JP6514430B2 - Wavelength conversion optical device, wavelength conversion element and laser device - Google Patents

Wavelength conversion optical device, wavelength conversion element and laser device Download PDF

Info

Publication number
JP6514430B2
JP6514430B2 JP2014013196A JP2014013196A JP6514430B2 JP 6514430 B2 JP6514430 B2 JP 6514430B2 JP 2014013196 A JP2014013196 A JP 2014013196A JP 2014013196 A JP2014013196 A JP 2014013196A JP 6514430 B2 JP6514430 B2 JP 6514430B2
Authority
JP
Japan
Prior art keywords
wavelength conversion
fundamental wave
elliptical
conversion element
harmonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014013196A
Other languages
Japanese (ja)
Other versions
JP2015141274A (en
Inventor
守 久光
守 久光
一智 門倉
一智 門倉
和哉 井上
和哉 井上
徳田 勝彦
勝彦 徳田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2014013196A priority Critical patent/JP6514430B2/en
Publication of JP2015141274A publication Critical patent/JP2015141274A/en
Application granted granted Critical
Publication of JP6514430B2 publication Critical patent/JP6514430B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、波長変換光学装置、波長変換素子及びレーザ装置に関する。   The present invention relates to a wavelength conversion optical device, a wavelength conversion element, and a laser device.

従来、シングルパルスを用いた波長変換光学装置として特許文献1が知られている。この波長変換光学装置は、図7に示すように、周期分極反転構造を形成した波長変換素子からなる疑似位相整合(Quasi Phase Matching)素子(以下QPM素子と称する。)3に基本波の円形ビームを入射させ、QPM素子3により第2高調波(SHG)の真円に近い円形ビームを得ている。   Conventionally, Patent Document 1 is known as a wavelength conversion optical device using a single pulse. In this wavelength conversion optical device, as shown in FIG. 7, a circular beam of a fundamental wave is a quasi phase matching (Quasi Phase Matching) element (hereinafter referred to as a QPM element) 3 comprising a wavelength conversion element having a periodically poled structure. And the QPM element 3 obtains a circular beam close to the perfect circle of the second harmonic (SHG).

また、強誘電体の非線形光学効果を利用したQPMデバイスが知られている。QPMデバイスは、目的とする光を得るために、タンタル酸リチウムLTやLiNbOなどの強誘電体結晶内部に周期的分極反転領域を形成するものである。 Also, QPM devices using nonlinear optical effects of ferroelectrics are known. The QPM device forms a periodically poled region inside a ferroelectric crystal such as lithium tantalate LT or LiNbO 3 in order to obtain the desired light.

なお、分極反転域の作成方法は、例えば特許文献2に記載されている。QPMデバイスによりレーザ光の波長変換を行う場合には、一般に円形ビームが用いられる。   In addition, the creation method of a polarization inversion area | region is described in patent document 2, for example. When wavelength conversion of laser light is performed by a QPM device, a circular beam is generally used.

国際公開2008050802号公報International Publication No. 2008050802 特開2007−3885号公報JP 2007-3885 A

しかしながら、波長変換素子にも光吸収があるため、波長変換素子を高いパワー密度で駆動する場合には、温度上昇により効率が低下し、また波長変換素子が破壊することもあった。また、効率低下や素子破壊を防止するために、基本波のパワー密度を低下させると、変換効率はパワー密度に比例するため、効率が低下する。   However, since the wavelength conversion element also has light absorption, when the wavelength conversion element is driven at a high power density, the efficiency may decrease due to the temperature rise, and the wavelength conversion element may be broken. In addition, when the power density of the fundamental wave is reduced to prevent the efficiency from being reduced or the element being broken, the conversion efficiency is proportional to the power density, so the efficiency is reduced.

本発明の課題は、波長変換素子の効率低下や破壊を防止することができる波長変換光学装置、波長変換素子及びレーザ装置を提供する。   The object of the present invention is to provide a wavelength conversion optical device, a wavelength conversion element, and a laser device capable of preventing the efficiency reduction and destruction of the wavelength conversion element.

上記課題を解決するために、本発明に係る波長変換光学装置は、基本波の円形ビームを基本波の楕円ビームに変形するビーム変形素子と、周期分極反転構造を形成し、前記ビーム変形素子で変形された基本波の楕円ビームを第2高調波の楕円ビームに変換する疑似位相整合素子とを備え、前記疑似位相整合素子の出射端面でのビーム形状が楕円形であり、同じ面積の真円と比較してビーム断面積/周長≦0.56であることを特徴とする。 In order to solve the above problems, a wavelength conversion optical device according to the present invention forms a beam deformation element that deforms a circular beam of a fundamental wave into an elliptical beam of a fundamental wave and a periodically poled structure, and And a quasi phase matching element for converting an elliptical beam of the deformed fundamental wave into an elliptical beam of the second harmonic , wherein the beam shape at the output end face of the quasi phase matching element is elliptical and a perfect circle of the same area And the beam cross-sectional area / perimeter ≦ 0.56 .

本発明によれば、疑似位相整合素子に入射するビームを楕円ビームとしたので、放熱が容易となるため、波長変換素子の温度上昇が発生しにくくなる。従って、波長変換素子の効率低下や破壊を防止することができる波長変換光学装置を提供することができる。   According to the present invention, since the beam incident on the quasi phase matching element is an elliptical beam, heat radiation becomes easy, so that the temperature rise of the wavelength conversion element is less likely to occur. Therefore, it is possible to provide a wavelength conversion optical device capable of preventing the efficiency reduction and destruction of the wavelength conversion element.

本発明の波長変換光学装置の原理を説明する図である。It is a figure explaining the principle of the wavelength conversion optical apparatus of this invention. 楕円率、ビーム断面積と周長との比率の関係を示す図である。It is a figure which shows the relationship of the ratio of an ellipticity and beam cross-sectional area and circumference. 実施例1の波長変換光学装置の構成図である。FIG. 2 is a block diagram of a wavelength conversion optical device of Example 1; 実施例2の波長変換素子の構成図である。FIG. 6 is a block diagram of a wavelength conversion element of Example 2; 実施例2の波長変換素子に形成されたリッジ導波路内のモードを示す図である。FIG. 7 is a view showing modes in a ridge waveguide formed in the wavelength conversion element of Example 2. 実施例3の波長変換素子に形成されたリッジ導波路内のモードを示す図である。FIG. 16 is a diagram showing modes in a ridge waveguide formed in the wavelength conversion element of Example 3. 従来の波長変換光学装置の構成図である。It is a block diagram of the conventional wavelength conversion optical apparatus.

以下、本発明の波長変換光学装置、波長変換素子及びレーザ装置の実施の形態を図面に基づいて詳細に説明する。   Hereinafter, embodiments of a wavelength conversion optical device, a wavelength conversion element, and a laser device of the present invention will be described in detail based on the drawings.

本発明は、波長変換素子に入射するビームを楕円としたことを特徴とする。円形ビームよりも楕円ビームの方が放熱が容易となるため、波長変換素子の温度上昇が発生しにくくなる。   The present invention is characterized in that the beam incident on the wavelength conversion element is an ellipse. Since the elliptical beam is easier to dissipate heat than the circular beam, the temperature rise of the wavelength conversion element is less likely to occur.

その理由について図1を用いて説明する。まず、図1(a)に示す円形ビームと図1(b)に示す楕円ビームとは同じ断面積を有している。これらのビームを比較した場合、パワー密度が同じであれば、吸収のため発生する熱量は断面積に比例するため、同じである。   The reason is described with reference to FIG. First, the circular beam shown in FIG. 1A and the elliptical beam shown in FIG. 1B have the same cross-sectional area. When these beams are compared, if the power density is the same, the amount of heat generated due to absorption is the same as it is proportional to the cross-sectional area.

熱は、矢印で示すように、周囲に逃げるため、周長さが長い方が放熱性が優れている。楕円の方が円よりも周長が長いため、放熱性が良い。このため、波長変換素子の温度上昇が発生しにくくなる。   The heat escapes to the surroundings as shown by the arrows, so the longer the circumferential length, the better the heat dissipation. The oval shape is longer than the circle, so heat dissipation is good. Therefore, the temperature rise of the wavelength conversion element is less likely to occur.

また、楕円ビームと円ビームとが同じビーム断面積である場合、横軸に楕円率、縦軸にビーム断面積/周長(同一ビーム断面積での最大値で規格化)をプロットした図に図2に示す。   In addition, when the elliptical beam and the circular beam have the same beam cross-sectional area, the horizontal axis represents the ellipticity, and the vertical axis the beam cross-sectional area / peripheral length (normalized with the maximum value for the same beam cross-sectional area) It is shown in FIG.

ビーム断面積/周長は、真円の時に最大(、即ち、最も放熱が悪い)であり、楕円率が1から遠ざかるに連れて小さくなっている。即ち、楕円ビームにより放熱性が改善されることがわかる。   The beam cross-sectional area / peripheral length is maximum (that is, the lowest heat dissipation) in the case of a perfect circle, and the ellipticity decreases with distance from 1. That is, it can be seen that the heat dissipation is improved by the elliptical beam.

このように、ビームが楕円である場合、又は他の真円でない図形の場合、例えば、矩形である場合には放熱性が改善されて、SHGの高出力が得られる。   Thus, if the beam is elliptical or other non-round figure, for example, rectangular, then the heat dissipation is improved and a high SHG output is obtained.

また、高出力で波長変換素子を駆動する場合には、特にSHG光の出射端面付近での吸収による熱飽和や破壊が発生することが多い。このため、出射端面でSHG光のビームが楕円や矩形等の形状になることが効果的である。   In addition, when driving the wavelength conversion element with high output, thermal saturation and destruction often occur particularly due to absorption near the emission end face of SHG light. For this reason, it is effective that the beam of SHG light has a shape such as an ellipse or a rectangle at the emission end face.

なお、波長変換結晶の熱抵抗率が0.56倍(熱伝導率が1.8倍)になった場合に、QPMデバイスのSHG到達パワーが有意に大きくなることが知られている。この場合、熱抵抗率はSLTとMg:LNの比較である。   It is known that the SHG reaching power of the QPM device is significantly increased when the thermal resistivity of the wavelength conversion crystal is 0.56 (thermal conductivity is 1.8). In this case, the thermal resistivity is a comparison of SLT and Mg: LN.

波長変換素子の熱抵抗のうち、波長変換結晶が寄与する成分は、ビームからビームのすぐ外側に広がる箇所の影響が大きく、これはビームの周長(ビーム断面積が同じならばビーム断面積/周長)にほぼ比例する。即ち、同じ面積の真円と比較してビーム断面積/周長が0.56倍になっていれば、QPMデバイスのSHG到達パワーが有意に大きくなると考えられる。   Of the thermal resistance of the wavelength conversion element, the component contributed by the wavelength conversion crystal is largely affected by the point extending just outside the beam from the beam, and this is equivalent to the circumferential length of the beam (beam cross section / Approximately proportional to the circumference). That is, it is considered that the SHG reaching power of the QPM device is significantly increased if the beam cross-sectional area / periphery is 0.56 times as large as that of a true circle of the same area.

上記を満たす条件は、
楕円の場合には、長軸/短軸≧7.6
矩形の場合には、長辺/短辺≧8
である。
The conditions that satisfy the above are
In the case of an ellipse, the major axis / minor axis 7.6 7.6
In the case of a rectangle, long side / short side 8 8
It is.

図3は、実施例1の波長変換光学装置を含むレーザ装置の構成図である。図3に示すレーザ装置は、半導体レーザ10、凸レンズ1、凹レンズ2、QPM素子3、凹レンズ4、凸レンズ5を備える。   FIG. 3 is a block diagram of a laser device including the wavelength conversion optical device of the first embodiment. The laser device shown in FIG. 3 includes a semiconductor laser 10, a convex lens 1, a concave lens 2, a QPM element 3, a concave lens 4, and a convex lens 5.

半導体レーザ10は、基本波の円形ビームからなるレーザ光を凸レンズ1に出力する。凸レンズ1、凹レンズ2は、光学系Aを形成し、基本波の円形ビームを楕円ビームに変形する。基本波の円形ビームとして円形の波長1.064μmが用いられる。   The semiconductor laser 10 outputs a laser beam consisting of a circular beam of the fundamental wave to the convex lens 1. The convex lens 1 and the concave lens 2 form an optical system A, and transform the circular beam of the fundamental wave into an elliptical beam. A circular wavelength of 1.064 μm is used as a circular beam of the fundamental wave.

QPM素子3は、光学系Aからの基本波の楕円ビームをSHGの楕円ビームに波長変換する。QPM素子3は、PPMgSLTからなり、光軸と結晶X軸が一致している。PPMgSLTは、MgOをドープした定比組成のタンタル酸リチウムMgO;SLT基板に周期分極反転構造を形成した疑似位相整合型の波長変換デバイスである。同一方向に周期的に分極反転されており、結晶Z軸は入射ビームの偏光方向と一致するように配置されている。周期的分極反転の周期は、所望の温度で波長1.064μmの基本波が波長0.532μmのSHG光に変換されるようになっている。   The QPM element 3 wavelength-converts the elliptical beam of the fundamental wave from the optical system A into an elliptical beam of SHG. The QPM element 3 is made of PPMgSLT, and the optical axis coincides with the crystal X axis. PPMgSLT is a quasi phase matching type wavelength conversion device in which a periodically poled structure is formed on a lithium tantalate MgO having a stoichiometric composition doped with MgO and an SLT substrate. The polarization is periodically reversed in the same direction, and the crystal Z axis is arranged to coincide with the polarization direction of the incident beam. The periodic polarization inversion period is such that a fundamental wave with a wavelength of 1.064 μm is converted into SHG light with a wavelength of 0.532 μm at a desired temperature.

凹レンズ4、凸レンズ5は、光学系Bを形成し、QPM素子3からのSHGの楕円ビームをSHGの円形ビームに変形する。   The concave lens 4 and the convex lens 5 form an optical system B, and transform the elliptical beam of SHG from the QPM element 3 into a circular beam of SHG.

このように実施例1の波長変換光学装置によれば、凸レンズ1、凹レンズ2により、基本波の円形ビームを楕円ビームに変形し、QPM素子3に楕円ビームを入射したので、放熱が容易となるため、波長変換素子の温度上昇が発生しにくくなる。従って、波長変換素子の効率低下や破壊を防止することができる波長変換光学装置を提供することができる。   As described above, according to the wavelength conversion optical device of the first embodiment, the circular beam of the fundamental wave is transformed into an elliptical beam by the convex lens 1 and the concave lens 2 and the elliptical beam is incident on the QPM element 3, so heat radiation becomes easy. Therefore, the temperature rise of the wavelength conversion element is less likely to occur. Therefore, it is possible to provide a wavelength conversion optical device capable of preventing the efficiency reduction and destruction of the wavelength conversion element.

図4は実施例2の波長変換素子の構成図である。図4では、波長変換素子であるQPM素子3aの断面図を示している。QPM素子3aは、傾斜された凹部を有する側壁部31と、底部32と、側壁部31及び底部32の間に形成された台形状のリッジ導波路33とを有している。QPM素子3aには、基本波の円形ビームが入射され、台形状のリッジ導波路33に導かれる。   FIG. 4 is a block diagram of the wavelength conversion element of the second embodiment. FIG. 4 shows a cross-sectional view of the QPM element 3a which is a wavelength conversion element. The QPM element 3 a has a side wall 31 having a sloped recess, a bottom 32, and a trapezoidal ridge waveguide 33 formed between the side wall 31 and the bottom 32. A circular beam of the fundamental wave is incident on the QPM element 3 a and guided to the trapezoidal ridge waveguide 33.

ここで、側壁部31のリッジ幅をWとし、溝深さをdとし、厚みをtとし、傾斜角度をθとする。台形状のリッジ導波路33には、図5に示すように、SHG光の略楕円形の基本モードが形成される。図5では、リッジ幅Wを4.7μm、溝深さdを4μm、厚みtを4.7μm、傾斜角度θを21°とした。   Here, the ridge width of the side wall portion 31 is W, the groove depth is d, the thickness is t, and the inclination angle is θ. In the trapezoidal ridge waveguide 33, as shown in FIG. 5, a substantially elliptical fundamental mode of SHG light is formed. In FIG. 5, the ridge width W is 4.7 μm, the groove depth d is 4 μm, the thickness t is 4.7 μm, and the inclination angle θ is 21 °.

このように、QPM素子3aにリッジ導波路33を設け、このリッジ導波路33により基本波をSHGの楕円の基本モードに変換することができる。従って、放熱が容易となるため、波長変換素子の温度上昇が発生しにくくなる。従って、波長変換素子の効率低下や破壊を防止することができる   Thus, the ridge waveguide 33 is provided in the QPM element 3a, and the ridge waveguide 33 can convert the fundamental wave into the fundamental mode of the SHG ellipse. Therefore, since the heat radiation becomes easy, the temperature rise of the wavelength conversion element hardly occurs. Therefore, the efficiency reduction and destruction of the wavelength conversion element can be prevented.

図6は、実施例3の波長変換素子に形成されたリッジ導波路内のモードを示す図である。図6に示す例では、QPM素子の側壁部が垂直に立った凹部を有し、矩形状のリッジ導波路を有することを特徴とする。   FIG. 6 is a view showing modes in a ridge waveguide formed in the wavelength conversion element of Example 3. The example shown in FIG. 6 is characterized in that the side wall portion of the QPM element has a vertically standing recess and has a rectangular ridge waveguide.

このため、矩形状のリッジ導波路には、図6に示すように、SHG光の略矩形の基本モードが形成される。図6では、リッジ幅Wを4.7μm、溝深さdを4μm、厚みtを4.7μm、傾斜角度θを0°とした。   Therefore, as shown in FIG. 6, a substantially rectangular fundamental mode of SHG light is formed in the rectangular ridge waveguide. In FIG. 6, the ridge width W is 4.7 μm, the groove depth d is 4 μm, the thickness t is 4.7 μm, and the inclination angle θ is 0 °.

このように、QPM素子にリッジ導波路を設け、このリッジ導波路により基本波をSHGの矩形の基本モードに変換することができる。従って、放熱が容易となるため、波長変換素子の温度上昇が発生しにくくなる。従って、波長変換素子の効率低下や破壊を防止することができる   Thus, the QPM element is provided with a ridge waveguide, and this ridge waveguide can convert the fundamental wave into the rectangular fundamental mode of SHG. Therefore, since the heat radiation becomes easy, the temperature rise of the wavelength conversion element hardly occurs. Therefore, the efficiency reduction and destruction of the wavelength conversion element can be prevented.

本発明は、半導体レーザ装置に利用可能である。   The present invention is applicable to a semiconductor laser device.

1,5 凸レンズ
2,4 凹レンズ
3,3a QPM素子
10 半導体レーザ
31 側壁部
32 底部
33 リッジ導波路
1, 5 convex lens 2, 4 concave lens 3, 3a QPM element 10 semiconductor laser 31 side wall 32 bottom 33 ridge waveguide

Claims (4)

基本波の真円からなる円形ビームを基本波の楕円ビームに変形するビーム変形素子と、
周期分極反転構造を形成し、前記ビーム変形素子で変形された基本波の楕円ビームを第2高調波の楕円ビームに変換する疑似位相整合素子と、
を備え、
前記疑似位相整合素子の出射端面でのビーム形状が楕円形であり、同じ面積の前記真円と比較してビーム断面積/周長≦0.56倍であることを特徴とする波長変換光学装置。
A beam deformation element that deforms a circular beam consisting of a true circle of the fundamental wave into an elliptical beam of the fundamental wave;
A quasi phase matching element forming a periodically poled structure and converting an elliptical beam of the fundamental wave deformed by the beam deformation element into an elliptical beam of a second harmonic;
Equipped with
The quasi phase is beam shape elliptical on the emission end surface of the matching element, a wavelength conversion optical system, characterized in that 0.56 times the beam cross-sectional area / perimeter ≦ compared to the true circle having the same area .
周期分極反転構造を形成し且つ基本波の真円からなる円形ビームを第2高調波の楕円形の基本モードに変換する導波路を有し、
出射端面での第2高調波の楕円形の基本モードについて、同じ面積の前記真円と比較してビーム断面積/周長≦0.56倍であることを特徴とする波長変換素子。
A waveguide forming a periodically poled structure and converting a circular beam consisting of a perfect circle of the fundamental wave into an elliptical fundamental mode of the second harmonic,
The wavelength conversion element, wherein the second harmonic oval fundamental modes at the exit end face, which is the 0.56 beam cross-sectional area / perimeter ≦ compared to a true circle having the same area.
周期分極反転構造を形成し且つ基本波の真円からなる円形ビームを第2高調波の矩形の基本モードに変換する導波路を有し、
出射端面での第2高調波の矩形の基本モードについて、同じ面積の前記真円と比較してビーム断面積/周長≦0.56倍であることを特徴とする波長変換素子。
A waveguide forming a periodically poled structure and converting a circular beam consisting of a perfect circle of the fundamental wave into a rectangular fundamental mode of the second harmonic;
The wavelength conversion element, wherein the rectangular fundamental mode of the second harmonic at the exit end face, which is the 0.56 beam cross-sectional area / perimeter ≦ compared to a true circle having the same area.
半導体レーザと、
請求項1の波長変換光学装置とを備え、
前記半導体レーザは、前記ビーム変形素子にレーザ光を前記基本波の円形ビームとして入射することを特徴とするレーザ装置。
A semiconductor laser,
A wavelength conversion optical device according to claim 1;
The semiconductor laser is characterized in that laser light is incident on the beam deformation element as a circular beam of the fundamental wave.
JP2014013196A 2014-01-28 2014-01-28 Wavelength conversion optical device, wavelength conversion element and laser device Active JP6514430B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014013196A JP6514430B2 (en) 2014-01-28 2014-01-28 Wavelength conversion optical device, wavelength conversion element and laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014013196A JP6514430B2 (en) 2014-01-28 2014-01-28 Wavelength conversion optical device, wavelength conversion element and laser device

Publications (2)

Publication Number Publication Date
JP2015141274A JP2015141274A (en) 2015-08-03
JP6514430B2 true JP6514430B2 (en) 2019-05-15

Family

ID=53771677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014013196A Active JP6514430B2 (en) 2014-01-28 2014-01-28 Wavelength conversion optical device, wavelength conversion element and laser device

Country Status (1)

Country Link
JP (1) JP6514430B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020240726A1 (en) * 2019-05-29 2020-12-03

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3848093B2 (en) * 2000-03-21 2006-11-22 松下電器産業株式会社 Optical waveguide device, optical wavelength conversion device, and optical waveguide device manufacturing method
US7113325B1 (en) * 2006-05-03 2006-09-26 Mitsubishi Materials Corporation Wavelength conversion method with improved conversion efficiency
JP2008185891A (en) * 2007-01-31 2008-08-14 Matsushita Electric Ind Co Ltd Wavelength conversion laser beam source and laser wavelength conversion method
JP4557264B2 (en) * 2007-03-08 2010-10-06 日本碍子株式会社 Wavelength conversion element
JP2011107551A (en) * 2009-11-20 2011-06-02 Panasonic Corp Laser light source unit

Also Published As

Publication number Publication date
JP2015141274A (en) 2015-08-03

Similar Documents

Publication Publication Date Title
JP5312947B2 (en) Short wavelength light source and laser image forming apparatus
JP5290958B2 (en) Laser wavelength converter
JP2007298932A (en) Wavelength conversion method
JP2013524276A (en) Nonlinear crystal with wedge-shaped facets for harmonic generation
US7769060B1 (en) Laser light source, and display device using the same
JPWO2009031278A1 (en) Wavelength conversion device, image display device, and processing device
JP6514430B2 (en) Wavelength conversion optical device, wavelength conversion element and laser device
JP5155385B2 (en) Wavelength conversion element
CA2802460C (en) An improved parametric generator
JPWO2011048795A1 (en) Wavelength conversion laser light source and image display device
US8369366B2 (en) Semiconductor laser excited solid-state laser device
US20120077003A1 (en) Method of nonlinear crystal packaging and its application in diode pumped solid state lasers
JP2006308731A (en) Short wavelength light source and method for forming optical element
JP4806427B2 (en) Wavelength conversion element and manufacturing method thereof
JP2007266120A (en) Solid-state laser device
Kurimura et al. QPM wavelength converters based on stoichiometric lithium tantalate
JP5420810B1 (en) Wavelength conversion element
JP5155341B2 (en) Harmonic generator
US20150188281A1 (en) Laser device
Gao et al. Self-frequency conversion laser in Nd-doped calcium barium niobate ferroelectric crystal
JP2011107551A (en) Laser light source unit
EP3244498B1 (en) Array type wavelength converting laser device
JP2006278383A (en) Solid state laser device and laser device system
Hansen et al. 5.5 W of diffraction-limited green light generated by SFG of tapered diode lasers in a cascade of nonlinear crystals
US20120087383A1 (en) Bonded periodically poled optical nonlinear crystals

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170801

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170927

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180606

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20180619

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20180824

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190412

R151 Written notification of patent or utility model registration

Ref document number: 6514430

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151