JP6509581B2 - Transition metal-containing carbonate compound, method for producing the same, method for producing positive electrode active material, and positive electrode for lithium ion secondary battery and lithium ion secondary battery - Google Patents

Transition metal-containing carbonate compound, method for producing the same, method for producing positive electrode active material, and positive electrode for lithium ion secondary battery and lithium ion secondary battery Download PDF

Info

Publication number
JP6509581B2
JP6509581B2 JP2015031448A JP2015031448A JP6509581B2 JP 6509581 B2 JP6509581 B2 JP 6509581B2 JP 2015031448 A JP2015031448 A JP 2015031448A JP 2015031448 A JP2015031448 A JP 2015031448A JP 6509581 B2 JP6509581 B2 JP 6509581B2
Authority
JP
Japan
Prior art keywords
transition metal
aqueous solution
carbonate compound
seed crystal
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015031448A
Other languages
Japanese (ja)
Other versions
JP2016153347A (en
Inventor
翼 ▲高▼杉
翼 ▲高▼杉
拓也 寺谷
拓也 寺谷
酒井 智弘
智弘 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2015031448A priority Critical patent/JP6509581B2/en
Publication of JP2016153347A publication Critical patent/JP2016153347A/en
Application granted granted Critical
Publication of JP6509581B2 publication Critical patent/JP6509581B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、遷移金属含有炭酸塩化合物、その製造方法、正極活物質の製造方法、ならびにリチウムイオン二次電池用正極およびリチウムイオン二次電池に関する。   The present invention relates to a transition metal-containing carbonate compound, a method for producing the same, a method for producing a positive electrode active material, and a positive electrode for a lithium ion secondary battery and a lithium ion secondary battery.

リチウムイオン二次電池の正極に含まれる正極活物質としては、リチウム含有複合酸化物、特にLiCoOがよく知られている。しかし、近年、携帯型電子機器や車載用のリチウムイオン二次電池には、小型化、軽量化が求められ、正極活物質の単位質量あたりのリチウムイオン二次電池の放電容量(以下、単に放電容量とも記す。)のさらなる向上が要求されている。リチウムイオン二次電池の放電容量をさらに高くできる正極活物質としては、LiおよびMnの含有率が高い正極活物質、いわゆるリチウムリッチ系正極活物質が注目されている。 As a positive electrode active material contained in the positive electrode of a lithium ion secondary battery, a lithium-containing composite oxide, in particular, LiCoO 2 is well known. However, in recent years, size reduction and weight reduction are required for portable electronic devices and lithium ion secondary batteries for vehicles, and the discharge capacity of lithium ion secondary batteries per unit mass of positive electrode active material (hereinafter simply referred to as discharge) Further improvement of the capacity is also required. As a positive electrode active material capable of further increasing the discharge capacity of a lithium ion secondary battery, a positive electrode active material having a high content of Li and Mn, that is, a so-called lithium-rich positive electrode active material attracts attention.

正極活物質は、通常、遷移金属化合物(炭酸塩または水酸化物)いわゆる前駆体と、リチウム化合物とを混合し、得られた混合物を焼成して、リチウム含有複合酸化物を得ることによって製造される。前駆体としては、比表面積の大きい正極活物質が得られ、その結果、電池特性が良好なリチウムイオン二次電池が得られる点からは、遷移金属含有炭酸塩化合物が適している。   The positive electrode active material is usually produced by mixing a transition metal compound (carbonate or hydroxide), a so-called precursor, and a lithium compound, and calcining the obtained mixture to obtain a lithium-containing composite oxide. Ru. As the precursor, a transition metal-containing carbonate compound is suitable in that a positive electrode active material having a large specific surface area is obtained, and as a result, a lithium ion secondary battery having good battery characteristics is obtained.

遷移金属含有炭酸塩化合物は、たとえば、反応槽に、NiイオンおよびCoイオンのいずれか一方または両方とMnイオンとを含む水溶液と、炭酸イオンを含む水溶液とを連続的に供給しつつ、反応槽内の混合液を撹拌して遷移金属含有炭酸塩化合物を析出させると同時に、ろ材を通して混合液を抜き出して遷移金属含有炭酸塩化合物を濃縮し、遷移金属含有炭酸塩化合物の粒子を成長させる方法、いわゆる濃縮法によって製造される。   The transition metal-containing carbonate compound is, for example, a reaction vessel while continuously supplying an aqueous solution containing either one or both of Ni ion and Co ion and Mn ion and an aqueous solution containing carbonate ion to the reaction vessel. The mixture liquid is stirred to precipitate the transition metal-containing carbonate compound, and at the same time, the mixture liquid is withdrawn through the filter medium to concentrate the transition metal-containing carbonate compound to grow particles of the transition metal-containing carbonate compound; It is manufactured by the so-called concentration method.

しかし、濃縮法によって得られた遷移金属含有炭酸塩化合物は、円形度が低いという問題を有する。円形度が低い遷移金属含有炭酸塩化合物を前駆体とすると、円形度が低いリチウム含有複合酸化物が得られる。円形度が低いリチウム含有複合酸化物を正極活物質として用いると、正極における正極活物質の密度が低くなるため、正極活物質の単位体積あたりのリチウムイオン二次電池の放電容量が不充分となる。   However, transition metal-containing carbonate compounds obtained by the concentration method have the problem of low circularity. When a transition metal-containing carbonate compound having a low degree of circularity is used as a precursor, a lithium-containing composite oxide having a low degree of circularity can be obtained. When a lithium-containing composite oxide having a low degree of circularity is used as a positive electrode active material, the density of the positive electrode active material in the positive electrode decreases, and therefore the discharge capacity of the lithium ion secondary battery per unit volume of the positive electrode active material becomes insufficient. .

球形に近い遷移金属含有炭酸塩化合物を製造する方法としては、下記の方法が提案されている。
反応槽内の混合液の一部を抜き出して反応槽内に返送する外部循環経路を有する装置を用い、外部循環経路内の流速を1m/秒以上とし、外部循環経路の途中にNiイオンとMnイオンとを含む水溶液、炭酸イオンを含む水溶液等を供給する方法(特許文献1)。
The following method has been proposed as a method for producing a transition metal-containing carbonate compound close to a spherical shape.
Using an apparatus having an external circulation path for extracting a part of the mixed solution in the reaction tank and returning it to the reaction tank, the flow rate in the external circulation path is set to 1 m / sec or more, Ni ions and Mn in the middle of the external circulation path A method of supplying an aqueous solution containing ions, an aqueous solution containing carbonate ions, and the like (Patent Document 1).

しかし、特許文献1に記載の方法によって得られた遷移金属含有炭酸塩化合物は、粒度分布が広い(D90/D10が大きい)という問題を有する。粒度分布が広い遷移金属含有炭酸塩化合物を前駆体とすると、粒度分布が広いリチウム含有複合酸化物が得られる。粒度分布が広いリチウム含有複合酸化物からなる正極活物質は、粗大粒子が多いため、正極活物質を含むスラリを正極集電体に塗工する際の塗工性が悪くなる。また、正極活物質を含むスラリを正極集電体に塗工した後、圧延する際に粗大粒子が割れやすく、リチウムイオン二次電池のサイクル特性が不充分となる。 However, the transition metal-containing carbonate compound obtained by the method described in Patent Document 1 has a problem that the particle size distribution is wide (D 90 / D 10 is large). When a transition metal-containing carbonate compound having a wide particle size distribution is used as a precursor, a lithium-containing composite oxide having a wide particle size distribution can be obtained. Since the positive electrode active material composed of a lithium-containing composite oxide having a wide particle size distribution has many coarse particles, the coatability at the time of applying the slurry containing the positive electrode active material to the positive electrode current collector is deteriorated. In addition, after the slurry containing the positive electrode active material is coated on the positive electrode current collector, the coarse particles are easily broken when rolling, and the cycle characteristics of the lithium ion secondary battery become insufficient.

国際公開第2013/111487号International Publication No. 2013/111487

本発明は、円形度が高く、粒度分布が狭い遷移金属含有炭酸塩化合物を製造できる方法;円形度が高く、粒度分布が狭い遷移金属含有炭酸塩化合物;円形度が高く、粒度分布が狭いリチウム含有複合酸化物を含む正極活物質を製造できる方法;リチウムイオン二次電池の放電容量およびサイクル特性を良好にできるリチウムイオン二次電池用正極;放電容量およびサイクル特性が良好なリチウムイオン二次電池の提供を目的とする。   The present invention can produce a transition metal-containing carbonate compound having high circularity and narrow particle size distribution; Transition metal-containing carbonate compound having high circularity and narrow particle size distribution; Lithium having high circularity and narrow particle size distribution Method of manufacturing a positive electrode active material containing a composite oxide containing the same; positive electrode for lithium ion secondary battery capable of improving discharge capacity and cycle characteristics of lithium ion secondary battery; Lithium ion secondary battery having good discharge capacity and cycle characteristics The purpose is to provide

本発明は、以下の態様を有する。
[1](a)反応槽に、下記水溶液A、下記水溶液Bおよび下記種晶液Cを、それぞれ連続的または断続的に供給する工程と、(b)前記工程(a)を実施しつつ、前記反応槽に供給された下記水溶液A、下記水溶液Bおよび下記種晶液Cを含む混合液を撹拌し、NiおよびCoのいずれか一方または両方とMnとを含む遷移金属含有炭酸塩化合物を成長させる工程と、(c)前記工程(b)を実施しつつ、前記反応槽内の前記遷移金属含有炭酸塩化合物を含む混合液の一部を、前記反応槽から連続的または断続的に抜き出す工程とを有する、遷移金属含有炭酸塩化合物の製造方法。
水溶液A:NiイオンおよびCoイオンのいずれか一方または両方とMnイオンとを含む水溶液。
水溶液B:炭酸イオンを含む水溶液。
種晶液C:NiおよびCoのいずれか一方または両方とMnとを含む炭酸塩化合物からなり、かつD50が5μm未満である種晶を含む液。
[2]前記工程(a)において、前記反応槽に、前記水溶液Aおよび前記種晶液Cを同時に供給し、かつ前記水溶液Bを、前記反応槽内の混合液のpHが7〜9の範囲内でかつ変動幅が±0.2となるように、連続的または断続的に供給する、[1]の遷移金属含有炭酸塩化合物の製造方法。
[3]前記工程(b)において、前記遷移金属含有炭酸塩化合物を、D50が5〜15μmになるまで成長させる、[1]または[2]の遷移金属含有炭酸塩化合物の製造方法。
[4]前記工程(b)において、前記反応槽に供給された前記水溶液A、前記水溶液Bおよび前記種晶液Cを含む混合液を、30〜50℃の範囲内でかつ変動幅を±2℃に保持しながら撹拌する、[1]〜[3]のいずれかの遷移金属含有炭酸塩化合物の製造方法。
[5]前記種晶液Cが、種晶液調製槽に、前記水溶液Aおよび前記水溶液Bをそれぞれ連続的または断続的に供給しつつ、混合液を撹拌し、前記炭酸塩化合物からなる種晶を析出させることによって得られたものである、[1]〜[4]のいずれかの遷移金属含有炭酸塩化合物の製造方法。
[6]NiCoMn(1−x−y−z)CO(ただし、xは、0.15〜0.5であり、yは、0〜0.33であり、zは、0.33〜0.85であり、x+y+zは、1以下であり、Mは、Mg、Ca、Ba、Sr、Al、Cr、Fe、Ti、Zr、Y、Nb、Mo、Ta、W、CeおよびLaからなる群から選ばれる1つ以上である。)で表され、円形度の50%累積頻度における値が、0.970以上であり、D90/D10が、2〜6である、遷移金属含有炭酸塩化合物。
[7]D50が、5〜15μmである、[6]の遷移金属含有炭酸塩化合物。
[8]リチウム含有複合酸化物を含む正極活物質を製造する方法であって、(d)前記[1]〜[5]のいずれかの遷移金属含有炭酸塩化合物の製造方法によって得られた遷移金属含有炭酸塩化合物、または前記[6]もしくは[7]の遷移金属含有炭酸塩化合物と、リチウム化合物とを混合し、得られた混合物を焼成してリチウム含有複合酸化物を得る工程を有する、正極活物質の製造方法。
[9]前記リチウム含有複合酸化物は、LiαNiCoMn(1−x−y−z)β(ただし、αは、1.1〜1.7であり、xは、0.15〜0.5であり、yは、0〜0.33であり、zは、0.33〜0.85であり、x+y+zは、1以下であり、βは、Li、Ni、Co、MnおよびMの原子価を満足するのに必要な酸素元素(O)のモル数である。)で表される、[8]の正極活物質の製造方法。
[10]前記[8]または[9]の正極活物質の製造方法で得られた正極活物質と、導電材と、バインダとを含む正極活物質層が正極集電体上に形成された、リチウムイオン二次電池用正極。
[11]前記[10]のリチウムイオン二次電池用正極と、負極と、非水電解質とを有する、リチウムイオン二次電池。
The present invention has the following aspects.
[1] (a) A step of continuously or intermittently supplying the following aqueous solution A, the following aqueous solution B and the following seed crystal solution C to the reaction tank respectively and (b) while performing the step (a) Stir a mixed solution containing the following aqueous solution A, the following aqueous solution B and the following seed crystal solution C supplied to the reaction vessel to grow a transition metal-containing carbonate compound containing either one or both of Ni and Co and Mn. And (c) a step of continuously or intermittently extracting a part of the mixed solution containing the transition metal-containing carbonate compound in the reaction vessel while carrying out the step (b). And a method of producing a transition metal-containing carbonate compound.
Aqueous solution A: an aqueous solution containing either or both of Ni ions and Co ions and Mn ions.
Aqueous solution B: aqueous solution containing carbonate ion.
Seed solution C: A solution containing seed crystals consisting of a carbonate compound containing either or both of Ni and Co and Mn, and having a D 50 of less than 5 μm.
[2] In the step (a), the aqueous solution A and the seed crystal solution C are simultaneously supplied to the reaction vessel, and the pH of the liquid mixture in the reaction vessel is in the range of 7 to 9 in the aqueous solution B. The method for producing a transition metal-containing carbonate compound according to [1], wherein the transition metal-containing carbonate compound is supplied continuously or intermittently so that the fluctuation is within ± 0.2.
[3] The method for producing a transition metal-containing carbonate compound of [1] or [2], wherein in the step (b), the transition metal-containing carbonate compound is grown until D 50 becomes 5 to 15 μm.
[4] In the step (b), the mixed solution containing the aqueous solution A, the aqueous solution B and the seed crystal solution C supplied to the reaction vessel is in the range of 30 to 50 ° C. and the fluctuation range is ± 2 The manufacturing method of the transition metal containing carbonate compound in any one of [1]-[3] which hold | maintains, hold | maintaining at (C).
[5] A seed crystal comprising the carbonate compound, wherein the seed crystal solution C stirs the mixed solution while supplying the aqueous solution A and the aqueous solution B continuously or intermittently to the seed crystal solution preparation tank, respectively. The manufacturing method of the transition metal containing carbonate compound in any one of [1]-[4] which is obtained by depositing.
[6] Ni x Co y Mn z M (1-x-y-z) CO 3 (where x is 0.15 to 0.5, y is 0 to 0.33, and z is 0.33 to 0.85, x + y + z is 1 or less, and M is Mg, Ca, Ba, Sr, Al, Cr, Fe, Ti, Zr, Y, Nb, Mo, Ta, W, And one or more selected from the group consisting of Ce and La. The values at a 50% cumulative frequency of circularity are 0.970 or more, and D 90 / D 10 is 2 to 6. , Transition metal-containing carbonate compounds.
[7] The transition metal-containing carbonate compound of [6], wherein D 50 is 5 to 15 μm.
[8] A method for producing a positive electrode active material containing a lithium-containing composite oxide, wherein (d) a transition obtained by the method for producing a transition metal-containing carbonate compound according to any one of the above [1] to [5]. Having a step of mixing the metal-containing carbonate compound, or the transition metal-containing carbonate compound of the above [6] or [7] and a lithium compound, and calcining the obtained mixture to obtain a lithium-containing composite oxide, Method of manufacturing positive electrode active material.
[9] The lithium-containing composite oxide includes Li α Ni x Co y Mn z M (1-xyz) O β (wherein α is 1.1 to 1.7 and x is 0.15 to 0.5, y is 0 to 0.33, z is 0.33 to 0.85, x + y + z is 1 or less, and β is Li, Ni, Co , And the number of moles of oxygen element (O) necessary to satisfy the valences of Mn and M).
[10] A positive electrode active material layer including the positive electrode active material obtained by the method of producing a positive electrode active material according to the above [8] or [9], a conductive material, and a binder is formed on a positive electrode current collector Positive electrode for lithium ion secondary battery.
[11] A lithium ion secondary battery comprising the positive electrode for a lithium ion secondary battery of the above [10], a negative electrode, and a non-aqueous electrolyte.

本発明の遷移金属含有炭酸塩化合物の製造方法によれば、円形度が高く、粒度分布が狭い遷移金属含有炭酸塩化合物を製造できる。
本発明の遷移金属含有炭酸塩化合物は、円形度が高く、粒度分布が狭い。
本発明の正極活物質の製造方法によれば、円形度が高く、粒度分布が狭いリチウム含有複合酸化物を含む正極活物質を製造できる。
本発明のリチウムイオン二次電池用正極は、リチウムイオン二次電池の放電容量およびサイクル特性を良好にできる。
本発明のリチウムイオン二次電池は、放電容量およびサイクル特性が良好である。
According to the method for producing a transition metal-containing carbonate compound of the present invention, it is possible to produce a transition metal-containing carbonate compound having a high degree of circularity and a narrow particle size distribution.
The transition metal-containing carbonate compound of the present invention has a high degree of circularity and a narrow particle size distribution.
According to the method for producing a positive electrode active material of the present invention, it is possible to produce a positive electrode active material containing a lithium-containing composite oxide having a high degree of circularity and a narrow particle size distribution.
The positive electrode for a lithium ion secondary battery of the present invention can improve the discharge capacity and cycle characteristics of the lithium ion secondary battery.
The lithium ion secondary battery of the present invention has good discharge capacity and cycle characteristics.

種晶液調製装置の一例を示す概略構成図である。It is a schematic block diagram which shows an example of a seed crystallization liquid preparation apparatus. 種晶液調製装置の他の例を示す概略構成図である。It is a schematic block diagram which shows the other example of a seed-crystal liquid preparation apparatus. 種晶液調製装置の他の例を示す概略構成図である。It is a schematic block diagram which shows the other example of a seed-crystal liquid preparation apparatus. 本発明の遷移金属含有炭酸塩化合物の製造方法に用いられる製造装置の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the manufacturing apparatus used for the manufacturing method of the transition metal containing carbonate compound of this invention.

以下の用語の定義は、本明細書および特許請求の範囲にわたって適用される。
「D50」は、体積基準で求めた粒度分布の全体積を100%とした累積体積分布曲線において50%となる点の粒子径、すなわち体積基準累積50%径である。
「D10」は、体積基準で求めた粒度分布の全体積を100%とした累積体積分布曲線において10%となる点の粒子径、すなわち体積基準累積10%径である。
「D90」は、体積基準で求めた粒度分布の全体積を100%とした累積体積分布曲線において90%となる点の粒子径、すなわち体積基準累積90%径である。
「粒度分布」は、レーザー散乱粒度分布測定装置(たとえば、レーザー回折/散乱式粒子径分布測定装置等)で測定した頻度分布および累積体積分布曲線から求められる。測定は、粉末を水媒体中に超音波処理等で充分に分散させて行われる。
「円形度」は、粒子の投影像の面積と等しい円の周囲長さXと、粒子の投影像の周囲長さYとの比(X/Y)であり、値は0〜1の範囲となる。円形度が1に近いほど円に近い形状である。円形度は、画像解析法を用いて算出する装置(たとえば、フロー式粒子像分析装置等)によって求められる。
「円形度の50%累積頻度における値」とは、画像中のすべての粒子について円形度を求め、横軸が円形度(0〜1)であり、縦軸が円形度の累積頻度(0〜100%)である分布曲線を作成し、該分布曲線において累積頻度が50%のときの円形度の値を読み取ることによって求める。
「比表面積」は、BET(Brunauer,Emmet,Teller)法によって測定される値である。比表面積の測定では、吸着ガスとして窒素ガスを用いる。
「Li」との表記は、特に言及しない限り当該金属単体ではなく、Li元素であることを示す。Ni、Co、Mn等の他の元素の表記も同様である。
遷移金属含有炭酸塩化合物およびリチウム含有複合酸化物の組成分析は、誘導結合プラズマ分析法(以下、ICPと記す。)によって行う。また、リチウム含有複合酸化物の元素の比率は、初回充電(活性化処理ともいう。)前のリチウム含有複合酸化物における値である。
The following definitions of terms apply throughout the specification and claims.
“D 50 ” is a particle diameter at a point of 50% in the cumulative volume distribution curve where the total volume of the particle size distribution determined on a volume basis is 100%, that is, the volume based cumulative 50% diameter.
“D 10 ” is a particle diameter at a point of 10% in the cumulative volume distribution curve where the total volume of the particle size distribution determined on a volume basis is 100%, that is, a volume based cumulative 10% diameter.
“D 90 ” is the particle diameter at a point of 90% in the cumulative volume distribution curve where the total volume of the particle size distribution determined on a volume basis is 100%, that is, the volume-based cumulative 90% diameter.
The “particle size distribution” is obtained from the frequency distribution and the cumulative volume distribution curve measured by a laser scattering particle size distribution measuring apparatus (for example, a laser diffraction / scattering type particle size distribution measuring apparatus etc.). The measurement is carried out by sufficiently dispersing the powder in an aqueous medium by ultrasonic treatment or the like.
“Circularity” is the ratio (X / Y) of the circumference X of the circle equal to the area of the projected image of the particle and the circumference Y of the projected image of the particle, and the value is in the range of 0 to 1 Become. As the degree of circularity is closer to 1, the shape is closer to a circle. The degree of circularity is determined by an apparatus (for example, a flow type particle image analyzer etc.) which is calculated using an image analysis method.
“Value at the 50% cumulative frequency of circularity” means the circularity for all particles in the image, the horizontal axis is the circularity (0 to 1), and the vertical axis is the cumulative frequency of circularity (0 to 1) The distribution curve which is 100%) is created, and the distribution curve is obtained by reading the value of the degree of circularity when the cumulative frequency is 50%.
"Specific surface area" is a value measured by the BET (Brunauer, Emmet, Teller) method. In the measurement of the specific surface area, nitrogen gas is used as the adsorption gas.
The notation “Li” indicates that the element is not elemental Li but the element Li unless otherwise noted. The same applies to the other elements such as Ni, Co and Mn.
The compositional analysis of the transition metal-containing carbonate compound and the lithium-containing composite oxide is performed by inductively coupled plasma analysis (hereinafter referred to as ICP). Further, the ratio of the elements of the lithium-containing composite oxide is a value in the lithium-containing composite oxide before the first charge (also referred to as activation treatment).

<遷移金属含有炭酸塩化合物の製造方法>
本発明の遷移金属含有炭酸塩化合物の製造方法は、下記工程(a)、下記工程(b)および下記工程(c)を有する。
(a)反応槽に、水溶液A、水溶液Bおよび種晶液C、必要に応じて他の溶液Dを、連続的または断続的に供給する工程。
(b)前記工程(a)を実施しつつ、反応槽に供給された水溶液A、水溶液Bおよび種晶液Cを含む混合液を撹拌し、NiおよびCoのいずれか一方または両方とMnとを含む遷移金属含有炭酸塩化合物を成長させる工程。
(c)前記工程(b)を実施しつつ、反応槽内の遷移金属含有炭酸塩化合物を含む混合液の一部を、反応槽から連続的または断続的に抜き出す工程。
<Method of producing transition metal-containing carbonate compound>
The method for producing a transition metal-containing carbonate compound of the present invention comprises the following step (a), the following step (b) and the following step (c).
(A) A step of continuously or intermittently supplying an aqueous solution A, an aqueous solution B and a seed crystal solution C and, if necessary, another solution D to the reaction vessel.
(B) Stirring the mixed solution containing the aqueous solution A, the aqueous solution B and the seed crystal solution C supplied to the reaction vessel while carrying out the step (a), one or both of Ni and Co and Mn Growing the transition metal-containing carbonate compound.
(C) A step of continuously or intermittently withdrawing a portion of the mixed solution containing the transition metal-containing carbonate compound in the reaction vessel from the reaction vessel while carrying out the step (b).

(水溶液A)
水溶液Aは、金属イオンを含む水溶液であり、NiイオンおよびCoイオンのいずれか一方または両方とMnイオンとを含む。
水溶液Aは、必要に応じて、Mg、Ca、Ba、Sr、Al、Cr、Fe、Ti、Zr、Y、Nb、Mo、Ta、W、CeおよびLaからなる群から選ばれる1つ以上の他の金属Mのイオンを含んでいてもよい。
(Aqueous solution A)
The aqueous solution A is an aqueous solution containing metal ions, and contains either or both of Ni ions and Co ions and Mn ions.
The aqueous solution A is optionally one or more members selected from the group consisting of Mg, Ca, Ba, Sr, Al, Cr, Fe, Ti, Zr, Y, Nb, Mo, Ta, W, Ce and La. It may contain ions of other metals M.

水溶液Aとしては、材料コストが比較的安価であり、優れた粉体特性の正極活物質が得られる点から、Niの硫酸塩およびCoの硫酸塩のいずれか一方または両方とMnの硫酸塩とを水に溶解したものが好ましい。
Niの硫酸塩としては、たとえば、硫酸ニッケル(II)・六水和物、硫酸ニッケル(II)・七水和物、硫酸ニッケル(II)アンモニウム・六水和物等が挙げられる。
Coの硫酸塩としては、たとえば、硫酸コバルト(II)・七水和物、硫酸コバルト(II)アンモニウム・六水和物等が挙げられる。
Mnの硫酸塩としては、たとえば、硫酸マンガン(II)・五水和物、硫酸マンガン(II)アンモニウム・六水和物等が挙げられる。
As the aqueous solution A, either or both of Ni sulfate and Co sulfate and Mn sulfate are preferable because the material cost is relatively low and a positive electrode active material having excellent powder properties can be obtained. Is preferably dissolved in water.
Examples of the sulfate of Ni include nickel (II) sulfate hexahydrate, nickel (II) sulfate heptahydrate, and nickel (II) ammonium sulfate hexahydrate.
Examples of the sulfate of Co include cobalt (II) sulfate heptahydrate, cobalt (II) ammonium sulfate hexahydrate and the like.
Examples of the sulfate of Mn include manganese (II) sulfate pentahydrate, manganese (II) ammonium sulfate hexahydrate and the like.

水溶液AにおけるNiイオン、Coイオン、MnイオンおよびMイオンの比率は、遷移金属含有炭酸塩化合物に含まれるNi、Co、MnおよびMの比率と同じである。   The ratio of Ni ions, Co ions, Mn ions and M ions in the aqueous solution A is the same as the ratio of Ni, Co, Mn and M contained in the transition metal-containing carbonate compound.

水溶液Aにおける金属イオンの合計の濃度は、0.1〜3mol/kgが好ましく、0.5〜2.5mol/kgがより好ましい。金属イオンの合計の濃度が前記下限値以上であれば、生産性を高くできる。金属イオンの合計の濃度が前記上限値以下であれば、金属イオンを水に充分に溶解できる。   0.1-3 mol / kg is preferable and, as for the density | concentration of the sum total of the metal ion in the aqueous solution A, 0.5-2.5 mol / kg is more preferable. If the total concentration of metal ions is equal to or higher than the lower limit value, productivity can be increased. If the total concentration of the metal ions is below the upper limit value, the metal ions can be sufficiently dissolved in water.

(水溶液B)
水溶液Bは、炭酸イオンを含む水溶液である。
水溶液Bは、遷移金属含有炭酸塩化合物の原料の一つであり、遷移金属含有炭酸塩化合物を析出させるためのpH調整剤としての役割も果たす。
(Aqueous solution B)
The aqueous solution B is an aqueous solution containing carbonate ions.
The aqueous solution B is one of the raw materials of the transition metal-containing carbonate compound, and also plays a role as a pH adjuster for precipitating the transition metal-containing carbonate compound.

水溶液Bとしては、材料コストが比較的安価であり、水溶液Bを調製しやすい点から、Naの炭酸塩およびKの炭酸塩からなる群から選ばれる少なくとも1種の炭酸塩を水に溶解したものが好ましい。
Naの炭酸塩としては、炭酸ナトリウム、炭酸水素ナトリウムが挙げられる。
Kの炭酸塩としては、炭酸カリウム、炭酸水素カリウムが挙げられる。
炭酸塩としては、安価で、かつ遷移金属含有炭酸塩化合物の粒子径を制御しやすい点から、炭酸ナトリウム、炭酸カリウムが好ましい。
As the aqueous solution B, at least one carbonate selected from the group consisting of carbonates of Na and carbonates of K is dissolved in water from the viewpoint of relatively low material cost and easy preparation of the aqueous solution B Is preferred.
Examples of carbonates of Na include sodium carbonate and sodium hydrogen carbonate.
Examples of the carbonate of K include potassium carbonate and potassium hydrogen carbonate.
As the carbonate, sodium carbonate and potassium carbonate are preferable from the viewpoint of being inexpensive and easy to control the particle diameter of the transition metal-containing carbonate compound.

水溶液Bにおける炭酸イオンの合計の濃度は、0.1〜3mol/kgが好ましく、0.5〜2.5mol/kgがより好ましい。炭酸イオンの合計の濃度が前記範囲内であれば、遷移金属含有炭酸塩化合物を析出させやすい。   0.1-3 mol / kg is preferable and, as for the density | concentration of the sum total of the carbonate ion in the aqueous solution B, 0.5-2.5 mol / kg is more preferable. If the total concentration of carbonate ions is within the above range, it is easy to precipitate the transition metal-containing carbonate compound.

(種晶液C)
種晶液Cは、NiおよびCoのいずれか一方または両方とMnとを含む炭酸塩化合物からなり、かつD50が5μm未満である種晶を含む液である。そして、種晶液Cは、種晶が分散媒に分散されてなる。種晶の組成は、本発明の製造方法で得られる遷移金属含有炭酸塩化合物の組成と同じでもよく、異なっていてもよい。種晶の組成は、本発明の製造方法で得られる遷移金属含有炭酸塩化合物の組成と同じであることが好ましい。
(Seed solution C)
The seed crystal solution C is a solution containing a seed crystal consisting of a carbonate compound containing either or both of Ni and Co and Mn, and having a D 50 of less than 5 μm. Then, in the seed crystal solution C, seed crystals are dispersed in a dispersion medium. The composition of the seed crystals may be the same as or different from the composition of the transition metal-containing carbonate compound obtained by the production method of the present invention. The composition of the seed crystals is preferably the same as the composition of the transition metal-containing carbonate compound obtained by the production method of the present invention.

種晶のD50は、5μm未満であり、1〜4μmが好ましく、1.5〜3.5μmがより好ましい。種晶のD50が5μm未満であれば、種晶の粒度分布が狭くなり、その結果、種晶が成長して得られる遷移金属含有炭酸塩化合物の粒度分布も狭くなる。さらに、種晶のD50が1μm以上であれば、工程(b)において種晶が粒子径の大きい遷移金属含有炭酸塩化合物に成長しやすい。 The seed crystal D 50 is less than 5 μm, preferably 1 to 4 μm, and more preferably 1.5 to 3.5 μm. When the seed crystal D 50 is less than 5 μm, the particle size distribution of the seed crystals becomes narrow, and as a result, the particle size distribution of the transition metal-containing carbonate compound obtained by growing the seed crystals also becomes narrow. Furthermore, if seed crystals of D 50 is 1μm or more, seed crystals in step (b) it is likely to grow larger transition metal-containing carbonate compound particle size.

種晶液Cの固形分濃度は、1〜50質量%が好ましく、5〜35質量%がより好ましい。固形分濃度が1質量%以上であれば、遷移金属含有炭酸塩化合物の生産性を高くできる。固形分濃度が50質量%以下であれば、液として取り扱いやすい。   1-50 mass% is preferable, and, as for solid content concentration of the seed crystal solution C, 5-35 mass% is more preferable. If the solid content concentration is 1% by mass or more, the productivity of the transition metal-containing carbonate compound can be increased. If the solid content concentration is 50% by mass or less, it is easy to handle as a liquid.

(他の溶液D)
他の溶液Dとしては、たとえば、アンモニアまたはアンモニウム塩を含む水溶液が挙げられる。アンモニアまたはアンモニウム塩を含む水溶液は、pHや遷移金属元素の溶解度を調整する働きをする。アンモニウム塩としては、塩化アンモニウム、硫酸アンモニウム、硝酸アンモニウム等が挙げられる。アンモニアまたはアンモニウム塩は、水溶液Aの供給と同時に混合液に供給することが好ましい。
(Other solution D)
Other solutions D include, for example, aqueous solutions containing ammonia or ammonium salts. The aqueous solution containing ammonia or ammonium salt functions to adjust the pH and the solubility of the transition metal element. Examples of ammonium salts include ammonium chloride, ammonium sulfate and ammonium nitrate. Preferably, the ammonia or ammonium salt is supplied to the mixture simultaneously with the supply of the aqueous solution A.

(溶媒)
水溶液A、水溶液B、および他の溶液Dの溶媒、ならびに種晶液Cの分散媒としては、水が好ましい。硫酸塩および炭酸塩を溶解できれば、水以外の水性媒体を溶媒の全質量に対して、20%を上限として含む混合媒体を溶媒としてもよい。
水以外の水性媒体としては、たとえば、メタノール、エタノール、1−プロパノール、2−プロパノール、エチレングリコール、プロピレングリコール、ジエチレングリコール、ジプロピレングリコール、ポリエチレングリコール、ブタンジオール、グリセリン等が挙げられる。
(solvent)
As a solvent of the aqueous solution A, the aqueous solution B, and the other solution D, and as a dispersion medium of the seed crystal solution C, water is preferable. If the sulfate and carbonate can be dissolved, a mixed medium containing an aqueous medium other than water with an upper limit of 20% based on the total mass of the solvent may be used as the solvent.
Examples of the aqueous medium other than water include methanol, ethanol, 1-propanol, 2-propanol, ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, polyethylene glycol, butanediol, glycerin and the like.

(種晶液Cを調製する工程)
種晶液Cは、たとえば、水溶液Aおよび水溶液B、必要に応じて他の溶液Dを混合し、遷移金属イオンと炭酸イオンとを反応させ、NiおよびCoのいずれか一方または両方とMnとを含む炭酸塩化合物からなる種晶を析出させることによって得ることができる。
(Step of preparing seed crystal solution C)
The seed crystal solution C is prepared, for example, by mixing the aqueous solution A and the aqueous solution B, and optionally, the other solution D, reacting transition metal ions and carbonate ions, and either or both of Ni and Co and Mn. It can obtain by precipitating the seed crystal which consists of the carbonate compound which contains.

50が5μm未満の種晶を含む種晶液Cを調製する方法としては、たとえば、下記方法(i)〜(iii)が挙げられる。いずれの方法も、成長する炭酸塩化合物の粒子を粉砕しながらD50が5μm未満の種晶を形成する方法である。
(i)超音波を照射しながら種晶液Cを調製する方法。
(ii)混合液にせん断力を加えるシャフトジェネレータを用いて混合液を撹拌しながら種晶液Cを調製する方法。
(iii)循環式超音波ホモジナイザが途中に設けられた外部循環ラインに混合液を通しながら種晶液Cを調製する方法。
Examples of the method of preparing a seed crystal solution C containing seed crystals having a D 50 of less than 5 μm include the following methods (i) to (iii). Either method is a method of forming seed crystals with a D 50 of less than 5 μm while grinding particles of a growing carbonate compound.
(I) A method of preparing seed crystal solution C while irradiating ultrasonic waves.
(Ii) A method of preparing seed crystal solution C while stirring the mixture using a shaft generator that applies a shear force to the mixture.
(Iii) A method of preparing seed crystal solution C while passing the mixture through an external circulation line provided with a circulating ultrasonic homogenizer in the middle.

図1は、方法(i)に用いられる種晶液調製装置の一例を示す概略構成図である。
種晶液調製装置1aは、バッフル付きの種晶液調製槽10と、種晶液調製槽10内の混合液を撹拌する二段傾斜パドル型の撹拌翼12付きの撹拌装置と、種晶液調製槽10に水溶液Aを供給する水溶液A供給ライン14と、種晶液調製槽10に水溶液Bを供給する水溶液B供給ライン16と、種晶液調製槽10内の混合液の一部を抜き出した後、種晶液調製槽10内に返送する混合液循環ライン20と、混合液循環ライン20の途中に設けられたポンプ22と、混合液循環ライン20の途中、かつポンプ22よりも下流側に設けられたMF膜モジュール24と、MF膜モジュール24のろ材を通過した液を排出するろ液排出ライン26と、ろ液排出ライン26の途中に設けられたポンプ28と、種晶液調製槽10を外部から加熱する湯浴30と、湯浴30に併設された超音波照射手段(図示略)と、種晶液調製槽10内の混合液を排出する混合液排出ライン(図示略)とを備える。
FIG. 1 is a schematic configuration view showing an example of a seed crystal solution preparation apparatus used for the method (i).
The seed crystal solution preparation apparatus 1a includes a seed crystal solution preparation tank 10 with a baffle, a stirring device with a two-stage inclined paddle type stirring blade 12 for stirring the mixture in the seed crystal solution preparation tank 10, and a seed crystal solution. An aqueous solution A supply line 14 for supplying the aqueous solution A to the preparation tank 10, an aqueous solution B supply line 16 for supplying the aqueous solution B to the seed crystal solution preparation tank 10, and a part of the mixture in the seed crystal solution preparation tank 10 Then, the mixed solution circulation line 20 returned to the seed crystal preparation tank 10, the pump 22 provided on the mixed solution circulation line 20, and the mixed solution circulation line 20 on the downstream side of the pump 22 , A filtrate discharge line 26 for discharging the liquid that has passed through the filter material of the MF membrane module 24, a pump 28 provided in the middle of the filtrate discharge line 26, a seed crystal solution preparation tank Water bath 30 heating 10 from the outside Includes an ultrasonic irradiation means provided together in a water bath 30 (not shown), and a mixed liquid discharge line for discharging a mixture of TaneAkiraeki preparation tank 10 (not shown).

図2は、方法(ii)に用いられる種晶液調製装置の一例を示す概略構成図である。
種晶液調製装置1bは、バッフル付きの種晶液調製槽10と、種晶液調製槽10内の混合液を撹拌するシャフトジェネレータ32と、種晶液調製槽10に水溶液Aを供給する水溶液A供給ライン14と、種晶液調製槽10に水溶液Bを供給する水溶液B供給ライン16と、種晶液調製槽10内の混合液の一部を抜き出した後、種晶液調製槽10内に返送する混合液循環ライン20と、混合液循環ライン20の途中に設けられたポンプ22と、混合液循環ライン20の途中、かつポンプ22よりも下流側に設けられたMF膜モジュール24と、MF膜モジュール24のろ材を通過した液を排出するろ液排出ライン26と、ろ液排出ライン26の途中に設けられたポンプ28と、種晶液調製槽10を外部から加熱する湯浴30と、種晶液調製槽10内の混合液を排出する混合液排出ライン(図示略)とを備える。
FIG. 2 is a schematic configuration view showing an example of a seed crystal solution preparation apparatus used for the method (ii).
The seed crystal preparation apparatus 1 b includes a seed crystal preparation tank 10 with a baffle, a shaft generator 32 for stirring the mixture in the seed crystal preparation tank 10, and an aqueous solution for supplying the aqueous solution A to the seed crystal preparation tank 10. After extracting a part of the mixed solution in the seed crystal solution preparation tank 10 and the aqueous solution B feed line 16 for supplying the aqueous solution B to the seed crystal solution preparation tank 10 with the A supply line 14 and the seed crystal solution preparation tank 10 A mixed solution circulation line 20 to be returned to the pump, a pump 22 provided in the middle of the mixed solution circulation line 20, and an MF membrane module 24 provided in the middle of the mixed solution circulation line 20 and downstream of the pump 22; A filtrate discharge line 26 for discharging the liquid that has passed through the filter material of the MF membrane module 24, a pump 28 provided in the middle of the filtrate discharge line 26, and a hot water bath 30 for heating the seed crystal preparation tank 10 from the outside , Seed crystal solution preparation tank 1 And a mixed liquid discharge line for discharging (not shown) the mixture of the inner.

図3は、方法(iii)に用いられる種晶液調製装置の一例を示す概略構成図である。
種晶液調製装置1cは、バッフル付きの種晶液調製槽10と、種晶液調製槽10内の混合液を撹拌する二段傾斜パドル型の撹拌翼12付きの撹拌装置と、種晶液調製槽10に水溶液Aを供給する水溶液A供給ライン14と、種晶液調製槽10に水溶液Bを供給する水溶液B供給ライン16と、種晶液調製槽10内の混合液の一部を抜き出した後、種晶液調製槽10内に返送する混合液循環ライン20と、混合液循環ライン20の途中に設けられたポンプ22と、混合液循環ライン20の途中、かつポンプ22よりも下流側に設けられた循環式超音波ホモジナイザ34と、混合液循環ライン20の途中、かつ循環式超音波ホモジナイザ34よりも下流側に設けられたMF膜モジュール24と、MF膜モジュール24のろ材を通過した液を排出するろ液排出ライン26と、ろ液排出ライン26の途中に設けられたポンプ28と、種晶液調製槽10内の混合液の一部をろ材を通すことなく抜き出す混合液抜出ライン36と、種晶液調製槽10を外部から加熱する湯浴30とを備える。
FIG. 3 is a schematic configuration view showing an example of a seed crystal solution preparation apparatus used for the method (iii).
The seed crystal preparation apparatus 1c includes a seed crystal preparation tank 10 with a baffle, a stirrer with a two-stage inclined paddle type stirring blade 12 for stirring the mixture in the seed crystal preparation tank 10, and a seed crystal preparation An aqueous solution A supply line 14 for supplying the aqueous solution A to the preparation tank 10, an aqueous solution B supply line 16 for supplying the aqueous solution B to the seed crystal solution preparation tank 10, and a part of the mixture in the seed crystal solution preparation tank 10 Then, the mixed solution circulation line 20 returned to the seed crystal preparation tank 10, the pump 22 provided on the mixed solution circulation line 20, and the mixed solution circulation line 20 on the downstream side of the pump 22 And the filter material of the MF membrane module 24 and the MF membrane module 24 provided in the middle of the mixed solution circulation line 20 and on the downstream side of the circulation ultrasonic homogenizer 34 and the filter medium of the MF membrane module 24. Drain the fluid A filtrate discharge line 26, a pump 28 provided in the middle of the filtrate discharge line 26, and a mixed solution extraction line 36 for extracting a part of the mixed solution in the seed crystal preparation tank 10 without passing through a filter medium; And a water bath 30 for heating the seed crystal preparation tank 10 from the outside.

MF膜モジュール24は、ろ材(中空糸膜、セラミック膜等)を備え、ろ材を通過した種晶を含まない混合液の一部をろ液排出ライン26に送り、ろ材を通過しなかった種晶を含む混合液の残部(濃縮液)を下流側の混合液循環ライン20に戻すものである。   The MF membrane module 24 is provided with a filter medium (hollow fiber membrane, ceramic membrane, etc.), and a part of the mixed solution not containing seed crystals that has passed through the filter medium is sent to the filtrate discharge line 26 and seed crystals not passed through the filter medium. The remaining portion (concentrated liquid) of the mixed liquid containing the above is returned to the mixed liquid circulation line 20 on the downstream side.

種晶液調製槽10に水溶液Aおよび水溶液Bを供給する際には、炭酸塩化合物からなる種晶が析出しやすく、かつ種晶の粒子径を制御しやすい点から、種晶液調製槽10に水溶液Aおよび水溶液Bをそれぞれ連続的または断続的に添加することが好ましく、少なくとも水溶液Aを連続的に添加することがより好ましい。   When the aqueous solution A and the aqueous solution B are supplied to the seed crystal preparation tank 10, the seed crystal preparation tank 10 is preferable because it is easy to precipitate the seed crystal composed of a carbonate compound and to control the particle diameter of the seed crystal. It is preferable to add the aqueous solution A and the aqueous solution B continuously or intermittently, respectively, and it is more preferable to add at least the aqueous solution A continuously.

種晶液調製槽10内にて水溶液Aおよび水溶液Bを混合する際には、撹拌しながら行うことが好ましい。撹拌装置の駆動源としては、たとえば、スリーワンモータ等が挙げられる。撹拌装置の撹拌翼としては、図示例のパドル型以外に、たとえば、アンカー型、プロペラ型等の撹拌翼が挙げられる。   When mixing the aqueous solution A and the aqueous solution B in the seed crystal preparation tank 10, it is preferable to carry out while stirring. As a drive source of a stirring apparatus, a three-one motor etc. are mentioned, for example. As a stirring blade of a stirring apparatus, stirring blades, such as an anchor type and a propeller type, are mentioned besides the paddle type of the example of illustration.

したがって、種晶液Cとしては、種晶液調製槽10に、水溶液Aおよび水溶液Bをそれぞれ連続的または断続的に供給しつつ、種晶液調製槽10に供給された水溶液Aおよび水溶液Bを含む混合液を撹拌し、炭酸塩化合物からなる種晶を析出させることによって得られたものが好ましい。   Therefore, as the seed crystal solution C, the aqueous solution A and the aqueous solution B supplied to the seed crystal solution preparation tank 10 while the aqueous solution A and the aqueous solution B are continuously or intermittently supplied to the seed crystal solution preparation tank 10 respectively. It is preferable that the liquid mixture contained in the mixture is stirred to precipitate seed crystals of a carbonate compound.

種晶液調製槽10に水溶液Aおよび水溶液Bを供給する際には、種晶液調製槽10にあらかじめイオン交換水、純水、蒸留水等を入れておくことが好ましい。
種晶液調製槽10に水溶液Aおよび水溶液Bを供給する際には、水溶液Bや他の溶液Dを用いて種晶液調製槽10内の混合液のpHを制御することがより好ましい。
When the aqueous solution A and the aqueous solution B are supplied to the seed crystal preparation tank 10, it is preferable to previously add ion exchanged water, pure water, distilled water or the like to the seed crystal preparation tank 10.
When the aqueous solution A and the aqueous solution B are supplied to the seed crystal preparation tank 10, it is more preferable to control the pH of the mixture in the seed crystal preparation tank 10 using the aqueous solution B or another solution D.

種晶液調製槽10内の混合液のpHは、炭酸塩化合物が析出しやすい点から、7〜9が好ましく、7.5〜8.5がより好ましい。
種晶液調製槽10内の混合液のpHの変動幅は、種晶の粒度分布を充分に狭くする点から、±0.2が好ましく、±0.1がより好ましい。
7-9 are preferable from a point which a carbonate compound tends to precipitate, and, as for pH of the liquid mixture in the seed crystal solution preparation tank 10, 7.5-8.5 are more preferable.
The fluctuation range of the pH of the mixture in the seed crystal preparation tank 10 is preferably ± 0.2, more preferably ± 0.1, from the viewpoint of sufficiently narrowing the particle size distribution of the seed crystals.

種晶液調製槽10内の混合液の温度は、炭酸塩化合物が析出しやすい点から、20〜70℃が好ましく、30〜50℃がより好ましい。
種晶液調製槽10内の混合液の温度の変動幅は、種晶の粒度分布を充分に狭くする点から、±2℃が好ましく、±1℃がより好ましい。
The temperature of the mixture in the seed crystal preparation tank 10 is preferably 20 to 70 ° C., and more preferably 30 to 50 ° C., from the viewpoint that the carbonate compound tends to precipitate.
The range of fluctuation of the temperature of the mixture in the seed crystal preparation tank 10 is preferably ± 2 ° C., more preferably ± 1 ° C., from the viewpoint of sufficiently narrowing the particle size distribution of the seed crystals.

種晶液調製槽10内にて水溶液Aおよび水溶液Bを混合する際には、種晶の酸化を抑制する点から、窒素ガス雰囲気下またはアルゴンガス雰囲気下で混合することが好ましく、コストの面から、窒素ガス雰囲気下で混合することがより好ましい。   When mixing the aqueous solution A and the aqueous solution B in the seed crystal preparation tank 10, mixing is preferably performed under a nitrogen gas atmosphere or an argon gas atmosphere from the viewpoint of suppressing the oxidation of the seed crystals, which is a cost aspect. It is more preferable to mix under nitrogen gas atmosphere.

炭酸塩化合物からなる種晶の析出は、種晶液調製槽10内の混合液の一部をろ材を通して抜き出して混合液を濃縮しながら析出させる方法(濃縮法)であってもよく、種晶液調製槽10内の混合液の一部をろ材を用いずに種晶とともに抜き出して種晶の濃度を低く保ちながら析出させる方法(オーバーフロー法)であってもよい。   The precipitation of seed crystals consisting of a carbonate compound may be a method (concentration method) of extracting a part of the mixture in the seed crystal preparation tank 10 through a filter medium and concentrating the mixture (concentration method). The method may be a method (overflow method) in which a part of the mixed liquid in the liquid preparation tank 10 is extracted together with seed crystals without using a filter medium to keep the concentration of the seed crystals low.

(製造装置)
図4は、本発明の遷移金属含有炭酸塩化合物の製造方法に用いられる製造装置の一例を示す概略構成図である。
製造装置は、種晶液調製装置1と、種晶液調製装置1にて調製された種晶液Cを貯留する種晶液貯留槽2と、種晶液貯留槽2から供給された種晶液C中の種晶を粒子径の大きい遷移金属含有炭酸塩化合物に成長させる粒子成長装置3と、種晶液調製装置1にて調製された種晶液Cを種晶液貯留槽2に移送する第1の種晶液移送ライン4と、種晶液貯留槽2にて貯留された種晶液Cを粒子成長装置3に移送する第2の種晶液移送ライン5とを備える。
(manufacturing device)
FIG. 4 is a schematic configuration view showing an example of a production apparatus used in the method for producing a transition metal-containing carbonate compound of the present invention.
The manufacturing apparatus includes a seed crystal solution preparation apparatus 1, a seed crystal solution storage tank 2 storing the seed crystal solution C prepared by the seed crystal solution preparation apparatus 1, and a seed crystal supplied from the seed crystal solution storage tank 2 Transfer the seed crystal solution C prepared in the seed crystal solution preparation apparatus 1 to the seed crystal solution storage tank 2 with the particle growth apparatus 3 for growing the seed crystals in the solution C into the transition metal-containing carbonate compound having a large particle diameter The first seed crystal liquid transfer line 4 and the second seed crystal liquid transfer line 5 for transferring the seed crystal liquid C stored in the seed crystal liquid storage tank 2 to the particle growth apparatus 3 are provided.

種晶液調製装置1としては、上述した種晶液調製装置1a、種晶液調製装置1b、種晶液調製装置1c等が挙げられる。
粒子成長装置3は、バッフル付きの反応槽40と、反応槽40内の混合液を撹拌する二段傾斜パドル型の撹拌翼42付きの撹拌装置と、反応槽40に水溶液Aを供給する水溶液A供給ライン44と、反応槽40に水溶液Bを供給する水溶液B供給ライン46と、反応槽40に種晶液Cを供給する種晶液C供給ライン48と、反応槽40内の混合液の一部をろ材を通すことなく抜き出す混合液抜出ライン50と、混合液抜出ライン50の途中に設けられたポンプ52と、反応槽40を外部から加熱する加熱手段(図示略)とを備える。
Examples of the seed crystal preparation device 1 include the above-described seed crystal preparation device 1a, the seed crystal preparation device 1b, and the seed crystal preparation device 1c.
The particle growth apparatus 3 includes a reaction vessel 40 with a baffle, a stirring device with a two-stage inclined paddle type stirring blade 42 for stirring the mixture in the reaction vessel 40, and an aqueous solution A for supplying the aqueous solution A to the reaction vessel 40. A supply line 44, an aqueous solution B supply line 46 for supplying the aqueous solution B to the reaction tank 40, a seed crystal liquid C supply line 48 for supplying the seed crystal liquid C to the reaction tank 40, and one of the mixed liquids in the reaction tank 40 And a pump 52 provided in the middle of the mixed liquid extraction line 50, and a heating means (not shown) for heating the reaction tank 40 from the outside.

(工程(a))
反応槽40に、水溶液A、水溶液Bおよび種晶液Cをそれぞれ連続的または断続的に供給する。工程(a)においては、上記液に加えて、必要に応じて他の溶液Dを連続的または断続的に供給してもよい。
(Step (a))
The aqueous solution A, the aqueous solution B and the seed solution C are continuously or intermittently supplied to the reaction vessel 40, respectively. In the step (a), in addition to the above liquid, another solution D may be supplied continuously or intermittently as needed.

反応槽40に水溶液A、水溶液Bおよび種晶液Cを供給する際には、工程(b)において種晶が粒子径の大きい遷移金属含有炭酸塩化合物に成長しやすく、かつ遷移金属含有炭酸塩化合物の粒子径を制御しやすい点から、反応槽40に水溶液A、水溶液Bおよび種晶液Cをそれぞれ連続的または断続的に添加することが好ましい。中でも、水溶液Aおよび種晶液Cを連続的に添加することがより好ましい。   When the aqueous solution A, the aqueous solution B and the seed crystal solution C are supplied to the reaction tank 40, the seed crystals are easily grown into a transition metal-containing carbonate compound having a large particle diameter in step (b), and the transition metal-containing carbonate It is preferable to add the aqueous solution A, the aqueous solution B, and the seed crystal solution C to the reaction tank 40 continuously or intermittently from the viewpoint of easily controlling the particle diameter of the compound. Among them, it is more preferable to add the aqueous solution A and the seed crystal solution C continuously.

反応槽40に水溶液A、水溶液Bおよび種晶液Cを供給する際には、遷移金属含有炭酸塩化合物の円形度を高く、かつ粒度分布を狭くしやすい点から、反応槽40に少なくとも水溶液Aおよび種晶液Cを同時に供給することが好ましい。水溶液A、水溶液Bおよび種晶液Cを同時に供給することがより好ましい。   When the aqueous solution A, the aqueous solution B and the seed crystal solution C are supplied to the reaction vessel 40, at least the aqueous solution A is added to the reaction vessel 40 in order to increase the circularity of the transition metal-containing carbonate compound and to narrow the particle size distribution. It is preferable to simultaneously supply the seed crystal solution C. It is more preferable to simultaneously supply the aqueous solution A, the aqueous solution B and the seed crystal solution C.

反応槽40に水溶液A、水溶液Bおよび種晶液Cを供給する際には、反応槽40にあらかじめイオン交換水、純水、蒸留水等を入れておくことが好ましい。
反応槽40に水溶液A、水溶液Bおよび種晶液Cを供給する際には、水溶液Bや他の溶液Dを用いて反応槽40内の混合液のpHを制御することがより好ましい。
When the aqueous solution A, the aqueous solution B and the seed crystal solution C are supplied to the reaction tank 40, it is preferable to put ion exchange water, pure water, distilled water or the like in the reaction tank 40 in advance.
When the aqueous solution A, the aqueous solution B and the seed crystal solution C are supplied to the reaction tank 40, it is more preferable to control the pH of the mixture in the reaction tank 40 using the aqueous solution B or the other solution D.

反応槽40内の混合液のpHは、工程(b)において種晶が粒子径の大きい遷移金属含有炭酸塩化合物に成長しやすい点から、7〜9の所定のpHに保持することが好ましく、7.5〜8.5の所定のpHに保持することがより好ましい。
所定のpHに保持する際の反応槽40内の混合液のpHの変動幅は、遷移金属含有炭酸塩化合物の粒度分布を充分に狭くする点から、±0.2が好ましく、±0.1がより好ましい。
The pH of the liquid mixture in the reaction tank 40 is preferably maintained at a predetermined pH of 7 to 9 in view of the tendency of the seed crystals to grow to a transition metal-containing carbonate compound having a large particle diameter in step (b). More preferably, the pH is maintained at a predetermined pH of 7.5 to 8.5.
The range of fluctuation of the pH of the liquid mixture in the reaction vessel 40 at the time of holding at a predetermined pH is preferably ± 0.2 from the viewpoint of sufficiently narrowing the particle size distribution of the transition metal-containing carbonate compound, ± 0.1 Is more preferred.

水溶液Aの単位時間あたりの供給量は、生産性と、遷移金属含有炭酸塩化合物の円形度や粒度分布とのバランスを考慮して、適宜設定すればよい。水溶液Aの単位時間あたりの供給量が多いほど、生産性を高くできる。水溶液Aの単位時間あたりの供給量が少ないほど、遷移金属含有炭酸塩化合物の円形度を高く、かつ粒度分布を狭くしやすい。   The supply amount of the aqueous solution A per unit time may be appropriately set in consideration of the balance between productivity and the circularity and particle size distribution of the transition metal-containing carbonate compound. As the amount of the aqueous solution A supplied per unit time increases, the productivity can be increased. The smaller the amount of the aqueous solution A supplied per unit time, the higher the circularity of the transition metal-containing carbonate compound and the narrower the particle size distribution.

水溶液Bの単位時間あたりの供給量は、反応槽内の混合液のpHが7〜9の範囲内でかつ変動幅が±0.2となるように、適宜設定すればよい。   The supply amount of the aqueous solution B per unit time may be appropriately set so that the pH of the mixture in the reaction tank is in the range of 7 to 9 and the fluctuation range is ± 0.2.

種晶液Cの単位時間あたりの供給量は、遷移金属含有炭酸塩化合物の目的のD50に応じて、適宜設定すればよい。水溶液Aの単位時間あたりの供給量を基準とし、種晶液Cの単位時間あたりの供給量を増やすと、遷移金属含有炭酸塩化合物のD50が小さくなり、種晶液Cの単位時間あたりの供給量を減らすと、遷移金属含有炭酸塩化合物のD50が大きくなる。 The supply amount of the seed crystal solution C per unit time may be appropriately set according to the target D 50 of the transition metal-containing carbonate compound. When the supply amount per unit time of the seed crystal solution C is increased based on the supply amount per unit time of the aqueous solution A, D 50 of the transition metal-containing carbonate compound decreases and the per unit time of the seed crystal solution C per unit time reducing the supply amount, the transition metal-containing D 50 of the carbonate compound is increased.

水溶液Aの単位時間あたりの供給量および種晶液Cの単位時間あたりの供給量は、D50のばらつきを少なくする点から、目的のD50の遷移金属含有炭酸塩化合物を得る間は、一定に保つことが好ましい。水溶液Aの単位時間あたりの供給量および種晶液Cの単位時間あたりの供給量の変動幅が大きくなると、遷移金属含有炭酸塩化合物のD50にばらつきが生じる。D50の異なる別ロットの遷移金属含有炭酸塩化合物を引き続き製造する場合は、水溶液Aの単位時間あたりの供給量および種晶液Cの単位時間あたりの供給量のいずれか一方または両方を段階的に変化させてもよい。 Supplying rate at which the feed rate and TaneAkiraeki C per unit time of the aqueous solution A from the viewpoint of reducing the variation of D 50, while obtaining the transition metal-containing carbonate compound of D 50 of interest, a certain It is preferable to keep When the supply amount per unit time of the aqueous solution A and the fluctuation range of the supply amount per unit time of the seed crystal solution C become large, the D 50 of the transition metal-containing carbonate compound will vary. In the case of continuously producing another lot of transition metal-containing carbonate compounds having a different D 50 , either one or both of the supply amount per unit time of the aqueous solution A and the supply amount per unit time of the seed crystal solution C are stepwise It may be changed to

(工程(b))
工程(a)を実施しつつ、反応槽40に供給された水溶液A、水溶液Bおよび種晶液Cを含む混合液を撹拌し、遷移金属含有炭酸塩化合物を成長させる。遷移金属イオンと炭酸イオンとが反応し、種晶のまわりに遷移金属含有炭酸塩化合物が析出して、種晶が粒子径の大きい遷移金属含有炭酸塩化合物に成長する。遷移金属含有炭酸塩化合物は、D50が5〜15μmになるまで成長させることが好ましい。
(Step (b))
While carrying out the step (a), the mixed solution containing the aqueous solution A, the aqueous solution B and the seed crystal solution C supplied to the reaction vessel 40 is stirred to grow the transition metal-containing carbonate compound. The transition metal ion and the carbonate ion react to precipitate the transition metal-containing carbonate compound around the seed crystal, and the seed crystal grows into a transition metal-containing carbonate compound having a large particle diameter. The transition metal-containing carbonate compound is preferably grown to a D 50 of 5 to 15 μm.

反応槽40内にて水溶液A、水溶液Bおよび種晶液Cを混合する際に混合液を撹拌することで、遷移金属含有炭酸塩化合物の円形度を高く、かつ粒度分布を狭くできる。撹拌装置の駆動源としては、たとえば、スリーワンモータ等が挙げられる。撹拌装置の撹拌翼としては、図示例のパドル型以外に、たとえば、アンカー型、プロペラ型等の撹拌翼が挙げられる。   By mixing the aqueous solution A, the aqueous solution B and the seed crystal solution C in the reaction tank 40, the circularity of the transition metal-containing carbonate compound can be made high and the particle size distribution can be narrowed by stirring the mixture. As a drive source of a stirring apparatus, a three-one motor etc. are mentioned, for example. As a stirring blade of a stirring apparatus, stirring blades, such as an anchor type and a propeller type, are mentioned besides the paddle type of the example of illustration.

反応槽40内の混合液の温度は、遷移金属含有炭酸塩化合物が析出しやすい点から、20〜70℃の所定の温度に保持することが好ましく、30〜50℃の所定の温度に保持することがより好ましい。
所定の温度に保持する際の反応槽40内の混合液の温度の変動幅は、遷移金属含有炭酸塩化合物の粒度分布を充分に狭くする点から、±2℃が好ましく、±1℃がより好ましい。
The temperature of the liquid mixture in the reaction tank 40 is preferably maintained at a predetermined temperature of 20 to 70 ° C. from the viewpoint that the transition metal-containing carbonate compound tends to precipitate, and is maintained at a predetermined temperature of 30 to 50 ° C. Is more preferred.
The fluctuation range of the temperature of the liquid mixture in the reaction vessel 40 at the time of holding at a predetermined temperature is preferably ± 2 ° C., more preferably ± 1 ° C. from the viewpoint of sufficiently narrowing the particle size distribution of the transition metal-containing carbonate compound. preferable.

反応槽40内にて水溶液A、水溶液Bおよび種晶液Cを混合する際には、遷移金属含有炭酸塩化合物の酸化を抑制する点から、窒素ガス雰囲気下またはアルゴンガス雰囲気下で混合することが好ましく、コストの面から、窒素ガス雰囲気下で混合することがより好ましい。   When mixing the aqueous solution A, the aqueous solution B and the seed crystal solution C in the reaction tank 40, mixing should be performed under a nitrogen gas atmosphere or an argon gas atmosphere in order to suppress the oxidation of the transition metal-containing carbonate compound. It is preferable to mix under nitrogen gas atmosphere from the viewpoint of cost.

遷移金属含有炭酸塩化合物は、D50が6〜14μmになるまで成長させることがより好ましく、D50が8〜11μmmになるまで成長させることがさらに好ましい。遷移金属含有炭酸塩化合物を、D50が前記範囲内になるまで成長させれば、リチウムイオン二次電池の放電容量を充分に高くできる正極活物質の前駆体として好適に使用できる。 Transition metal-containing carbonate compound is more preferably grown until D 50 is 6~14Myuemu, be grown to D 50 is 8~11μmm more preferred. The transition metal-containing carbonate compound can be suitably used as a precursor of a positive electrode active material which can sufficiently increase the discharge capacity of a lithium ion secondary battery if D 50 is grown to the above range.

(工程(c))
工程(b)を実施しつつ、反応槽40内の遷移金属含有炭酸塩化合物を含む混合液の一部を、ろ材に通すことなく反応槽40から連続的または断続的に抜き出す。
(Step (c))
While performing the step (b), a part of the mixture containing the transition metal-containing carbonate compound in the reaction vessel 40 is continuously or intermittently withdrawn from the reaction vessel 40 without passing through the filter medium.

反応槽40内からの混合液の抜き出しは、たとえば、下記のように行う。
・混合液の単位時間あたりの抜き出し量が、各液(水溶液A、水溶液B、種晶液Cおよび他の溶液D)の単位時間あたりの供給量の合計と同じになるように、混合液を連続的または断続的に抜き出す。
・反応槽40内の混合液の量が、あらかじめ規定された閾値を超えた際に、閾値を超えた分の混合液を連続的または断続的に抜き出す。
・反応槽40からあふれ出した混合液を、そのまま排出する。
The extraction of the liquid mixture from the reaction tank 40 is performed, for example, as follows.
-The mixed solution should be the same as the sum of the supplied amounts per unit time of each solution (aqueous solution A, aqueous solution B, seed solution C and other solution D). Remove continuously or intermittently.
-When the volume of the mixture in the reaction vessel 40 exceeds a predetermined threshold, the mixture above the threshold is continuously or intermittently withdrawn.
The liquid mixture overflowing from the reaction tank 40 is discharged as it is.

抜き出された遷移金属含有炭酸塩化合物は、ろ過または遠心分離によって混合液から分離することが好ましい。ろ過または遠心分離には、加圧ろ過機、減圧ろ過機、遠心分級機、フィルタープレス、スクリュープレス、回転型脱水機等を用いることができる。
遷移金属含有炭酸塩化合物は、不純物イオンを取り除くために、洗浄されることが好ましい。洗浄方法としては、たとえば、加圧ろ過と蒸留水への分散とを繰り返し行う方法等が挙げられる。
The extracted transition metal-containing carbonate compound is preferably separated from the mixture by filtration or centrifugation. For filtration or centrifugation, a pressure filter, a vacuum filter, a centrifugal classifier, a filter press, a screw press, a rotary dehydrator, or the like can be used.
The transition metal-containing carbonate compound is preferably washed to remove impurity ions. Examples of the washing method include a method of repeatedly performing pressure filtration and dispersion in distilled water.

洗浄後に、遷移金属含有炭酸塩化合物を乾燥することが好ましい。
乾燥温度は、60〜200℃が好ましく、80℃〜130℃がより好ましい。乾燥温度が前記下限値以上であれば、遷移金属含有炭酸塩化合物を短時間で乾燥できる。乾燥温度が前記上限値以下であれば、遷移金属含有炭酸塩化合物の酸化を抑制できる。
乾燥時間は、1〜300時間が好ましく、5〜120時間がより好ましい。
After washing, it is preferred to dry the transition metal-containing carbonate compound.
60-200 degreeC is preferable and 80 degreeC-130 degreeC of a drying temperature is more preferable. When the drying temperature is at least the lower limit value, the transition metal-containing carbonate compound can be dried in a short time. If the drying temperature is equal to or less than the upper limit value, oxidation of the transition metal-containing carbonate compound can be suppressed.
The drying time is preferably 1 to 300 hours, more preferably 5 to 120 hours.

(作用機序)
以上説明した本発明の遷移金属含有炭酸塩化合物の製造方法にあっては、遷移金属イオンを含む水溶液Aおよび炭酸イオンを含む水溶液Bとともに、種晶を含む種晶液Cを供給し、遷移金属イオンと炭酸イオンとを反応させて種晶のまわりに遷移金属含有炭酸塩化合物を析出させているため、新たな核(種晶)の発生を抑えつつ、供給された種晶を粒子径の大きい遷移金属含有炭酸塩化合物に成長させることができる。そのため、遷移金属含有炭酸塩化合物の粒度分布を狭くできる。
また、混合液の一部を、ろ材に通すことなく反応槽から連続的または断続的に抜き出しているため、反応槽内の混合液中の遷移金属含有炭酸塩化合物の濃度を低く保ちながら、種晶を粒子径の大きい遷移金属含有炭酸塩化合物にゆっくりと成長させることができる。そのため、遷移金属含有炭酸塩化合物の円形度を高くでき、かつ粒度分布をさらに狭くできる。
(Mechanism of action)
In the method for producing a transition metal-containing carbonate compound of the present invention described above, a seed crystal solution C containing seed crystals is supplied together with an aqueous solution A containing transition metal ions and an aqueous solution B containing carbonate ions, Since the transition metal-containing carbonate compound is precipitated around the seed crystals by reacting ions and carbonate ions, the generation of new nuclei (seed crystals) is suppressed while the supplied seed crystals have a large particle size. Transition metal-containing carbonate compounds can be grown. Therefore, the particle size distribution of the transition metal-containing carbonate compound can be narrowed.
In addition, since a part of the mixed solution is continuously or intermittently withdrawn from the reaction vessel without passing through the filter medium, it is possible to maintain the concentration of the transition metal-containing carbonate compound in the mixed solution in the reaction vessel low. Crystals can be slowly grown to large transition metal-containing carbonate compounds. Therefore, the circularity of the transition metal-containing carbonate compound can be increased, and the particle size distribution can be further narrowed.

(他の形態)
なお、本発明の遷移金属含有炭酸塩化合物の製造方法は、(a)反応槽に、水溶液A、水溶液Bおよび種晶液Cを、それぞれ連続的または断続的に供給する工程と、(b)前記工程(a)を実施しつつ、反応槽に供給された水溶液A、水溶液Bおよび種晶液Cを含む混合液を撹拌し、NiおよびCoのいずれか一方または両方とMnとを含む遷移金属含有炭酸塩化合物を成長させる工程と、(c)前記工程(b)を実施しつつ、反応槽内の遷移金属含有炭酸塩化合物を含む混合液の一部を、反応槽から連続的または断続的に抜き出す工程とを有する方法であればよく、図示例の装置を用いた製造方法に限定されない。
(Other forms)
In the method for producing a transition metal-containing carbonate compound of the present invention, (a) supplying the aqueous solution A, the aqueous solution B and the seed crystal solution C continuously or intermittently to the reaction vessel, and (b) While carrying out the step (a), the mixture containing the aqueous solution A, the aqueous solution B and the seed crystal solution C supplied to the reaction vessel is stirred, and a transition metal containing either or both of Ni and Co and Mn. A step of growing the contained carbonate compound, and (c) carrying out the step (b), continuously or intermittently part of the mixture containing the transition metal-containing carbonate compound in the reaction vessel from the reaction vessel The method is not limited to the manufacturing method using the apparatus of the illustrated example as long as the method includes the steps of

<遷移金属含有炭酸塩化合物>
本発明の遷移金属含有炭酸塩化合物は、NiCoMn(1−x−y−z)COで表され、円形度の50%累積頻度における値が、0.970以上であり、D90/D10が、2〜6である。
<Transition metal-containing carbonate compound>
The transition metal-containing carbonate compound of the present invention is represented by Ni x Co y Mn z M (1-x-y-z) CO 3 , and the value at a 50% cumulative frequency of circularity is 0.970 or more. , D 90 / D 10 are 2 to 6.

xは、遷移金属含有炭酸塩化合物に含まれるNiのモル比を示す。xは、0.15〜0.5であり、0.15〜0.45が好ましく、0.2〜0.4がより好ましい。xが前記範囲内であれば、リチウムイオン二次電池の放電容量および充放電効率を高くできる正極活物質を得ることができる。   x represents the molar ratio of Ni contained in the transition metal-containing carbonate compound. x is 0.15 to 0.5, preferably 0.15 to 0.45, and more preferably 0.2 to 0.4. If x is in the above range, it is possible to obtain a positive electrode active material that can increase the discharge capacity and charge / discharge efficiency of the lithium ion secondary battery.

yは、遷移金属含有炭酸塩化合物に含まれるCoのモル比を示す。yは、0〜0.33であり、0〜0.2が好ましく、0〜0.15がより好ましい。yが前記範囲内であれば、リチウムイオン二次電池の放電容量および充放電効率を高くできる正極活物質を得ることができる。   y represents the molar ratio of Co contained in the transition metal-containing carbonate compound. y is 0 to 0.33, preferably 0 to 0.2, and more preferably 0 to 0.15. If y is in the above range, it is possible to obtain a positive electrode active material that can increase the discharge capacity and charge / discharge efficiency of the lithium ion secondary battery.

zは、遷移金属含有炭酸塩化合物に含まれるMnのモル比を示す。zは、0.33〜0.85であり、0.5〜0.8が好ましく、0.5〜0.7がより好ましい。zが前記範囲内であれば、リチウムイオン二次電池の放電容量および充放電効率を高くできる正極活物質を得ることができる。
x、yおよびzの合量(x+y+z)は、1を超えることはない。
z represents the molar ratio of Mn contained in the transition metal-containing carbonate compound. z is 0.33 to 0.85, preferably 0.5 to 0.8, and more preferably 0.5 to 0.7. If z is in the above range, it is possible to obtain a positive electrode active material that can increase the discharge capacity and charge / discharge efficiency of the lithium ion secondary battery.
The total amount (x + y + z) of x, y and z does not exceed 1.

遷移金属含有炭酸塩化合物は、必要に応じて他の金属元素Mを含んでいてもよい。他の金属元素Mとしては、Mg、Ca、Ba、Sr、Al、Cr、Fe、Ti、Zr、Y、Nb、Mo、Ta、W、Ce、La等が挙げられる。リチウムイオン二次電池の放電容量を高くできる正極活物質が得られやすい点から、Mg、Al、Cr、Fe、TiまたはZrが好ましい。   The transition metal-containing carbonate compound may optionally contain other metal element M. Examples of other metal elements M include Mg, Ca, Ba, Sr, Al, Cr, Fe, Ti, Zr, Nb, Mo, Ta, W, Ce, La and the like. Mg, Al, Cr, Fe, Ti or Zr is preferable from the viewpoint that a positive electrode active material capable of increasing the discharge capacity of the lithium ion secondary battery is easily obtained.

遷移金属含有炭酸塩化合物の円形度の50%累積頻度における値は、0.970以上であり、0.972以上が好ましく、0.975以上がより好ましい。円形度の50%累積頻度における値が前記下限値以上であれば、円形度が高いリチウム含有複合酸化物を含む正極活物質を得ることができる。その結果、正極における正極活物質の密度が高くなり、正極活物質の単位体積あたりのリチウムイオン二次電池の放電容量が充分に高くなる。遷移金属含有炭酸塩化合物の円形度の50%累積頻度における値の上限値は、1である。   The value at the 50% cumulative frequency of circularity of the transition metal-containing carbonate compound is 0.970 or more, preferably 0.972 or more, and more preferably 0.975 or more. If the value at the 50% cumulative frequency of the degree of circularity is equal to or more than the lower limit value, a positive electrode active material containing a lithium-containing composite oxide having a high degree of circularity can be obtained. As a result, the density of the positive electrode active material in the positive electrode becomes high, and the discharge capacity of the lithium ion secondary battery per unit volume of the positive electrode active material becomes sufficiently high. The upper limit of the 50% cumulative frequency of circularity of the transition metal-containing carbonate compound is 1.

遷移金属含有炭酸塩化合物のD90/D10は、2〜6であり、2〜5が好ましく、2.5〜3.5がより好ましい。D90/D10が前記下限値以上であれば、遷移金属含有炭酸塩化合物の製造が容易である。D90/D10が前記上限値以下であれば、遷移金属含有炭酸塩化合物の粒度分布が狭いため、粒度分布が狭いリチウム含有複合酸化物が得られる。粒度分布が狭いリチウム含有複合酸化物を含む正極活物質は、粗大粒子が少ないため、正極活物質を含むスラリを正極集電体に塗工する際の塗工性がよくなる。また、正極活物質を含むスラリを正極集電体に塗工した後、圧延する際に粗大粒子が割れる頻度が少なくなり、リチウムイオン二次電池のサイクル特性の低下が抑えられる。 D 90 / D 10 of the transition metal-containing carbonate compound is 2 to 6, preferably 2 to 5, and more preferably 2.5 to 3.5. If D 90 / D 10 is more than the above lower limit, it is easy to manufacture the transition metal-containing carbonate compound. If D 90 / D 10 is equal to or less than the upper limit value, the particle size distribution of the transition metal-containing carbonate compound is narrow, so a lithium-containing composite oxide having a narrow particle size distribution can be obtained. Since the positive electrode active material containing a lithium-containing composite oxide having a narrow particle size distribution has few coarse particles, the coatability at the time of applying the slurry containing the positive electrode active material to the positive electrode current collector is improved. In addition, after the slurry containing the positive electrode active material is applied to the positive electrode current collector, the frequency at which coarse particles are broken when rolling is reduced, and the deterioration of the cycle characteristics of the lithium ion secondary battery can be suppressed.

遷移金属含有炭酸塩化合物のD50は、5〜15μmが好ましく、6〜14μmがより好ましく、8〜11μmがさらに好ましい。遷移金属含有炭酸塩化合物のD50が前記範囲内であれば、リチウムイオン二次電池の放電容量を充分に高くできる正極活物質を得ることができる。 Transition metal-containing D 50 of the carbonate compound is preferably 5 to 15 [mu] m, more preferably 6~14Myuemu, more preferably 8~11Myuemu. If D 50 of the transition metal-containing carbonate compound is within the above range, a positive electrode active material capable of sufficiently increasing the discharge capacity of the lithium ion secondary battery can be obtained.

遷移金属含有炭酸塩化合物の比表面積は、50〜300m/gが好ましく、100〜250m/gがより好ましい。遷移金属含有炭酸塩化合物の比表面積が前記範囲内であれば、リチウム含有複合酸化物の比表面積を好ましい範囲に制御しやすい。なお、遷移金属含有炭酸塩化合物の比表面積は、遷移金属含有炭酸塩化合物を120℃で15時間乾燥した後に測定した値である。 The specific surface area of the transition metal-containing carbonate compound is preferably 50~300m 2 / g, 100~250m 2 / g is more preferable. If the specific surface area of the transition metal-containing carbonate compound is within the above range, the specific surface area of the lithium-containing composite oxide can be easily controlled within the preferable range. The specific surface area of the transition metal-containing carbonate compound is a value measured after drying the transition metal-containing carbonate compound at 120 ° C. for 15 hours.

遷移金属含有炭酸塩化合物のタップ密度は、1〜2g/cmが好ましく、1.2〜1.8g/cmがより好ましい。遷移金属含有炭酸塩化合物のタップ密度が前記範囲内であれば、リチウム含有複合酸化物のタップ密度を好ましい範囲に制御しやすい。 1-2 g / cm < 3 > is preferable and, as for the tap density of a transition metal containing carbonate compound, 1.2-1.8 g / cm < 3 > is more preferable. If the tap density of the transition metal-containing carbonate compound is within the above range, the tap density of the lithium-containing composite oxide can be easily controlled within the preferable range.

本発明の遷移金属含有炭酸塩化合物は、たとえば、上述した遷移金属含有炭酸塩化合物の製造方法で得ることができる。   The transition metal-containing carbonate compound of the present invention can be obtained, for example, by the method for producing a transition metal-containing carbonate compound described above.

(作用機序)
以上説明した本発明の遷移金属含有炭酸塩化合物にあっては、円形度の50%累積頻度における値が、0.970以上であり、D90/D10が、2〜6であるため、円形度が高く、粒度分布が狭い。また、円形度が高く、粒度分布が狭い上に、特定の組成を有するため、リチウムイオン二次電池の放電容量およびサイクル特性を良好にできる正極活物質を得ることができる。
(Mechanism of action)
In the transition metal-containing carbonate compound of the present invention described above, the value at the 50% cumulative frequency of the circularity is 0.970 or more, and D 90 / D 10 is 2 to 6, so that it is circular. Degree of particle size distribution is narrow. In addition, since the degree of circularity is high and the particle size distribution is narrow and the composition has a specific composition, it is possible to obtain a positive electrode active material capable of making the discharge capacity and cycle characteristics of the lithium ion secondary battery excellent.

<正極活物質の製造方法>
本発明の正極活物質の製造方法は、リチウム含有複合酸化物を含む正極活物質を製造する方法であって、下記工程(d)、下記工程(e)および下記工程(f)を有する。
(d)本発明の遷移金属含有炭酸塩化合物の製造方法によって得られた遷移金属含有炭酸塩化合物、または本発明の遷移金属含有炭酸塩化合物と、リチウム化合物とを混合し、得られた混合物を焼成してリチウム含有複合酸化物を得る工程。
(e)必要に応じて、リチウム含有複合酸化物を洗浄する工程。
(f)必要に応じて、リチウム含有複合酸化物の表面に被覆物を形成する工程。
<Method of manufacturing positive electrode active material>
The method for producing a positive electrode active material of the present invention is a method for producing a positive electrode active material containing a lithium-containing composite oxide, and comprises the following step (d), the following step (e) and the following step (f).
(D) A transition metal-containing carbonate compound obtained by the method for producing a transition metal-containing carbonate compound of the present invention, or a mixture obtained by mixing the transition metal-containing carbonate compound of the present invention and a lithium compound Step of firing to obtain a lithium-containing composite oxide.
(E) A step of washing the lithium-containing composite oxide as required.
(F) optionally forming a coating on the surface of the lithium-containing composite oxide.

(工程(d))
たとえば、工程(c)で得られた遷移金属含有炭酸塩化合物と、リチウム化合物とを混合し、焼成する。これにより、リチウム含有複合酸化物が得られる。
リチウム含有複合酸化物に含まれるLi、Ni、Co、MnおよびMの比率は、遷移金属含有炭酸塩化合物とリチウム化合物との混合物に含まれるLi、Ni、Co、MnおよびMの比率と同じである。
(Step (d))
For example, the transition metal-containing carbonate compound obtained in step (c) and the lithium compound are mixed and fired. Thereby, lithium containing complex oxide is obtained.
The ratio of Li, Ni, Co, Mn and M contained in the lithium-containing composite oxide is the same as the ratio of Li, Ni, Co, Mn and M contained in the mixture of the transition metal-containing carbonate compound and the lithium compound. is there.

リチウム化合物としては、炭酸リチウム、水酸化リチウムおよび硝酸リチウムからなる群から選ばれる少なくとも1種が好ましく、取り扱いの容易性の観点から、炭酸リチウムがより好ましい。
遷移金属含有炭酸塩化合物とリチウム化合物とを混合する方法としては、たとえば、ロッキングミキサ、ナウタミキサ、スパイラルミキサ、カッターミル、Vミキサ等を用いる方法等が挙げられる。
The lithium compound is preferably at least one selected from the group consisting of lithium carbonate, lithium hydroxide and lithium nitrate, and lithium carbonate is more preferable from the viewpoint of easy handling.
Examples of the method of mixing the transition metal-containing carbonate compound and the lithium compound include a method using a rocking mixer, a Nauta mixer, a spiral mixer, a cutter mill, a V mixer, and the like.

焼成装置としては、電気炉、連続焼成炉、ロータリーキルン等が挙げられる。
焼成時に遷移金属含有炭酸塩化合物は酸化されることから、焼成は、大気下で行うことが好ましく、空気を供給しながら行うことが特に好ましい。
空気の供給速度は、炉の内容積1Lあたりに対して10〜200mL/分が好ましく、40〜150mL/分がより好ましい。
焼成時に空気を供給することによって、遷移金属含有炭酸塩化合物中の遷移金属元素が充分に酸化され、結晶性が高く、かつ目的とする結晶相を有するリチウム含有複合酸化物を含む正極活物質が得られる。
As a baking apparatus, an electric furnace, a continuous baking furnace, a rotary kiln, etc. are mentioned.
Since the transition metal-containing carbonate compound is oxidized at the time of firing, the firing is preferably performed in the air, and is particularly preferably performed while supplying air.
The air supply rate is preferably 10 to 200 mL / min, and more preferably 40 to 150 mL / min, per 1 L of internal volume of the furnace.
By supplying air at the time of firing, the transition metal element in the transition metal-containing carbonate compound is sufficiently oxidized, and a positive electrode active material including a lithium-containing composite oxide having high crystallinity and an intended crystal phase is obtained. can get.

焼成は、1段焼成であってもよく、仮焼成を行った後に本焼成を行う2段焼成であってもよい。Liがリチウム含有複合酸化物中に均一に拡散しやすい点から、2段焼成が好ましい。   The firing may be one-step firing or may be two-step firing in which main firing is performed after temporary firing. Two-stage firing is preferable from the viewpoint that Li easily diffuses uniformly into the lithium-containing composite oxide.

1段焼成の場合の焼成温度は、500〜1000℃であり、600〜1000℃が好ましく、800〜950℃が特に好ましい。
2段焼成の場合の仮焼成の温度は、400〜700℃が好ましく、500〜650℃がより好ましい。
2段焼成の場合の本焼成の温度は、700〜1000℃が好ましく、800〜950℃がより好ましい。
焼成温度が前記範囲内であれば、結晶性の高いリチウム含有複合酸化物が得られる。
The firing temperature in the case of one-stage firing is 500 to 1000 ° C., preferably 600 to 1000 ° C., and particularly preferably 800 to 950 ° C.
400-700 degreeC is preferable and, as for the temperature of the temporary baking in the case of 2 step | paragraph baking, 500-650 degreeC is more preferable.
700-1000 degreeC is preferable and, as for the temperature of this baking in the case of two-step baking, 800-950 degreeC is more preferable.
If the calcination temperature is within the above range, a lithium-containing composite oxide having high crystallinity can be obtained.

焼成時間は、4〜40時間が好ましく、4〜20時間がより好ましい。
焼成時間が前記範囲内であれば、結晶性の高いリチウム含有複合酸化物が得られる。
The firing time is preferably 4 to 40 hours, more preferably 4 to 20 hours.
If the firing time is within the above range, a lithium-containing composite oxide with high crystallinity can be obtained.

(工程(e))
Naのような不純物を除去する目的から、リチウム含有複合酸化物を水で洗浄してもよい。
洗浄方法としては、たとえば、リチウム含有複合酸化物と水とを混合し、撹拌する方法が挙げられる。撹拌時間は、0.5〜72時間が好ましい。
リチウム含有複合酸化物を洗浄した後、ろ過によりリチウム含有複合酸化物と水とを分離し、リチウム含有複合酸化物を乾燥することが好ましい。乾燥温度は、50〜110℃が好ましい。乾燥時間は、1〜24時間が好ましい。
乾燥後のリチウム含有複合酸化物をさらに焼成してもよい。焼成温度は、200〜600℃が好ましい。焼成時間は、0.5〜12時間が好ましい。
(Step (e))
The lithium-containing composite oxide may be washed with water for the purpose of removing impurities such as Na.
As a washing | cleaning method, the method of mixing and stirring lithium containing complex oxide and water is mentioned, for example. The stirring time is preferably 0.5 to 72 hours.
After washing the lithium-containing composite oxide, it is preferable to separate the lithium-containing composite oxide and water by filtration and to dry the lithium-containing composite oxide. The drying temperature is preferably 50 to 110 ° C. The drying time is preferably 1 to 24 hours.
The dried lithium-containing composite oxide may be further calcined. The firing temperature is preferably 200 to 600 ° C. The firing time is preferably 0.5 to 12 hours.

(工程(f))
リチウム含有複合酸化物の表面に被覆物を形成する方法としては、粉体混合法、気相法、スプレーコート法、浸漬法等が挙げられる。以下、被覆物がAlの化合物である場合について説明する。
粉体混合法とは、リチウム含有複合酸化物とAlの化合物とを混合した後に加熱する方法である。気相法とは、アルミニウムエトキシド、アルミニウムイソプロポキシド、アルミニウムアセチルアセトナート等のAlを含む有機化合物を気化し、該有機化合物をリチウム含有複合酸化物の表面に接触させ、反応させる方法である。スプレーコート法とは、リチウム含有複合酸化物にAlを含む溶液を噴霧した後、加熱する方法である。
また、リチウム含有複合酸化物に、Alの化合物を形成するためのAl水溶性化合物(酢酸アルミニウム、シュウ酸アルミニウム、クエン酸アルミニウム、乳酸アルミニウム、塩基性乳酸アルミニウム、硝酸アルミニウム等)を溶媒に溶解させた水溶液を接触させた後、加熱して溶媒を除去することで、リチウム含有複合酸化物の表面にAlの化合物を含む被覆物を形成してもよい。
(Step (f))
Examples of the method for forming a coating on the surface of the lithium-containing composite oxide include a powder mixing method, a gas phase method, a spray coating method, an immersion method and the like. Hereinafter, the case where the coating is a compound of Al will be described.
The powder mixing method is a method of heating after mixing the lithium-containing composite oxide and the compound of Al. The gas phase method is a method of vaporizing an organic compound containing Al such as aluminum ethoxide, aluminum isopropoxide, aluminum acetylacetonate, etc., and bringing the organic compound into contact with the surface of the lithium-containing composite oxide for reaction. . The spray coating method is a method in which a lithium-containing composite oxide is sprayed after being sprayed with a solution containing Al, and then heated.
In addition, an Al water-soluble compound (aluminum acetate, aluminum oxalate, aluminum citrate, aluminum lactate, basic aluminum lactate, aluminum nitrate, etc.) for forming a compound of Al is dissolved in a lithium-containing composite oxide in a solvent. After contacting with the aqueous solution, the solvent may be removed by heating to form a coating containing the compound of Al on the surface of the lithium-containing composite oxide.

前記リチウム含有複合酸化物は、LiαNiCoMn(1−x−y−z)β(ただし、1.1≦α≦1.7、0.15≦x≦0.5、0≦y≦0.33、0.33≦z≦0.85、x+y+z=1である。βは、Li、Ni、Co、MnおよびMの原子価を満足するのに必要な酸素元素(O)のモル数である。)で表されるものが好ましい。 The lithium-containing composite oxide can be prepared by using Li α Ni x Co y Mn z M (1-x-y-z) O β (wherein 1.1 ≦ α ≦ 1.7, 0.15 ≦ x ≦ 0.5). , 0 ≦ y ≦ 0.33, 0.33 ≦ z ≦ 0.85, x + y + z = 1. β is an oxygen element necessary to satisfy the valences of Li, Ni, Co, Mn and M ( What is represented by the number of moles of O) is preferred.

αは、リチウム含有複合酸化物に含まれるLiのモル比を示す。αは1.1〜1.5が好ましく、1.1〜1.45がより好ましい。αが前記下限値以上であれば、正極活物質を有するリチウムイオン二次電池の放電容量を高くできる。αが前記上限値以下であれば、リチウム含有複合酸化物の表面の遊離リチウム量を減らすことができる。遊離リチウムが多いとリチウムイオン二次電池の充放電効率やレート特性が低下するおそれや、電解液の分解が促進されて分解生成物のガス発生の要因となるおそれがある。   α represents a molar ratio of Li contained in the lithium-containing composite oxide. 1.1-1.5 are preferable and 1.1-1.45 of alpha are more preferable. If α is equal to or more than the lower limit value, the discharge capacity of the lithium ion secondary battery having the positive electrode active material can be increased. If alpha is below the said upper limit, the amount of free lithium on the surface of lithium containing complex oxide can be reduced. If the amount of free lithium is large, the charge / discharge efficiency or rate characteristics of the lithium ion secondary battery may be degraded, or decomposition of the electrolyte may be promoted to cause gas generation of decomposition products.

xは、リチウム含有複合酸化物に含まれるNiのモル比を示す。
yは、リチウム含有複合酸化物に含まれるCoのモル比を示す。
zは、リチウム含有複合酸化物に含まれるMnのモル比を示す。
x、yおよびzの範囲は、それぞれ、上述した遷移金属含有炭酸塩化合物におけるx、yおよびzの範囲と同じであり、好ましい範囲も同様である。
x、yおよびzの合量(x+y+z)は、1を超えることはない。
x shows the molar ratio of Ni contained in lithium containing complex oxide.
y represents the molar ratio of Co contained in the lithium-containing composite oxide.
z shows the molar ratio of Mn contained in lithium containing complex oxide.
The ranges of x, y and z are respectively the same as the ranges of x, y and z in the above-mentioned transition metal-containing carbonate compound, and the preferred ranges are also the same.
The total amount (x + y + z) of x, y and z does not exceed 1.

リチウム含有複合酸化物は、必要に応じて他の金属元素Mを含んでいてもよい。他の金属元素Mとしては、上述した遷移金属含有炭酸塩化合物に含まれるMと同じであり、好ましい金属元素も同様である。
βは、Li、Ni、Co、MnおよびMの原子価を満足するのに必要な酸素元素(O)のモル数である。
The lithium-containing composite oxide may contain other metal element M as necessary. The other metal element M is the same as M contained in the above-mentioned transition metal-containing carbonate compound, and preferred metal elements are also the same.
β is the number of moles of oxygen element (O) necessary to satisfy the valences of Li, Ni, Co, Mn and M.

前記リチウム含有複合酸化物は、空間群C2/mの層状岩塩型結晶構造および空間群R−3mの層状岩塩型結晶構造を有する。空間群C2/mの結晶構造は、リチウム過剰相とも呼ばれる。空間群C2/mの結晶構造を有する化合物としては、Li(Li1/3Mn2/3)O等が挙げられる。空間群R−3mの結晶構造を有する化合物としては、LiMeO(ただし、Meは、Ni、Co、Mnから選ばれる少なくとも1種の元素である。)等が挙げられる。リチウム含有複合酸化物がこれらの結晶構造を有することは、X線回折測定により確認できる。 The lithium-containing composite oxide has a layered rock salt type crystal structure of a space group C2 / m and a layered rock salt type crystal structure of a space group R-3 m. The crystal structure of the space group C2 / m is also referred to as lithium-rich phase. Examples of the compound having a crystal structure of the space group C2 / m, Li (Li 1/3 Mn 2/3) O 2 and the like. Examples of the compound having a crystal structure of the space group R-3m, LiMeO 2 (although, Me is, Ni, Co, at least one element selected from Mn.) And the like. It can be confirmed by X-ray diffraction measurement that the lithium-containing composite oxide has these crystal structures.

上記方法で得られた正極活物質の円形度の50%累積頻度における値は、0.970以上が好ましく、0.972以上がより好ましく、0.975以上がさらに好ましい。円形度の50%累積頻度における値が前記下限値以上であれば、円形度が高いリチウム含有複合酸化物を含む正極活物質を得ることができる。その結果、正極における正極活物質の密度が高くなり、正極活物質の単位体積あたりのリチウムイオン二次電池の放電容量が充分に高くなる。リチウム含有複合酸化物の円形度の50%累積頻度における値の上限値は、1である。   The value at the 50% cumulative frequency of the circularity of the positive electrode active material obtained by the above method is preferably 0.970 or more, more preferably 0.972 or more, and still more preferably 0.975 or more. If the value at the 50% cumulative frequency of the degree of circularity is equal to or more than the lower limit value, a positive electrode active material containing a lithium-containing composite oxide having a high degree of circularity can be obtained. As a result, the density of the positive electrode active material in the positive electrode becomes high, and the discharge capacity of the lithium ion secondary battery per unit volume of the positive electrode active material becomes sufficiently high. The upper limit of the 50% cumulative frequency of circularity of the lithium-containing composite oxide is 1.

上記方法で得られた正極活物質のD90/D10は、2〜6が好ましく、2〜5がより好ましく、2.5〜3.5がさらに好ましい。D90/D10が前記下限値以上であれば、リチウム含有複合酸化物の製造が容易である。D90/D10が前記上限値以下であれば、粒度分布が狭いリチウム含有複合酸化物を含む正極活物質を得ることができる。該正極活物質は、粗大粒子が少ないため、正極活物質を含むスラリを正極集電体に塗工する際の塗工性がよくなる。また、正極活物質を含むスラリを正極集電体に塗工した後、圧延する際に粗大粒子が割れる頻度が少なくなり、リチウムイオン二次電池のサイクル特性の低下が抑えられる。 D 90 / D 10 of the positive electrode active material obtained by the above method, 2 to 6, more preferably 2 to 5, more preferably 2.5 to 3.5. If D 90 / D 10 is at least the above lower limit value, the production of the lithium-containing composite oxide is easy. If D 90 / D 10 is less than the upper limit, it is possible to size distribution to obtain a positive electrode active material comprising a narrow lithium-containing composite oxide. Since the positive electrode active material has few coarse particles, the coatability at the time of applying the slurry containing the positive electrode active material on the positive electrode current collector is improved. In addition, after the slurry containing the positive electrode active material is applied to the positive electrode current collector, the frequency at which coarse particles are broken when rolling is reduced, and the deterioration of the cycle characteristics of the lithium ion secondary battery can be suppressed.

上記方法で得られた正極活物質のD50は、5〜15μmが好ましく、6〜14μmがより好ましく、8〜11μmがさらに好ましい。正極活物質のD50が前記範囲内にあれば、リチウムイオン二次電池の放電容量を充分に高くできる。 D 50 of the positive electrode active material obtained by the above method is preferably from 5 to 15 [mu] m, more preferably 6~14Myuemu, more preferably 8~11Myuemu. If D 50 of the positive electrode active material within the range, sufficiently high discharge capacity of the lithium ion secondary battery.

上記方法で得られた正極活物質の比表面積は、0.1〜10m/gが好ましく、0.5〜7m/gがより好ましく、0.5〜5m/gが特に好ましい。正極活物質の比表面積が前記範囲内にあれば、リチウムイオン二次電池の放電容量およびサイクル特性の両方を充分に高くできる。 0.1-10 m < 2 > / g is preferable, as for the specific surface area of the positive electrode active material obtained by the said method, 0.5-7 m < 2 > / g is more preferable, and 0.5-5 m < 2 > / g is especially preferable. If the specific surface area of the positive electrode active material is within the above range, both the discharge capacity and the cycle characteristics of the lithium ion secondary battery can be sufficiently high.

(作用機序)
以上説明した本発明の正極活物質の製造方法にあっては、前駆体として、円形度が高く、粒度分布が狭い遷移金属含有炭酸塩化合物を用いているため、円形度が高く、粒度分布が狭いリチウム含有複合酸化物を含む正極活物質を製造できる。
(Mechanism of action)
In the method of manufacturing the positive electrode active material of the present invention described above, since the transition metal-containing carbonate compound having a high degree of circularity and a narrow particle size distribution is used as the precursor, the degree of circularity is high and the particle size distribution is A positive electrode active material containing a narrow lithium-containing composite oxide can be produced.

<リチウムイオン二次電池用正極>
本発明のリチウムイオン二次電池用正極(以下、本正極と記す。)は、本発明の正極活物質の製造方法で得られた正極活物質を含むものである。具体的には、正極活物質、導電材およびバインダを含む正極活物質層が、正極集電体上に形成されたものである。
<Positive electrode for lithium ion secondary battery>
The positive electrode for a lithium ion secondary battery of the present invention (hereinafter referred to as the present positive electrode) contains the positive electrode active material obtained by the method for producing a positive electrode active material of the present invention. Specifically, a positive electrode active material layer containing a positive electrode active material, a conductive material, and a binder is formed on a positive electrode current collector.

導電材としては、カーボンブラック(アセチレンブラック、ケッチェンブラック等)、黒鉛、気相成長カーボン繊維、カーボンナノチューブ等が挙げられる。
バインダとしては、フッ素系樹脂(ポリフッ化ビニリデン、ポリテトラフルオロエチレン等)、ポリオレフィン(ポリエチレン、ポリプロピレン等)、不飽和結合を有する重合体または共重合体(スチレン・ブタジエンゴム、イソプレンゴム、ブタジエンゴム等)、アクリル酸系重合体または共重合体(アクリル酸共重合体、メタクリル酸共重合体等)等が挙げられる。
正極集電体としては、アルミニウム箔、ステンレススチール箔等が挙げられる。
Examples of the conductive material include carbon black (acetylene black, ketjen black and the like), graphite, vapor grown carbon fiber, carbon nanotube and the like.
As the binder, fluorine resin (polyvinylidene fluoride, polytetrafluoroethylene, etc.), polyolefin (polyethylene, polypropylene, etc.), polymer or copolymer having unsaturated bond (styrene / butadiene rubber, isoprene rubber, butadiene rubber, etc.) And acrylic acid polymers or copolymers (acrylic acid copolymers, methacrylic acid copolymers, etc.) and the like.
Examples of the positive electrode current collector include aluminum foil and stainless steel foil.

本正極は、たとえば、下記の方法によって製造できる。
正極活物質、導電材およびバインダを、媒体に溶解または分散させてスラリを得る。得られたスラリを正極集電体に塗工し、乾燥等により、媒体を除去することによって、正極活物質層を形成する。必要に応じて、正極活物質層を形成した後に、ロールプレス等で圧延してもよい。これにより、本正極を得る。
または正極活物質、導電材およびバインダを、媒体と混練することによって、混練物を得る。得られた混練物を正極集電体に圧延することにより本正極を得る。
The present positive electrode can be produced, for example, by the following method.
The positive electrode active material, the conductive material and the binder are dissolved or dispersed in a medium to obtain a slurry. The obtained slurry is applied to a positive electrode current collector, and the medium is removed by drying or the like to form a positive electrode active material layer. As needed, after forming a positive electrode active material layer, you may roll with a roll press etc. Thus, the present positive electrode is obtained.
Alternatively, a kneaded material is obtained by kneading the positive electrode active material, the conductive material and the binder with a medium. The obtained kneaded product is rolled to a positive electrode current collector to obtain the present positive electrode.

(作用機序)
以上説明した本正極にあっては、円形度が高いリチウム含有複合酸化物を含む正極活物質を含むため、正極における正極活物質の密度が高くなり、正極活物質の単位体積あたりのリチウムイオン二次電池の放電容量が充分に高くなる。また、粒度分布が狭いリチウム含有複合酸化物を含む正極活物質を含むため、粗大粒子が少なくなり、正極活物質を含むスラリを正極集電体に塗工する際の塗工性がよくなる。また、正極活物質を含むスラリを正極集電体に塗工した後、圧延する際に粗大粒子が割れる頻度が少なくなり、リチウムイオン二次電池のサイクル特性の低下が抑えられる。
(Mechanism of action)
In the present positive electrode described above, since the positive electrode active material including the lithium-containing composite oxide having a high degree of circularity is included, the density of the positive electrode active material in the positive electrode becomes high, and lithium ions per unit volume of the positive electrode active material The discharge capacity of the secondary battery is sufficiently high. In addition, since the positive electrode active material containing a lithium-containing composite oxide having a narrow particle size distribution is included, coarse particles are reduced, and the coatability at the time of applying the slurry containing the positive electrode active material to the positive electrode current collector is improved. In addition, after the slurry containing the positive electrode active material is applied to the positive electrode current collector, the frequency at which coarse particles are broken when rolling is reduced, and the deterioration of the cycle characteristics of the lithium ion secondary battery can be suppressed.

<リチウムイオン二次電池>
本発明のリチウムイオン二次電池(以下、本電池と記す。)は、本正極を有するものである。具体的には、本正極、負極、および非水電解質を含むものである。
<Lithium ion secondary battery>
The lithium ion secondary battery (hereinafter referred to as the present battery) of the present invention has the present positive electrode. Specifically, the positive electrode, the negative electrode, and the non-aqueous electrolyte are included.

(負極)
負極は、負極活物質を含むものである。具体的には、負極活物質、必要に応じて導電材およびバインダを含む負極活物質層が、負極集電体上に形成されたものである。
(Negative electrode)
The negative electrode contains a negative electrode active material. Specifically, a negative electrode active material layer and, if necessary, a negative electrode active material layer containing a conductive material and a binder are formed on a negative electrode current collector.

負極活物質は、比較的低い電位でリチウムイオンを吸蔵、放出可能な材料であればよい。負極活物質としては、リチウム金属、リチウム合金、リチウム化合物、炭素材料、周期表14族の金属を主体とする酸化物、周期表15族の金属を主体とする酸化物、炭素化合物、炭化ケイ素化合物、酸化ケイ素化合物、硫化チタン、炭化ホウ素化合物等が挙げられる。   The negative electrode active material may be any material that can occlude and release lithium ions at a relatively low potential. As the negative electrode active material, lithium metal, lithium alloy, lithium compound, carbon material, oxide mainly composed of metal of periodic table group 14, oxide mainly composed of metal of periodic table group 15, carbon compound, silicon carbide compound And silicon oxide compounds, titanium sulfide, and boron carbide compounds.

負極活物質の炭素材料としては、難黒鉛化性炭素、人造黒鉛、天然黒鉛、熱分解炭素類、コークス類(ピッチコークス、ニードルコークス、石油コークス等)、グラファイト類、ガラス状炭素類、有機高分子化合物焼成体(フェノール樹脂、フラン樹脂等を適当な温度で焼成し炭素化したもの)、炭素繊維、活性炭、カーボンブラック類等が挙げられる。   As a carbon material of the negative electrode active material, non-graphitizable carbon, artificial graphite, natural graphite, pyrolytic carbons, cokes (pitch coke, needle coke, petroleum coke, etc.), graphites, glassy carbons, organic high materials A molecular compound fired body (phenol resin, furan resin, etc. fired and carbonized at an appropriate temperature), carbon fiber, activated carbon, carbon blacks, etc. may be mentioned.

負極活物質に使用する周期表14族の金属としては、Si、Snが挙げられ、Siが好ましい。
他の負極活物質としては、酸化鉄、酸化ルテニウム、酸化モリブデン、酸化タングステン、酸化チタン、酸化スズ等の酸化物、その他の窒化物等が挙げられる。
As a metal of periodic table 14 group used for a negative electrode active material, Si and Sn are mentioned, and Si is preferable.
Other negative electrode active materials include oxides such as iron oxide, ruthenium oxide, molybdenum oxide, tungsten oxide, titanium oxide and tin oxide, and other nitrides.

負極の導電材、バインダとしては、正極と同様のものを用いることができる。
負極集電体としては、ニッケル箔、銅箔等の金属箔が挙げられる。
As the conductive material of the negative electrode and the binder, the same materials as those of the positive electrode can be used.
Examples of the negative electrode current collector include metal foils such as nickel foil and copper foil.

負極は、たとえば、下記の方法によって製造できる。
負極活物質、導電材およびバインダを、媒体に溶解または分散させてスラリを得る。得られたスラリを負極集電体に塗布、乾燥、プレスすること等によって媒体を除去し、負極を得る。
The negative electrode can be produced, for example, by the following method.
The negative electrode active material, the conductive material and the binder are dissolved or dispersed in a medium to obtain a slurry. The medium is removed by coating the obtained slurry on a negative electrode current collector, drying, pressing or the like to obtain a negative electrode.

(非水電解質)
非水電解質としては、有機溶媒に電解質塩を溶解させた非水電解液;無機固体電解質;電解質塩を混合または溶解させた固体状またはゲル状の高分子電解質等が挙げられる。
(Non-aqueous electrolyte)
Examples of the non-aqueous electrolyte include a non-aqueous electrolytic solution in which an electrolyte salt is dissolved in an organic solvent; an inorganic solid electrolyte; and a solid or gel polymer electrolyte in which an electrolytic salt is mixed or dissolved.

有機溶媒としては、非水電解液用の有機溶媒として公知のものが挙げられる。具体的には、プロピレンカーボネート、エチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、1,2−ジメトキシエタン、1,2−ジエトキシエタン、γ−ブチロラクトン、ジエチルエーテル、スルホラン、メチルスルホラン、アセトニトリル、酢酸エステル、酪酸エステル、プロピオン酸エステル等が挙げられる。電圧安定性の点からは、環状カーボネート類(プロピレンカーボネート等)、鎖状カーボネート類(ジメチルカーボネート、ジエチルカーボネート等)が好ましい。有機溶媒は、1種を単独で用いてもよく、2種類以上を混合して用いてもよい。   As an organic solvent, what is well-known as an organic solvent for non-aqueous electrolytes is mentioned. Specifically, propylene carbonate, ethylene carbonate, diethyl carbonate, dimethyl carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, γ-butyrolactone, diethyl ether, sulfolane, methyl sulfolane, acetonitrile, acetate, butyric acid Ester, propionic acid ester and the like can be mentioned. From the viewpoint of voltage stability, cyclic carbonates (such as propylene carbonate) and linear carbonates (such as dimethyl carbonate and diethyl carbonate) are preferable. An organic solvent may be used individually by 1 type, and may mix and use 2 or more types.

無機固体電解質は、リチウムイオン伝導性を有する材料であればよい。
無機固体電解質としては、窒化リチウム、ヨウ化リチウム等が挙げられる。
The inorganic solid electrolyte may be a material having lithium ion conductivity.
Examples of the inorganic solid electrolyte include lithium nitride and lithium iodide.

固体状高分子電解質に用いられる高分子としては、エーテル系高分子化合物(ポリエチレンオキサイド、その架橋体等)、ポリメタクリレートエステル系高分子化合物、アクリレート系高分子化合物等が挙げられる。該高分子化合物は、1種を単独で用いてもよく、2種類以上を混合して用いてもよい。   Examples of the polymer used for the solid polymer electrolyte include ether-based polymer compounds (polyethylene oxide, crosslinked products thereof, etc.), polymethacrylate ester-based polymer compounds, acrylate-based polymer compounds and the like. The polymer compounds may be used alone or in combination of two or more.

ゲル状高分子電解質に用いられる高分子としては、フッ素系高分子化合物(ポリフッ化ビニリデン、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体等)、ポリアクリロニトリル、アクリロニトリル共重合体、エーテル系高分子化合物(ポリエチレンオキサイド、その架橋体等)等が挙げられる。共重合体に共重合させるモノマとしては、ポリプロピレンオキサイド、メタクリル酸メチル、メタクリル酸ブチル、アクリル酸メチル、アクリル酸ブチル等が挙げられる。
該高分子化合物としては、酸化還元反応に対する安定性の点から、フッ素系高分子化合物が好ましい。
As polymers used for gel-like polymer electrolytes, fluorine-based polymer compounds (polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, etc.), polyacrylonitrile, acrylonitrile copolymer, ether polymer compounds ( Polyethylene oxide, its crosslinked body, etc. are mentioned. Examples of the monomer copolymerized with the copolymer include polypropylene oxide, methyl methacrylate, butyl methacrylate, methyl acrylate, butyl acrylate and the like.
As the polymer compound, a fluorine-based polymer compound is preferable from the viewpoint of the stability to the oxidation-reduction reaction.

電解質塩は、リチウムイオン二次電池に用いられるものであればよい。電解質塩としては、LiClO、LiPF、LiBF、CHSOLi等が挙げられる。 The electrolyte salt may be any one as long as it is used in a lithium ion secondary battery. Examples of the electrolyte salt include LiClO 4 , LiPF 6 , LiBF 4 , CH 3 SO 3 Li and the like.

正極と負極の間には、短絡を防止するためにセパレータを介在させてもよい。セパレータとしては、多孔膜が挙げられる。非水電解液は該多孔膜に含浸させて用いる。また、多孔膜に非水電解液を含浸させてゲル化させたものをゲル状電解質として用いてもよい。   A separator may be interposed between the positive electrode and the negative electrode to prevent a short circuit. A porous membrane is mentioned as a separator. The non-aqueous electrolyte is used by impregnating the porous membrane. Further, a porous membrane impregnated with a non-aqueous electrolytic solution and gelled may be used as a gel electrolyte.

電池外装体の材料としては、ニッケルメッキを施した鉄、ステンレス、アルミニウムまたはその合金、ニッケル、チタン、樹脂材料、フィルム材料等が挙げられる。   Examples of the material of the battery outer package include nickel-plated iron, stainless steel, aluminum or an alloy thereof, nickel, titanium, a resin material, a film material and the like.

リチウムイオン二次電池の形状としては、コイン型、シート状(フィルム状)、折り畳み状、巻回型有底円筒型、ボタン型等が挙げられ、用途に応じて適宜選択することができる。   The shape of the lithium ion secondary battery may, for example, be a coin, a sheet (film), a fold, a winding type, a bottomed cylindrical, a button, or the like, which can be appropriately selected according to the application.

(作用機序)
以上説明した本電池にあっては、本正極を有するため、放電容量およびサイクル特性が良好である。
(Mechanism of action)
In the present battery described above, since the present positive electrode is provided, discharge capacity and cycle characteristics are excellent.

以下、実施例によって本発明を詳細に説明するが、本発明はこれらに限定されない。
例2−2、例2−3および例3〜6は実施例であり、例1および例2−1は比較例である。
Hereinafter, the present invention will be described in detail by way of examples, but the present invention is not limited thereto.
Examples 2-2, 2-3 and 3-6 are examples, and examples 1 and 2-1 are comparative examples.

(粒子径)
種晶または遷移金属含有炭酸塩化合物を水中に超音波処理によって充分に分散させ、レーザー回折/散乱式粒子径分布測定装置(日機装社製、MT−3300EX)により測定を行い、頻度分布および累積体積分布曲線を得ることで体積基準の粒度分布を得た。得られた累積体積分布曲線からD10、D50およびD90を求めた。
(Particle size)
A seed crystal or transition metal-containing carbonate compound is sufficiently dispersed in water by ultrasonic treatment, and measurement is performed using a laser diffraction / scattering particle size distribution measuring apparatus (MT-3300EX, manufactured by Nikkiso Co., Ltd.), and the frequency distribution and cumulative volume A volume-based particle size distribution was obtained by obtaining a distribution curve. D 10 , D 50 and D 90 were determined from the obtained cumulative volume distribution curve.

(タップ密度)
遷移金属含有炭酸塩化合物のタップ密度(単位:g/cm)は、下式から算出した。下式のVは、タップ後の試料の体積(単位:cm)であり、目盛付きの樹脂製容器(容量:20cm)に試料(遷移金属含有炭酸塩化合物)を量りとり、容器をタッピング装置(セイシン企業社製、KYT−4000K)に取り付け、700回タップを行い、容器内の試料の体積を容器の目盛で読み取った値である。下式のmは、試料の質量(単位:g)であり、樹脂性容器に加えた試料の質量である。
ρ=m/V
(Tap density)
The tap density (unit: g / cm 3 ) of the transition metal-containing carbonate compound was calculated from the following equation. V in the following formula is the volume (unit: cm 3 ) of the sample after tapping, weigh the sample (transition metal-containing carbonate compound) in a resin container (volume: 20 cm 3 ) with a scale, and tap the container The sample was attached to an apparatus (KYT-4000K, manufactured by Seishin Enterprise Co., Ltd.), tapped 700 times, and the value of the volume of the sample in the container was read on the scale of the container. In the following formula, m is the mass of the sample (unit: g), which is the mass of the sample added to the resinous container.
ρ t = m / V

(比表面積)
遷移金属含有炭酸塩化合物の比表面積は、比表面積測定装置(マウンテック社製、HM model−1208)を用い、窒素吸着BET法により算出した。脱気は、200℃、20分の条件で行った。
(Specific surface area)
The specific surface area of the transition metal-containing carbonate compound was calculated by a nitrogen adsorption BET method using a specific surface area measurement device (manufactured by Mountech Co., HM model-1208). Degassing was performed at 200 ° C. for 20 minutes.

(円形度)
遷移金属含有炭酸塩化合物の円形度比表面積は、フロー式粒子像分析装置(シスメックス社製、FPIA−3000)を用いて測定した。
測定されたすべての粒子の円形度について、横軸が円形度(0〜1)であり、縦軸が円形度の累積頻度(0〜100%)である分布曲線を作成し、該分布曲線において累積頻度が50%のときの円形度の値を読み取った。
(Roundness)
The roundness specific surface area of the transition metal-containing carbonate compound was measured using a flow type particle image analyzer (FPIA-3000 manufactured by Sysmex Corporation).
For the measured circularity of all particles, create a distribution curve whose horizontal axis is circularity (0 to 1) and whose vertical axis is cumulative frequency of circularity (0 to 100%), in the distribution curve The circularity value was read when the cumulative frequency was 50%.

(組成分析)
遷移金属含有炭酸塩化合物の組成分析は、プラズマ発光分析装置(SIIナノテクノロジー社製、SPS3100H)により行った。
(Composition analysis)
The compositional analysis of the transition metal-containing carbonate compound was performed using a plasma emission analyzer (SPS3100H, manufactured by SII Nano Technology Inc.).

(例1)
水溶液の調製:
硫酸ニッケル(II)・六水和物、硫酸コバルト(II)・七水和物、硫酸マンガン(II)・五水和物を、Ni、CoおよびMnのモル比が表1に示す比になるように、かつNi、CoおよびMnの合計濃度が1.5mol/kgとなるように蒸留水に溶解して水溶液Aを調製した。
炭酸ナトリウムを1.5mol/kgとなるように蒸留水に溶解させ、水溶液Bを調製した。
(Example 1)
Preparation of aqueous solution:
The molar ratio of Ni, Co and Mn in the nickel (II) sulfate, hexahydrate, cobalt (II) sulfate, heptahydrate, manganese (II) sulfate, pentahydrate is the ratio shown in Table 1 Thus, an aqueous solution A was prepared by dissolving in distilled water such that the total concentration of Ni, Co and Mn was 1.5 mol / kg.
An aqueous solution B was prepared by dissolving sodium carbonate in distilled water so as to be 1.5 mol / kg.

遷移金属含有炭酸塩化合物の製造:
図4に示す粒子成長装置3を用意した。
2Lのバッフル付きガラス製反応槽40に蒸留水を1.9L入れた。遷移金属含有炭酸塩化合物の製造は、湯浴により反応槽40内の液を30±1℃に保持して行った。
反応槽40内の溶液を2段傾斜パドル型の撹拌翼42で撹拌しながら、水溶液Aを5g/分で25時間連続的に添加した。
反応槽40の混合液の初期のpHは8.5とし、水溶液Aの添加中は、反応槽40内のpHを8.5±0.1に保つように水溶液Bを添加し、Ni、CoおよびMnを含む遷移金属含有炭酸塩化合物を析出させた。
析出反応中は、析出した遷移金属含有炭酸塩化合物が酸化しないように反応槽40内に窒素ガスを流量0.5L/分で流した。析出方法として濃縮法を採用し、反応中に、反応槽40内の液量が2Lを超えないようにろ布を用いて連続的に遷移金属含有炭酸塩化合物を含まない液の抜き出しを行った。水溶液Aの添加開始から25時間後、反応槽40内の混合液の全量を回収した。
得られた遷移金属含有炭酸塩化合物から不純物イオンを取り除くため、加圧ろ過と蒸留水への分散とを繰り返して遷移金属含有炭酸塩化合物の洗浄を行った。ろ液の電気伝導度が50mS/m未満となった時点で洗浄を終了し、遷移金属含有炭酸塩化合物を120℃で15時間乾燥させた。得られた遷移金属含有炭酸塩化合物の上記評価の結果を表2に示す。
Preparation of Transition Metal-Containing Carbonate Compounds:
The particle growth apparatus 3 shown in FIG. 4 was prepared.
A 2-liter baffled glass reaction vessel 40 was charged with 1.9 liters of distilled water. The transition metal-containing carbonate compound was produced by maintaining the liquid in the reaction tank 40 at 30 ± 1 ° C. with a hot water bath.
Aqueous solution A was continuously added at 5 g / min for 25 hours while stirring the solution in the reaction vessel 40 with a two-stage inclined paddle type stirring blade 42.
The initial pH of the mixture in the reaction tank 40 is set to 8.5, and during the addition of the aqueous solution A, the aqueous solution B is added to maintain the pH in the reaction tank 40 at 8.5 ± 0.1, and Ni, Co And a transition metal-containing carbonate compound containing Mn were precipitated.
During the precipitation reaction, nitrogen gas was flowed at a flow rate of 0.5 L / min into the reaction vessel 40 so that the precipitated transition metal-containing carbonate compound was not oxidized. A concentration method was adopted as the precipitation method, and during the reaction, a liquid not containing the transition metal-containing carbonate compound was continuously withdrawn using a filter cloth so that the liquid volume in the reaction tank 40 did not exceed 2 L. . Twenty-five hours after the addition of the aqueous solution A was started, the entire amount of the mixture in the reaction vessel 40 was recovered.
In order to remove impurity ions from the obtained transition metal-containing carbonate compound, pressure filtration and dispersion in distilled water were repeated to wash the transition metal-containing carbonate compound. Washing was terminated when the conductivity of the filtrate was less than 50 mS / m, and the transition metal-containing carbonate compound was dried at 120 ° C. for 15 hours. The results of the above evaluation of the obtained transition metal-containing carbonate compound are shown in Table 2.

(例2)
水溶液の調製:
硫酸ニッケル(II)・六水和物、硫酸コバルト(II)・七水和物、硫酸マンガン(II)・五水和物を、Ni、CoおよびMnのモル比が表1に示す比になるように、かつNi、CoおよびMnの合計濃度が1.5mol/kgとなるように蒸留水に溶解して水溶液Aを調製した。
炭酸ナトリウムを1.5mol/kgとなるように蒸留水に溶解させ、水溶液Bを調製した。
(Example 2)
Preparation of aqueous solution:
The molar ratio of Ni, Co and Mn in the nickel (II) sulfate, hexahydrate, cobalt (II) sulfate, heptahydrate, manganese (II) sulfate, pentahydrate is the ratio shown in Table 1 Thus, an aqueous solution A was prepared by dissolving in distilled water such that the total concentration of Ni, Co and Mn was 1.5 mol / kg.
An aqueous solution B was prepared by dissolving sodium carbonate in distilled water so as to be 1.5 mol / kg.

種晶液の調製:
図1に示す種晶液調製装置1aを用意した。
2Lのバッフル付きガラス製種晶液調製槽10に蒸留水を1.9L入れた。種晶液の製造は、湯浴により種晶液調製槽10内の液を30±1℃に保持して行った。
種晶液調製槽10内の溶液を2段傾斜パドル型の撹拌翼12で撹拌しながら、かつ種晶液調製槽10に超音波を照射しながら、水溶液Aを5g/分で14時間連続的に添加した。
種晶液調製槽10の混合液の初期のpHは8.0とし、水溶液Aの添加中は、種晶液調製槽10内のpHを8.0±0.1に保つように水溶液Bを添加し、Ni、CoおよびMnを含む炭酸塩化合物(種晶)を析出させた。
析出反応中は、析出した種晶が酸化しないように種晶液調製槽10内に窒素ガスを流量0.5L/分で流した。析出方法として濃縮法を採用し、反応中に、種晶液調製槽10内の混合液の一部を混合液循環ライン20に循環させ、種晶液調製槽10内の液量が2Lを超えないようにMF膜モジュール24を用いて連続的に種晶を含まない液の抜き出しを行った。水溶液Aの添加開始から14時間後、種晶液調製槽10内の混合液の全量を回収し、種晶液Cを得た。得られた種晶液Cの上記結果および固形分濃度を表1に示す。
Preparation of seed solution:
A seed crystal preparation apparatus 1a shown in FIG. 1 was prepared.
Into 2 L of baffled glass seed solution preparation tank 10 was added 1.9 L of distilled water. The production of the seed crystal was carried out by maintaining the liquid in the seed crystal preparation tank 10 at 30 ± 1 ° C. with a water bath.
While stirring the solution in the seed crystal preparation tank 10 with a two-stage inclined paddle type stirring blade 12 and irradiating the seed crystal preparation tank 10 with ultrasonic waves, the aqueous solution A is continuously applied at 5 g / min for 14 hours Added to
The initial pH of the mixture in the seed crystal preparation tank 10 is set to 8.0, and during the addition of the aqueous solution A, the aqueous solution B is maintained so as to maintain the pH in the seed crystal preparation tank 10 at 8.0 ± 0.1. Then, a carbonate compound (seed crystal) containing Ni, Co and Mn was precipitated.
During the precipitation reaction, nitrogen gas was flowed at a flow rate of 0.5 L / min into the seed crystal preparation tank 10 so that the precipitated seed crystals were not oxidized. A concentration method is adopted as a precipitation method, and during the reaction, a portion of the mixture in the seed crystal preparation tank 10 is circulated to the mixture circulation line 20, and the liquid volume in the seed crystal preparation tank 10 exceeds 2 liters. In order to prevent this, the MF membrane module 24 was used to continuously withdraw the liquid containing no seed crystal. Fourteen hours after the start of the addition of the aqueous solution A, the whole of the mixture in the seed crystal preparation tank 10 was recovered to obtain a seed crystal C. The results and the solid content concentration of the obtained seed crystal solution C are shown in Table 1.

例2−1:
図4に示す粒子成長装置3を用意した。
2Lのバッフル付きガラス製反応槽40に蒸留水を1.9L入れた。遷移金属含有炭酸塩化合物の製造は、湯浴により反応槽40内の液を30±1℃に保持して行った。
反応槽40内の溶液を2段傾斜パドル型の撹拌翼42で撹拌しながら、水溶液Aを5g/分で20時間連続的に添加した。
反応槽40の混合液の初期のpHは8.0とし、水溶液Aの添加中は、反応槽40内のpHを8.0±0.1に保つように水溶液Bを添加し、Ni、CoおよびMnを含む遷移金属含有炭酸塩化合物を析出させた。
析出反応中は、析出した遷移金属含有炭酸塩化合物が酸化しないように反応槽40内に窒素ガスを流量0.5L/分で流した。析出方法としてオーバーフロー法を採用し、反応中に、反応槽内の液量が2Lを超えないように混合液抜出ライン50から混合液を抜き出した。
水溶液Aの最初の添加開始から6〜20時間の間にオーバーフローした遷移金属含有炭酸塩化合物を回収した。得られた遷移金属含有炭酸塩化合物を例1と同様にして洗浄し、乾燥させた。得られた遷移金属含有炭酸塩化合物の上記評価の結果を表2に示す。
Example 2-1:
The particle growth apparatus 3 shown in FIG. 4 was prepared.
A 2-liter baffled glass reaction vessel 40 was charged with 1.9 liters of distilled water. The transition metal-containing carbonate compound was produced by maintaining the liquid in the reaction tank 40 at 30 ± 1 ° C. with a hot water bath.
Aqueous solution A was continuously added at 5 g / min for 20 hours while stirring the solution in the reaction vessel 40 with a two-stage inclined paddle type stirring blade 42.
The initial pH of the mixture in the reaction tank 40 is set to 8.0, and during the addition of the aqueous solution A, the aqueous solution B is added to maintain the pH in the reaction tank 40 at 8.0 ± 0.1, and Ni, Co And a transition metal-containing carbonate compound containing Mn were precipitated.
During the precipitation reaction, nitrogen gas was flowed at a flow rate of 0.5 L / min into the reaction vessel 40 so that the precipitated transition metal-containing carbonate compound was not oxidized. The overflow method was employed as the precipitation method, and the liquid mixture was drawn from the liquid mixture extraction line 50 so that the liquid volume in the reaction tank did not exceed 2 L during the reaction.
The transition metal-containing carbonate compound which overflowed between 6 and 20 hours from the start of the first addition of the aqueous solution A was recovered. The resulting transition metal-containing carbonate compound was washed and dried as described in Example 1. The results of the above evaluation of the obtained transition metal-containing carbonate compound are shown in Table 2.

例2−2:
例2−1の水溶液Aの最初の添加開始の40時間後から、水溶液Aを5g/分で、かつ種晶液Cを5g/時間で21時間連続的に添加した。
水溶液Aおよび種晶液Cの添加中は、反応槽40内のpHを8.0±0.1に保つように水溶液Bを添加し、種晶を成長させて、Ni、CoおよびMnを含む遷移金属含有炭酸塩化合物を形成した。
水溶液Aの最初の添加開始から55〜64時間の間にオーバーフローした遷移金属含有炭酸塩化合物を回収した。得られた遷移金属含有炭酸塩化合物を例1と同様にして洗浄し、乾燥させた。得られた遷移金属含有炭酸塩化合物の上記評価の結果を表2に示す。
Example 2-2:
Forty hours after the start of the first addition of aqueous solution A of Example 2-1, aqueous solution A was continuously added at 5 g / min and seed crystal solution C at 5 g / hour for 21 hours.
During the addition of the aqueous solution A and the seed crystal solution C, the aqueous solution B is added to keep the pH in the reaction vessel 40 at 8.0 ± 0.1, and the seed crystals are grown to contain Ni, Co and Mn. A transition metal-containing carbonate compound was formed.
The transition metal-containing carbonate compound which overflowed during 55 to 64 hours from the start of the first addition of the aqueous solution A was recovered. The resulting transition metal-containing carbonate compound was washed and dried as described in Example 1. The results of the above evaluation of the obtained transition metal-containing carbonate compound are shown in Table 2.

例2−3:
例2−2の後で、例2−1の水溶液Aの最初の添加開始の61時間後から、水溶液Aを5g/分で、かつ種晶液Cを15g/時間で21時間連続的に添加した。
水溶液Aおよび種晶液Cの添加中は、反応槽40内のpHを8.0±0.1に保つように水溶液Bを添加し、種晶を成長させて、Ni、CoおよびMnを含む遷移金属含有炭酸塩化合物を形成した。
水溶液Aの最初の添加開始から70〜82時間の間にオーバーフローした遷移金属含有炭酸塩化合物を回収した。得られた遷移金属含有炭酸塩化合物を例1と同様にして洗浄し、乾燥させた。得られた遷移金属含有炭酸塩化合物の上記評価の結果を表2に示す。
Example 2-3:
After Example 2-2, 61 hours after the start of the first addition of aqueous solution A of Example 2-1, continuous addition of aqueous solution A at 5 g / min and seed crystal solution C at 15 g / hour for 21 hours did.
During the addition of the aqueous solution A and the seed crystal solution C, the aqueous solution B is added to keep the pH in the reaction vessel 40 at 8.0 ± 0.1, and the seed crystals are grown to contain Ni, Co and Mn. A transition metal-containing carbonate compound was formed.
The transition metal-containing carbonate compound overflowed between 70 and 82 hours from the start of the first addition of aqueous solution A was recovered. The resulting transition metal-containing carbonate compound was washed and dried as described in Example 1. The results of the above evaluation of the obtained transition metal-containing carbonate compound are shown in Table 2.

(例3)
水溶液の調製:
硫酸ニッケル(II)・六水和物、硫酸マンガン(II)・五水和物を、NiおよびMnのモル比が表1に示す比になるように、かつNiおよびMnの合計濃度が1.5mol/kgとなるように蒸留水に溶解して水溶液Aを調製した。
炭酸ナトリウムを1.5mol/kgとなるように蒸留水に溶解させ、水溶液Bを調製した。
(Example 3)
Preparation of aqueous solution:
The nickel (II) sulfate hexahydrate and the manganese (II) sulfate pentahydrate are mixed so that the molar ratio of Ni and Mn is as shown in Table 1, and the total concentration of Ni and Mn is 1. An aqueous solution A was prepared by dissolving in distilled water so as to be 5 mol / kg.
An aqueous solution B was prepared by dissolving sodium carbonate in distilled water so as to be 1.5 mol / kg.

種晶液の調製:
図2に示す種晶液調製装置1bを用意した。
2Lのバッフル付きガラス製種晶液調製槽10に蒸留水を1.9L入れた。種晶液の製造は、湯浴により種晶液調製槽10内の液を30±1℃に保持して行った。
種晶液調製槽10内の溶液を、シャフトジェネレータ32を用いて7500rpmで撹拌しながら、水溶液Aを5g/分で22時間連続的に添加した。
種晶液調製槽10の混合液の初期のpHは8.0とし、水溶液Aの添加中は、種晶液調製槽10内のpHを8.0±0.1に保つように水溶液Bを添加し、NiおよびMnを含む炭酸塩化合物(種晶)を析出させた。
析出反応中は、析出した種晶が酸化しないように種晶液調製槽10内に窒素ガスを流量0.5L/分で流した。析出方法として濃縮法を採用し、反応中に、種晶液調製槽10内の混合液の一部を混合液循環ライン20に循環させ、種晶液調製槽10内の液量が2Lを超えないようにMF膜モジュール24を用いて連続的に種晶を含まない液の抜き出しを行った。水溶液Aの最初の添加開始から14時間後、種晶液調製槽10内の混合液の1191.4gを混合液排出ラインから抜き出した。
Preparation of seed solution:
A seed crystal preparation device 1b shown in FIG. 2 was prepared.
Into 2 L of baffled glass seed solution preparation tank 10 was added 1.9 L of distilled water. The production of the seed crystal was carried out by maintaining the liquid in the seed crystal preparation tank 10 at 30 ± 1 ° C. with a water bath.
While stirring the solution in the seed crystal preparation tank 10 at 7500 rpm using the shaft generator 32, the aqueous solution A was continuously added at 5 g / min for 22 hours.
The initial pH of the mixture in the seed crystal preparation tank 10 is set to 8.0, and during the addition of the aqueous solution A, the aqueous solution B is maintained so as to maintain the pH in the seed crystal preparation tank 10 at 8.0 ± 0.1. It was added to precipitate a carbonate compound (seed crystal) containing Ni and Mn.
During the precipitation reaction, nitrogen gas was flowed at a flow rate of 0.5 L / min into the seed crystal preparation tank 10 so that the precipitated seed crystals were not oxidized. A concentration method is adopted as a precipitation method, and during the reaction, a portion of the mixture in the seed crystal preparation tank 10 is circulated to the mixture circulation line 20, and the liquid volume in the seed crystal preparation tank 10 exceeds 2 liters. In order to prevent this, the MF membrane module 24 was used to continuously withdraw the liquid containing no seed crystal. Fourteen hours after the start of the first addition of the aqueous solution A, 1191.4 g of the mixture in the seed crystal preparation tank 10 was withdrawn from the mixture discharge line.

水溶液Aの最初の添加開始の22時間後から、シャフトジェネレータ32の回転数を5000rpmに変更し、引き続き、水溶液Aを5g/分で26時間連続的に添加した。
水溶液Aの添加中は、種晶液調製槽10内のpHを8.0±0.1に保つように水溶液Bを添加し、NiおよびMnを含む炭酸塩化合物(種晶)を析出させた。
反応中に、種晶液調製槽10内の混合液の一部を混合液循環ライン20に循環させ、種晶液調製槽10内の液量が2Lを超えないようにMF膜モジュール24を用いて連続的に種晶を含まない液の抜き出しを行った。水溶液Aの最初の添加開始から34時間後、種晶液調製槽10内の混合液の1997.4gを混合液排出ラインから抜き出した。さらに、水溶液Aの最初の添加開始から48時間後、種晶液調製槽10内の混合液の全量を回収し、水溶液Aの最初の添加開始から48時間後のものを種晶液Cとした。得られた種晶液Cの上記結果および固形分濃度を表1に示す。
Twenty-two hours after the start of the first addition of the aqueous solution A, the rotation number of the shaft generator 32 was changed to 5000 rpm, and then the aqueous solution A was continuously added at 5 g / min for 26 hours.
During the addition of the aqueous solution A, the aqueous solution B was added so as to keep the pH in the seed crystal preparation tank 10 at 8.0 ± 0.1, to precipitate a carbonate compound (seed crystal) containing Ni and Mn. .
During the reaction, a portion of the mixture in the seed crystal preparation tank 10 is circulated to the mixture circulation line 20, and the MF membrane module 24 is used so that the liquid volume in the seed crystal preparation tank 10 does not exceed 2 L. The liquid which did not contain seed crystals was continuously withdrawn. After 34 hours from the start of the first addition of the aqueous solution A, 1997.4 g of the mixture in the seed crystal preparation tank 10 was withdrawn from the mixture discharge line. Furthermore, 48 hours after the start of the first addition of aqueous solution A, the whole of the mixture in seed liquid crystal preparation tank 10 was recovered, and the one after 48 hours from the start of the initial addition of aqueous solution A was used as seed crystal solution C . The results and the solid content concentration of the obtained seed crystal solution C are shown in Table 1.

例3−1:
図4に示す粒子成長装置3を用意した。
2Lのバッフル付きガラス製反応槽40に蒸留水を1.9L入れた。遷移金属含有炭酸塩化合物の製造は、湯浴により反応槽40内の液を30±1℃に保持して行った。
反応槽40内の溶液を2段傾斜パドル型の撹拌翼42で撹拌しながら、水溶液Aを5g/分で、かつ種晶液Cを5g/時間で44時間連続的に添加した。
反応槽40の混合液の初期のpHは8.0とし、水溶液Aおよび種晶液Cの添加中は、反応槽40内のpHを8.0±0.1に保つように水溶液Bを添加し、種晶を成長させて、NiおよびMnを含む遷移金属含有炭酸塩化合物を形成した。
析出反応中は、析出した遷移金属含有炭酸塩化合物が酸化しないように反応槽40内に窒素ガスを流量0.5L/分で流した。析出方法としてオーバーフロー法を採用し、反応中に、反応槽内の液量が2Lを超えないように混合液抜出ライン50から混合液を抜き出した。
水溶液Aの最初の添加開始から27〜45時間の間にオーバーフローした遷移金属含有炭酸塩化合物を回収した。得られた遷移金属含有炭酸塩化合物を例1と同様にして洗浄し、乾燥させた。得られた遷移金属含有炭酸塩化合物の上記評価の結果を表2に示す。
Example 3-1:
The particle growth apparatus 3 shown in FIG. 4 was prepared.
A 2-liter baffled glass reaction vessel 40 was charged with 1.9 liters of distilled water. The transition metal-containing carbonate compound was produced by maintaining the liquid in the reaction tank 40 at 30 ± 1 ° C. with a hot water bath.
While stirring the solution in the reaction vessel 40 with a two-stage inclined paddle type stirring blade 42, aqueous solution A was continuously added at 5 g / min and seed crystal solution C at 5 g / h for 44 hours.
The initial pH of the mixture in the reaction vessel 40 is set to 8.0, and during the addition of the aqueous solution A and the seed crystal solution C, the aqueous solution B is added so as to maintain the pH in the reaction vessel 40 at 8.0 ± 0.1. Seed crystals were grown to form transition metal-containing carbonate compounds including Ni and Mn.
During the precipitation reaction, nitrogen gas was flowed at a flow rate of 0.5 L / min into the reaction vessel 40 so that the precipitated transition metal-containing carbonate compound was not oxidized. The overflow method was employed as the precipitation method, and the liquid mixture was drawn from the liquid mixture extraction line 50 so that the liquid volume in the reaction tank did not exceed 2 L during the reaction.
The transition metal-containing carbonate compound which overflowed between 27 and 45 hours from the start of the first addition of aqueous solution A was recovered. The resulting transition metal-containing carbonate compound was washed and dried as described in Example 1. The results of the above evaluation of the obtained transition metal-containing carbonate compound are shown in Table 2.

例3−2:
例3−1の水溶液Aの最初の添加開始の44時間後から、水溶液Aを5g/分で、かつ種晶液Cを15g/時間で43時間連続的に添加した。
水溶液Aおよび種晶液Cの添加中は、反応槽40内のpHを8.0±0.1に保つように水溶液Bを添加し、種晶を成長させて、NiおよびMnを含む遷移金属含有炭酸塩化合物を形成した。
水溶液Aの最初の添加開始から66〜87時間の間にオーバーフローした遷移金属含有炭酸塩化合物を回収した。得られた遷移金属含有炭酸塩化合物を例1と同様にして洗浄し、乾燥させた。得られた遷移金属含有炭酸塩化合物の上記評価の結果を表2に示す。
Example 3-2:
From 44 hours after the start of the first addition of the aqueous solution A of Example 3-1, the aqueous solution A was continuously added at 5 g / min and the seed crystal solution C at 15 g / hour for 43 hours.
During the addition of the aqueous solution A and the seed crystal solution C, the aqueous solution B is added so as to keep the pH in the reaction vessel 40 at 8.0 ± 0.1, and the seed crystals are grown, and the transition metal containing Ni and Mn is added. Contained carbonate compounds were formed.
The transition metal-containing carbonate compound which overflowed between 66 and 87 hours from the start of the first addition of aqueous solution A was recovered. The resulting transition metal-containing carbonate compound was washed and dried as described in Example 1. The results of the above evaluation of the obtained transition metal-containing carbonate compound are shown in Table 2.

例3−3:
例3−2の後で、例3−1の水溶液Aの最初の添加開始の87時間後から、水溶液Aを5g/分で、かつ種晶液Cを25g/時間で30時間連続的に添加した。
水溶液Aおよび種晶液Cの添加中は、反応槽40内のpHを8.0±0.1に保つように水溶液Bを添加し、種晶を成長させて、NiおよびMnを含む遷移金属含有炭酸塩化合物を形成した。
水溶液Aの最初の添加開始から99〜117時間の間にオーバーフローした遷移金属含有炭酸塩化合物および反応槽40内の遷移金属含有炭酸塩化合物を回収した。得られた遷移金属含有炭酸塩化合物を例1と同様にして洗浄し、乾燥させた。得られた遷移金属含有炭酸塩化合物の上記評価の結果を表2に示す。
Example 3-3:
After Example 3-2, 87 hours after the start of the first addition of aqueous solution A of Example 3-1, continuous addition of aqueous solution A at 5 g / min and seed crystal solution C at 25 g / hour for 30 hours did.
During the addition of the aqueous solution A and the seed crystal solution C, the aqueous solution B is added so as to keep the pH in the reaction vessel 40 at 8.0 ± 0.1, and the seed crystals are grown, and the transition metal containing Ni and Mn is added. Contained carbonate compounds were formed.
The transition metal-containing carbonate compound which overflowed between 99 to 117 hours from the start of the first addition of the aqueous solution A and the transition metal-containing carbonate compound in the reaction vessel 40 were recovered. The resulting transition metal-containing carbonate compound was washed and dried as described in Example 1. The results of the above evaluation of the obtained transition metal-containing carbonate compound are shown in Table 2.

(例4)
水溶液の調製:
例3と同様にして水溶液Aおよび水溶液Bを調製した。
(Example 4)
Preparation of aqueous solution:
An aqueous solution A and an aqueous solution B were prepared in the same manner as in Example 3.

種晶液の調製:
図3に示す種晶液調製装置1cを用意した。
2Lのバッフル付きガラス製種晶液調製槽10に蒸留水を1.9L入れた。種晶液の製造は、湯浴により種晶液調製槽10内の液を30±1℃に保持して行った。
種晶液調製槽10内の溶液を2段傾斜パドル型の撹拌翼12で撹拌しながら、水溶液Aを5g/分で69時間連続的に添加した。
種晶液調製槽10の混合液の初期のpHは8.0とし、水溶液Aの添加中は、種晶液調製槽10内のpHを8.0±0.1に保つように水溶液Bを添加し、NiおよびMnを含む炭酸塩化合物(種晶)を析出させた。
析出反応中は、析出した種晶が酸化しないように種晶液調製槽10内に窒素ガスを流量0.5L/分で流した。反応中に、種晶液調製槽10内の混合液の一部を混合液循環ライン20に循環させ、循環式超音波ホモジナイザ34で処理した。ポンプ28は作動させず、混合液循環ライン20を循環している混合液からの液の抜き出しは行わなかった。析出方法としてオーバーフロー法を採用し、反応中に、種晶液調製槽10の液量が2Lを超えないように混合液抜出ライン36から混合液を抜き出した。
水溶液Aの最初の添加開始から39〜69時間の間にオーバーフローした混合液を回収し、種晶液Cを得た。得られた種晶液Cの上記結果および固形分濃度を表1に示す。
Preparation of seed solution:
A seed crystal preparation device 1c shown in FIG. 3 was prepared.
Into 2 L of baffled glass seed solution preparation tank 10 was added 1.9 L of distilled water. The production of the seed crystal was carried out by maintaining the liquid in the seed crystal preparation tank 10 at 30 ± 1 ° C. with a water bath.
Aqueous solution A was continuously added at 5 g / min for 69 hours while stirring the solution in the seed crystal preparation tank 10 with a two-stage inclined paddle type stirring blade 12.
The initial pH of the mixture in the seed crystal preparation tank 10 is set to 8.0, and during the addition of the aqueous solution A, the aqueous solution B is maintained so as to maintain the pH in the seed crystal preparation tank 10 at 8.0 ± 0.1. It was added to precipitate a carbonate compound (seed crystal) containing Ni and Mn.
During the precipitation reaction, nitrogen gas was flowed at a flow rate of 0.5 L / min into the seed crystal preparation tank 10 so that the precipitated seed crystals were not oxidized. During the reaction, part of the mixture in the seed crystal preparation tank 10 was circulated through the mixture circulation line 20 and treated with the circulation ultrasonic homogenizer 34. The pump 28 was not operated, and the liquid was not withdrawn from the liquid mixture circulating in the liquid mixture circulation line 20. The overflow method was employed as the precipitation method, and the liquid mixture was drawn from the liquid mixture extraction line 36 so that the liquid volume of the seed crystal preparation tank 10 did not exceed 2 L during the reaction.
A mixed solution which overflowed between 39 and 69 hours from the start of the first addition of the aqueous solution A was recovered, and a seed crystal solution C was obtained. The results and the solid content concentration of the obtained seed crystal solution C are shown in Table 1.

遷移金属含有炭酸塩化合物の製造:
図4に示す粒子成長装置3を用意した。
2Lのバッフル付きガラス製反応槽40に蒸留水を1.9L入れた。遷移金属含有炭酸塩化合物の製造は、湯浴により反応槽40内の液を30±1℃に保持して行った。
反応槽40内の溶液を2段傾斜パドル型の撹拌翼42で撹拌しながら、水溶液Aを5g/分で、かつ種晶液Cを66g/時間で42時間連続的に添加した。
反応槽40の混合液の初期のpHは8.0とし、水溶液Aおよび種晶液Cの添加中は、反応槽40内のpHを8.0±0.1に保つように水溶液Bを添加し、種晶を成長させて、NiおよびMnを含む遷移金属含有炭酸塩化合物を形成した。
析出反応中は、析出した遷移金属含有炭酸塩化合物が酸化しないように反応槽40内に窒素ガスを流量0.5L/分で流した。また、析出方法としてオーバーフロー法を採用し、反応中に、反応槽内の液量が2Lを超えないように混合液抜出ライン50から混合液を抜き出した。
水溶液Aの最初の添加開始から21〜42時間の間にオーバーフローした遷移金属含有炭酸塩化合物を回収した。得られた遷移金属含有炭酸塩化合物を例1と同様にして洗浄し、乾燥させた。得られた遷移金属含有炭酸塩化合物の上記評価の結果を表2に示す。
Preparation of Transition Metal-Containing Carbonate Compounds:
The particle growth apparatus 3 shown in FIG. 4 was prepared.
A 2-liter baffled glass reaction vessel 40 was charged with 1.9 liters of distilled water. The transition metal-containing carbonate compound was produced by maintaining the liquid in the reaction tank 40 at 30 ± 1 ° C. with a hot water bath.
While stirring the solution in the reaction vessel 40 with a two-stage inclined paddle type stirring blade 42, the aqueous solution A was continuously added at 5 g / min and the seed crystal solution C at 66 g / h for 42 hours.
The initial pH of the mixture in the reaction vessel 40 is set to 8.0, and during the addition of the aqueous solution A and the seed crystal solution C, the aqueous solution B is added so as to maintain the pH in the reaction vessel 40 at 8.0 ± 0.1. Seed crystals were grown to form transition metal-containing carbonate compounds including Ni and Mn.
During the precipitation reaction, nitrogen gas was flowed at a flow rate of 0.5 L / min into the reaction vessel 40 so that the precipitated transition metal-containing carbonate compound was not oxidized. In addition, the overflow method was employed as a precipitation method, and during the reaction, the liquid mixture was drawn from the liquid mixture extraction line 50 so that the liquid volume in the reaction tank did not exceed 2 liters.
The transition metal-containing carbonate compound overflowed between 21 and 42 hours from the start of the first addition of the aqueous solution A was recovered. The resulting transition metal-containing carbonate compound was washed and dried as described in Example 1. The results of the above evaluation of the obtained transition metal-containing carbonate compound are shown in Table 2.

(例5)
水溶液の調製:
硫酸ニッケル(II)・六水和物、硫酸マンガン(II)・五水和物を、NiおよびMnのモル比が表1に示す比になるように、かつNiおよびMnの合計濃度が1.5mol/kgとなるように蒸留水に溶解して水溶液Aを調製した。
炭酸ナトリウムを1.5mol/kgとなるように蒸留水に溶解させ、水溶液Bを調製した。
(Example 5)
Preparation of aqueous solution:
The nickel (II) sulfate hexahydrate and the manganese (II) sulfate pentahydrate are mixed so that the molar ratio of Ni and Mn is as shown in Table 1, and the total concentration of Ni and Mn is 1. An aqueous solution A was prepared by dissolving in distilled water so as to be 5 mol / kg.
An aqueous solution B was prepared by dissolving sodium carbonate in distilled water so as to be 1.5 mol / kg.

種晶液の調製:
図3に示す種晶液調製装置1cを用意した。
2Lのバッフル付きガラス製種晶液調製槽10に蒸留水を1.9L入れた。種晶液の製造は、湯浴により種晶液調製槽10内の液を30±1℃に保持して行った。
種晶液調製槽10内の溶液を2段傾斜パドル型の撹拌翼12で撹拌しながら、水溶液Aを5g/分で69時間連続的に添加した。
種晶液調製槽10の混合液の初期のpHは8.0とし、水溶液Aの添加中は、種晶液調製槽10内のpHを8.0±0.1に保つように水溶液Bを添加し、NiおよびMnを含む炭酸塩化合物(種晶)を析出させた。
析出反応中は、析出した種晶が酸化しないように種晶液調製槽10内に窒素ガスを流量0.5L/分で流した。反応中に、種晶液調製槽10内の混合液の一部を混合液循環ライン20に循環させ、循環式超音波ホモジナイザ34で処理した。ポンプ28は作動させず、混合液循環ライン20を循環している混合液からの液の抜き出しは行わなかった。析出方法としてオーバーフロー法を採用し、反応中に、種晶液調製槽10の液量が2Lを超えないように混合液抜出ライン36から混合液を抜き出した。
水溶液Aの最初の添加開始から39〜69時間の間にオーバーフローした混合液を回収し、種晶液Cを得た。得られた種晶液Cの上記結果および固形分濃度を表1に示す。
Preparation of seed solution:
A seed crystal preparation device 1c shown in FIG. 3 was prepared.
Into 2 L of baffled glass seed solution preparation tank 10 was added 1.9 L of distilled water. The production of the seed crystal was carried out by maintaining the liquid in the seed crystal preparation tank 10 at 30 ± 1 ° C. with a water bath.
Aqueous solution A was continuously added at 5 g / min for 69 hours while stirring the solution in the seed crystal preparation tank 10 with a two-stage inclined paddle type stirring blade 12.
The initial pH of the mixture in the seed crystal preparation tank 10 is set to 8.0, and during the addition of the aqueous solution A, the aqueous solution B is maintained so as to maintain the pH in the seed crystal preparation tank 10 at 8.0 ± 0.1. It was added to precipitate a carbonate compound (seed crystal) containing Ni and Mn.
During the precipitation reaction, nitrogen gas was flowed at a flow rate of 0.5 L / min into the seed crystal preparation tank 10 so that the precipitated seed crystals were not oxidized. During the reaction, part of the mixture in the seed crystal preparation tank 10 was circulated through the mixture circulation line 20 and treated with the circulation ultrasonic homogenizer 34. The pump 28 was not operated, and the liquid was not withdrawn from the liquid mixture circulating in the liquid mixture circulation line 20. The overflow method was employed as the precipitation method, and the liquid mixture was drawn from the liquid mixture extraction line 36 so that the liquid volume of the seed crystal preparation tank 10 did not exceed 2 L during the reaction.
A mixed solution which overflowed between 39 and 69 hours from the start of the first addition of the aqueous solution A was recovered, and a seed crystal solution C was obtained. The results and the solid content concentration of the obtained seed crystal solution C are shown in Table 1.

例5−1:
図4に示す粒子成長装置3を用意した。
2Lのバッフル付きガラス製反応槽40に蒸留水を1.9L入れた。遷移金属含有炭酸塩化合物の製造は、湯浴により反応槽40内の液を50±1℃に保持して行った。
反応槽40内の溶液を2段傾斜パドル型の撹拌翼42で撹拌しながら、水溶液Aを5g/分で、かつ種晶液Cを30g/時間で92時間連続的に添加した。
反応槽40の混合液の初期のpHは8.0とし、水溶液Aおよび種晶液Cの添加中は、反応槽40内のpHを8.0±0.1に保つように水溶液Bを添加し、種晶を成長させて、NiおよびMnを含む遷移金属含有炭酸塩化合物を形成した。
析出反応中は、析出した遷移金属含有炭酸塩化合物が酸化しないように反応槽40内に窒素ガスを流量0.5L/分で流した。また、析出方法としてオーバーフロー法を採用し、反応中に、反応槽内の液量が2Lを超えないように混合液抜出ライン50から混合液を抜き出した。
水溶液Aの最初の添加開始から21〜36時間の間にオーバーフローした遷移金属含有炭酸塩化合物を回収した。得られた遷移金属含有炭酸塩化合物を例1と同様にして洗浄し、乾燥させた。得られた遷移金属含有炭酸塩化合物の上記評価の結果を表2に示す。
Example 5-1:
The particle growth apparatus 3 shown in FIG. 4 was prepared.
A 2-liter baffled glass reaction vessel 40 was charged with 1.9 liters of distilled water. The transition metal-containing carbonate compound was produced by maintaining the liquid in the reaction tank 40 at 50 ± 1 ° C. with a hot water bath.
While stirring the solution in the reaction vessel 40 with a two-stage inclined paddle type stirring blade 42, the aqueous solution A was continuously added at 5 g / min and the seed crystal solution C at 30 g / h for 92 hours.
The initial pH of the mixture in the reaction vessel 40 is set to 8.0, and during the addition of the aqueous solution A and the seed crystal solution C, the aqueous solution B is added so as to maintain the pH in the reaction vessel 40 at 8.0 ± 0.1. Seed crystals were grown to form transition metal-containing carbonate compounds including Ni and Mn.
During the precipitation reaction, nitrogen gas was flowed at a flow rate of 0.5 L / min into the reaction vessel 40 so that the precipitated transition metal-containing carbonate compound was not oxidized. In addition, the overflow method was employed as a precipitation method, and during the reaction, the liquid mixture was drawn from the liquid mixture extraction line 50 so that the liquid volume in the reaction tank did not exceed 2 liters.
The transition metal-containing carbonate compound that overflowed between 21 and 36 hours from the start of the first addition of aqueous solution A was recovered. The resulting transition metal-containing carbonate compound was washed and dried as described in Example 1. The results of the above evaluation of the obtained transition metal-containing carbonate compound are shown in Table 2.

例5−2:
例5−1において、水溶液Aの最初の添加開始から63〜75時間の間にオーバーフローした遷移金属含有炭酸塩化合物を回収した。得られた遷移金属含有炭酸塩化合物を例1と同様にして洗浄し、乾燥させた。得られた遷移金属含有炭酸塩化合物の上記評価の結果を表2に示す。
Example 5-2:
In Example 5-1, the transition metal-containing carbonate compound that overflowed between 63 and 75 hours from the start of the first addition of the aqueous solution A was recovered. The resulting transition metal-containing carbonate compound was washed and dried as described in Example 1. The results of the above evaluation of the obtained transition metal-containing carbonate compound are shown in Table 2.

例5−3:
例5−1において、水溶液Aの最初の添加開始から75〜92時間の間にオーバーフローした遷移金属含有炭酸塩化合物および反応槽40内の遷移金属含有炭酸塩化合物を回収した。得られた遷移金属含有炭酸塩化合物を例1と同様にして洗浄し、乾燥させた。得られた遷移金属含有炭酸塩化合物の上記評価の結果を表2に示す。
Example 5-3:
In Example 5-1, the transition metal-containing carbonate compound which overflowed between 75 to 92 hours from the start of the first addition of the aqueous solution A and the transition metal-containing carbonate compound in the reaction vessel 40 were recovered. The resulting transition metal-containing carbonate compound was washed and dried as described in Example 1. The results of the above evaluation of the obtained transition metal-containing carbonate compound are shown in Table 2.

(例6)
水溶液、種晶液の調製:
例3と同様にして水溶液Aおよび水溶液Bを調製した。
例4と同様にして種晶液Cを調製した。
(Example 6)
Preparation of aqueous solution, seed solution:
An aqueous solution A and an aqueous solution B were prepared in the same manner as in Example 3.
A seed solution C was prepared in the same manner as in Example 4.

例6−1:
図4に示す粒子成長装置3を用意した。
2Lのバッフル付きガラス製反応槽40に蒸留水を1.9L入れた。遷移金属含有炭酸塩化合物の製造は、湯浴により反応槽40内の液を50±1℃に保持して行った。
反応槽40内の溶液を2段傾斜パドル型の撹拌翼42で撹拌しながら、水溶液Aを5g/分で、かつ種晶液Cを66g/時間で36時間連続的に添加した。
反応槽40の混合液の初期のpHは8.0とし、水溶液Aおよび種晶液Cの添加中は、反応槽40内のpHを8.0±0.1に保つように水溶液Bを添加し、種晶を成長させて、NiおよびMnを含む遷移金属含有炭酸塩化合物を形成した。
析出反応中は、析出した遷移金属含有炭酸塩化合物が酸化しないように反応槽40内に窒素ガスを流量0.5L/分で流した。また、析出方法としてオーバーフロー法を採用し、反応中に、反応槽内の液量が2Lを超えないように混合液抜出ライン50から混合液を抜き出した。
水溶液Aの最初の添加開始から21〜36時間の間にオーバーフローした遷移金属含有炭酸塩化合物を回収した。得られた遷移金属含有炭酸塩化合物を例1と同様にして洗浄し、乾燥させた。得られた遷移金属含有炭酸塩化合物の上記評価の結果を表2に示す。
Example 6-1:
The particle growth apparatus 3 shown in FIG. 4 was prepared.
A 2-liter baffled glass reaction vessel 40 was charged with 1.9 liters of distilled water. The transition metal-containing carbonate compound was produced by maintaining the liquid in the reaction tank 40 at 50 ± 1 ° C. with a hot water bath.
While stirring the solution in the reaction vessel 40 with a two-stage inclined paddle type stirring blade 42, the aqueous solution A was continuously added at 5 g / minute and the seed crystal solution C at 66 g / hour for 36 hours.
The initial pH of the mixture in the reaction vessel 40 is set to 8.0, and during the addition of the aqueous solution A and the seed crystal solution C, the aqueous solution B is added so as to maintain the pH in the reaction vessel 40 at 8.0 ± 0.1. Seed crystals were grown to form transition metal-containing carbonate compounds including Ni and Mn.
During the precipitation reaction, nitrogen gas was flowed at a flow rate of 0.5 L / min into the reaction vessel 40 so that the precipitated transition metal-containing carbonate compound was not oxidized. In addition, the overflow method was employed as a precipitation method, and during the reaction, the liquid mixture was drawn from the liquid mixture extraction line 50 so that the liquid volume in the reaction tank did not exceed 2 liters.
The transition metal-containing carbonate compound that overflowed between 21 and 36 hours from the start of the first addition of aqueous solution A was recovered. The resulting transition metal-containing carbonate compound was washed and dried as described in Example 1. The results of the above evaluation of the obtained transition metal-containing carbonate compound are shown in Table 2.

例6−2:
例6−1の水溶液Aの最初の添加開始の36時間後から、水溶液Aを5g/分で、かつ種晶液Cを2倍に希釈したものを66g/時間で30時間連続的に添加した。
水溶液Aおよび種晶液Cの添加中は、反応槽40内のpHを8.0±0.1に保つように水溶液Bを添加し、種晶を成長させて、Ni、CoおよびMnを含む遷移金属含有炭酸塩化合物を形成した。
水溶液Aの最初の添加開始から45〜66時間の間にオーバーフローした遷移金属含有炭酸塩化合物および反応槽40内の遷移金属含有炭酸塩化合物を回収した。得られた遷移金属含有炭酸塩化合物を例1と同様にして洗浄し、乾燥させた。得られた遷移金属含有炭酸塩化合物の上記評価の結果を表2に示す。
Example 6-2:
36 hours after the start of the first addition of the aqueous solution A of Example 6-1, a solution obtained by diluting the aqueous solution A at 5 g / min and doubling the seed crystal solution C was continuously added at 66 g / hour for 30 hours .
During the addition of the aqueous solution A and the seed crystal solution C, the aqueous solution B is added to keep the pH in the reaction vessel 40 at 8.0 ± 0.1, and the seed crystals are grown to contain Ni, Co and Mn. A transition metal-containing carbonate compound was formed.
The transition metal-containing carbonate compound which overflowed between 45 to 66 hours from the start of the first addition of the aqueous solution A and the transition metal-containing carbonate compound in the reaction vessel 40 were recovered. The resulting transition metal-containing carbonate compound was washed and dried as described in Example 1. The results of the above evaluation of the obtained transition metal-containing carbonate compound are shown in Table 2.

Figure 0006509581
Figure 0006509581

Figure 0006509581
Figure 0006509581

本発明の製造方法で得られた例2−2〜例6の遷移金属含有炭酸塩化合物は、円形度が高く、粒度分布が狭かった。
従来の濃縮法で得られた例1の遷移金属含有炭酸塩化合物は、粒度分布が狭かったものの、円形度が低かった。
従来のオーバーフロー法で得られた例2−1の遷移金属含有炭酸塩化合物は、粒度分布が広く、円形度が低かった。
The transition metal-containing carbonate compounds of Examples 2-2 to 6 obtained by the production method of the present invention had a high degree of circularity and a narrow particle size distribution.
Although the transition metal-containing carbonate compound of Example 1 obtained by the conventional concentration method had a narrow particle size distribution, it had a low degree of circularity.
The transition metal-containing carbonate compound of Example 2-1 obtained by the conventional overflow method had a wide particle size distribution and a low degree of circularity.

本発明の遷移金属含有炭酸塩化合物によれば、リチウムイオン二次電池の放電容量およびサイクル特性を良好にできる正極活物質を得ることができる。   ADVANTAGE OF THE INVENTION According to the transition metal containing carbonate compound of this invention, the positive electrode active material which can make discharge capacity and cycling characteristics of a lithium ion secondary battery favorable can be obtained.

1 種晶液調製装置、1a 種晶液調製装置、1b 種晶液調製装置、1c 種晶液調製装置、2 種晶液貯留槽、3 粒子成長装置、4 第1の種晶液移送ライン、5 第2の種晶液移送ライン、10 種晶液調製槽、12 撹拌翼、14 水溶液A供給ライン、16 水溶液B供給ライン、20 混合液循環ライン、22 ポンプ、24 MF膜モジュール、26 ろ液排出ライン、28 ポンプ、30 湯浴、32 シャフトジェネレータ、34 循環式超音波ホモジナイザ、36 混合液抜出ライン、40 反応槽、42 撹拌翼、44 水溶液A供給ライン、46 水溶液B供給ライン、48 種晶液C供給ライン、50 混合液抜出ライン、52 ポンプ、A 水溶液、B 水溶液、C 種晶液   1 seed crystal liquid preparation apparatus, 1a seed crystal liquid preparation apparatus, 1b seed liquid crystal preparation apparatus, 1 c seed liquid crystal preparation apparatus, 2 crystal liquid storage tank, 3 particle growth apparatus, 4 first seed crystal liquid transfer line, 5 second seed crystal liquid transfer line, 10 seed crystal liquid preparation tank, 12 stirring blades, 14 aqueous solution A supply line, 16 aqueous solution B supply line, 20 mixed liquid circulation line, 22 pump, 24 MF membrane module, 26 filtrate Discharge line, 28 pumps, 30 hot water baths, 32 shaft generators, 34 circulating ultrasonic homogenizers, 36 mixed liquid extraction lines, 40 reaction vessels, 42 stirring blades, 44 aqueous solution A supply lines, 46 aqueous solution B supply lines, 48 types Crystalline liquid C supply line, 50 mixed liquid extraction line, 52 pump, A aqueous solution, B aqueous solution, C seed liquid

Claims (8)

(a)反応槽に、下記水溶液A、下記水溶液Bおよび下記種晶液Cを、それぞれ連続的または断続的に供給する工程と、
(b)前記工程(a)を実施しつつ、前記反応槽に供給された下記水溶液A、下記水溶液Bおよび下記種晶液Cを含む混合液を撹拌し、NiおよびCoのいずれか一方または両方とMnとを含む遷移金属含有炭酸塩化合物を成長させる工程と、
(c)前記工程(b)を実施しつつ、前記反応槽内の前記遷移金属含有炭酸塩化合物を含む混合液の一部を、ろ材を通すことなく前記反応槽から連続的または断続的に抜き出す工程とを有し、
前記種晶液Cが、種晶液調製槽に、前記水溶液Aおよび前記水溶液Bをそれぞれ連続的または断続的に供給しつつ、混合液を撹拌し、前記炭酸塩化合物からなる種晶を析出させることによって得られたものである、遷移金属含有炭酸塩化合物の製造方法。
水溶液A:NiイオンおよびCoイオンのいずれか一方または両方とMnイオンとを含む水溶液。
水溶液B:炭酸イオンを含む水溶液。
種晶液C:NiおよびCoのいずれか一方または両方とMnとを含む炭酸塩化合物からなり、かつD50が5μm未満である種晶を含む液。
(A) supplying the following aqueous solution A, the following aqueous solution B and the following seed crystal solution C continuously or intermittently to the reaction vessel,
(B) Stirring a mixed solution containing the following aqueous solution A, the following aqueous solution B and the following seed crystal solution C supplied to the reaction vessel while carrying out the step (a), either one or both of Ni and Co Growing a transition metal-containing carbonate compound containing Mn and Mn;
(C) While carrying out the step (b), a part of the mixed solution containing the transition metal-containing carbonate compound in the reaction vessel is continuously or intermittently withdrawn from the reaction vessel without passing through a filter medium. It possesses a step,
The seed crystal solution C stirs the mixed solution while continuously or intermittently supplying the aqueous solution A and the aqueous solution B to the seed crystal solution preparation tank continuously or intermittently to precipitate seed crystals composed of the carbonate compound. A method for producing a transition metal-containing carbonate compound, which is obtained by :
Aqueous solution A: an aqueous solution containing either or both of Ni ions and Co ions and Mn ions.
Aqueous solution B: aqueous solution containing carbonate ion.
Seed solution C: A solution containing seed crystals consisting of a carbonate compound containing either or both of Ni and Co and Mn, and having a D 50 of less than 5 μm.
前記工程(a)において、前記反応槽に、前記水溶液Aおよび前記種晶液Cを同時に供給し、かつ前記水溶液Bを、前記反応槽内の混合液のpHが7〜9の範囲内でかつ変動幅が±0.2となるように、連続的または断続的に供給する、請求項1に記載の遷移金属含有炭酸塩化合物の製造方法。   In the step (a), the aqueous solution A and the seed crystal solution C are simultaneously supplied to the reaction vessel, and the pH of the mixture in the reaction vessel is in the range of 7 to 9 and the aqueous solution B is The method for producing a transition metal-containing carbonate compound according to claim 1, wherein the compound is continuously or intermittently supplied so that the fluctuation range is ± 0.2. 前記工程(b)において、前記遷移金属含有炭酸塩化合物を、D50が5〜15μmになるまで成長させる、請求項1または2に記載の遷移金属含有炭酸塩化合物の製造方法。 The method for producing a transition metal-containing carbonate compound according to claim 1, wherein the transition metal-containing carbonate compound is grown until the D 50 reaches 5 to 15 μm in the step (b). 前記工程(b)において、前記反応槽に供給された前記水溶液A、前記水溶液Bおよび前記種晶液Cを含む混合液を、30〜50℃の範囲内でかつ変動幅を±2℃に保持しながら撹拌する、請求項1〜3のいずれか一項に記載の遷移金属含有炭酸塩化合物の製造方法。   In the step (b), the mixed solution containing the aqueous solution A, the aqueous solution B and the seed crystal solution C supplied to the reaction vessel is maintained in the range of 30 to 50 ° C. and the fluctuation range is ± 2 ° C. The manufacturing method of the transition metal containing carbonate compound as described in any one of Claims 1-3 stirring while stirring. NiCoMn(1−x−y−z)CO(ただし、xは、0.15〜0.5であり、yは、0〜0.33であり、zは、0.33〜0.85であり、x+y+zは、1以下であり、Mは、Mg、Ca、Ba、Sr、Al、Cr、Fe、Ti、Zr、Y、Nb、Mo、Ta、W、CeおよびLaからなる群から選ばれる1つ以上である。)で表され、
円形度の50%累積頻度における値が、0.970以上であり、
90/D10が、2.5〜3.5である、遷移金属含有炭酸塩化合物。
Ni x Co y Mn z M (1-x-y-z) CO 3 (where x is 0.15 to 0.5, y is 0 to 0.33, z is 0. 33 to 0.85, x + y + z is 1 or less, M is Mg, Ca, Ba, Sr, Al, Cr, Fe, Ti, Zr, Y, Nb, Mo, Ta, W, Ce and La And one or more selected from the group consisting of
The value at the 50% cumulative frequency of circularity is 0.970 or more,
A transition metal-containing carbonate compound, wherein D 90 / D 10 is 2.5 to 3.5 .
50が、5〜15μmである、請求項に記載の遷移金属含有炭酸塩化合物。 D 50 is a 5 to 15 [mu] m, a transition metal-containing carbonate compound according to claim 5. リチウム含有複合酸化物を含む正極活物質を製造する方法であって、
(d)請求項1〜のいずれか一項に記載の遷移金属含有炭酸塩化合物の製造方法によって得られた遷移金属含有炭酸塩化合物、または請求項もしくはに記載の遷移金属含有炭酸塩化合物と、リチウム化合物とを混合し、得られた混合物を焼成してリチウム含有複合酸化物を得る工程
を有する、正極活物質の製造方法。
A method of producing a positive electrode active material containing a lithium-containing composite oxide, comprising:
(D) A transition metal-containing carbonate compound obtained by the method for producing a transition metal-containing carbonate compound according to any one of claims 1 to 4 , or a transition metal-containing carbonate according to claim 5 or 6. A method for producing a positive electrode active material, comprising the steps of: mixing a compound and a lithium compound; and calcining the obtained mixture to obtain a lithium-containing composite oxide.
前記リチウム含有複合酸化物は、LiαNiCoMn(1−x−y−z)β(ただし、αは、1.1〜1.7であり、xは、0.15〜0.5であり、yは、0〜0.33であり、zは、0.33〜0.85であり、x+y+zは、1以下であり、βは、Li、Ni、Co、MnおよびMの原子価を満足するのに必要な酸素元素(O)のモル数である。)で表される、請求項に記載の正極活物質の製造方法。 In the lithium-containing composite oxide, Li α Ni x Co y Mn z M (1-x-y-z) O β (where α is 1.1 to 1.7 and x is 0.15 ~ 0.5, y is 0-0.33, z is 0.33-0.85, x + y + z is less than 1 and β is Li, Ni, Co, Mn and The manufacturing method of the positive electrode active material according to claim 7 , which is represented by the number of moles of oxygen element (O) necessary to satisfy the valence of M.
JP2015031448A 2015-02-20 2015-02-20 Transition metal-containing carbonate compound, method for producing the same, method for producing positive electrode active material, and positive electrode for lithium ion secondary battery and lithium ion secondary battery Active JP6509581B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015031448A JP6509581B2 (en) 2015-02-20 2015-02-20 Transition metal-containing carbonate compound, method for producing the same, method for producing positive electrode active material, and positive electrode for lithium ion secondary battery and lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015031448A JP6509581B2 (en) 2015-02-20 2015-02-20 Transition metal-containing carbonate compound, method for producing the same, method for producing positive electrode active material, and positive electrode for lithium ion secondary battery and lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2016153347A JP2016153347A (en) 2016-08-25
JP6509581B2 true JP6509581B2 (en) 2019-05-08

Family

ID=56760304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015031448A Active JP6509581B2 (en) 2015-02-20 2015-02-20 Transition metal-containing carbonate compound, method for producing the same, method for producing positive electrode active material, and positive electrode for lithium ion secondary battery and lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP6509581B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3204972B1 (en) * 2014-10-08 2021-05-12 Umicore Carbonate precursors for lithium nickel manganese cobalt oxide cathode material and the method of making same
JP6616278B2 (en) 2016-12-27 2019-12-04 株式会社エンビジョンAescジャパン Electrode for lithium ion secondary battery
CN109896553A (en) * 2017-12-11 2019-06-18 河南科隆新能源股份有限公司 A kind of preparation method for the ball-shape nickel hydroxide cobalt manganese presoma that particle diameter distribution is narrow
JP7167540B2 (en) * 2018-08-09 2022-11-09 住友金属鉱山株式会社 Positive electrode active material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
JP6646130B1 (en) * 2018-12-07 2020-02-14 住友化学株式会社 Lithium secondary battery positive electrode active material precursor, method for producing lithium secondary battery positive electrode active material precursor, and method for producing lithium composite metal compound
CN112531158B (en) * 2020-12-09 2022-03-11 合肥国轩高科动力能源有限公司 High-nickel ternary single crystal material and preparation method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003292322A (en) * 2002-04-01 2003-10-15 Kaisui Kagaku Kenkyusho:Kk Method for manufacturing active substance for positive electrode of lithium ion secondary battery
CA2778286C (en) * 2009-10-22 2018-07-24 Toda Kogyo Corporation Nickel-cobalt-manganese-based compound particles and process for producing the nickel-cobalt-manganese-based compound particles, lithium composite oxide particles and process for producing the lithium composite oxide particles, and non-aqueous electrolyte secondary battery
JP2013151383A (en) * 2012-01-24 2013-08-08 Tsukishima Kikai Co Ltd Method for manufacturing aggregated particle of metal, method for manufacturing positive electrode active material for lithium ion battery, method for manufacturing lithium ion battery, and lithium ion battery
US9553312B2 (en) * 2012-02-23 2017-01-24 Sumitomo Metal Mining Co., Ltd Nickel composite hydroxide and production method thereof, cathode active material for a non-aqueous electrolyte secondary battery and production method thereof, and a nonaqueous electrolyte secondary battery
JP5466732B2 (en) * 2012-06-21 2014-04-09 月島機械株式会社 Method for producing reactive aggregated particles, method for producing positive electrode active material for lithium ion battery, method for producing lithium ion battery, and apparatus for producing reactive aggregated particles
WO2014126061A1 (en) * 2013-02-14 2014-08-21 旭硝子株式会社 Methods respectively for producing carbonate salt compound and positive electrode active material
JP6378676B2 (en) * 2013-06-27 2018-08-22 住友化学株式会社 Carbonate compound, method for producing the same, and method for producing positive electrode active material for lithium ion secondary battery

Also Published As

Publication number Publication date
JP2016153347A (en) 2016-08-25

Similar Documents

Publication Publication Date Title
JP6509581B2 (en) Transition metal-containing carbonate compound, method for producing the same, method for producing positive electrode active material, and positive electrode for lithium ion secondary battery and lithium ion secondary battery
JP6983152B2 (en) Positive electrode active material, its manufacturing method and positive electrode for lithium ion secondary batteries
JP6377983B2 (en) Positive electrode active material, positive electrode for lithium ion secondary battery and lithium ion secondary battery
CN106252613B (en) Lithium-containing composite oxide, positive electrode active material, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6603058B2 (en) Method for producing lithium-containing composite oxide and lithium-containing composite oxide
CN106058236B (en) Lithium-containing composite oxide, method for producing same, positive electrode active material, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6979880B2 (en) Method for Producing Transition Metal-Containing Hydroxide and Lithium-Containing Composite Oxide
WO2017135414A1 (en) Lithium-containing composite oxide, positive-electrode active material, positive electrode for lithium ion secondary cell, and lithium-ion secondary cell
JP6600136B2 (en) Positive electrode active material, positive electrode for lithium ion secondary battery and lithium ion secondary battery
JPWO2014192758A1 (en) Cathode active material
CN108432001B (en) Method for producing positive electrode active material, positive electrode, and lithium ion secondary battery
JP2019089708A (en) Method of producing lithium-containing composite oxide, positive electrode for lithium ion secondary battery and lithium ion secondary battery
JP6929793B2 (en) Positive electrode active material, positive electrode for lithium ion secondary battery and lithium ion secondary battery
JP6612611B2 (en) Positive electrode active material, positive electrode for lithium ion secondary battery and lithium ion secondary battery
JP6209435B2 (en) Positive electrode active material, positive electrode for lithium ion secondary battery and lithium ion secondary battery
JP2014222583A (en) Method of producing cathode active material
JP6851316B2 (en) Positive electrode active material, positive electrode for lithium ion secondary battery and lithium ion secondary battery
JP6851529B2 (en) Transition metal-containing hydroxides
JP6692632B2 (en) Method for manufacturing positive electrode active material
JP6835888B2 (en) Lithium-containing composite oxide, positive electrode active material, positive electrode for lithium ion secondary battery and lithium ion secondary battery
JP6771514B2 (en) Positive electrode active material, positive electrode for lithium ion secondary battery and lithium ion secondary battery
JP6944499B2 (en) Positive electrode active material, positive electrode for lithium ion secondary battery and lithium ion secondary battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20170620

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190403

R150 Certificate of patent or registration of utility model

Ref document number: 6509581

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350