JP6517569B2 - Aluminum alloy brazing sheet excellent in corrosion resistance and age hardening - Google Patents
Aluminum alloy brazing sheet excellent in corrosion resistance and age hardening Download PDFInfo
- Publication number
- JP6517569B2 JP6517569B2 JP2015075792A JP2015075792A JP6517569B2 JP 6517569 B2 JP6517569 B2 JP 6517569B2 JP 2015075792 A JP2015075792 A JP 2015075792A JP 2015075792 A JP2015075792 A JP 2015075792A JP 6517569 B2 JP6517569 B2 JP 6517569B2
- Authority
- JP
- Japan
- Prior art keywords
- aluminum alloy
- corrosion resistance
- brazing
- alloy
- content
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000005260 corrosion Methods 0.000 title claims description 48
- 230000007797 corrosion Effects 0.000 title claims description 48
- 238000005219 brazing Methods 0.000 title claims description 39
- 229910000838 Al alloy Inorganic materials 0.000 title claims description 37
- 238000003483 aging Methods 0.000 title description 3
- 239000000463 material Substances 0.000 claims description 77
- 239000011162 core material Substances 0.000 claims description 29
- 239000012535 impurity Substances 0.000 claims description 9
- 229910052742 iron Inorganic materials 0.000 claims description 6
- 229910018125 Al-Si Inorganic materials 0.000 claims description 5
- 229910018520 Al—Si Inorganic materials 0.000 claims description 5
- 229910052748 manganese Inorganic materials 0.000 claims description 5
- 229910052802 copper Inorganic materials 0.000 claims description 4
- 229910052804 chromium Inorganic materials 0.000 claims description 2
- 229910052725 zinc Inorganic materials 0.000 claims description 2
- 229910045601 alloy Inorganic materials 0.000 description 23
- 239000000956 alloy Substances 0.000 description 23
- 230000000694 effects Effects 0.000 description 20
- 150000001875 compounds Chemical class 0.000 description 10
- 239000002245 particle Substances 0.000 description 10
- 238000005266 casting Methods 0.000 description 8
- 238000005253 cladding Methods 0.000 description 8
- 229910017082 Fe-Si Inorganic materials 0.000 description 7
- 229910017133 Fe—Si Inorganic materials 0.000 description 7
- 230000001965 increasing effect Effects 0.000 description 6
- 229910000765 intermetallic Inorganic materials 0.000 description 6
- 239000011159 matrix material Substances 0.000 description 6
- 230000003628 erosive effect Effects 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 229910018084 Al-Fe Inorganic materials 0.000 description 4
- 229910018192 Al—Fe Inorganic materials 0.000 description 4
- 230000032683 aging Effects 0.000 description 4
- 229910018473 Al—Mn—Si Inorganic materials 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 238000005097 cold rolling Methods 0.000 description 3
- 238000005098 hot rolling Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000005096 rolling process Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910019064 Mg-Si Inorganic materials 0.000 description 2
- 229910019406 Mg—Si Inorganic materials 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 229910018137 Al-Zn Inorganic materials 0.000 description 1
- 229910018573 Al—Zn Inorganic materials 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- KRVSOGSZCMJSLX-UHFFFAOYSA-L chromic acid Substances O[Cr](O)(=O)=O KRVSOGSZCMJSLX-UHFFFAOYSA-L 0.000 description 1
- 238000009749 continuous casting Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- -1 etc. Substances 0.000 description 1
- AWJWCTOOIBYHON-UHFFFAOYSA-N furo[3,4-b]pyrazine-5,7-dione Chemical compound C1=CN=C2C(=O)OC(=O)C2=N1 AWJWCTOOIBYHON-UHFFFAOYSA-N 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
Landscapes
- Laminated Bodies (AREA)
- Pressure Welding/Diffusion-Bonding (AREA)
Description
この発明は、芯材の片面に犠牲材が配置され、もう一方の片面にAl−Si系ろう材がクラッドされたアルミニウム合金クラッド材からなるアルミニウム合金ブレージングシートに関するものである。 The present invention relates to an aluminum alloy brazing sheet comprising an aluminum alloy clad material in which a sacrificial material is disposed on one side of a core material and an Al—Si based brazing material is clad on the other side.
従来、熱交換器用のクラッド材には、犠牲材にAl−Zn合金を使用し、芯材にJISA3003合金あるいは3003合金にCu、Siを添加した合金を使用している。このクラッド材では、犠牲材から芯材に向かってのZn勾配、芯材から犠牲材に向かってのCu勾配により、犠牲材から芯材に向かって貴となる電位勾配を形成させることができ、これにより、芯材を犠牲防食することで耐食性を確保している(例えば特許文献1、2参照)。 Conventionally, as a clad material for a heat exchanger, an Al-Zn alloy is used as a sacrificial material, and an alloy in which Cu, Si is added to a JISA 3003 alloy or 3003 alloy is used as a core material. In this clad material, a potential gradient that becomes noble from the sacrificial material to the core material can be formed by the Zn gradient from the sacrificial material to the core material and the Cu gradient from the core material to the sacrificial material, Thereby, the corrosion resistance is ensured by sacrificially corroding the core material (see, for example, Patent Documents 1 and 2).
近年、材料の薄肉化のために耐食性を確保しつつ高強度化する要求がある。そのため、芯材のCu量を増量した合金が使用されている。その場合、芯材から犠牲材に拡散するCu量が増加して電位勾配が確保しにくくなるため、これを補うため犠牲材のクラッド率の増加や犠牲材Zn量を増量する方策がとられている。しかし犠牲材のクラッド率が高くなると強度に寄与する芯材の割合が減少するため、強度が低下する。また、犠牲材のZn量を増やすと犠牲材の消耗速度が速くなりすぎて、腐食環境において早期に消失してしまうため長期間にわたって耐食性を確保することが困難となる。
このように従来技術では、高耐食性と高強度を両立することは困難である。
In recent years, there is a demand to increase the strength while securing corrosion resistance for thinning of materials. Therefore, an alloy in which the amount of Cu in the core material is increased is used. In such a case, the amount of Cu diffused from the core material to the sacrificial material increases and it becomes difficult to secure the potential gradient, and to compensate for this, a measure is taken to increase the cladding ratio of the sacrificial material and increase the amount of the sacrificial material Zn. There is. However, if the cladding ratio of the sacrificial material increases, the proportion of the core material contributing to the strength decreases, and the strength decreases. In addition, if the amount of Zn in the sacrificial material is increased, the consumption rate of the sacrificial material becomes too fast, and disappears in a corrosive environment at an early stage, so it becomes difficult to secure corrosion resistance over a long period of time.
As described above, in the prior art, it is difficult to simultaneously achieve high corrosion resistance and high strength.
本願発明は、上記事情を背景としてなされたものであり、高い耐食性と、高い強度とを兼ね備えたアルミニウム合金ブレージングシートを提供することを目的とする。 This invention is made on the background of the said situation, and an object of this invention is to provide the aluminum alloy brazing sheet which has high corrosion resistance and high strength.
そこで本発明では、従来の犠牲材から芯材にかけての電位勾配による犠牲防食ではなく、犠牲材に高耐食な合金を使用し、かつ、芯材にCu量を規制した合金を使用することで犠牲材の腐食寿命を長くすることでクラッド材として、長期間にわたって耐食性を確保できる材料を実現した。さらに芯材におけるMg、Si、Mnを適量にして、時効硬化性を付与することで、長期間の高耐食性と高強度を両立するブレージングシートを得た。 Therefore, in the present invention, sacrificial corrosion is not obtained by the potential gradient from the conventional sacrificial material to the core material, but a sacrificial alloy is used as the sacrificial material and the sacrificial material is used by using an alloy in which the amount of Cu is regulated as the core material. By extending the corrosion life of the material, we realized a material that can ensure corrosion resistance over a long period of time as a clad material. Furthermore, by making appropriate amounts of Mg, Si, and Mn in the core material and imparting age hardenability, a brazing sheet having both long-term high corrosion resistance and high strength was obtained.
すなわち、本発明の耐食性と時効硬化性に優れたアルミニウム合金ブレージングシートのうち、第1の本発明は、芯材の片面に犠牲材が配置され、もう一方の片面にAl−Si系ろう材がクラッドされているアルミニウム合金クラッド材からなり、犠牲材が、質量%で、Ti:0.05〜0.4%、Fe:0.05〜0.25%、Mn:0.5〜0.9%、Si:0.2〜0.6%、Zn:0.5〜1.9%を含有し、残部がAlと不可避不純物からなるアルミニウム合金であり、芯材が、質量%で、Fe:0.05〜0.3%、Cu:0.20%以下、Mg:0.1〜0.6%、Si:0.4〜1.2%を含有し、残部がAlと不可避不純物からなるアルミニウム合金であることを特徴とする。 That is, among the aluminum alloy brazing sheets excellent in the corrosion resistance and the age hardenability of the present invention, in the first present invention, the sacrificial material is disposed on one side of the core and the Al-Si brazing material is on the other side. It consists of an aluminum alloy clad material which is clad, and the sacrificial material is, by mass%, Ti: 0.05 to 0.4%, Fe: 0.05 to 0.25%, Mn: 0.5 to 0.9 It is an aluminum alloy containing 0.2 %, Si: 0.2 to 0.6%, Zn: 0.5 to 1.9 % , the balance being Al and unavoidable impurities , and the core material is, by mass%, Fe: Containing 0.05 to 0.3%, Cu: 0.20 % or less, Mg: 0.1 to 0.6%, Si: 0.4 to 1.2% , the balance being Al and unavoidable impurities It is characterized by being an aluminum alloy.
第2の本発明の耐食性と時効硬化性に優れたアルミニウム合金ブレージングシートは、前記第1の本発明において、芯材が、さらに、質量%で、Mn:0.1〜1.5%を含有することを特徴とする。 In the aluminum alloy brazing sheet excellent in corrosion resistance and age hardenability according to the second aspect of the present invention, in the first aspect of the present invention, the core material further contains, by mass%, Mn: 0.1 to 1.5%. It is characterized by
第3の本発明の耐食性と時効硬化性に優れたアルミニウム合金ブレージングシートは、前記第1または第2の本発明において、犠牲材が、さらに、質量%で、Cr:0.1〜0.5%を含有することを特徴とする。 The aluminum alloy brazing sheet excellent in corrosion resistance and age hardenability according to the third aspect of the present invention is characterized in that, in the first or second aspect of the present invention, the sacrificial material is, in mass%, Cr: 0.1 to 0.5. It is characterized by containing%.
次に、本願発明で規定する条件、成分について以下に説明する。なお、以下の成分はいずれも成分量が質量%で示されている。 Next, the conditions and components defined in the present invention will be described below. In each of the following components, the amount of the component is indicated by mass%.
(犠牲材)
Ti:0.05〜0.4%
Tiは鋳造時の包晶反応により形成された濃度分布が圧延時に残存し、腐食形態を層状とするため材料の耐食性を向上させる効果がある。その含有量が下限未満ではその効果が少なく、上限を超えると鋳造時に巨大な金属間化合物が生成する。このため、Tiの含有量を上記に定める。なお、同様の理由で、下限を0.2%、上限を0.35%とするのが望ましい。
(Sacrifice material)
Ti: 0.05 to 0.4%
Ti has the effect of improving the corrosion resistance of the material since the concentration distribution formed by the peritectic reaction at the time of casting remains at the time of rolling and forms a layer of corrosion. If the content is less than the lower limit, the effect is small, and if the content exceeds the upper limit, a large intermetallic compound is formed at the time of casting. For this reason, the content of Ti is determined above. For the same reason, the lower limit is preferably 0.2% and the upper limit is 0.35%.
Fe:0.05〜0.25%
Feは、マトリックス中にAl−Mn−Fe系、Al−Mn−Fe−Si系第二相粒子(晶出物)を形成する。これらの第二相粒子は、Al合金の腐食を促進するが、腐食の起点を増大させることで、腐食が特定箇所に集中して厚さ方向に腐食が進むのが防止され、その結果として腐食深さを浅くする効果がある。その含有量が下限未満では、高純度の地金を用いて作製する必要が生じるためにコスト増加を招き、上限を超えると晶出物が腐食を促進する効果が優先するため腐食深さが増大して耐食性が劣化する。このため、Feの含有量を上記に定める。なお、同様の理由で、下限を0.05%、上限を0.15%とするのが望ましい。
Fe: 0.05 to 0.25%
Fe forms Al-Mn-Fe-based and Al-Mn-Fe-Si-based second phase particles (crystals) in the matrix. These second phase particles promote the corrosion of the Al alloy, but increasing the origin of the corrosion prevents the concentration of the corrosion at a specific location and prevents the corrosion from proceeding in the thickness direction, as a result. It has the effect of reducing the depth. If the content is less than the lower limit, the cost increases due to the necessity of producing using high purity metal, and if the content exceeds the upper limit, the effect of promoting crystallization is prioritized and the corrosion depth is increased. Corrosion resistance is degraded. For this reason, the content of Fe is determined above. For the same reason, the lower limit is preferably 0.05% and the upper limit is 0.15%.
Mn:0.5〜0.9%
Mnは、マトリックス中にAl−Mn−Si系、Al−Mn−Fe系、Al−Mn−Fe−Si系第二相粒子(晶出物)を形成することで、Al−Fe系化合物の形成を防止する作用やAl−Mn−Fe系、Al−Mn−Fe−Si系第二相粒子中のFeの含有率を低下させる作用がある。Al−Fe系化合物やFeを多く含有するAl−Mn−Fe系、Al−Mn−Fe−Si系第二相粒子に対して、Feを含有しない化合物やFe含有量の少ない化合物はAl合金の腐食速度を増加させにくい。したがって、Mnの添加によってAl合金の耐食性を向上させることができる。しかしその含有量が下限未満ではその効果が十分発揮されず、上限を超えると鋳造時に巨大な金属間化合物が生成しやすくなり製造が困難となる。このため、Mnの含有量を上記に定める。なお、同様の理由で、下限を0.6%、上限を0.8%とするのが望ましい。
Mn: 0.5 to 0.9%
Mn forms an Al-Fe-based compound by forming Al-Mn-Si-based, Al-Mn-Fe-based, and Al-Mn-Fe-Si-based second phase particles (crystals) in the matrix. And the action of reducing the content of Fe in Al-Mn-Fe-based and Al-Mn-Fe-Si-based second phase particles. A compound containing no Fe or a compound containing a small amount of Fe relative to Al-Mn-Fe and Al-Mn-Fe-based second phase particles containing a large amount of Al-Fe based compounds and Fe is an Al alloy. It is difficult to increase the corrosion rate. Therefore, the corrosion resistance of the Al alloy can be improved by the addition of Mn. However, when the content is less than the lower limit, the effect is not sufficiently exhibited, and when the content exceeds the upper limit, a large intermetallic compound is easily formed at the time of casting, and the production becomes difficult. For this reason, the content of Mn is determined above. For the same reason, the lower limit is preferably 0.6% and the upper limit is 0.8%.
Si:0.2〜0.6%
Siはマトリックス中にAl−Mn−Si系、Al−Mn−Fe−Si系第二相粒子(晶出物)を形成することで、Al−Fe系化合物の形成を防止し、また、Al−Mn−Fe系、Al−Mn−Fe−Si系第二相粒子中のFeの含有率を低下させる。Al−Fe系化合物やFeを多く含有するAl−Mn−Fe系、Al−Mn−Fe−Si系第二相粒子に対して、Feを含有しない化合物やFe含有量の少ない化合物はAl合金の腐食速度を増加させにくい。したがって、Siの添加によってAl合金の耐食性を向上させることができる。しかしその含有量が下限未満ではその効果が十分発揮されず、上限を超えると鋳造時に巨大な金属間化合物が生成しやすくなり製造が困難となる。このため、Siの含有量を上記に定める。なお、同様の理由で、下限を0.3%、上限を0.5%とするのが望ましい。
Si: 0.2 to 0.6%
Si prevents the formation of an Al-Fe-based compound by forming Al-Mn-Si-based or Al-Mn-Fe-Si-based second phase particles (crystallized) in the matrix, and Al- The content of Fe in the Mn-Fe-based and Al-Mn-Fe-Si-based second phase particles is reduced. A compound containing no Fe or a compound containing a small amount of Fe relative to Al-Mn-Fe and Al-Mn-Fe-based second phase particles containing a large amount of Al-Fe based compounds and Fe is an Al alloy. It is difficult to increase the corrosion rate. Therefore, the corrosion resistance of the Al alloy can be improved by the addition of Si. However, when the content is less than the lower limit, the effect is not sufficiently exhibited, and when the content exceeds the upper limit, a large intermetallic compound is easily formed at the time of casting, and the production becomes difficult. For this reason, the content of Si is determined above. For the same reason, the lower limit is preferably 0.3% and the upper limit is 0.5%.
Zn:0.5〜1.9%
Znは腐食の起点を増大させて腐食形態を局部腐食から均一腐食に変化させる効果がある。また、電位を卑をするため、犠牲材に添加された場合、芯材を犠牲防食することができる。その含有量が下限未満ではその効果が少なく、上限を超えると腐食速度が増大することで腐食深さが深くなる。その含有量が下限未満ではその効果が少なく、上限を超えると腐食速度が速くなって耐食性が劣化する。このため、Znの含有量を上記に定める。なお、同様の理由で、下限を1.5%とするのが望ましい。
Zn: 0.5 to 1.9 %
Zn has an effect of increasing the origin of corrosion and changing the form of corrosion from local corrosion to uniform corrosion. Also, in order to reduce the potential, the core material can be sacrificially protected when added to the sacrificial material. If the content is less than the lower limit, the effect is small, and if the content is more than the upper limit, the corrosion rate increases and the corrosion depth becomes deeper. If the content is less than the lower limit, the effect is small, and if the content exceeds the upper limit, the corrosion rate is increased and the corrosion resistance is deteriorated. For this reason, the content of Zn is determined above. For the same reason, the lower limit is preferably 1.5 % .
Cr:0.1〜0.5%
CrはAl合金表面に生成する酸化皮膜を強固にすることでAl合金の耐食性を向上させる効果があり、所望により含有させる。しかしその含有量が下限未満ではその効果が十分発揮されず、上限を超えると鋳造時に巨大な金属間化合物が生成しやすくなり製造が困難となる。このため、Crを所望により含有させる場合、Crの含有量を上記に定める。なお、同様の理由で、下限を0.15%、上限を0.3%とするのが望ましい。
Cr: 0.1 to 0.5%
Cr has the effect of improving the corrosion resistance of the Al alloy by strengthening the oxide film formed on the surface of the Al alloy, and is optionally contained. However, when the content is less than the lower limit, the effect is not sufficiently exhibited, and when the content exceeds the upper limit, a large intermetallic compound is easily formed at the time of casting, and the production becomes difficult. For this reason, when it contains Cr if desired, content of Cr is defined above. For the same reason, the lower limit is preferably 0.15% and the upper limit is 0.3%.
犠牲材を構成するアルミニウム合金では、残部をアルミニウム及び不可避不純物とすることができる。 In the aluminum alloy that constitutes the sacrificial material, the balance can be aluminum and unavoidable impurities.
(芯材)
Fe:0.05〜0.3%
Feはマトリックス中にAl−Mn−Fe系、Al−Mn−Fe−Si系分散粒子を形成し、ろう付後の強度を向上させる効果がある。しかしその含有量が下限未満では鋳造時に割れを生じやすくなり材料製造が困難となる。また上限を超えると鋳造時の巨大な金属間化合物を生成する。このため、Feの含有量を上記に定める。なお、同様の理由で、下限を0.13%、上限を0.28%とするのが望ましい。
(Core material)
Fe: 0.05 to 0.3%
Fe forms Al-Mn-Fe-based and Al-Mn-Fe-Si-based dispersed particles in the matrix, and has the effect of improving the strength after brazing. However, if the content is less than the lower limit, cracking tends to occur at the time of casting, which makes it difficult to produce the material. When the upper limit is exceeded, a huge intermetallic compound is formed at the time of casting. For this reason, the content of Fe is determined above. For the same reason, the lower limit is preferably 0.13% and the upper limit is 0.28%.
Cu:0.2%以下
Cuはマトリックス中に固溶し、材料の強度を高める効果がある。しかし、上限を超えると芯材から犠牲材へのCu拡散が進んで犠牲材の耐食性が劣化するため、クラッド材としての耐食性維持が困難となる。このため、Cuの含有量を上記に定める。また、その含有量が過小であるとその効果が十分発揮されないため、下限を0.05%とするのが望ましい。さらに前記と同様の理由で、上限を0.18%とするのが望ましい。
Cu: 0.2 % or less Cu dissolves in the matrix and has the effect of enhancing the strength of the material. However, if the upper limit is exceeded, the diffusion of Cu from the core material to the sacrificial material proceeds and the corrosion resistance of the sacrificial material deteriorates, so it becomes difficult to maintain the corrosion resistance as a clad material. For this reason, the content of Cu is determined above. Moreover, since the effect will not fully be exhibited when the content is too small, it is desirable to make a minimum into 0.05%. Furthermore, for the same reason as described above, it is desirable to set the upper limit to 0.18%.
Mg:0.1〜0.6%
MgはSiと共存することで、Siと微細なMg−Si化合物を形成して材料の強度を向上させる効果がある。しかしその含有量が下限未満ではその効果が十分発揮されず、上限を超えると融点が低下してしまう。このため、Mgの含有量を上記に定める。なお、同様の理由で、下限を0.25%、上限を0.45%とするのが望ましい。
Mg: 0.1 to 0.6%
Mg coexists with Si to form a fine Mg-Si compound with Si and has an effect of improving the strength of the material. However, when the content is less than the lower limit, the effect is not sufficiently exhibited, and when the content exceeds the upper limit, the melting point is lowered. For this reason, the content of Mg is determined above. For the same reason, it is desirable to set the lower limit to 0.25% and the upper limit to 0.45%.
Si:0.4〜1.2%
SiはMgと微細なMg−Si化合物を形成することで材料の強度を向上させる効果がある。しかしその含有量が下限未満ではその効果が十分発揮されず、上限を超えると犠牲材の融点が低下してろう付時に犠牲材が局部溶融してしまう。このため、Siの含有量を上記に定める。なお、同様の理由で、下限を0.6%、上限を1.0%とするのが望ましい。
Si: 0.4 to 1.2%
Si has the effect of improving the strength of the material by forming a fine Mg-Si compound with Mg. However, if the content is less than the lower limit, the effect is not sufficiently exhibited, and if the content exceeds the upper limit, the melting point of the sacrificial material is lowered and the sacrificial material is locally melted at the time of brazing. For this reason, the content of Si is determined above. For the same reason, it is preferable to set the lower limit to 0.6% and the upper limit to 1.0%.
Mn:0.1〜1.5%
Mnはマトリックス中にAl−Mn−Si系、Al−Mn−Fe−Si系分散粒子を微細に形成し、材料の強度を高める効果があるので、所望により含有させる。しかしその含有量が下限未満ではその効果が十分発揮されず、上限を超えると鋳造時に巨大な金属間化合物を生成する。このため、Mnを所望により含有させる場合、Mnの含有量を上記に定める。なお、同様の理由で、下限を0.5%、上限を1.5%とするのが望ましい。
なお、0.1%未満のMnを不可避不純物として含有しても良い。
Mn: 0.1 to 1.5%
Mn forms Al-Mn-Si-based and Al-Mn-Fe-Si-based dispersed particles finely in the matrix and has the effect of enhancing the strength of the material, so it is contained as desired. However, if the content is less than the lower limit, the effect is not sufficiently exhibited, and if the content exceeds the upper limit, a large intermetallic compound is formed at the time of casting. For this reason, when it contains Mn optionally, content of Mn is defined above. For the same reason, the lower limit is preferably 0.5% and the upper limit is 1.5%.
In addition, you may contain less than 0.1% of Mn as an unavoidable impurity.
芯材を構成するアルミニウム合金では、残部をアルミニウム及び不可避不純物とすることができる。 In the aluminum alloy which comprises a core material, remainder can be made into aluminum and an unavoidable impurity.
(ろう材)
ろう材は、Al−Si系ろう材が用いられる。本発明では特定の成分に限定するものではなく、AlとSiを主成分とする、ろう付けに用いる一般的なろう材を用いることができる。例として、JIS4343合金、JIS4045合金、JIS4047合金、あるいは、これらの合金にZnを含有する合金、またはMg、Cu、Li等を含有する合金を用いることができる。
ろう材を構成するアルミニウム合金として、例示すると、Si:7.2〜10.0%を含むアルミニウム合金、さらに、必要に応じて、Zn:0.5〜3.0%を含有する成分組成とすることができる。
(Brazy material)
As the brazing material, an Al-Si-based brazing material is used. In the present invention, the present invention is not limited to a specific component, and a general brazing material used for brazing which contains Al and Si as main components can be used. As an example, JIS 4343 alloy, JIS 4045 alloy, JIS 4047 alloy, an alloy containing Zn in these alloys, or an alloy containing Mg, Cu, Li or the like can be used.
As an aluminum alloy constituting the brazing material, for example, an aluminum alloy containing 7.2 to 10.0% of Si, and, if necessary, a component composition containing 0.5 to 3.0% of Zn can do.
本発明によれば、高耐食性と高強度とが両立したアルミニウム合金ブレージングシートが得られる効果がある。 According to the present invention, it is effective to obtain an aluminum alloy brazing sheet in which high corrosion resistance and high strength are compatible.
本実施形態では、本発明で規定する組成を有する、芯材用アルミニウム合金、犠牲材用アルミニウム合金、およびろう材用Al−Si系アルミニウム合金をそれぞれ個別に鋳造し、得られた鋳塊に必要に応じて均質化処理を施し、熱間圧延により芯材用アルミニウム合金と、犠牲材用アルミニウム合金と、ろう材用アルミニウム合金を3層構造とするクラッド材のアルミニウム合金板とする。 In this embodiment, an aluminum alloy for a core material, an aluminum alloy for a sacrificial material, and an Al-Si-based aluminum alloy for a brazing material having the composition defined in the present invention are separately cast, and are necessary for the obtained ingot. Depending on heat treatment, homogenization treatment is performed, and hot rolling is performed to obtain an aluminum alloy sheet of clad material having a three-layer structure of an aluminum alloy for a core material, an aluminum alloy for a sacrificial material, and an aluminum alloy for brazing material.
この後、目的の板厚(例えば0.2mm)になるように冷間圧延を施すことによりブレージングシートを得る。これらの材料のクラッド率は特に限定されるものではないが、例えば、芯材85〜60%、犠牲材5〜20%、ろう材10〜20%のクラッド率が例示される。本実施形態では、高耐食性のために犠牲材のクラッド率を特段大きくする必要がない。
なお、本発明は上記工程に限定されるものではなく、例えば熱間圧延後の冷間圧延の途中に必要により中間焼鈍を施すこともできる。
After this, a brazing sheet is obtained by cold rolling to a target plate thickness (for example, 0.2 mm). Although the cladding ratio of these materials is not particularly limited, for example, cladding ratios of 85 to 60% of core material, 5 to 20% of sacrificial material, and 10 to 20% of brazing material are exemplified. In the present embodiment, there is no need to make the cladding ratio of the sacrificial material particularly large for high corrosion resistance.
In addition, this invention is not limited to the said process, For example, intermediate annealing can also be given to the middle of the cold rolling after hot rolling as needed.
上記ブレージングシートは、時効処理後において高強度(例えば300MPa)と高耐食性が得られている。
時効処理としては、例えばろう付処理後に200℃×30minの時効処理を施すこともできる。
The above-mentioned brazing sheet has high strength (for example, 300 MPa) and high corrosion resistance after the aging treatment.
As the aging treatment, for example, an aging treatment at 200 ° C. × 30 min can be applied after the brazing treatment.
半連続鋳造により、表1に組成(残部がAlと不可避不純物)を示す犠牲材用アルミニウム合金、表2に組成(残部がAlと不可避不純物)を示す芯材用アルミニウム合金、およびろう材用合金(JISA4045合金)を鋳造した。得られた芯材、犠牲材およびろう材は所定温度(550℃×10時間)で均質化処理を行った。なお、ろう材は上記合金に限定されるわけではなく、JISA4343合金、4047合金、また4045合金、4343合金、4047合金等にZnを含有する合金、またCu、Li等を含有する合金を用いることもできる。 Aluminum alloys for sacrificial materials whose compositions (the balance is Al and unavoidable impurities) in Table 1 by semi-continuous casting, Aluminum alloys for core materials whose compositions (the balance is Al and inevitable impurities) in Table 2 and alloys for brazing materials (JISA 4045 alloy) was cast. The obtained core material, sacrificial material and brazing material were homogenized at a predetermined temperature (550 ° C. × 10 hours). Note that the brazing material is not limited to the above alloys, and alloys containing Zn in JIS A 4343 alloy, 4047 alloy, 4045 alloy, 4343 alloy, 4047 alloy, etc., and alloys containing Cu, Li, etc. You can also.
芯材の鋳塊の片面に犠牲材鋳塊を、さらに片面にろう材鋳塊を組み合わせて熱間圧延し、クラッド材とした。さらに所定の厚さまで冷間圧延を行った。その後、中間焼鈍を350℃で6時間行い、最終の冷間圧延により厚さ0.15mmのH14調質のクラッド材を作製した。クラッド材の構成(クラッド率)は、犠牲材:芯材:ろう材=20%:70%:10%とした。ただし、上記クラッド率はこれに限定されるものではなく、例えば、犠牲材のクラッド率を15%や10%にしてもよい。 A sacrificial material ingot was combined with one side of the core material ingot, and a brazing material ingot was combined with one side, followed by hot rolling to form a clad material. Furthermore, cold rolling was performed to a predetermined thickness. Thereafter, intermediate annealing was performed at 350 ° C. for 6 hours, and a final cold-rolled plate was used to fabricate a 0.15 mm thick H14 graded clad material. The composition (cladding ratio) of the clad material was set to sacrificial material: core material: brazing material = 20%: 70%: 10%. However, the cladding ratio is not limited to this. For example, the cladding ratio of the sacrificial material may be 15% or 10%.
上記で得られた供試材に対し、以下の特性について評価を行った。 The following characteristics were evaluated with respect to the test material obtained above.
(ろう付後強度、時効硬化後の強度)
作製した材料を、高純度窒素ガス雰囲気中でドロップ形式で590℃×0minのろう付相当熱処理(室温から590℃まで昇温時間は5分)を施した。ろう付直後の強度を測定するための試料として、ろう付した後に25℃で1日放置後、また、時効硬化後の強度を測定するための試料としてさらに90℃で7日時効処理を施した後に圧延方向と平行にサンプルを切り出し、JIS13号B試験片を作製し、引張試験を実施して引張強さを測定した。
(Strength after brazing, strength after age hardening)
The prepared material was subjected to a heat treatment corresponding to brazing at 590 ° C. × 0 min (dropping time from room temperature to 590 ° C. for 5 minutes) in a drop form in a high purity nitrogen gas atmosphere. As a sample for measuring the strength immediately after brazing, it was left for 1 day at 25 ° C. after brazing, and further aged at 90 ° C. for 7 days as a sample for measuring strength after age hardening Later, a sample was cut out in parallel with the rolling direction, a JIS 13 B test piece was prepared, and a tensile test was conducted to measure the tensile strength.
(内部耐食性(腐食深さ))
ろう付熱処理後のサンプルから30×40mmのサンプルを切り出し、犠牲材側について、Cl−:195ppm、SO4 2−:60ppm、Cu2+:1ppm、Fe3+:30ppmを含む水溶液中で80℃×8hr→室温×16hrのサイクルで浸漬試験を2週間実施した。腐食試験後のサンプルを沸騰させたリン酸クロム酸混合溶液に浸漬して腐食生成物を除去した後、断面観察を実施して最大腐食深さを測定した。
(Internal corrosion resistance (corrosion depth))
A sample of 30 × 40 mm is cut out from the sample after brazing heat treatment, and for the sacrificial material side, 80 ° C. × 8 hr in an aqueous solution containing Cl − : 195 ppm, SO 4 2- : 60 ppm, Cu 2+ : 1 ppm, Fe 3 + : 30 ppm → The immersion test was performed for 2 weeks at a cycle of room temperature × 16 hours. After removing the corrosion product by immersing the sample after the corrosion test in a boiled mixed solution of phosphoric acid and chromic acid, cross-sectional observation was performed to measure the maximum corrosion depth.
(耐ろう侵食性(エロージョン深さ))
作製した材料を高純度窒素ガス雰囲気中でドロップ形式で590℃×0minのろう付相当熱処理(室温から600℃まで昇温時間は5分)を施した。ろう付相当熱処理を実施したサンプルを樹脂埋めし、圧延方向平行断面を鏡面研磨し、バーカー氏液で組織を現出後、光学顕微鏡で観察してろう侵食深さを測定した。
(Brazy resistance (erosion depth))
The prepared material was subjected to heat treatment corresponding to brazing at 590 ° C. × 0 min (dropping time from room temperature to 600 ° C. for 5 minutes) in a drop form in a high purity nitrogen gas atmosphere. The samples subjected to the heat treatment corresponding to brazing were resin-filled, the parallel cross sections in the rolling direction were mirror-polished, and after the structure was revealed with Barker's solution, the erosion depth of the solder was measured by observation with an optical microscope.
上記各試験結果を表3に示した。
表中の評価項目は、以下の基準で記載した。
The test results are shown in Table 3.
The evaluation items in the table are described based on the following criteria.
(腐食深さ)
×60μm以上
○30μm以上60μm未満
○○30μm未満
(Corrosion depth)
× 60 μm or more ○ 30 μm or more and less than 60 μm 未 満 30 μm
(強度(直後))
×170MPa未満
○170MPa以上180MPa未満
○○180MPa以上
(Strength (immediately after))
× less than 170 MPa ○ 170 MPa or more and less than 180 MPa · ○ ○ 180 MPa or more
(強度(時効後))
×180MPa未満
○180MPa以上220MPa未満
○○220MPa以上
(Strength (after aging))
× less than 180 MPa ○ 180 MPa or more and less than 220 MPa ○ ○ 220 MPa or more
(ろう侵食)
×エロージョン深さ60μm以上
○エロージョン深さ60μm未満
(Brazy erosion)
× Erosion depth of 60 μm or more ○ Erosion depth of less than 60 μm
(総合評価)
×:製造不可、いずれかの項目に×があるもの
○:全て○のもの
○○、全て○以上、かついずれかの項目に○○があるもの
(Comprehensive evaluation)
X: not manufactured, having x in any item ○: all ○ having ○ ○, all 以上 or more, and having ○ in any item
以上、本発明について、上記実施形態と実施例に基づいて説明を行ったが、本発明の範囲を逸脱しない限りは適宜の変更が可能である。 As mentioned above, although this invention was demonstrated based on the said embodiment and Example, an appropriate | suitable change is possible unless it deviates from the range of this invention.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015075792A JP6517569B2 (en) | 2015-04-02 | 2015-04-02 | Aluminum alloy brazing sheet excellent in corrosion resistance and age hardening |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015075792A JP6517569B2 (en) | 2015-04-02 | 2015-04-02 | Aluminum alloy brazing sheet excellent in corrosion resistance and age hardening |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016196670A JP2016196670A (en) | 2016-11-24 |
JP6517569B2 true JP6517569B2 (en) | 2019-05-22 |
Family
ID=57357544
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015075792A Active JP6517569B2 (en) | 2015-04-02 | 2015-04-02 | Aluminum alloy brazing sheet excellent in corrosion resistance and age hardening |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6517569B2 (en) |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05263173A (en) * | 1992-03-16 | 1993-10-12 | Furukawa Alum Co Ltd | Aluminum alloy for fin material of heat exchanger |
JPH10298686A (en) * | 1997-04-18 | 1998-11-10 | Sumitomo Light Metal Ind Ltd | Aluminum alloy multilayer brazing sheet excellent in corrosion resistance and its production |
CA2482914C (en) * | 2002-04-18 | 2012-04-10 | Alcoa Inc. | Ultra-longlife, high formability brazing sheet |
US7374827B2 (en) * | 2004-10-13 | 2008-05-20 | Alcoa Inc. | Recovered high strength multi-layer aluminum brazing sheet products |
JP2007044713A (en) * | 2005-08-08 | 2007-02-22 | Mitsubishi Alum Co Ltd | Method and apparatus for brazing |
JP5049488B2 (en) * | 2005-12-08 | 2012-10-17 | 古河スカイ株式会社 | Method for producing aluminum alloy brazing sheet |
JP5498229B2 (en) * | 2010-03-31 | 2014-05-21 | 株式会社Uacj | Aluminum alloy flat tube for heat exchanger and aluminum alloy heat exchanger |
JP2012024827A (en) * | 2010-07-27 | 2012-02-09 | Mitsubishi Alum Co Ltd | Fluxless brazing method of aluminum material and aluminum alloy brazing sheet for fluxless brazing |
-
2015
- 2015-04-02 JP JP2015075792A patent/JP6517569B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2016196670A (en) | 2016-11-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5276476B2 (en) | Aluminum alloy clad material | |
JP5336967B2 (en) | Aluminum alloy clad material | |
EP3029169A1 (en) | Aluminum-alloy clad member, method for producing same, and heat exchanger using aluminum-alloy clad member | |
JP5913853B2 (en) | Aluminum alloy brazing sheet and method for producing the same | |
US10315277B2 (en) | Aluminium alloy laminated plate | |
JP5878365B2 (en) | Aluminum alloy brazing sheet | |
EP3121301A1 (en) | Cladded aluminium-alloy material and production method therefor, and heat exchanger using said cladded aluminium-alloy material and production method therefor | |
WO2016129175A1 (en) | Aluminum alloy fin material | |
JP2010180422A (en) | Method for producing aluminum alloy | |
WO2016152569A1 (en) | Magnesium-lithium alloy, rolled material formed from magnesium-lithium alloy, and processed article containing magnesium-lithium alloy as starting material | |
WO2016052366A1 (en) | Aluminum alloy brazing sheet | |
JP2015505905A (en) | Aluminum fin alloy and manufacturing method thereof | |
JP5840941B2 (en) | Brazing sheet | |
WO2017169633A1 (en) | Aluminum alloy brazing sheet | |
JP6233916B2 (en) | Aluminum alloy brazing material and aluminum alloy composite material | |
JP5743642B2 (en) | Aluminum alloy brazing sheet | |
JP5189853B2 (en) | Aluminum alloy clad material for heat exchanger | |
JP6517569B2 (en) | Aluminum alloy brazing sheet excellent in corrosion resistance and age hardening | |
US10213877B2 (en) | Aluminum alloy and corresponding heat treatment process applied to manufacture aluminum/steel cladding plates resistant to high temperature brazing | |
JP2009046697A (en) | Aluminum alloy sheet for use in molding, excellent in formability, coating/baking hardening ability and corrosion resistance | |
JP6091806B2 (en) | Aluminum alloy brazing sheet for ERW welded tube | |
JP2016089244A (en) | Aluminum alloy brazing sheet | |
JP2016176112A (en) | Aluminum alloy brazing sheet | |
JP6227462B2 (en) | Aluminum alloy clad material | |
JP6626625B2 (en) | Aluminum alloy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180301 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20181204 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190129 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190402 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190418 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6517569 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |