fiber (fiber core: polypropylene resin, sheath: polyethylene resin, manufactured by Daiwabo) is 14 parts by mass. A fiber sheet was obtained.

(比較例9)
実施例1において、平均繊維径0.8μmのボロシリケートガラスウール(ジョンズマンビル社製、Type253、グレード206)の配合量を86質量部とし、熱溶融型バインダー繊維を、繊維径1.7dtex(推定径13.8μm)、繊維長5mmの芯鞘タイプ熱溶融型バインダー繊維(芯:ポリエステル樹脂、鞘:ポリエチレン樹脂、帝人ファイバー社製)14質量部に変更した以外は、実施例1と同様にして坪量302g/mのガラス繊維シートを得た。
(Comparative example 9)
In Example 1, 86 parts by mass of borosilicate glass wool having an average fiber diameter of 0.8 μm (manufactured by Johns Manville, Type 253, grade 206) is 86 parts by mass, and the heat melting type binder fiber has a fiber diameter of 1.7 dtex ( Same as Example 1 except that core-sheath type heat melting binder fiber (core: polyester resin, sheath: polyethylene resin, manufactured by Teijin Fibers Co., Ltd.) is changed to 14 parts by mass with an estimated diameter of 13.8 μm) and a fiber length of 5 mm. A glass fiber sheet having a basis weight of 302 g / m 2 was obtained.

(比較例10)
実施例1において、平均繊維径0.8μmのボロシリケートガラスウール(ジョンズマンビル社製、Type253、グレード206)の配合量を94質量部とし、熱溶融型バインダー繊維を、繊維径2.2dtex(推定径14.3μm)、繊維長5mmの芯鞘タイプ熱溶融型バインダー繊維(芯:ポリエステル樹脂、鞘:変性ポリエステル樹脂、帝人ファイバー社製)6質量部に変更した以外は、実施例1と同様にして坪量300g/mのガラス繊維シートを得た。
(Comparative example 10)
In Example 1, 94 parts by mass of borosilicate glass wool having an average fiber diameter of 0.8 μm (Type 253, grade 206, manufactured by Johns Manville Co., Ltd.) is used, and the thermally melting binder fiber has a fiber diameter of 2.2 dtex ( Same as Example 1 except that core-sheath type heat melting binder fiber (core: polyester resin, sheath: modified polyester resin, manufactured by Teijin Fibers Co., Ltd.) is changed to 6 parts by mass with an estimated diameter of 14.3 μm) and a fiber length of 5 mm. Thus, a glass fiber sheet having a basis weight of 300 g / m 2 was obtained.

(比較例11)
実施例1において、平均繊維径0.8μmのボロシリケートガラスウール(ジョンズマンビル社製、Type253、グレード206)の配合量を92質量部とし、熱溶融型バインダー繊維を、繊維径2.2dtex(推定径14.3μm)、繊維長5mmの芯鞘タイプ熱溶融型バインダー繊維(芯:ポリエステル樹脂、鞘:変性ポリエステル樹脂、帝人ファイバー社製)8質量部に変更した以外は、実施例1と同様にして坪量300g/mのガラス繊維シートを得た。
(Comparative example 11)
In Example 1, 92 parts by mass of borosilicate glass wool having an average fiber diameter of 0.8 μm (Type 253, grade 206, manufactured by Johns Manville Co., Ltd.) is used, and the thermally melting binder fiber has a fiber diameter of 2.2 dtex ( Same as Example 1 except that core-sheath type heat melting binder fiber (core: polyester resin, sheath: modified polyester resin, manufactured by Teijin Fibers Co., Ltd.) is changed to 8 parts by mass with an estimated diameter of 14.3 μm) and a fiber length of 5 mm. Thus, a glass fiber sheet having a basis weight of 300 g / m 2 was obtained.

(比較例12)
実施例1において、平均繊維径0.8μmのボロシリケートガラスウール(ジョンズマンビル社製、Type253、グレード206)の配合量を90質量部とし、熱溶融型バインダー繊維を、繊維径2.2dtex(推定径14.3μm)、繊維長5mmの芯鞘タイプ熱溶融型バインダー繊維(芯:ポリエステル樹脂、鞘:変性ポリエステル樹脂、帝人ファイバー社製)10質量部に変更した以外は、実施例1と同様にして坪量300g/mのガラス繊維シートを得た。
(Comparative example 12)
In Example 1, 90 parts by mass of borosilicate glass wool having an average fiber diameter of 0.8 μm (Type 253, grade 206, manufactured by Johns Manville Co., Ltd.) is used, and the heat melting type binder fiber has a fiber diameter of 2.2 dtex ( Same as Example 1 except that core-sheath type heat melting binder fiber (core: polyester resin, sheath: modified polyester resin, manufactured by Teijin Fibers Co., Ltd.) is changed to 10 parts by mass with an estimated diameter of 14.3 μm) and a fiber length of 5 mm. Thus, a glass fiber sheet having a basis weight of 300 g / m 2 was obtained.

(比較例13)
実施例6において、平均繊維径0.8μmのボロシリケートガラスウール(ジョンズマンビル社製、Type253、グレード206)の配合量を93質量部とし、繊維径0.8dtex(推定径10.5μm)、繊維長1mmの芯鞘タイプ熱溶融型バインダー繊維(芯:ポリプロピレン樹脂、鞘:ポリエチレン樹脂、ダイワボウ社製)の配合量を7質量部とした以外は、実施例6と同様にして坪量297g/mのガラス繊維シートを得た。
(Comparative example 13)
In Example 6, 93 parts by mass of borosilicate glass wool having an average fiber diameter of 0.8 μm (manufactured by Johns Manville, Type 253, grade 206) is used, and the fiber diameter is 0.8 dtex (estimated diameter 10.5 μm), The basis weight is 297 g / in the same manner as in Example 6 except that the blending amount of core / sheath type heat melting type binder fiber (core: polypropylene resin, sheath: polyethylene resin, manufactured by Daiwabo Co., Ltd.) is 7 parts by mass. A glass fiber sheet of m 2 was obtained.

(比較例14)
実施例6において、平均繊維径0.8μmのボロシリケートガラスウール(ジョンズマンビル社製、Type253、グレード206)の配合量を93質量部とし、繊維径0.8dtex(推定径10.5μm)、繊維長13mmの芯鞘タイプ熱溶融型バインダー繊維(芯:ポリプロピレン樹脂、鞘:ポリエチレン樹脂、ダイワボウ社製)の配合量を7質量部とした以外は、実施例6と同様にして坪量298g/mのガラス繊維シートを得た。
(Comparative example 14)
In Example 6, 93 parts by mass of borosilicate glass wool having an average fiber diameter of 0.8 μm (manufactured by Johns Manville, Type 253, grade 206) is used, and the fiber diameter is 0.8 dtex (estimated diameter 10.5 μm), The basis weight is 298 g / in the same manner as in Example 6 except that the blending amount of core / sheath type heat melting type binder fiber (core: polypropylene resin, sheath: polyethylene resin, manufactured by Daiwabo Co., Ltd.) is 7 parts by mass. A glass fiber sheet of m 2 was obtained.

(比較例15)
ガラスウールとして、平均繊維径0.8μmのボロシリケートガラスウール(ジョンズマンビル社製、Type253、グレード206)の配合量を93質量部とし、繊維径0.8dtex(推定径10.5μm)、繊維長5mmの芯鞘タイプ熱溶融型バインダー繊維(芯:ポリプロピレン樹脂、鞘:ポリエチレン樹脂、ダイワボウ社製)の配合量を7質量部とを、硫酸酸性pH3の酸性水を加えて濃度0.5質量%の原料スラリーとし、これら原料スラリーを食品用ミキサー(松下電器産業社製:品番MX‐V200)内で1分間離解した。次いで、離解後の原料スラリーを硫酸酸性pH3の酸性水で濃度0.1質量%まで希釈し、手抄装置を用いて抄紙することによって湿紙を得た。次いで、この湿紙に合成樹脂バインダーとしてアクリル酸エステル樹脂エマルジョン(モビニールLDM7222、日本合成化学工業社製)の1.4質量%水溶液を含浸し、吸引脱水した後、この湿紙を130℃のロールドライヤーで乾燥し、坪量305g/mのガラス繊維シートを得た。
(Comparative example 15)
The content of borosilicate glass wool (Johnsman Building, Type 253, grade 206) having a mean fiber diameter of 0.8 μm as glass wool is 93 parts by mass, the fiber diameter is 0.8 dtex (estimated diameter 10.5 μm), fiber 7 parts by mass of core-sheath type hot-melt type binder fiber (core: polypropylene resin, sheath: polyethylene resin, manufactured by Daiwabo Co., Ltd.) with a length of 5 mm and 0.5 wt. The raw material slurry was disintegrated for 1 minute in a food mixer (manufactured by Matsushita Electric Industrial Co., Ltd .: Part No. MX-V200). Subsequently, the raw material slurry after disaggregation was diluted to a concentration of 0.1 mass% with acidic water of sulfuric acid acidity pH 3 and wet paper was obtained by paper making using a hand paper machine. Next, this wet paper is impregnated with a 1.4% by mass aqueous solution of acrylic ester resin emulsion (Movinyl LDM7222, manufactured by Nippon Synthetic Chemical Industry Co., Ltd.) as a synthetic resin binder, and after suction and dehydration, the wet paper is rolled at 130 ° C. It dried with a dryer and obtained the glass fiber sheet of 305 g / m < 2 > of basis weights.

各実施例、参考例及び比較例で得られたガラス繊維シートについて、以下に示す方法により各特性の測定を行った。結果を表1に示す。
(1)坪量 : 試料質量を試料面積で除して得た。
(2)厚さ : 電池工業会規格SBA S 0401:1998に準じて、試料をその厚み方向に20kg/100cmの荷重で押圧した状態で測定した。
(3)引張強さ : JIS P 8113:2006に準じて、幅25mmの試験片を定速伸張形引張試験機で測定した。
(4)通気度ばらつき : 測定直径10mmのガーレー通気度測定器を用いて、300ml通気させた際にかかる時間(秒)について、シート内の任意の箇所10点を測定した。得られた平均値Xと母集団標準偏差σn−1から、以下の(数1)で求めた。
(数1)
通気度ばらつき(%)=(母集団標準偏差σn−1)/(平均値X)×100
About the glass fiber sheet obtained by each Example , the reference example, and the comparative example, the measurement of each characteristic was performed by the method shown below. The results are shown in Table 1.
(1) Basis Weight: Obtained by dividing the sample mass by the sample area.
(2) Thickness: In accordance with Battery Industry Association Standard SBA S 0401: 1998, measurement was performed in a state where the sample was pressed with a load of 20 kg / 100 cm 2 in the thickness direction.
(3) Tensile strength: According to JIS P 8113: 2006, a test piece with a width of 25 mm was measured with a constant-speed tensile tester.
(4) Permeability variation: Measurement: Using a Gurley permeability measuring device with a diameter of 10 mm, 10 arbitrary points in the sheet were measured for the time (seconds) taken when 300 ml was aerated. It calculated | required by the following (Equation 1) from the obtained average value X and population standard deviation (sigma) n-1.
(1)
Permeability variation (%) = (population standard deviation σ n -1) / (average value X) x 100

表1及び表2の結果から明らかなように、熱溶融型バインダー繊維の配合率が増加するとともに引張強度が増大した。一方、通気度ばらつきは無配合に比べて配合率4%で低減し、12%までは低減効果が見られたが、さらに配合を増すと無配合に比べてより悪化する傾向となった。   As apparent from the results of Tables 1 and 2, the tensile strength increased as the blending ratio of the hot-melt binder fiber increased. On the other hand, the variation in air permeability was reduced at a compounding ratio of 4% as compared with no compounding, and a reduction effect was observed up to 12%, but when the compounding was further increased, it became more aggravated than in the case of no compounding.

Figure 0006518094
Figure 0006518094

Figure 0006518094
Figure 0006518094

Claims (7)

平均繊維径3μm以下のガラスウールと、繊維径14μm以下、繊維長2〜10mmの熱溶融型バインダー繊維とからなり、前記熱溶融型バインダー繊維の質量が全体質量の4%以上12%以下であることを特徴とする密閉型鉛電池セパレータ用ガラス繊維シート。 And an average fiber diameter 3μm or less of the glass wool, fiber diameter 14μm or less, composed of a hot-melt binder fibers having a fiber length of 2 to 10 mm, 12% by mass or less before Symbol hot melt binder fiber than 4% of the total mass A glass fiber sheet for a sealed lead battery separator, characterized in that 平均繊維径3μm以下のガラスウールと、繊維径14μm以下、繊維長2〜10mmの熱溶融型バインダー繊維と、繊維径5〜15μmのガラスチョップド繊維とからなり
前記ガラスウールと前記熱溶融型バインダー繊維との質量比が96/4〜88/12であり、
前記熱溶融型バインダー繊維の質量が全体質量の4%以上12%以下であり、かつ、
前記ガラスチョップド繊維の質量が全体質量の0%を超え20%以下であることを特徴とする密閉型鉛電池セパレータ用ガラス繊維シート。
Glass wool with an average fiber diameter of 3 μm or less, heat melting binder fiber with a fiber diameter of 14 μm or less, and a fiber length of 2 to 10 mm, and glass chopped fiber with a fiber diameter of 5 to 15 μm ,
The mass ratio of the glass wool to the hot-melt binder fiber is 96/4 to 88/12,
The mass of the heat melting binder fiber is 4% or more and 12% or less of the total mass, and
Tightly closed lead batteries glass fiber sheet separator you wherein a mass of the glass chopped fiber is 20% or less than 0% of the total mass.
前記熱溶融型バインダー繊維を5質量%以上9質量%以下含有する、請求項1又は2に記載の密閉型鉛電池セパレータ用ガラス繊維シート。   The glass fiber sheet for sealed type lead-acid battery separators of Claim 1 or 2 which contains 5 mass% or more and 9 mass% or less of the said heat melting type binder fiber. 前記熱溶融型バインダー繊維が芯鞘構造を有し、芯部がポリエステル樹脂であり、鞘部が変性ポリエステル樹脂であり、繊維径が11μm以下であることを特徴とする、請求項1〜3のいずれか一つに記載の密閉型鉛電池セパレータ用ガラス繊維シート。   The heat melting type binder fiber has a core-sheath structure, the core is a polyester resin, the sheath is a modified polyester resin, and the fiber diameter is 11 μm or less. The glass fiber sheet for sealed type lead battery separators as described in any one. バインダー液として濾材に付与される合成樹脂系バインダーを含有していないことを特徴とする請求項1〜4のいずれか一つに記載の密閉型鉛電池セパレータ用ガラス繊維シート。   The glass fiber sheet for a sealed lead battery separator according to any one of claims 1 to 4, which does not contain a synthetic resin binder applied to a filter medium as a binder solution. 数1により算出される通気度ばらつきが、高くても6.1%であることを特徴とする請求項1〜5のいずれか一つに記載の密閉型鉛電池セパレータ用ガラス繊維シート。6. The glass fiber sheet for a sealed lead battery separator according to any one of claims 1 to 5, wherein the air permeability variation calculated by the number 1 is at most 6.1%.
[数1][Equation 1]
通気度ばらつき(%)=〔(σn−1)/X〕×100Permeability variation (%) = [(σ n -1) / X] × 100
〔式中、σn−1は、JIS P 8117:2009「紙及び板紙‐透気度及び透気抵抗度試験方法(中間領域)‐ガーレー法」に準ずるガーレー法にて、測定端直径10mmのガーレー通気度測定器を用いて、前記密閉型鉛電池セパレータ用ガラス繊維シート内の1cm以上相互に離れた任意の箇所10点を300ml通気させた際にかかる時間(秒)の母集団標準偏差を示し、Xは、前記時間(秒)の平均値を示す。〕[Wherein, σn-1 is a Gurley having a measuring end diameter of 10 mm according to the Gurley according to JIS P 8117: 2009 "Paper and paperboard-air permeability and air resistance test method (intermediate range)-Gurley method"] Indicates the population standard deviation of the time (seconds) taken when 300 ml of 10 arbitrary points apart from each other within 1 cm of each other in the glass fiber sheet for a sealed lead battery separator are ventilated using an air permeability meter. , X represents an average value of the time (seconds). ]
請求項1〜のいずれか一つに記載の密閉型鉛電池セパレータ用ガラス繊維シートを用いた密閉型鉛電池セパレータ。 A sealed lead battery separator using the glass fiber sheet for a sealed lead battery separator according to any one of claims 1 to 6 .
JP2015052430A 2015-03-16 2015-03-16 Glass fiber sheet for sealed lead-acid battery separator and sealed lead-acid battery separator Active JP6518094B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015052430A JP6518094B2 (en) 2015-03-16 2015-03-16 Glass fiber sheet for sealed lead-acid battery separator and sealed lead-acid battery separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015052430A JP6518094B2 (en) 2015-03-16 2015-03-16 Glass fiber sheet for sealed lead-acid battery separator and sealed lead-acid battery separator

Publications (2)

Publication Number Publication Date
JP2016173901A JP2016173901A (en) 2016-09-29
JP6518094B2 true JP6518094B2 (en) 2019-05-22

Family

ID=57009174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015052430A Active JP6518094B2 (en) 2015-03-16 2015-03-16 Glass fiber sheet for sealed lead-acid battery separator and sealed lead-acid battery separator

Country Status (1)

Country Link
JP (1) JP6518094B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240008868A (en) 2021-05-19 2024-01-19 엔텍 아시아 가부시키가이샤 Nonwoven fabric for lead-acid batteries using glass fiber and heat-sealable binder fiber

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102051636B1 (en) * 2019-04-05 2019-12-03 한국화학연구원 Microporous separator using glass wool and prepatarion method thereof
EP4113728A1 (en) * 2020-02-26 2023-01-04 ENTEK Asia Inc Separator for closed lead acid storage batteries, said separator using glass fibers and thermally fusible organic fibers
JP7453094B2 (en) 2020-08-20 2024-03-19 北越コーポレーション株式会社 Glass fiber sheet for sealed lead-acid battery separator, sealed lead-acid battery separator, and method for manufacturing glass fiber sheet for sealed lead-acid battery separator

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5445755A (en) * 1977-09-19 1979-04-11 Yuasa Battery Co Ltd Separator for storage battery
JP4052372B2 (en) * 2001-09-21 2008-02-27 日本板硝子株式会社 Sealed lead-acid battery separator and sealed lead-acid battery using the same
JP4261862B2 (en) * 2002-09-30 2009-04-30 日本板硝子株式会社 Lead-acid battery separator
US20140272535A1 (en) * 2013-03-15 2014-09-18 Hollingsworth & Vose Company Three-region battery separator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240008868A (en) 2021-05-19 2024-01-19 엔텍 아시아 가부시키가이샤 Nonwoven fabric for lead-acid batteries using glass fiber and heat-sealable binder fiber

Also Published As

Publication number Publication date
JP2016173901A (en) 2016-09-29

Similar Documents

Publication Publication Date Title
JP6518094B2 (en) Glass fiber sheet for sealed lead-acid battery separator and sealed lead-acid battery separator
JP2021036537A (en) Glass fiber sheet for sealed type lead storage battery separator, sealed type lead storage battery separator, and method for manufacturing glass fiber sheet for sealed type lead storage battery separator
JP3246669B2 (en) Battery separator
US10020124B2 (en) Separator for electric double layer capacitors, and electric double layer capacitor
US6495286B2 (en) Glass fiber separators for lead-acid batteries
US20190181410A1 (en) Pasting papers and capacitance layers for batteries comprising multiple fiber types and/or particles
US20220158299A1 (en) Lithium ion battery separator and lithium ion battery
AU714243B2 (en) Glass fiber separators for batteries
US6411497B2 (en) Separator for electric double-layer capacitor
SK282129B6 (en) Separator for recombination batteries containing sheet produced by a wet process
JP2005330643A (en) Heat-resistant wet type nonwoven fabric
CA1168699A (en) Acicular mineral material battery separator for lead-acid batteries
US10003056B2 (en) Battery containing acid resistant nonwoven fiber mat with biosoluble microfibers
JPH11250889A (en) Low resistance battery separator
JP2011210680A (en) Separator for battery
WO1996013071A1 (en) Non-woven fabrics for battery separators comprising a web of solvent-spun cellulose fibers
CN111587509A (en) Pasted paper for battery containing multiple fiber types
JP2003297329A (en) Separator for sealed lead-acid battery
JPH07130347A (en) Battery separator
JP7453094B2 (en) Glass fiber sheet for sealed lead-acid battery separator, sealed lead-acid battery separator, and method for manufacturing glass fiber sheet for sealed lead-acid battery separator
JP2003157826A (en) Separator for battery
JP4919585B2 (en) Nonwoven fabric for separator, method for producing nonwoven fabric for separator, and separator for electric double layer capacitor comprising the same
JPH0266850A (en) Sealed lead-acid battery
JP2002198024A (en) Separator for cell
WO2021131396A1 (en) Separator for electrochemical elements

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190409

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190419

R150 Certificate of patent or registration of utility model

Ref document number: 6518094

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250