JP6514654B2 - Magnetic film suitable for magnetic recording medium and method of manufacturing the same - Google Patents

Magnetic film suitable for magnetic recording medium and method of manufacturing the same Download PDF

Info

Publication number
JP6514654B2
JP6514654B2 JP2016041146A JP2016041146A JP6514654B2 JP 6514654 B2 JP6514654 B2 JP 6514654B2 JP 2016041146 A JP2016041146 A JP 2016041146A JP 2016041146 A JP2016041146 A JP 2016041146A JP 6514654 B2 JP6514654 B2 JP 6514654B2
Authority
JP
Japan
Prior art keywords
magnetic
powder
magnetic film
average particle
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016041146A
Other languages
Japanese (ja)
Other versions
JP2016194147A (en
Inventor
英生 高見
英生 高見
佐藤 敦
敦 佐藤
矢作 政隆
政隆 矢作
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Publication of JP2016194147A publication Critical patent/JP2016194147A/en
Priority to PCT/JP2017/007761 priority Critical patent/WO2017150524A1/en
Application granted granted Critical
Publication of JP6514654B2 publication Critical patent/JP6514654B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/64Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent
    • G11B5/65Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent characterised by its composition
    • G11B5/657Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent characterised by its composition containing inorganic, non-oxide compound of Si, N, P, B, H or C, e.g. in metal alloy or compound
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/02Alloys based on gold
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/64Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent
    • G11B5/65Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent characterised by its composition
    • G11B5/658Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent characterised by its composition containing oxygen, e.g. molecular oxygen or magnetic oxide
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/851Coating a support with a magnetic layer by sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/12Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys
    • H01F10/14Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys containing iron or nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/18Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates by cathode sputtering

Description

本発明は、ハードディスクドライブなどの磁気記録媒体に適した磁性膜及びその製造方法に関する。   The present invention relates to a magnetic film suitable for a magnetic recording medium such as a hard disk drive and a method of manufacturing the same.

ハードディスクドライブに代表される磁気記録の分野では、磁気記録媒体中の磁性薄膜の材料として、強磁性金属であるCo、Fe、あるいはNiをベースとした材料が用いられてきた。例えば、面内磁気記録方式を採用するハードディスクの磁性薄膜には、Coを主成分とするCo−Cr系やCo−Cr−Pt系の強磁性合金が用いられてきた。また、近年実用化された垂直磁気記録方式を採用するハードディスクの磁性薄膜には、Coを主成分とするCo−Cr−Pt系の強磁性合金と非磁性の無機物粒子からなる複合材料が多く用いられている。そして上記の磁性薄膜は、生産性の高さから、上記材料を成分とするスパッタリングターゲットをDCマグネトロンスパッタ装置でスパッタして作製されることが多い。   In the field of magnetic recording represented by a hard disk drive, materials based on Co, Fe or Ni, which are ferromagnetic metals, have been used as the material of the magnetic thin film in the magnetic recording medium. For example, as a magnetic thin film of a hard disk adopting an in-plane magnetic recording method, a Co-Cr-based or Co-Cr-Pt-based ferromagnetic alloy containing Co as a main component has been used. In addition, many of composite materials consisting of Co-Cr-Pt based ferromagnetic alloy and nonmagnetic inorganic particles mainly composed of Co are used for magnetic thin films of hard disks adopting the perpendicular magnetic recording system that has been put into practical use in recent years. It is done. Then, the above-mentioned magnetic thin film is often produced by sputtering a sputtering target containing the above-mentioned material as a component with a DC magnetron sputtering apparatus because of high productivity.

ハードディスクの記録密度は年々急速に増大しており、記録密度が1Tbit/inに達すると、記録bitのサイズが10nmを下回るようになり、その場合には、熱揺らぎによる超常磁性化が問題となってくると予想され、現在、使用されている磁気記録媒体の材料、例えばCo−Cr基合金にPtを添加して結晶磁気異方性を高めた材料では十分ではないことが予想される。10nm以下のサイズで安定的に強磁性として振る舞う磁性粒子は、より高い結晶磁気異方性を持っている必要があるからである。 The recording density of hard disks is rapidly increasing year by year, and when the recording density reaches 1 Tbit / in 2 , the recording bit size becomes smaller than 10 nm. In this case, the superparamagnetization due to thermal fluctuation becomes a problem It is expected that materials of magnetic recording media currently being used, for example, materials in which Pt is added to a Co-Cr based alloy to enhance the magnetocrystalline anisotropy are not sufficient. This is because magnetic particles that stably behave as ferromagnetism in a size of 10 nm or less need to have higher magnetocrystalline anisotropy.

上記のような理由から、L1構造を持つFePt相が超高密度記録媒体用材料として注目されている。L1構造を持つFePt相は高い結晶磁気異方性とともに、耐食性、耐酸化性に優れているため、磁気記録媒体としての応用に適した材料と期待されているものである。そして、FePt相を超高密度記録媒体用材料として使用する場合には、規則化したFePt磁性相を磁気的に孤立させた状態で出来るだけ高密度に方位をそろえて分散させるという技術の開発が求められている。 For the reasons described above, FePt phase having an L1 0 structure is attracting attention as a material for an ultra-high density recording medium. FePt phase having an L1 0 structure with a high magnetocrystalline anisotropy, corrosion resistance and excellent oxidation resistance, is what is expected as a material suitable for the application as a magnetic recording medium. And, when using the FePt phase as a material for ultra-high density recording media, development of a technology to disperse the ordered FePt magnetic phase in the magnetically isolated state as high density as possible with uniform orientation It has been demanded.

このようなことから、L1構造を有するFePt磁性相を酸化物、窒化物、炭化物、炭素といった非磁性材料で孤立させたグラニュラー構造磁性薄膜が、熱アシスト磁気記録方式を採用した次世代ハードディスクの磁気記録媒体用として提案されている。このグラニュラー構造磁性薄膜は、磁性粒子同士が非磁性物質の介在により磁気的に絶縁される構造となっている。一般的に、FePt相を有するグラニュラー構造磁性薄膜はFe−Pt系の焼結体スパッタリングターゲットを用いて作製される。 For this reason, oxide FePt magnetic phase having an L1 0 structure, nitrides, carbides, granular structure magnetic thin film was isolated by non-magnetic material such carbon, the next generation hard disk employing a thermally assisted magnetic recording method It has been proposed for magnetic recording media. The granular magnetic thin film has a structure in which magnetic particles are magnetically isolated by the presence of a nonmagnetic substance. In general, a granular magnetic thin film having an FePt phase is prepared using a Fe—Pt based sintered body sputtering target.

FePt膜をスパッタリング法で作製した場合、Fe原子とPt原子がランダムに並ぶ不規則相になる。したがって、規則化したFePt相を形成するためには、成膜後に600℃程度で熱処理する必要があるが、実用化のためには、この温度を極力低くすることが求められている。この点、特許文献1には、FePt合金などの合金膜の規則化に必要なアニール温度を低下させるために、残留酸素量に代表される残留ガス成分量を低減することが記載されている。しかし、非磁性材料として酸化物、炭化物、窒化物等を扱う場合、このようなガス成分量を制御することは容易でなかった。   When an FePt film is produced by sputtering, it becomes an irregular phase in which Fe atoms and Pt atoms are randomly arranged. Therefore, in order to form an ordered FePt phase, it is necessary to perform heat treatment at about 600 ° C. after film formation, but for practical use, it is required to lower this temperature as much as possible. In this respect, Patent Document 1 describes that the amount of residual gas component represented by the amount of residual oxygen is reduced in order to lower the annealing temperature required for ordering the alloy film such as FePt alloy. However, when dealing with oxides, carbides, nitrides and the like as nonmagnetic materials, it has not been easy to control the amount of such gas components.

特許文献2には、FePt層をスパッタ法で堆積させ、次に、FePt層の上にシーリング層を堆積後、400〜800℃の温度範囲でアニーリングを行い、FePtをL1相で実質的に規則化した後、シーリング層を除去することが記載されている。しかし、この方法は、高温アニーリングを可能とするもので、規則化するためのアニール温度を低下させるものではない。
また、特許文献3には、MgOを添加したL1形規則合金混合物薄膜は、SiOやAlを添加した混合物薄膜に比べ低い製膜温度のもとで作製できることが記載されている。しかし、これは、MgOを添加した場合、相対的に成膜時の基板加熱温度が低いことを示すのみで、規則化温度を低下させることを意図するものではない。
Patent Document 2, is deposited FePt layer by sputtering, then after depositing a sealing layer on the FePt layer performs annealing in the temperature range of 400 to 800 ° C., FePt substantially in L1 0 phase After ordering, it is described that the sealing layer is removed. However, this method enables high temperature annealing and does not lower the annealing temperature for ordering.
Further, Patent Document 3, L1 0 form ordered alloy mixture films with added MgO are described that can be manufactured under a low film formation temperature than the mixture thin film obtained by adding SiO 2 and Al 2 O 3 . However, this only indicates that when MgO is added, the substrate heating temperature during film formation is relatively low, and it is not intended to lower the ordering temperature.

本出願人は以前、Fe−Pt系の磁性記録媒体用スパッタリングターゲットに関する発明を提供した(特許文献4〜5)。これらの発明は、非磁材料として含有する炭素がスパッタリング時に脱落してパーティクルが発生するのを効果的に抑制できるという優れた技術であるが、これらは、規則化温度の低下について特に言及するものではない。その他、特許文献6〜7にも、FePt系スパッタリングターゲットや磁気記録媒体が開示されているが、いずれも規則化温度に言及するものではない。   The applicant of the present invention previously provided the invention regarding the sputtering target for magnetic recording media of Fe-Pt system (patent documents 4-5). These inventions are excellent techniques that can effectively suppress the generation of particles due to the dropout of carbon contained as non-magnetic material during sputtering, but these particularly mention the reduction of the ordering temperature is not. In addition, although FePt-based sputtering targets and magnetic recording media are disclosed also in Patent Documents 6 to 7, none of them mentions the ordering temperature.

特開2003−313659号公報JP 2003-313659 A 特開2013−77370号公報JP, 2013-77370, A 特開2002−123920号公報Japanese Patent Application Publication No. 2002-123920 国際公開WO2014/196377号International Publication WO2014 / 196377 国際公開WO2014/188916号International Publication WO2014 / 188916 特開2008−59733号公報JP, 2008-59733, A 特開2012−214874号公報JP, 2012-214874, A

本発明は、スパッタで成膜されるFe−Pt系磁性膜であって、比較的低温でL1規則構造を発現する磁性膜を提供することを課題とする。 The present invention relates to a Fe-Pt-based magnetic film formed by sputtering, and to provide a magnetic film which express relatively low temperature L1 0 ordered structure.

上記の課題を解決するために本発明者は鋭意研究を行った結果、500℃前後でFe−Ptと反応することがなく、且つ、変態温度の駆動力を大きくすることができる金属成分を選定し、これをFe−Pt系合金に添加金属として所定の比率で添加することにより、L1規則構造を発現するための熱処理温度を低下させることができるとの知見が得られた。
このような知見に基づき、本願は、以下の発明を提供する。
1)Fe及びPtを含む磁性金属と非磁性材料とからなる磁性膜であって、さらにMgを含有し、原子数比で(Fe1−αPtα1−βMgβ(α、βは、0.35≦α≦0.55、0.01≦β≦0.2を満たす数)で表される組成を有することを特徴とする磁性膜。
2)Fe及びPtを含む磁性金属と非磁性材料とからなる磁性膜であって、さらにGe、Ag、Auからなる金属群M1から選択されるいずれか一種以上の金属を含有し、原子数比で(Fe1−αPtα1−βM1β(α、βは、0.35≦α≦0.55、0.01≦β≦0.2を満たす数)で表される組成を有することを特徴とする磁性膜。
3)Fe及びPtを含む磁性金属と非磁性材料とからなる磁性膜であって、さらにPd、Re、Niからなる金属群M2から選択されるいずれか一種以上の金属を含有し、原子数比で(Fe1−αPtα1−βM2β(α、βは、0.35≦α≦0.55、0.01≦β≦0.2を満たす数)で表される組成を有することを特徴とする磁性膜。
4)規則化温度が500℃以下であることを特徴とする上記1)〜3)のいずれか一に記載の磁性膜。
5)L1構造の結晶構造を有することを特徴とする上記1)〜4)のいずれか一に記載の磁性膜。
6)非磁性材料は、炭素、炭化物、酸化物及び窒化物から選択される少なくとも1種以上からなり、該非磁性材料の体積比率が膜の全体量に対して10〜60vol%であることを特徴とする上記1)〜5)のいずれか一に記載の磁性膜。
7)上記1)〜3)のいずれか一に記載の磁性膜を製造するための方法であって、スパッタリングターゲットをスパッタして得られた膜を500℃以下の温度で真空熱処理して作製することを特徴とする磁性膜の製造方法。
As a result of intensive research conducted by the present inventors in order to solve the above problems, as a result of selecting a metal component which does not react with Fe-Pt at around 500 ° C. and which can increase the driving force of transformation temperature. and, by adding at a predetermined ratio as an additive metal it to Fe-Pt alloy, it is finding that it is possible to lower the heat treatment temperature for expressing an L1 0 ordered structure was obtained.
Based on such findings, the present invention provides the following inventions.
1) A magnetic film composed of a magnetic metal containing Fe and Pt and a nonmagnetic material, further containing Mg, and having an atomic ratio of (Fe 1-α Pt α ) 1-β Mg β (α, β is A magnetic film characterized by having a composition represented by 0.35 ≦ α ≦ 0.55, and a number satisfying 0.01 ≦ β ≦ 0.2.
2) A magnetic film comprising a magnetic metal containing Fe and Pt and a nonmagnetic material, and further containing at least one metal selected from the metal group M1 consisting of Ge, Ag, Au, and having an atomic ratio Have a composition represented by (Fe 1-α Pt α ) 1-β M 1 β (where α and β are numbers satisfying 0.35 ≦ α ≦ 0.55 and 0.01 ≦ β ≦ 0.2) Magnetic film characterized by
3) A magnetic film comprising a magnetic metal containing Fe and Pt and a nonmagnetic material, and further containing at least one metal selected from the metal group M2 consisting of Pd, Re and Ni, and having an atomic ratio Have a composition represented by (Fe 1-α Pt α ) 1-β M 2 β (where α and β are numbers satisfying 0.35 ≦ α ≦ 0.55 and 0.01 ≦ β ≦ 0.2) Magnetic film characterized by
4) The magnetic film according to any one of the above 1) to 3), wherein the ordering temperature is 500 ° C. or less.
5) L1 0 the 1 and having a crystal structure of the structure) to 4) magnetic film according to any one of.
6) The nonmagnetic material comprises at least one selected from carbon, carbide, oxide and nitride, and the volume ratio of the nonmagnetic material is 10 to 60 vol% with respect to the total amount of the film The magnetic film according to any one of the above 1) to 5).
7) A method for producing the magnetic film according to any one of the above 1) to 3), wherein a film obtained by sputtering a sputtering target is vacuum heat treated at a temperature of 500 ° C. or less A method of manufacturing a magnetic film characterized by

本発明によれば、FePt磁性相を規則化するための熱処理温度を低下させることが可能な磁性膜を提供することができる。これにより、L1規則構造を有するFePt磁性相の形成を容易にするとともに、高密度の磁気記録媒体の生産性を向上することができるという優れた効果を有する。 According to the present invention, it is possible to provide a magnetic film capable of reducing the heat treatment temperature for ordering the FePt magnetic phase. Thus, the ease of formation of the FePt magnetic phase having an L1 0 ordered structure, has an excellent effect that it is possible to improve the productivity of the high-density magnetic recording medium.

本発明の磁性膜は、Fe及びPtを含む磁性金属と非磁性材料とからなる。FePt合金の組成として一般には、原子比率においてPtが0.35以上0.55以下、残部がFeの比率で配合したものを用いることができる。この比率は、磁気記録膜として有効な特性を維持できる範囲である。なお、本発明の磁性膜は、スパッタリング法で成膜することが可能であるが、その場合、膜の組成は、通常、スパッタリングターゲットの膜の組成と実質的に同一になる。   The magnetic film of the present invention is composed of a magnetic metal containing Fe and Pt and a nonmagnetic material. Generally as a composition of a FePt alloy, what mix | blended Pt in the ratio of 0.35 or more and 0.55 or less in atomic ratio, and remainder with Fe can be used. This ratio is a range in which effective characteristics as a magnetic recording film can be maintained. The magnetic film of the present invention can be deposited by sputtering. In that case, the composition of the film is usually substantially the same as the composition of the film of the sputtering target.

本発明において重要なことは、磁性金属に、1)Mg、又は、2)Ge、Ag、Auからなる金属群M1から選択されるいずれか一種以上の金属、又は、3)Pd、Re、Niからなる金属群M2から選択されるいずれか一種以上の金属、を所定の比率で含有するものである。これらの金属元素は、500℃前後でFePtと反応することがなく、且つ、変態温度の駆動力を大きくすることができるため、FePtのL1規則構造の安定性を維持するために優れた成分である。 What is important in the present invention is that the magnetic metal is any one or more metals selected from the metal group M1 consisting of 1) Mg or 2) Ge, Ag, Au, or 3) Pd, Re, Ni And any one or more metals selected from the metal group M2 consisting of and in a predetermined ratio. These metal elements, not react with FePt at about 500 ° C., and, since it is possible to increase the driving force of the transformation temperature, excellent in order to maintain the stability of the L1 0 ordered structure of FePt component It is.

本発明は、組成が原子数比(Fe1−αPtα1−βMgβ(α、βは、0.35≦α≦0.55、0.01≦β≦0.2を満たす数)となるように、Mgを添加することである。Mgの原子数比が0.01未満であると、規則化温度の低下の効果が十分に得られず、一方、Mgの原子数比が0.2を超えると、磁性薄膜として十分な磁気特性が得られなくなる可能性がある。 In the present invention, the composition satisfies the atomic ratio (Fe 1-α Pt α ) 1-β Mg β (α, β is 0.35 ≦ α ≦ 0.55, 0.01 ≦ β ≦ 0.2. It is adding Mg so that it may become. If the atomic ratio of Mg is less than 0.01, the effect of lowering the ordering temperature can not be obtained sufficiently, while if the atomic ratio of Mg exceeds 0.2, the magnetic properties sufficient for a magnetic thin film May not be obtained.

また、本発明は、組成が原子数比(Fe1−αPtα1−βM1β(α、βは、0.35≦α≦0.55、0.01≦β≦0.2を満たす数)となるように、Ge、Ag、Auからなる金属群M1から選択される1種以上の金属元素を添加することである。M1の原子数比が0.01未満であると、規則化温度の低下の効果が十分に得られず、一方、M1の原子数比が0.2を超えると、磁性膜として十分な磁気特性が得られなくなる可能性がある。 In the present invention, the composition has an atomic ratio (Fe 1-α Pt α ) 1-β M 1 β (α, β is 0.35 ≦ α ≦ 0.55, 0.01 ≦ β ≦ 0.2. One or more metal elements selected from the metal group M1 consisting of Ge, Ag, and Au are added so as to satisfy the number). If the atomic ratio of M1 is less than 0.01, the effect of lowering the ordering temperature can not be sufficiently obtained, while if the atomic ratio of M1 exceeds 0.2, sufficient magnetic properties as a magnetic film can be obtained. May not be obtained.

また、本発明は、組成が原子数比(Fe1−αPtα1−βM2β(α、βは、0.35≦α≦0.55、0.01≦β≦0.2を満たす数)となるように、Pd、Re、Niからなる金属群M2から選択される1種以上の金属元素を添加することである。M2の原子数比が0.01未満であると、規則化温度の低下の効果が十分に得られず、一方、M2の原子数比が0.2を超えると、磁性膜として十分な磁気特性が得られなくなる可能性がある。 In the present invention, the composition has an atomic ratio (Fe 1-α Pt α ) 1-β M 2 β (α, β is 0.35 ≦ α ≦ 0.55, 0.01 ≦ β ≦ 0.2 One or more metal elements selected from the metal group M2 consisting of Pd, Re, and Ni are added so as to satisfy the number). When the atomic ratio of M2 is less than 0.01, the effect of lowering the ordering temperature can not be sufficiently obtained. On the other hand, when the atomic ratio of M2 exceeds 0.2, sufficient magnetic properties as a magnetic film can be obtained. May not be obtained.

また、本発明の磁性膜は、非磁性材料として、炭素、炭化物、窒化物、酸化物を含有することができる。このような磁性膜は、炭素、炭化物、窒化物、炭化物が磁性相同士の磁気的な相互作用を絶縁する構造をとるため、良好な磁気特性が期待される。非磁性材料の配合量は、有効な磁気記録媒体としての特性を維持できる範囲内であれば特に制限はないが、磁性膜中の体積比率で10vol%以上、60vol%以下とすることが好ましい。   In addition, the magnetic film of the present invention can contain carbon, carbide, nitride, and oxide as a nonmagnetic material. Such a magnetic film has a structure in which carbon, carbides, nitrides, and carbides insulate the magnetic interaction between the magnetic phases, and therefore good magnetic properties are expected. The compounding amount of the nonmagnetic material is not particularly limited as long as the characteristics as an effective magnetic recording medium can be maintained, but the volume ratio in the magnetic film is preferably 10 vol% to 60 vol%.

本発明の磁性膜は、規則化温度(すなわち、L1構造型の結晶構造を発現するための熱処理温度)を500℃以下とすることができる。この規則化温度を低下させることにより、磁性膜形成プロセスのエネルギー消費を低減させることができる。組成を調整することで、さらに規則化温度を400℃以下とすることができる。規則化しているか否かは、熱処理したスパッタ膜のXRD(X線回折法)プロファイルを測定し、FePtのL1構造における(110)面からの超格子反射ピークの有無によって判定する。 Magnetic film of the present invention, ordering temperature (i.e., L1 0 structure type heat treatment temperature for expressing the crystal structure of) can be 500 ° C. or less. The energy consumption of the magnetic film formation process can be reduced by lowering the ordering temperature. By adjusting the composition, the ordering temperature can be further reduced to 400 ° C. or less. Whether are ordered to measure the XRD of heat-treated sputtered film (X-ray diffraction method) profile, determines the presence or absence of the superlattice reflection peak from (110) plane in the L1 0 structure FePt.

実施例及び比較例では、Rigaku社製の全自動水平型多目的X線回折装置SmartLabを用いて、XRDプロファイルの測定を実施した。X線管球にはCu管を用い、管球出力は40kV×30mAに設定とした。また、光学系は集中法の配置とし、測定は2θ/θモードで実施した。スキャンスピードは10度/分で、サンプリング幅は0.05度とした。プロファイルの解析には装置付属の解析ソフトPDXLを用いた。そして、(110)面からの回折ピークの積分強度が(111)面からの回折ピークの積分強度に対して3%以上あった場合、Fe−Ptが規則化しているものと見なした。なお、XRDプロファイルの測定方法は上記に限らず、薄膜法など別の測定方法を用いても同様の結果を得ることができる。   In the examples and comparative examples, measurement of the XRD profile was performed using a fully automatic horizontal multipurpose X-ray diffractometer SmartLab manufactured by Rigaku Corporation. A Cu tube was used as the X-ray tube, and the tube output was set to 40 kV × 30 mA. In addition, the optical system was arranged in the concentration method, and the measurement was performed in 2θ / θ mode. The scan speed was 10 degrees / minute, and the sampling width was 0.05 degrees. The analysis software PDXL attached to the device was used to analyze the profile. Then, when the integral intensity of the diffraction peak from the (110) plane was 3% or more with respect to the integral intensity of the diffraction peak from the (111) plane, it was considered that Fe—Pt was ordered. The measurement method of the XRD profile is not limited to the above, and similar results can be obtained even if another measurement method such as a thin film method is used.

以下、実施例および比較例に基づいて説明する。なお、本実施例はあくまで一例であり、この例によって何ら制限されるものではない。すなわち、本発明は特許請求の範囲によってのみ制限されるものであり、本発明に含まれる実施例以外の種々の変形を包含するものである。   Hereinafter, the present invention will be described based on Examples and Comparative Examples. The present embodiment is merely an example, and the present invention is not limited in any way. That is, the present invention is limited only by the scope of claims, and includes various modifications other than the embodiments included in the present invention.

(実施例1−4:添加金属 Mg)
原料粉末として、平均粒径3μmのFe粉、平均粒径3μmのPt粉、平均粒径30μmのMg粉を用意し、以下の組成比で合計の重量が2000gとなるように秤量した。
実施例1:45Fe−45Pt−10Mg(at%)
実施例2:40.5Fe−49.5Pt−10Mg(at%)
実施例3:70Fe−28Pt−20Mg(at%)
実施例4:49.5Fe−49.5Pt−1Mg(at%)
(Example 1-4: additive metal Mg)
As raw material powders, Fe powder having an average particle diameter of 3 μm, Pt powder having an average particle diameter of 3 μm, and Mg powder having an average particle diameter of 30 μm were prepared and weighed so as to have a total weight of 2000 g at the following composition ratio.
Example 1: 45Fe-45Pt-10Mg (at%)
Example 2: 40.5 Fe-49.5 Pt-10 Mg (at%)
Example 3: 70Fe-28Pt-20Mg (at%)
Example 4: 49.5 Fe-49.5 Pt-1 Mg (at%)

秤量した原料粉末を粉砕媒体のSUSボールと共に容量10リットルのボールミルポットに投入し、Ar雰囲気中で5時間回転させて混合、粉砕した。次にポットから取り出した粉末をカーボン製に型に充填し、ホットプレス装置を用いて成型、焼結した。ホットプレスの条件は、真空雰囲気、昇温速度300°C/時間、保持温度600℃、保持時間2時間とし、昇温開始時から保持終了まで30MPaで加圧した。保持終了後はチャンバー内でそのまま自然冷却させた。その後、焼結体から採取した小片について、ICP−AES装置により組成分析を行い、いずれのターゲットの組成も実質的に秤量組成と同じであることを確認した。   The weighed raw material powder was put into a 10 liter ball mill pot together with a grinding medium of SUS balls, and rotated for 5 hours in an Ar atmosphere to mix and grind. Next, the powder taken out from the pot was filled in a mold made of carbon, and was molded and sintered using a hot press. The conditions of the hot press were a vacuum atmosphere, a temperature rising rate of 300 ° C./hour, a holding temperature of 600 ° C., and a holding time of 2 hours, and pressure was applied at 30 MPa from the temperature rising start to the holding end. After the end of the holding, the chamber was naturally cooled as it was. Thereafter, composition analysis was performed on small pieces collected from the sintered body using an ICP-AES apparatus, and it was confirmed that the composition of any target was substantially the same as the composition of the weight.

次に、旋盤を用いて、それぞれの焼結体を直径180.0mm、厚さ3.0mmの形状へ切削加工し、円盤上のスパッタリングターゲットを得た。次に、ターゲットをマグネトロンスパッタ装置(キヤノンアネルバ製C-3010スパッタリングシステム)に取り付け、スパッタリングを実施した。スパッタリング条件は、投入電力1kW、Arガス圧1.7Paとし、シリコン基板上に20秒間成膜した。その後、高真空炉にて、基板上の薄膜を400℃、1時間加熱した後、XRD(X線回折法)で分析した結果、いずれの薄膜についても、Fe−Pt規則相のピークが確認された。   Next, using a lathe, each sintered body was cut into a shape having a diameter of 180.0 mm and a thickness of 3.0 mm to obtain a sputtering target on a disk. Next, the target was attached to a magnetron sputtering apparatus (C-3010 sputtering system manufactured by Canon Anelva), and sputtering was performed. Sputtering conditions were: input power: 1 kW, Ar gas pressure: 1.7 Pa, and film formation was performed for 20 seconds on a silicon substrate. Thereafter, the thin film on the substrate is heated at 400 ° C. for 1 hour in a high vacuum furnace and analyzed by XRD (X-ray diffraction method). As a result, the peak of the Fe-Pt ordered phase is confirmed for any thin film. The

(比較例1−3:添加金属 Mg)
平均粒径3μmのFe粉、平均粒径3μmのPt粉、平均粒径30μmのMg粉を用意し、以下の組成比で合計の重量が2000gとなるように秤量した。
比較例1:49.9Fe−49.9Pt−0.2Mg(at%)
比較例2:63Fe−27Pt−10Mg(at%)
比較例3:36Fe−54Pt−10Mg(at%)
(Comparative Example 1-3: Additive Metal Mg)
Fe powder having an average particle diameter of 3 μm, Pt powder having an average particle diameter of 3 μm, and Mg powder having an average particle diameter of 30 μm were prepared, and weighed so as to have a total weight of 2000 g at the following composition ratio.
Comparative Example 1: 49.9 Fe-49.9 Pt-0.2 Mg (at%)
Comparative Example 2: 63Fe-27Pt-10Mg (at%)
Comparative Example 3: 36Fe-54Pt-10Mg (at%)

秤量した原料粉末を、粉砕媒体のSUSボールと共に容量10リットルのボールミルポットに投入し、Ar雰囲気中で5時間回転させて混合、粉砕した。次にポットから取り出した粉末をカーボン製に型に充填し、ホットプレス装置を用いて成型、焼結した。ホットプレスの条件は、実施例1と同様とした。その後焼結体から採取した小片について、ICP−AES装置により組成分析を行い、いずれのターゲットの組成が実質的に秤量組成と同じであることを確認した。   The weighed raw material powder was put into a 10-liter ball mill pot together with a grinding medium of SUS balls, and was rotated for 5 hours in an Ar atmosphere to mix and grind. Next, the powder taken out from the pot was filled in a mold made of carbon, and was molded and sintered using a hot press. The conditions of the hot press were the same as in Example 1. After that, the small pieces collected from the sintered body were subjected to compositional analysis using an ICP-AES apparatus, and it was confirmed that the composition of any target was substantially the same as the composition for weighing.

次に、旋盤を用いて、焼結体を直径180.0mm、厚さ3.0mmの形状へ切削加工し、円盤上のスパッタリングターゲットを得た。次に、ターゲットをマグネトロンスパッタ装置に取り付け、実施例1と同様の条件でスパッタリングを実施した。その後、高真空炉にて、基板上の薄膜を400℃、1時間加熱した後、XRD(X線回折法)で分析した結果、Fe−Pt規則相のピークは確認されなかった。   Next, using a lathe, the sintered body was cut into a shape having a diameter of 180.0 mm and a thickness of 3.0 mm to obtain a sputtering target on a disk. Next, the target was attached to a magnetron sputtering apparatus, and sputtering was performed under the same conditions as in Example 1. Thereafter, the thin film on the substrate was heated at 400 ° C. for 1 hour in a high vacuum furnace and analyzed by XRD (X-ray diffraction method). As a result, no peak of the Fe—Pt ordered phase was confirmed.

(実施例5−8:添加金属 M1)
平均粒径3μmのFe粉、平均粒径3μmのPt粉、平均粒径20μmのGe粉、平均粒径5μmのAg粉を用意し、以下の組成比で合計の重量が2000gとなるように秤量した。
実施例5:45Fe−45Pt−10Ge(at%)
実施例6:40Fe−40Pt−20Ge(at%)
実施例7:45Fe−45Pt−10Ag(at%)
実施例8:40Fe−40Pt−20Ag(at%)
(Example 5-8: additive metal M1)
Prepare Fe powder with an average particle size of 3 μm, Pt powder with an average particle size of 3 μm, Ge powder with an average particle size of 20 μm, and Ag powder with an average particle size of 5 μm. did.
Example 5: 45Fe-45Pt-10Ge (at%)
Example 6: 40Fe-40Pt-20Ge (at%)
Example 7: 45Fe-45Pt-10Ag (at%)
Example 8: 40Fe-40Pt-20Ag (at%)

秤量した原料粉末を、粉砕媒体のSUSボールと共に容量10リットルのボールミルポットに投入し、Ar雰囲気中で5時間回転させて混合、粉砕した。次にポットから取り出した粉末をカーボン製に型に充填し、ホットプレス装置を用いて成型、焼結した。ホットプレスの条件は、保持温度900℃(実施例5、6)、800℃(実施例7、8)とした以外は実施例1と同様とした。その後焼結体から採取した小片について、ICP−AES装置により組成分析を行い、いずれのターゲットの組成が実質的に秤量組成と同じであることを確認した。   The weighed raw material powder was put into a 10-liter ball mill pot together with a grinding medium of SUS balls, and was rotated for 5 hours in an Ar atmosphere to mix and grind. Next, the powder taken out from the pot was filled in a mold made of carbon, and was molded and sintered using a hot press. The hot pressing conditions were the same as in Example 1 except that the holding temperature was 900 ° C. (Examples 5 and 6) and 800 ° C. (Examples 7 and 8). After that, the small pieces collected from the sintered body were subjected to compositional analysis using an ICP-AES apparatus, and it was confirmed that the composition of any target was substantially the same as the composition for weighing.

次に、旋盤を用いて、焼結体を直径180.0mm、厚さ3.0mmの形状へ切削加工し、円盤上のスパッタリングターゲットを得た。次に、ターゲットをマグネトロンスパッタ装置に取り付け、実施例1と同様の条件でスパッタリングを実施した。その後、高真空炉にて、基板上の薄膜を400℃、1時間加熱した後、XRD(X線回折法)で分析した結果、Fe−Pt規則相のピークが確認された。   Next, using a lathe, the sintered body was cut into a shape having a diameter of 180.0 mm and a thickness of 3.0 mm to obtain a sputtering target on a disk. Next, the target was attached to a magnetron sputtering apparatus, and sputtering was performed under the same conditions as in Example 1. Then, after heating the thin film on a substrate at 400 ° C. for 1 hour in a high vacuum furnace, as a result of analysis by XRD (X-ray diffraction method), a peak of Fe—Pt ordered phase was confirmed.

(比較例4−6:添加金属 M1)
平均粒径3μmのFe粉、平均粒径3μmのPt粉、平均粒径20μmのGe粉、平均粒径5μmのAg粉を用意し、以下の組成比で合計の重量が2000gとなるように秤量した。
比較例4:49.9Fe−49.9Pt−0.2Ge(at%)
比較例5:63Fe−27Pt−10Ge(at%)
比較例6:49.95Fe−49.95Pt−0.1Ag(at%)
(Comparative Example 4-6: additive metal M1)
Prepare Fe powder with an average particle size of 3 μm, Pt powder with an average particle size of 3 μm, Ge powder with an average particle size of 20 μm, and Ag powder with an average particle size of 5 μm. did.
Comparative Example 4: 49.9 Fe-49.9 Pt-0.2 Ge (at%)
Comparative Example 5: 63Fe-27Pt-10Ge (at%)
Comparative Example 6: 49.95 Fe-49. 95 Pt-0.1 Ag (at%)

秤量した原料粉末を、粉砕媒体のSUSボールと共に容量10リットルのボールミルポットに投入し、Ar雰囲気中で5時間回転させて混合、粉砕した。次にポットから取り出した粉末をカーボン製の型に充填し、ホットプレス装置を用いて成型、焼結した。ホットプレスの条件は、保持温度を900℃(実施例4、5)、800℃(実施例6)とした以外は実施例1と同様とした。その後焼結体から採取した小片について、ICP−AES装置により組成分析を行い、いずれのターゲットの組成が実質的に秤量組成と同じであることを確認した。   The weighed raw material powder was put into a 10-liter ball mill pot together with a grinding medium of SUS balls, and was rotated for 5 hours in an Ar atmosphere to mix and grind. Next, the powder taken out of the pot was filled into a carbon mold, and was molded and sintered using a hot press. The conditions of the hot press were the same as in Example 1 except that the holding temperatures were set to 900 ° C. (Examples 4 and 5) and 800 ° C. (Example 6). After that, the small pieces collected from the sintered body were subjected to compositional analysis using an ICP-AES apparatus, and it was confirmed that the composition of any target was substantially the same as the composition for weighing.

次に、旋盤を用いて、焼結体を直径180.0mm、厚さ3.0mmの形状へ切削加工し、円盤上のスパッタリングターゲットを得た。次に、ターゲットをマグネトロンスパッタ装置に取り付け、実施例1と同様の条件でスパッタリングを実施した。その後、高真空炉にて、基板上の薄膜を400℃、1時間加熱した後、XRD(X線回折法)で分析した結果、Fe−Pt規則相のピークは確認されなかった。   Next, using a lathe, the sintered body was cut into a shape having a diameter of 180.0 mm and a thickness of 3.0 mm to obtain a sputtering target on a disk. Next, the target was attached to a magnetron sputtering apparatus, and sputtering was performed under the same conditions as in Example 1. Thereafter, the thin film on the substrate was heated at 400 ° C. for 1 hour in a high vacuum furnace and analyzed by XRD (X-ray diffraction method). As a result, no peak of the Fe—Pt ordered phase was confirmed.

(実施例9−10:添加金属 M2)
平均粒径3μmのFe粉、平均粒径3μmのPt粉、平均粒径10μmのPd粉を用意し、以下の組成比で合計の重量が2000gとなるように秤量した。
実施例9:49.5Fe−49.5Pt−1Pd(at%)
実施例10:45Fe−45Pt−10Pd(at%)
(Example 9-10: additive metal M2)
Fe powder having an average particle diameter of 3 μm, Pt powder having an average particle diameter of 3 μm, and Pd powder having an average particle diameter of 10 μm were prepared, and weighed so as to have a total weight of 2000 g at the following composition ratio.
Example 9 49.5 Fe-49.5 Pt-1 Pd (at%)
Example 10: 45Fe-45Pt-10Pd (at%)

秤量した原料粉末を、粉砕媒体のSUSボールと共に容量10リットルのボールミルポットに投入し、Ar雰囲気中で5時間回転させて混合、粉砕した。次にポットから取り出した粉末をカーボン製に型に充填し、ホットプレス装置を用いて成型、焼結した。ホットプレスの条件は、保持温度1000℃とした以外は実施例1と同様とした。その後焼結体から採取した小片について、ICP−AES装置により組成分析を行い、いずれのターゲットの組成が実質的に秤量組成と同じであることを確認した。   The weighed raw material powder was put into a 10-liter ball mill pot together with a grinding medium of SUS balls, and was rotated for 5 hours in an Ar atmosphere to mix and grind. Next, the powder taken out from the pot was filled in a mold made of carbon, and was molded and sintered using a hot press. The conditions of the hot press were the same as in Example 1 except that the holding temperature was 1000 ° C. After that, the small pieces collected from the sintered body were subjected to compositional analysis using an ICP-AES apparatus, and it was confirmed that the composition of any target was substantially the same as the composition for weighing.

次に、旋盤を用いて、焼結体を直径180.0mm、厚さ3.0mmの形状へ切削加工し、円盤上のスパッタリングターゲットを得た。次に、ターゲットをマグネトロンスパッタ装置に取り付け、実施例1と同様の条件でスパッタリングを実施した。その後、高真空炉にて、基板上の薄膜を400℃、1時間加熱した後、XRD(X線回折法)で分析した結果、Fe−Pt規則相のピークが確認された。   Next, using a lathe, the sintered body was cut into a shape having a diameter of 180.0 mm and a thickness of 3.0 mm to obtain a sputtering target on a disk. Next, the target was attached to a magnetron sputtering apparatus, and sputtering was performed under the same conditions as in Example 1. Then, after heating the thin film on a substrate at 400 ° C. for 1 hour in a high vacuum furnace, as a result of analysis by XRD (X-ray diffraction method), a peak of Fe—Pt ordered phase was confirmed.

(実施例11、比較例7:非磁性材料 C)
平均粒径3μmのFe粉、平均粒径3μmのPt粉、平均粒径5μmのAg粉、平均粒径10μmのC粉を用意し、以下の組成比で合計の重量が2000gとなるように秤量した。このときの非磁性材料(C)の体積比率は29.9vol%である。
実施例11:27Fe−27Pt−6Ag−40C(at%)
比較例7:22.5Fe−22.5Pt−15Ag−40C(at%)
なお、体積比率の算出方法は、各元素の重量比率と密度から求めることができる。
Fe、Pt、Ag、Cの重量比率をそれぞれW1、W2、W3、W4(wt%)とし、Fe、Pt、Ag、Cの密度をそれぞれD1、D2、D3、D4(g/cm)として以下の式に導入することで求めることができる。
Cの体積比率(%)=Cの体積(W4/D4)÷全体積(W1/D1+W2/D2+W3/D3+W4/D4)×100
(Example 11, Comparative Example 7: Nonmagnetic Material C)
Prepare Fe powder with an average particle diameter of 3 μm, Pt powder with an average particle diameter of 3 μm, Ag powder with an average particle diameter of 5 μm, and C powder with an average particle diameter of 10 μm, and weigh it so that the total weight becomes 2000 g with the following composition ratio did. The volume ratio of the nonmagnetic material (C) at this time is 29.9 vol%.
Example 11: 27Fe-27Pt-6Ag-40C (at%)
Comparative Example 7: 22.5 Fe-22.5 Pt-15 Ag-40 C (at%)
In addition, the calculation method of volume ratio can be calculated | required from the weight ratio and density of each element.
The weight ratio of Fe, Pt, Ag, C is W1, W2, W3, W4 (wt%), and the density of Fe, Pt, Ag, C is D1, D2, D3, D4 (g / cm 3 ) It can be obtained by introducing it into the following equation.
Volume ratio of C (%) = C volume (W4 / D4) / total volume (W1 / D1 + W2 / D2 + W3 / D3 + W4 / D4) × 100

秤量した原料粉末を、粉砕媒体のSUSボールと共に容量10リットルのボールミルポットに投入し、Ar雰囲気中で5時間回転させて混合、粉砕した。次にポットから取り出した粉末をカーボン製に型に充填し、ホットプレス装置を用いて成型、焼結した。ホットプレスの条件は、保持温度800℃とした以外は実施例1と同様とした。その後、更に焼結体を900℃でHIP処理した。得られた焼結体から採取した小片について、金属成分はICP−AES装置により、炭素は高周波誘導加熱炉燃焼−赤外線吸収法を採用した炭素分析装置により、組成分析を行い、ターゲットの組成が実質的に秤量組成と同じであることを確認した。また、焼結体の相対密度は95%であった。   The weighed raw material powder was put into a 10-liter ball mill pot together with a grinding medium of SUS balls, and was rotated for 5 hours in an Ar atmosphere to mix and grind. Next, the powder taken out from the pot was filled in a mold made of carbon, and was molded and sintered using a hot press. The conditions of the hot press were the same as in Example 1 except that the holding temperature was 800 ° C. Thereafter, the sintered body was further subjected to HIP treatment at 900 ° C. About the small piece collected from the obtained sintered body, the metal component is analyzed by ICP-AES device, the carbon is analyzed by carbon analysis device adopting high frequency induction heating furnace combustion-infrared absorption method, and the composition of the target is substantially It was confirmed that the composition was the same as the composition for weighing. The relative density of the sintered body was 95%.

次に、旋盤を用いて、焼結体を直径180.0mm、厚さ3.0mmの形状へ切削加工し、円盤上のスパッタリングターゲットを得た。次に、ターゲットをマグネトロンスパッタ装置に取り付け、実施例1と同様の条件でスパッタリングを実施した。その後、高真空炉にて、基板上の薄膜を400℃、1時間加熱した後、XRD(X線回折法)で分析した結果、実施例11については、Fe−Pt規則相のピークが確認された。一方比較例7については、Fe−Pt規則相のピークが僅かに確認されるに留まり、不十分であると判断された。   Next, using a lathe, the sintered body was cut into a shape having a diameter of 180.0 mm and a thickness of 3.0 mm to obtain a sputtering target on a disk. Next, the target was attached to a magnetron sputtering apparatus, and sputtering was performed under the same conditions as in Example 1. Thereafter, the thin film on the substrate is heated at 400 ° C. for 1 hour in a high vacuum furnace and analyzed by XRD (X-ray diffraction method). As a result, for Example 11, a peak of Fe-Pt ordered phase is confirmed. The On the other hand, in Comparative Example 7, the peak of the Fe-Pt regular phase was only slightly confirmed, and it was judged to be insufficient.

以上の結果をまとめたものを表1に示す。
The results of the above are summarized in Table 1.

(実施例12−14、比較例8:非磁性材料 C)
平均粒径3μmのFe粉、平均粒径3μmのPt粉、平均粒径5μmのAg粉、平均粒径1μmのNi粉、平均粒径20μmのGe粉、平均粒径10μmのC粉を用意し、以下の組成比で合計の重量が2000gとなるように秤量した。
実施例12:27Fe−27Pt−6Ag−40C(at%)
実施例13:27Fe−27Pt−3Ag−3Ge−40C(at%)
実施例14:27Fe−27Pt−3Ni−3Ge−40C(at%)
比較例8:30Fe−30Pt−40C(at%)
(Examples 12-14, Comparative Example 8: Nonmagnetic Material C)
Prepare Fe powder of average particle diameter 3 μm, Pt powder of average particle diameter 3 μm, Ag powder of average particle diameter 5 μm, Ni powder of average particle diameter 1 μm, Ge powder of average particle diameter 20 μm, C powder of average particle diameter 10 μm It weighed so that the total weight might be 2000 g in the following composition ratios.
Example 12: 27Fe-27Pt-6Ag-40C (at%)
Example 13: 27Fe-27Pt-3Ag-3Ge-40C (at%)
Example 14: 27Fe-27Pt-3Ni-3Ge-40C (at%)
Comparative Example 8: 30Fe-30Pt-40C (at%)

秤量した原料粉末を、粉砕媒体のSUSボールと共に容量10リットルのボールミルポットに投入し、Ar雰囲気中で5時間回転させて混合、粉砕した。次にポットから取り出した粉末をカーボン製に型に充填し、ホットプレス装置を用いて成型、焼結した。ホットプレスの条件は、保持温度を750℃(実施例12、14)、650℃(実施例13)、1100℃(比較例8)とした以外は実施例1と同様とした。その後焼結体から採取した小片について、ICP−AES装置により組成分析を行い、いずれのターゲットの組成が実質的に秤量組成と同じであることを確認した。   The weighed raw material powder was put into a 10-liter ball mill pot together with a grinding medium of SUS balls, and was rotated for 5 hours in an Ar atmosphere to mix and grind. Next, the powder taken out from the pot was filled in a mold made of carbon, and was molded and sintered using a hot press. The hot pressing conditions were the same as in Example 1 except that the holding temperature was changed to 750 ° C. (Examples 12 and 14), 650 ° C. (Example 13), and 1100 ° C. (Comparative Example 8). After that, the small pieces collected from the sintered body were subjected to compositional analysis using an ICP-AES apparatus, and it was confirmed that the composition of any target was substantially the same as the composition for weighing.

次に、旋盤を用いて、焼結体を直径180.0mm、厚さ3.0mmの形状へ切削加工し、円盤上のスパッタリングターゲットを得た。次に、ターゲットをマグネトロンスパッタ装置に取り付け、実施例1と同様の条件でスパッタリングを実施した。その後、高真空炉にて、基板上の薄膜を500℃、1時間加熱した後、XRD(X線回折法)で分析した結果、実施例12〜14ついては、Fe−Pt規則相のピークが確認された。一方、比較例8については、Fe−Pt規則相のピークは確認されなかった。   Next, using a lathe, the sintered body was cut into a shape having a diameter of 180.0 mm and a thickness of 3.0 mm to obtain a sputtering target on a disk. Next, the target was attached to a magnetron sputtering apparatus, and sputtering was performed under the same conditions as in Example 1. Thereafter, the thin film on the substrate is heated at 500 ° C. for 1 hour in a high vacuum furnace and analyzed by XRD (X-ray diffraction method). As a result, in Examples 12 to 14, the peak of Fe-Pt ordered phase is confirmed It was done. On the other hand, in Comparative Example 8, the peak of the Fe-Pt ordered phase was not confirmed.

(実施例15−17、比較例9:非磁性材料 BN、C)
平均粒径3μmのFe粉、平均粒径3μmのPt粉、平均粒径5μmのAg粉、平均粒径1μmのNi粉、平均粒径20μmのGe粉、平均粒径10μmのC粉、平均粒径15μmのBN粉を用意し、以下の組成比で合計の重量が2000gとなるように秤量した。
実施例15:27Fe−27Pt−6Ge−10BN−30C(at%)
実施例16:27Fe−27Pt−3Ag−3Ge−10BN−30C(at%)
実施例17:27Fe−27Pt−3Ni−3Ge−10BN−30C(at%)
比較例8:30Fe−30Pt−10BN−30C(at%)
(Examples 15-17, Comparative Example 9: Nonmagnetic Material BN, C)
Fe powder of average particle diameter 3 μm, Pt powder of average particle diameter 3 μm, Ag powder of average particle diameter 5 μm, Ni powder of average particle diameter 1 μm, Ge powder of average particle diameter 20 μm, C powder of average particle diameter 10 μm, average particle BN powder having a diameter of 15 μm was prepared, and weighed so that the total weight became 2000 g at the following composition ratio.
Example 15: 27Fe-27Pt-6Ge-10BN-30C (at%)
Example 16: 27Fe-27Pt-3Ag-3Ge-10BN-30C (at%)
Example 17: 27Fe-27Pt-3Ni-3Ge-10BN-30C (at%)
Comparative Example 8: 30Fe-30Pt-10BN-30C (at%)

秤量した原料粉末を、粉砕媒体のSUSボールと共に容量10リットルのボールミルポットに投入し、Ar雰囲気中で5時間回転させて混合、粉砕した。次にポットから取り出した粉末をカーボン製に型に充填し、ホットプレス装置を用いて成型、焼結した。ホットプレスの条件は、保持温度を750℃(実施例15、17)、650℃(実施例16)、1100℃(比較例9)とした以外は実施例1と同様とした。その後焼結体から採取した小片について、ICP−AES装置により組成分析を行い、いずれのターゲットの組成が実質的に秤量組成と同じであることを確認した。   The weighed raw material powder was put into a 10-liter ball mill pot together with a grinding medium of SUS balls, and was rotated for 5 hours in an Ar atmosphere to mix and grind. Next, the powder taken out from the pot was filled in a mold made of carbon, and was molded and sintered using a hot press. The hot pressing conditions were the same as in Example 1 except that the holding temperature was changed to 750 ° C. (Examples 15 and 17), 650 ° C. (Example 16), and 1100 ° C. (Comparative Example 9). After that, the small pieces collected from the sintered body were subjected to compositional analysis using an ICP-AES apparatus, and it was confirmed that the composition of any target was substantially the same as the composition for weighing.

次に、旋盤を用いて、焼結体を直径180.0mm、厚さ3.0mmの形状へ切削加工し、円盤上のスパッタリングターゲットを得た。次に、ターゲットをマグネトロンスパッタ装置に取り付け、実施例1と同様の条件でスパッタリングを実施した。その後、高真空炉にて、基板上の薄膜を500℃、1時間加熱した後、XRD(X線回折法)で分析した結果、実施例15〜17ついては、Fe−Pt規則相のピークが確認された。一方、比較例9については、Fe−Pt規則相のピークは確認されなかった。   Next, using a lathe, the sintered body was cut into a shape having a diameter of 180.0 mm and a thickness of 3.0 mm to obtain a sputtering target on a disk. Next, the target was attached to a magnetron sputtering apparatus, and sputtering was performed under the same conditions as in Example 1. Thereafter, the thin film on the substrate is heated at 500 ° C. for 1 hour in a high vacuum furnace and analyzed by XRD (X-ray diffraction method). As a result, for Examples 15 to 17, the peak of Fe-Pt ordered phase is confirmed It was done. On the other hand, in Comparative Example 9, the peak of the Fe-Pt ordered phase was not confirmed.

(実施例18−20、比較例10:非磁性材料 SiO、C)
平均粒径3μmのFe粉、平均粒径3μmのPt粉、平均粒径5μmのAg粉、平均粒径1μmのNi粉、平均粒径20μmのGe粉、平均粒径10μmのC粉、平均粒径0.5μmのSiO粉を用意し、以下の組成比で合計の重量が2000gとなるように秤量した。
実施例18:27Fe−27Pt−6Ge−6SiO−34C(at%)
実施例19:27Fe−27Pt−3Ag−3Ge−6SiO−34C(at%)
実施例20:27Fe−27Pt−3Ni−3Ge−6SiO−34C(at%)
比較例10:30Fe−30Pt−6SiO−34C(at%)
(Example 18-20, Comparative Example 10: Nonmagnetic Material SiO 2 , C)
Fe powder of average particle diameter 3 μm, Pt powder of average particle diameter 3 μm, Ag powder of average particle diameter 5 μm, Ni powder of average particle diameter 1 μm, Ge powder of average particle diameter 20 μm, C powder of average particle diameter 10 μm, average particle An SiO 2 powder having a diameter of 0.5 μm was prepared, and was weighed so that the total weight became 2000 g at the following composition ratio.
Example 18: 27Fe-27Pt-6Ge- 6SiO 2 -34C (at%)
Example 19: 27Fe-27Pt-3Ag- 3Ge-6SiO 2 -34C (at%)
Example 20: 27Fe-27Pt-3Ni- 3Ge-6SiO 2 -34C (at%)
Comparative Example 10: 30Fe-30Pt-6SiO 2 -34C (at%)

秤量した原料粉末を、粉砕媒体のSUSボールと共に容量10リットルのボールミルポットに投入し、Ar雰囲気中で5時間回転させて混合、粉砕した。次にポットから取り出した粉末をカーボン製の型に充填し、ホットプレス装置を用いて成型、焼結した。ホットプレスの条件は、保持温度を750℃(実施例18、20)、650℃(実施例19)、1100℃(比較例10)とした以外は実施例1と同様とした。その後焼結体から採取した小片について、ICP−AES装置により組成分析を行い、いずれのターゲットの組成が実質的に秤量組成と同じであることを確認した。   The weighed raw material powder was put into a 10-liter ball mill pot together with a grinding medium of SUS balls, and was rotated for 5 hours in an Ar atmosphere to mix and grind. Next, the powder taken out of the pot was filled into a carbon mold, and was molded and sintered using a hot press. The hot pressing conditions were the same as in Example 1 except that the holding temperature was changed to 750 ° C. (Examples 18 and 20), 650 ° C. (Example 19), and 1100 ° C. (Comparative Example 10). After that, the small pieces collected from the sintered body were subjected to compositional analysis using an ICP-AES apparatus, and it was confirmed that the composition of any target was substantially the same as the composition for weighing.

次に、旋盤を用いて、焼結体を直径180.0mm、厚さ3.0mmの形状へ切削加工し、円盤上のスパッタリングターゲットを得た。次に、ターゲットをマグネトロンスパッタ装置に取り付け、実施例1と同様の条件でスパッタリングを実施した。その後、高真空炉にて、基板上の薄膜を500℃、1時間加熱した後、XRD(X線回折法)で分析した結果、実施例18〜20については、Fe−Pt規則相のピークが確認された。一方、比較例10については、Fe−Pt規則相のピークは確認されなかった。   Next, using a lathe, the sintered body was cut into a shape having a diameter of 180.0 mm and a thickness of 3.0 mm to obtain a sputtering target on a disk. Next, the target was attached to a magnetron sputtering apparatus, and sputtering was performed under the same conditions as in Example 1. Thereafter, the thin film on the substrate is heated at 500 ° C. for 1 hour in a high vacuum furnace and analyzed by XRD (X-ray diffraction method). As a result, for Examples 18 to 20, the peak of the Fe-Pt ordered phase is confirmed. On the other hand, in Comparative Example 10, the peak of the Fe-Pt ordered phase was not confirmed.

(実施例21−23、比較例11:非磁性材料 MgO、TiN)
平均粒径3μmのFe粉、平均粒径3μmのPt粉、平均粒径5μmのAg粉、平均粒径1μmのNi粉、平均粒径20μmのGe粉、平均粒径10μmのC粉、平均粒径1μmのMgO粉、平均粒径1μmのTiNを用意し、以下の組成比で合計の重量が2000gとなるように秤量した。
実施例21:36Fe−36Pt−8Ge−10MgO−10TiN(at%)
実施例22:36Fe−36Pt−4Ag−4Ge−10MgO−10TiN(at%)
実施例23:36Fe−36Pt−4Ni−4Ge−10MgO−10TiN(at%)
比較例11:40Fe−40Pt−10MgO−10TiN(at%)
(Example 21-23, Comparative Example 11: Nonmagnetic Material MgO, TiN)
Fe powder of average particle diameter 3 μm, Pt powder of average particle diameter 3 μm, Ag powder of average particle diameter 5 μm, Ni powder of average particle diameter 1 μm, Ge powder of average particle diameter 20 μm, C powder of average particle diameter 10 μm, average particle MgO powder with a diameter of 1 μm and TiN with an average particle diameter of 1 μm were prepared, and weighed so that the total weight became 2000 g with the following composition ratio.
Example 21: 36Fe-36Pt-8Ge-10MgO-10TiN (at%)
Example 22: 36Fe-36Pt-4Ag-4Ge-10MgO-10TiN (at%)
Example 23: 36Fe-36Pt-4Ni-4Ge-10MgO-10TiN (at%)
Comparative example 11: 40 Fe-40 Pt-10 MgO-10 TiN (at%)

秤量した原料粉末を、粉砕媒体のSUSボールと共に容量10リットルのボールミルポットに投入し、Ar雰囲気中で5時間回転させて混合、粉砕した。次にポットから取り出した粉末をカーボン製に型に充填し、ホットプレス装置を用いて成型、焼結した。ホットプレスの条件は、保持温度を750℃(実施例21、23)、650℃(実施例22)、1100℃(比較例11)とした以外は実施例1と同様とした。その後焼結体から採取した小片について、ICP−AES装置により組成分析を行い、いずれのターゲットの組成が実質的に秤量組成と同じであることを確認した。   The weighed raw material powder was put into a 10-liter ball mill pot together with a grinding medium of SUS balls, and was rotated for 5 hours in an Ar atmosphere to mix and grind. Next, the powder taken out from the pot was filled in a mold made of carbon, and was molded and sintered using a hot press. The hot pressing conditions were the same as in Example 1 except that the holding temperature was changed to 750 ° C. (Examples 21 and 23), 650 ° C. (Example 22), and 1100 ° C. (Comparative Example 11). After that, the small pieces collected from the sintered body were subjected to compositional analysis using an ICP-AES apparatus, and it was confirmed that the composition of any target was substantially the same as the composition for weighing.

次に、旋盤を用いて、焼結体を直径180.0mm、厚さ3.0mmの形状へ切削加工し、円盤上のスパッタリングターゲットを得た。次に、ターゲットをマグネトロンスパッタ装置に取り付け、実施例1と同様の条件でスパッタリングを実施した。その後、高真空炉にて、基板上の薄膜を500℃、1時間加熱した後、XRD(X線回折法)で分析した結果、実施例21〜23ついては、Fe−Pt規則相のピークが確認された。一方、比較例11については、Fe−Pt規則相のピークは確認されなかった。   Next, using a lathe, the sintered body was cut into a shape having a diameter of 180.0 mm and a thickness of 3.0 mm to obtain a sputtering target on a disk. Next, the target was attached to a magnetron sputtering apparatus, and sputtering was performed under the same conditions as in Example 1. Thereafter, the thin film on the substrate is heated at 500 ° C. for 1 hour in a high vacuum furnace and analyzed by XRD (X-ray diffraction method). As a result, for Examples 21 to 23, the peak of Fe-Pt ordered phase is confirmed It was done. On the other hand, in Comparative Example 11, the peak of the Fe-Pt ordered phase was not confirmed.

(実施例24−26、比較例12:非磁性材料 C)
実施例24−26では、組成が18.75Fe−18.75Ge−62.5C(at%)のターゲットと、さらに、実施例24では純Geターゲットを、実施例25では組成が50Ag−50Ge(at%)ターゲットを、実施例26では組成が50Ni−50Ge(at%)のターゲットを用意した。そして、スパッタ膜全体の組成が以下の組成になるように、スパッタ装置で上記2つのターゲットを交互にスパッタして、シリコン基板上に積層膜を成膜した。一方、比較例12では、組成が18.75Fe−18.75Ge−62.5C(at%)のターゲットのみを用いてスパッタ成膜した。
実施例24:18Fe−18Pt−4Ge−60C(at%)
実施例25:18Fe−18Pt−2Ag−2Ge−60C(at%)
実施例26:18Fe−18Pt−2Ni−2Ge−60C(at%)
比較例12:18.75Fe−18.75Ge−62.5C(at%)
スパッタリング条件は、投入電力1kW、Arガス圧1.7Paとし、シリコン基板上に合計で20秒間成膜した。その後、高真空炉にて、基板上の薄膜を500℃、1時間加熱した後、XRD(X線回折法)で分析した結果、実施例24−26の薄膜については、Fe−Pt規則相のピークが確認された。しかし、比較例12の薄膜についてはFe−Pt規則相のピークは確認されなかった。
(Examples 24 to 26, Comparative Example 12: Nonmagnetic Material C)
In Example 24-26, a target having a composition of 18.75 Fe-18.75 Ge-62.5 C (at%), and in Example 24, a pure Ge target in Example 24, and in Example 25, a composition of 50 Ag-50 Ge (at. %) In Example 26, a target having a composition of 50 Ni-50 Ge (at%) was prepared. Then, the above two targets were alternately sputtered by a sputtering apparatus so that the composition of the entire sputtered film had the following composition, to form a laminated film on a silicon substrate. On the other hand, in Comparative Example 12, sputter deposition was performed using only a target having a composition of 18.75 Fe-18.75 Ge-62.5 C (at%).
Example 24: 18Fe-18Pt-4Ge-60C (at%)
Example 25: 18Fe-18Pt-2Ag-2Ge-60C (at%)
Example 26: 18Fe-18Pt-2Ni-2Ge-60C (at%)
Comparative Example 12: 18.75 Fe-18.75 Ge-62.5 C (at%)
Sputtering conditions were: input power: 1 kW, Ar gas pressure: 1.7 Pa, and film formation was performed for a total of 20 seconds on a silicon substrate. Thereafter, the thin film on the substrate is heated at 500 ° C. for 1 hour in a high vacuum furnace and then analyzed by XRD (X-ray diffraction method). Peak was confirmed. However, for the thin film of Comparative Example 12, no peak of the Fe-Pt ordered phase was confirmed.

以上の結果をまとめたものを表2に示す。
The results of the above are summarized in Table 2.

本発明のスパッタで成膜した磁性薄膜は、L1規則構造を発現するための熱処理温度が低いという優れた効果を有する。本発明の磁性膜は、特に磁気記録媒体の記録膜として有用である。 Magnetic thin film was deposited by sputtering of the present invention has an excellent effect of heat treatment temperature for expressing an L1 0 ordered structure is low. The magnetic film of the present invention is particularly useful as a recording film of a magnetic recording medium.

Claims (7)

Fe及びPtを含む磁性金属と非磁性材料とからなる磁性膜であって、さらにMgを金属として含有し、原子数比で(Fe1−αPtα1−βMgβ(α、βは、0.35≦α≦0.55、0.01≦β≦0.2を満たす数)で表される組成を有することを特徴とする磁性膜。 A magnetic film consisting of a magnetic metal containing Fe and Pt and a nonmagnetic material, further containing Mg as a metal, and having an atomic ratio of (Fe 1-α Pt α ) 1 -β Mg β (α, β is A magnetic film characterized by having a composition represented by 0.35 ≦ α ≦ 0.55, and a number satisfying 0.01 ≦ β ≦ 0.2. Fe及びPtを含む磁性金属と非磁性材料とからなる磁性膜であって、さらにGeを金属として含有し、原子数比で(Fe1−αPtα1−βGeβ(α、βは、0.35≦α≦0.55、0.01≦β≦0.2を満たす数)で表される組成を有することを特徴とする磁性膜。 A magnetic film composed of a magnetic metal containing Fe and Pt and a nonmagnetic material, further containing Ge as a metal, and having an atomic ratio of (Fe 1 -α Pt α ) 1 -β Ge β (α, β is A magnetic film characterized by having a composition represented by 0.35 ≦ α ≦ 0.55, and a number satisfying 0.01 ≦ β ≦ 0.2. Fe及びPtを含む磁性金属と非磁性材料とからなる磁性膜であって、さらにPdを金属として含有し、原子数比で(Fe1−αPtα1−β Pd β(α、βは、0.35≦α≦0.55、0.01≦β≦0.2を満たす数)で表される組成を有することを特徴とする磁性膜。 A magnetic film composed of a magnetic metal containing Fe and Pt and a nonmagnetic material, further containing Pd as a metal, and having an atomic ratio of (Fe 1 -α Pt α ) 1 -β Pd β (α, β is A magnetic film characterized by having a composition represented by 0.35 ≦ α ≦ 0.55, and a number satisfying 0.01 ≦ β ≦ 0.2. 規則化温度が500℃以下であることを特徴とする請求項1〜3のいずれか一項に記載の磁性膜。   The magnetic film according to any one of claims 1 to 3, wherein the ordering temperature is 500 ° C or less. L1構造型の結晶構造を有する請求項1〜4のいずれか一項に記載の磁性膜。 L1 0 structure type magnetic film according to claim 1 having a crystal structure. 非磁性材料は、炭素、炭化物、酸化物及び窒化物から選択される少なくとも1種以上からなり、該非磁性材料の体積比率が膜の全体量に対して10〜60vol%であることを特徴とする請求項1〜5のいずれか一項に記載の磁性膜。   The nonmagnetic material is at least one selected from carbon, carbide, oxide and nitride, and the volume ratio of the nonmagnetic material is 10 to 60 vol% with respect to the total amount of the film. The magnetic film according to any one of claims 1 to 5. 請求項1〜6のいずれか一項に記載の磁性膜を製造するための方法であって、スパッタリングターゲットをスパッタして得られた膜を真空中500℃以下の温度で熱処理して作製することを特徴とする磁性膜の製造方法。



A method for producing a magnetic film according to any one of claims 1 to 6, wherein a film obtained by sputtering a sputtering target is heat-treated at a temperature of 500 ° C or less in vacuum. A method of manufacturing a magnetic film characterized by



JP2016041146A 2015-03-04 2016-03-03 Magnetic film suitable for magnetic recording medium and method of manufacturing the same Active JP6514654B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/007761 WO2017150524A1 (en) 2015-03-04 2017-02-28 Magnetic film suitable for magnetic recording medium and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015042309 2015-03-04
JP2015042309 2015-03-04

Publications (2)

Publication Number Publication Date
JP2016194147A JP2016194147A (en) 2016-11-17
JP6514654B2 true JP6514654B2 (en) 2019-05-15

Family

ID=56898341

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2015250108A Active JP6437427B2 (en) 2015-03-04 2015-12-22 Sputtering target for magnetic recording media
JP2016041146A Active JP6514654B2 (en) 2015-03-04 2016-03-03 Magnetic film suitable for magnetic recording medium and method of manufacturing the same

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2015250108A Active JP6437427B2 (en) 2015-03-04 2015-12-22 Sputtering target for magnetic recording media

Country Status (2)

Country Link
JP (2) JP6437427B2 (en)
WO (1) WO2017150524A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6437427B2 (en) * 2015-03-04 2018-12-12 Jx金属株式会社 Sputtering target for magnetic recording media
JP6692724B2 (en) * 2016-09-02 2020-05-13 Jx金属株式会社 Non-magnetic material dispersed Fe-Pt based sputtering target
US10614849B2 (en) 2018-08-29 2020-04-07 Showa Denko K.K. Heat-assisted magnetic recording medium and magnetic storage apparatus
TWI761264B (en) * 2021-07-15 2022-04-11 光洋應用材料科技股份有限公司 Fe-pt-ag based sputtering target and method of preparing the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5041262B2 (en) * 2011-01-31 2012-10-03 三菱マテリアル株式会社 Sputtering target for forming a magnetic recording medium film and method for producing the same
JP5858634B2 (en) * 2011-04-12 2016-02-10 昭和電工株式会社 Thermally assisted magnetic recording medium and magnetic storage device
JP5705993B2 (en) * 2012-05-22 2015-04-22 Jx日鉱日石金属株式会社 Fe-Pt-Ag-C based sputtering target in which C particles are dispersed and method for producing the same
JP6088811B2 (en) * 2012-12-13 2017-03-01 昭和電工株式会社 Sputtering target manufacturing method and magnetic recording medium manufacturing method
WO2014185266A1 (en) * 2013-05-13 2014-11-20 Jx日鉱日石金属株式会社 Sputtering target for forming magnetic thin film
JP6145332B2 (en) * 2013-06-20 2017-06-07 昭和電工株式会社 Magnetic recording medium, magnetic storage device
JP6437427B2 (en) * 2015-03-04 2018-12-12 Jx金属株式会社 Sputtering target for magnetic recording media

Also Published As

Publication number Publication date
JP2016166404A (en) 2016-09-15
WO2017150524A1 (en) 2017-09-08
JP6437427B2 (en) 2018-12-12
JP2016194147A (en) 2016-11-17

Similar Documents

Publication Publication Date Title
JP5290468B2 (en) Fe-Pt sputtering target in which C particles are dispersed
JP5497904B2 (en) Sputtering target for magnetic recording film
JP5457615B1 (en) Sputtering target for forming a magnetic recording film and method for producing the same
JP5567227B1 (en) Sintered Fe-Pt magnetic material
JP5969120B2 (en) Sputtering target for magnetic thin film formation
WO2014064995A1 (en) Fe-Pt-BASED SPUTTERING TARGET HAVING NON-MAGNETIC SUBSTANCE DISPERSED THEREIN
US20140083847A1 (en) Fe-Pt-C Based Sputtering Target
JP5913620B2 (en) Fe-Pt sintered sputtering target and method for producing the same
US10600440B2 (en) Sputtering target for forming magnetic recording film and method for producing same
JP5705993B2 (en) Fe-Pt-Ag-C based sputtering target in which C particles are dispersed and method for producing the same
JP6514654B2 (en) Magnetic film suitable for magnetic recording medium and method of manufacturing the same
WO2014034390A1 (en) Fe-BASED MAGNETIC MATERIAL SINTERED BODY
JP5944580B2 (en) Sputtering target
JP5946922B2 (en) Sputtering target for magnetic recording media
JP5826945B2 (en) Sputtering target for magnetic recording media
JP2012216273A (en) Fe-Co BASED ALLOY SOFT MAGNETIC FILM FOR PERPENDICULAR MAGNETIC RECORDING MEDIUM, AND POWDER SINTERING SPATTERING TARGET MATERIAL FOR FORMING Fe-Co BASED ALLOY SOFT MAGNETIC FILM FOR PERPENDICULAR MAGNETIC RECORDING MEDIUM
JP6062586B2 (en) Sputtering target for magnetic recording film formation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190412

R150 Certificate of patent or registration of utility model

Ref document number: 6514654

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250