JP6508798B2 - Organic-inorganic composite fluorescent material and method for producing the same - Google Patents

Organic-inorganic composite fluorescent material and method for producing the same Download PDF

Info

Publication number
JP6508798B2
JP6508798B2 JP2015158837A JP2015158837A JP6508798B2 JP 6508798 B2 JP6508798 B2 JP 6508798B2 JP 2015158837 A JP2015158837 A JP 2015158837A JP 2015158837 A JP2015158837 A JP 2015158837A JP 6508798 B2 JP6508798 B2 JP 6508798B2
Authority
JP
Japan
Prior art keywords
organic
boehmite
eosin
fluorescent material
slurry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015158837A
Other languages
Japanese (ja)
Other versions
JP2017036398A (en
Inventor
佑貴世 安藤
佑貴世 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawai Lime Industry Co Ltd
Original Assignee
Kawai Lime Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawai Lime Industry Co Ltd filed Critical Kawai Lime Industry Co Ltd
Priority to JP2015158837A priority Critical patent/JP6508798B2/en
Publication of JP2017036398A publication Critical patent/JP2017036398A/en
Application granted granted Critical
Publication of JP6508798B2 publication Critical patent/JP6508798B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、ベーマイトにエオシンYを担持させ、エオシンYが蛍光を発する耐熱性や耐久性などを備えた有機無機複合蛍光材料及びその製造方法に関する。   The present invention relates to an organic-inorganic composite fluorescent material having heat resistance, durability, and the like in which eosin Y is supported on boehmite and the eosin Y emits fluorescence, and a method for producing the same.

蛍光体は、外部からの光や電子線などのエネルギーを与えられて励起された電子が基底状態に戻るときにエネルギー差にあたる波長の光を放出する物質で、プラズマディスプレイや液晶ディスプレイなどの表示装置、蛍光灯や白色LEDなどの照明装置、有機EL用発光色素、色素レーザー、太陽電池用光波長変換材、蛍光プローブ、蛍光漂白剤など様々な分野で用いられており、近年、蛍光体市場はエネルギー分野やエレクトロニクス分野などでの急速な成長が期待されている。蛍光体に無機蛍光体と有機蛍光体があり、それぞれにメリットとデメリットがある。有機蛍光体は、無機蛍光体に比べ色調に優れ、色の種類も豊富であるというメリットがある反面、耐熱性や耐久性などに劣るというデメリットがある。同様のことは、有機顔料と無機顔料にも当てはまり、従来、有機顔料のデメリットを無機顔料で補完すべく、無機顔料と有機顔料とからなる複合顔料の提案がある。すなわち、球状活性アルミナ担体に有機色素が包蔵され、該球状活性アルミナ担体表面が水熱処理されている複合顔料の提案がある(特許文献1参照)。また、酸性染料及び擬ベーマイトから構成される複合顔料の提案がある(特許文献2参照)。さらに、樹脂など複合顔料を使用する対象の態様によっては、有機顔料の担体が立方体状の複合顔料が好適なことや、針状の複合顔料が好適なことや、あるいは有機顔料の担体のサイズについても好適なサイズがあることがある。ベーマイトは、サイズ及び形状を制御することが可能で、例えば、特許文献3に立方体状のベーマイト、特許文献4に針状のベーマイト、特許文献5に板状のベーマイトが開示されている。   A phosphor is a substance that emits light of a wavelength corresponding to an energy difference when excited electrons are given energy such as light from outside or electron beam and return to a ground state, and a display device such as a plasma display or a liquid crystal display Used in various fields such as lighting devices such as fluorescent lamps and white LEDs, light emitting dyes for organic EL, dye lasers, light wavelength conversion materials for solar cells, fluorescent probes, fluorescent bleaching agents, etc. Rapid growth is expected in the energy sector and electronics sector. There are inorganic phosphors and organic phosphors as phosphors, and each has merits and demerits. Organic phosphors have the advantage of being excellent in color tone and being rich in color types compared to inorganic phosphors, but have the disadvantage of being inferior in heat resistance and durability. The same applies to organic pigments and inorganic pigments, and conventionally, there have been proposals for composite pigments consisting of inorganic pigments and organic pigments in order to complement the disadvantages of organic pigments with inorganic pigments. That is, there has been proposed a composite pigment in which an organic pigment is encapsulated in a spherical activated alumina carrier and the spherical activated alumina carrier surface is subjected to a hydrothermal treatment (see Patent Document 1). There is also a proposal of a composite pigment composed of an acid dye and pseudoboehmite (see Patent Document 2). Furthermore, depending on the aspect of the object to which the composite pigment such as resin is used, the organic pigment carrier is preferably a cubic composite pigment, a needle-like composite pigment is suitable, or the size of the organic pigment carrier There may also be suitable sizes. The size and shape of boehmite can be controlled. For example, cubic boehmite is disclosed in Patent Document 3; needle-like boehmite is disclosed in Patent Document 4; and plate-like boehmite is disclosed in Patent Document 5.

特開平3−290312号公報Japanese Patent Laid-Open No. 3-290312 特開平4−142371号公報JP-A-4-142371 特開2009−126735号公報JP, 2009-126735, A 特開2003−54941号公報JP 2003-54941 A 特開2003−2641号公報Japanese Patent Application Publication No. 2003-2641

しかし、特許文献1に記載の発明及び特許文献2に記載の発明は、有機色素又は酸性染料として有機蛍光体の記載があるものの、複合顔料として蛍光を発するために必要な手段や方法についての開示がない。また、特許文献1に係る有機顔料の担体は、球状活性アルミナであり、特許文献2に係る有機顔料の担体は擬ベーマイトであって、両者とも樹脂など複合顔料を使用する対象の態様に応じたサイズや形状に制御し選択できるものではない。さらに、特許文献2に係る擬ベーマイトは、比表面積が高く、複合顔料に高い蛍光強度を得ることが難しい。   However, although the invention described in Patent Document 1 and the invention described in Patent Document 2 describe the organic fluorescent substance as the organic dye or the acid dye, they disclose the means or method necessary for emitting fluorescence as the composite pigment. There is no Further, the carrier of the organic pigment according to Patent Document 1 is spherical activated alumina, and the carrier of the organic pigment according to Patent Document 2 is pseudoboehmite, both of which correspond to the embodiments of the object using the composite pigment such as resin. It is not something that can be controlled and selected according to size and shape. Furthermore, the pseudo-boehmite according to Patent Document 2 has a high specific surface area, and it is difficult to obtain high fluorescence intensity in the composite pigment.

本発明は上記事情に鑑みなされたもので、有機蛍光体を担持する無機物を樹脂など使用する対象の態様に応じたサイズや形状に制御して選択することができ、かつ耐熱性や耐久性など無機物としての有用な機能を備え、有機蛍光体が高い蛍光強度を有する有機無機複合蛍光材料及びその製造方法を提供することを課題とする。   The present invention has been made in view of the above circumstances, and the inorganic substance supporting the organic fluorescent substance can be selected by controlling it to the size and the shape according to the aspect of the object to be used, such as resin, and heat resistance, durability, etc. An object of the present invention is to provide an organic-inorganic composite fluorescent material having a useful function as an inorganic substance, and the organic fluorescent material having high fluorescence intensity, and a method for producing the same.

本発明者は、上記の課題を解決するために鋭意検討を重ね、本発明に想到した。すなわち、本発明は、ベーマイトにエオシンYが担持され、量子収率が0.03以上であることを特徴とする有機無機複合蛍光材料に関する。この発明において、ベーマイトの比表面積は20m/g以下でもよい。 The inventors of the present invention have made intensive studies to solve the above problems, and have conceived the present invention. That is, the present invention relates to an organic-inorganic hybrid fluorescent material characterized in that eosin Y is supported on boehmite and the quantum yield is 0.03 or more. In the present invention, the specific surface area of boehmite may be 20 m 2 / g or less.

本発明は、水酸化アルミニウムとエオシンYとソーダ灰と水とからなるスラリーを水熱合成することを特徴とする鱗片状のベーマイトにエオシンYが担持された有機無機複合蛍光材料の製造方法に関する。また、本発明は、ベーマイトとエオシンYと水とからなるスラリーを撹拌し混合することを特徴とする有機無機複合蛍光材料の製造方法に関する。   The present invention relates to a method for producing an organic-inorganic hybrid fluorescent material in which eosin Y is supported on scaly boehmite characterized by hydrothermally synthesizing a slurry composed of aluminum hydroxide, eosin Y, soda ash and water. The present invention also relates to a method of producing an organic-inorganic hybrid fluorescent material, which comprises stirring and mixing a slurry comprising boehmite, eosin Y and water.

本発明に係る有機無機複合蛍光材料は、耐熱性や耐久性などベーマイトの有する有用な機能を備え、また樹脂など使用の対象の態様に応じたサイズや形状に制御して選択することができ、さらに有機蛍光体の有する発光色の多彩性や波長変換性という有用な機能を備えるので、蛍光体市場において有用であり、特に染料の分野や化粧品の分野において有用である。   The organic-inorganic hybrid fluorescent material according to the present invention has useful functions possessed by boehmite such as heat resistance and durability, and can be selected by controlling it to a size and a shape according to the target object of use such as resin, Furthermore, the organic fluorescent substance is useful in the phosphor market because it has useful functions such as versatility of emission color and wavelength conversion property possessed by the organic fluorescent substance, and is particularly useful in the field of dyes and the field of cosmetics.

本発明に係る有機無機複合蛍光材料の製造方法は、上記の特長を有する有機無機複合蛍光材料を簡易で確実に製造することができる。   The method of producing an organic-inorganic hybrid fluorescent material according to the present invention can produce the organic-inorganic hybrid fluorescent material having the above-mentioned features easily and reliably.

蛍光強度の最大値を1.0として規格化した最大励起波長における実施例の最大蛍光波長の測定結果を示すグラフである。It is a graph which shows the measurement result of the largest fluorescence wavelength of the Example in the largest excitation wavelength normalized on the assumption that the largest value of fluorescence intensity was 1.0.

以下、本発明を実施の形態により説明する。   Hereinafter, the present invention will be described by way of embodiments.

本発明に係る有機無機複合蛍光材料に用いられる有機物は、溶液中で高い蛍光強度を示す化学式C20H6Br4Na2O5で表されるエオシンYである。エオシンYは、赤褐色粉末で酸性の水溶性色素である。 Organic material used in the organic-inorganic composite phosphor materials according to the present invention is the Eosin Y represented by the chemical formula C 20 H 6 Br 4 Na 2 O 5 showing a high fluorescence intensity in solution. Eosin Y is a reddish brown powder and an acidic water-soluble pigment.

本発明に係る有機無機複合蛍光材料に用いられる無機物は、エオシンYを担持するベーマイトである。ベーマイトは、化学式AlOOH又はAl2O3・H2Oで表されるアルミナ一水和物で目的とする使用形態によって好適なサイズや形状に制御することが可能で、樹脂の難燃剤や補強剤、塗料や化粧品の光輝剤をはじめとして、幅広い分野で用いられている無機物である。 The inorganic substance used for the organic-inorganic hybrid fluorescent material according to the present invention is boehmite supporting eosin Y. Boehmite can be controlled to a suitable size and shape depending on the intended use form of alumina monohydrate represented by the chemical formula AlOOH or Al 2 O 3 .H 2 O, and the flame retardant and reinforcing agent of the resin can be controlled. And inorganic substances used in a wide range of fields, including paints and brighteners for cosmetics.

ベーマイトの比表面積は、20m/g以下であることが好ましい。ベーマイトの比表面積が20m/gより大きいと、ベーマイトの粒子サイズが小さくなりすぎ、エオシンY同士が相互作用し、蛍光強度が低くなる可能性がある。 The specific surface area of boehmite is preferably 20 m 2 / g or less. When the specific surface area of boehmite is larger than 20 m 2 / g, the particle size of boehmite is too small, and eosin Y may interact with each other to lower the fluorescence intensity.

本発明に係る有機無機複合蛍光材料は、ベーマイトが鱗片状である場合、水酸化アルミニウムとエオシンYとソーダ灰と水とからなるスラリーを水熱合成することにより製造することができる。エオシンYの添加量は、水酸化アルミニウムに対して0.1重量%〜5重量%が好ましい。エオシンYの添加量が0.1重量%より少ないとエオシンYの蛍光特性が発揮できず所望の複合粒子を得られない場合があり、5重量%より多いとエオシンYが残存してしまい不経済である。水熱合成は、好適にはオートクレーブを用いて行うことができる。水熱合成の加熱温度は170℃〜220℃が好ましい。加熱温度が170℃より低いとベーマイトが生成せず、220℃より高いとエオシンYが分解してしまい、いずれも所望の複合粒子が得られない。また、水熱合成の反応時間は、10時間〜24時間が好ましい。10時間より短いと化学反応が終わっていない場合があり、24時間より長いと不経済であることに加えエオシンYが分解してしまう虞がある。   The organic-inorganic composite fluorescent material according to the present invention can be produced by hydrothermally synthesizing a slurry composed of aluminum hydroxide, eosin Y, soda ash and water when the boehmite is scaly. The addition amount of eosin Y is preferably 0.1% by weight to 5% by weight with respect to aluminum hydroxide. If the amount of Eosin Y added is less than 0.1% by weight, the fluorescence characteristics of Eosin Y may not be exhibited and desired composite particles may not be obtained, and if more than 5% by weight, Eosin Y remains, which is uneconomical. It is. The hydrothermal synthesis can preferably be carried out using an autoclave. As for the heating temperature of hydrothermal synthesis, 170 ° C-220 ° C are preferred. When the heating temperature is lower than 170 ° C., boehmite is not generated, and when the heating temperature is higher than 220 ° C., eosin Y is decomposed, and desired composite particles can not be obtained. Moreover, as for the reaction time of hydrothermal synthesis, 10 hours-24 hours are preferable. If it is shorter than 10 hours, the chemical reaction may not be completed, and if it is longer than 24 hours, eosin Y may be decomposed in addition to being uneconomical.

水熱合成後のスラリーを固液分離した場合は固形分を100℃〜150℃で12時間〜30時間乾燥し、固液分離を省略した場合はスラリーを100℃〜150℃で20時間〜36時間乾燥する。   When the slurry after hydrothermal synthesis is subjected to solid-liquid separation, the solid content is dried at 100 ° C. to 150 ° C. for 12 hours to 30 hours, and when solid-liquid separation is omitted, the slurry is measured at 100 ° C. to 150 ° C. for 20 hours to 36 Time to dry.

本発明に係る有機無機複合蛍光材料は、ベーマイトとエオシンYと水とからなるスラリーを撹拌し混合することにより製造することができる。この製造方法によればあらゆる形状のベーマイトを用いることができる。エオシンYの添加量は、ベーマイトに対して0.1重量%〜5重量%が好ましい。エオシンYの添加量が0.1重量%より少ないとエオシンYの蛍光特性が発揮できず所望の複合粒子を得られない場合があり、5重量%より多いとエオシンYが残存してしまい不経済である。撹拌の手段は、好適には機械撹拌を用いることができる。機械撹拌は市販の撹拌装置を用いて行うことができる。機械撹拌は、設定条件により相違するが、通常、20分〜30分行うことが好ましい。   The organic-inorganic hybrid fluorescent material according to the present invention can be produced by stirring and mixing a slurry composed of boehmite, eosin Y and water. According to this manufacturing method, boehmite of any shape can be used. The addition amount of eosin Y is preferably 0.1% by weight to 5% by weight with respect to boehmite. If the amount of Eosin Y added is less than 0.1% by weight, the fluorescence characteristics of Eosin Y may not be exhibited and desired composite particles may not be obtained, and if more than 5% by weight, Eosin Y remains, which is uneconomical. It is. The means of agitation can preferably use mechanical agitation. Mechanical stirring can be performed using a commercially available stirring device. Although mechanical stirring changes with setting conditions, it is preferable to carry out normally for 20 minutes-30 minutes.

水熱合成後のスラリーを固液分離した場合は固形分を100℃〜150℃で12時間〜30時間乾燥し、固液分離を省略した場合はスラリーを100℃〜150℃で20時間〜36時間乾燥する。   When the slurry after hydrothermal synthesis is subjected to solid-liquid separation, the solid content is dried at 100 ° C. to 150 ° C. for 12 hours to 30 hours, and when solid-liquid separation is omitted, the slurry is measured at 100 ° C. to 150 ° C. for 20 hours to 36 Time to dry.

本発明に係る有機無機複合蛍光材料の量子収率は、0.03以上が好ましい。有機無機複合蛍光材料の量子収率が0.03より低いと蛍光強度が低くなり、実用に供することができなくなる可能性がある。   The quantum yield of the organic-inorganic hybrid fluorescent material according to the present invention is preferably 0.03 or more. When the quantum yield of the organic-inorganic hybrid fluorescent material is lower than 0.03, the fluorescence intensity may be low, and it may not be possible to use for practical use.

以下、本発明を実施例を挙げて説明するが、本発明は下記の実施例に限定されるものではない。   Hereinafter, the present invention will be described by way of examples, but the present invention is not limited to the following examples.

(1)水熱合成法による製造
〔実施例1〕
水酸化アルミニウム(日本軽金属社製、BF013)30gに水300gを添加し、これに粉末状のエオシンY(関東化学社製)を0.3g添加し、さらにソーダ灰4.5gを添加して原料のスラリーを調製した。得られた原料のスラリーを205℃で12時間、水熱合成した。水熱合成後のスラリーを固液分離した後、固形分のみを120℃で24時間乾燥した。得られた固形分は、鱗片状ベーマイトにエオシンYが被覆された複合粒子であった。
(1) Production by Hydrothermal Synthesis [Example 1]
300 g of water is added to 30 g of aluminum hydroxide (manufactured by Nippon Light Metal Co., Ltd., BF013), 0.3 g of powdered Eosin Y (manufactured by Kanto Chemical Co., Ltd.) is added thereto, and 4.5 g of soda ash is further added thereto. The slurry of was prepared. The resulting raw material slurry was hydrothermally synthesized at 205 ° C. for 12 hours. After solid-liquid separation of the slurry after hydrothermal synthesis, only the solid content was dried at 120 ° C. for 24 hours. The obtained solid content was composite particles in which scaly boehmite was coated with eosin Y.

〔比較例1〕
水酸化アルミニウム(日本軽金属社製、BF013)30gに水300gを添加し、これに粉末状のエオシンY(関東化学社製)を0.3g添加して原料のスラリーを調製した。この原料のスラリーを205℃で12時間、水熱合成した。水熱合成後のスラリーを固液分離することなく120℃で24時間乾燥した。得られた固形分は、立方体状ベーマイトにエオシンYが被覆された複合粒子であった。
Comparative Example 1
300 g of water was added to 30 g of aluminum hydroxide (manufactured by Nippon Light Metal Co., Ltd., BF013), and 0.3 g of powdered Eosin Y (manufactured by Kanto Chemical Co., Ltd.) was added thereto to prepare a slurry of the raw material. The raw material slurry was hydrothermally synthesized at 205 ° C. for 12 hours. The slurry after hydrothermal synthesis was dried at 120 ° C. for 24 hours without solid-liquid separation. The obtained solid content was composite particles in which cubic boehmite was coated with eosin Y.

〔比較例2〕
水酸化アルミニウム(日本軽金属社製、BF013)30gに水300gを添加し、これに粉末状のエオシンY(関東化学社製)を0.3g添加して原料のスラリーを調製した。この原料のスラリーを205℃で12時間、水熱合成した。水熱合成後のスラリーを固液分離した後、固形分のみを120℃で24時間乾燥した。得られた固形分は、立方体状ベーマイトにエオシンYが被覆された複合粒子であった。
Comparative Example 2
300 g of water was added to 30 g of aluminum hydroxide (manufactured by Nippon Light Metal Co., Ltd., BF013), and 0.3 g of powdered Eosin Y (manufactured by Kanto Chemical Co., Ltd.) was added thereto to prepare a slurry of the raw material. The raw material slurry was hydrothermally synthesized at 205 ° C. for 12 hours. After solid-liquid separation of the slurry after hydrothermal synthesis, only the solid content was dried at 120 ° C. for 24 hours. The obtained solid content was composite particles in which cubic boehmite was coated with eosin Y.

〔比較例3〕
水酸化アルミニウム(日本軽金属社製、BF013)30gに水300gを添加し、これに粉末状のエオシンY(関東化学社製)を0.3g添加し、さらに水酸化ナトリウム0.75g、硫酸マグネシウム7水和物4.8gを添加して原料のスラリーを調製した。得られた原料のスラリーを205℃で12時間、水熱合成した。水熱合成後のスラリーを固液分離した後、固形分のみを120℃で24時間乾燥した。得られた固形分は、針状ベーマイトにエオシンYが被覆された複合粒子であった。
Comparative Example 3
300 g of water is added to 30 g of aluminum hydroxide (manufactured by Nippon Light Metal Co., Ltd., BF013), 0.3 g of powdered Eosin Y (manufactured by Kanto Chemical Co., Ltd.) is added thereto, and sodium hydroxide 0.75 g, magnesium sulfate 7 A slurry of the raw material was prepared by adding 4.8 g of hydrate. The resulting raw material slurry was hydrothermally synthesized at 205 ° C. for 12 hours. After solid-liquid separation of the slurry after hydrothermal synthesis, only the solid content was dried at 120 ° C. for 24 hours. The obtained solid content was composite particles in which acicular boehmite was coated with eosin Y.

〔比較例4〕
水酸化アルミニウム(富田製薬社製、AD200)30gに水300gを添加し、これに粉末状のエオシンY(関東化学社製)を0.3g添加して原料のスラリーを調製した。
得られた原料のスラリーを205℃で12時間、水熱合成した。水熱合成後のスラリーを固液分離した後、固形分のみを120℃で24時間乾燥した。得られた固形分は、ナノサイズからなる擬ベーマイトにエオシンYが被覆された複合粒子であった。
Comparative Example 4
300 g of water was added to 30 g of aluminum hydroxide (AD200, manufactured by Tomita Seiyaku Co., Ltd.), and 0.3 g of powdered Eosin Y (manufactured by Kanto Chemical Co., Inc.) was added thereto to prepare a slurry of the raw material.
The resulting raw material slurry was hydrothermally synthesized at 205 ° C. for 12 hours. After solid-liquid separation of the slurry after hydrothermal synthesis, only the solid content was dried at 120 ° C. for 24 hours. The obtained solid content was composite particles in which eosin Y was coated on nano-sized pseudo-boehmite.

(2)混合法による製造
〔実施例2〕
70gの水中に立方体状ベーマイト(河合石灰工業社製、BMB−2)を5g、濃度0.5重量%のエオシンY(関東化学社製)溶液を10g加えた原料のスラリーをスターラー(小池精密機器製作所社製、マイティ・スターラパワーHOT・U)を用いて20分〜30分撹拌し混合した。撹拌後、固液分離をして固形分を取り出し、120℃で24時間乾燥した。得られた固形分は、立方体状ベーマイトにエオシンYが被覆された複合粒子であった。
(2) Production by mixing method [Example 2]
A slurry of a raw material prepared by adding 5 g of cubic boehmite (manufactured by Kawai Lime Industry Co., Ltd., BMB-2) and 10 g of a solution of 0.5% by weight of Eosin Y (manufactured by Kanto Chemical Co., Ltd.) in 70 g of water The mixture was stirred for 20 minutes to 30 minutes using Mighty Starra Power HOT U, manufactured by Mfg. Co., Ltd. After stirring, solid-liquid separation was carried out to take out the solid content, and it was dried at 120 ° C. for 24 hours. The obtained solid content was composite particles in which cubic boehmite was coated with eosin Y.

〔実施例3〕
70gの水中に鱗片状ベーマイト(河合石灰工業社製、BMF−920)を5g、濃度0.5重量%のエオシンY(関東化学社製)溶液を10g加えた原料のスラリーをスターラー(小池精密機器製作所社製、マイティ・スターラパワーHOT・U)を用いて20分〜30分撹拌し混合した。撹拌後、固液分離をして固形分を取り出し、120℃で24時間乾燥した。得られた固形分は、鱗片状ベーマイトにエオシンYが被覆された複合粒子であった。
[Example 3]
A slurry of raw material prepared by adding 5 g of scaly boehmite (manufactured by Kawai Lime Industry Co., Ltd., BMF-920) and 10 g of a solution of 0.5% by weight Eosin Y (manufactured by Kanto Chemical Co., Ltd.) in 70 g of water is a stirrer (Koike Precision Instruments Co., Ltd. The mixture was stirred for 20 minutes to 30 minutes using Mighty Starra Power HOT U, manufactured by Mfg. Co., Ltd. After stirring, solid-liquid separation was carried out to take out the solid content, and it was dried at 120 ° C. for 24 hours. The obtained solid content was composite particles in which scaly boehmite was coated with eosin Y.

〔実施例4〕
70gの水中に針状ベーマイト(河合石灰工業社製、BMI)を5g、濃度0.5重量%のエオシンY(関東化学社製)溶液を10g加えた原料のスラリーをスターラー(小池精密機器製作所社製、マイティ・スターラパワーHOT・U)を用いて20分〜30分撹拌し混合した。撹拌後、固液分離をして固形分を取り出し、120℃で24時間乾燥した。得られた固形分は、針状ベーマイトにエオシンYが被覆された複合粒子であった。
Example 4
A slurry of the raw material prepared by adding 5 g of acicular boehmite (manufactured by Kawai Lime Industry Co., Ltd., BMI) and 10 g of an eosin Y (manufactured by Kanto Chemical Co., Ltd.) concentration to 70 g of water is a stirrer (Koike Precision Instruments Co., Ltd. The mixture was stirred and mixed for 20 minutes to 30 minutes using Mighty Starra Power HOT U). After stirring, solid-liquid separation was carried out to take out the solid content, and it was dried at 120 ° C. for 24 hours. The obtained solid content was composite particles in which acicular boehmite was coated with eosin Y.

〔比較例5〕
70gの水中に擬ベーマイト(河合石灰工業社製)を5g、濃度0.5重量%のエオシンY(関東化学社製)溶液を10g加えた原料のスラリーをスターラー(小池精密機器製作所社製、マイティ・スターラパワーHOT・U)を用いて20分〜30分撹拌し混合した。撹拌後、固液分離をして固形分を取り出し、120℃で24時間乾燥した。得られた固形分は、擬ベーマイトにエオシンYが被覆された複合粒子であった。
Comparative Example 5
A slurry of the raw material prepared by adding 5 g of pseudo-boehmite (manufactured by Kawai Lime Industry Co., Ltd.) and 10 g of a solution of 0.5% by weight of Eosin Y (manufactured by Kanto Chemical Co., Ltd.) in 70 g of water is a stirrer (Mighty, Koike -It stirred and mixed for 20 minutes-30 minutes using Stara power HOT * U). After stirring, solid-liquid separation was carried out to take out the solid content, and it was dried at 120 ° C. for 24 hours. The obtained solid content was composite particles in which pseudo-boehmite was coated with eosin Y.

(3)ベーマイトの比表面積の測定
実施例及び比較例で合成した複合粒子を吸着測定用前処理装置(マイクロトラック・ベル社製、BELPREP II)にて150℃で3時間以上前処理をし、その後、自動比表面積/細孔分布測定装置(マイクロトラック・ベル社製、BELSORP(登録商標)mini)にて吸着等温線を測定した。得られた吸着等温線をBET法により解析し、比表面積を算出した。結果は、表1に示した。
(3) Measurement of specific surface area of boehmite The composite particles synthesized in the examples and comparative examples are pretreated at 150 ° C. for 3 hours or more with a pretreatment device for adsorption measurement (manufactured by Microtrac Bell, BELPREP II), Thereafter, the adsorption isotherm was measured with an automatic specific surface area / pore distribution measuring apparatus (Microtrac-Bell, BELSORP (registered trademark) mini). The obtained adsorption isotherm was analyzed by BET method to calculate the specific surface area. The results are shown in Table 1.

(4)複合粒子の蛍光特性の評価
実施例及び比較例で合成した複合粒子に紫外線ランプを照射し、蛍光特性の有無、蛍光特性を有したものは色を観察した。結果は、表1に示した。
(4) Evaluation of Fluorescent Properties of Composite Particles The composite particles synthesized in the examples and comparative examples were irradiated with an ultraviolet lamp, and those having fluorescent properties and having fluorescent properties were observed for color. The results are shown in Table 1.

(5) 複合粒子の最大励起波長、最大蛍光波長の測定
分光蛍光光度計(日本分光社製、FP-8600)を用い、ある一定の波長を実施例及び比較例で合成した複合粒子に照射しておおよその蛍光波長を割り出し、その蛍光波長を照射することによって最大励起波長を測定した。その最大励起波長を複合粒子に照射することにより蛍光波長を測定し、最大蛍光波長を求めた。測定結果は表1に示した。なお、装置の設定条件は表2に示した。また、図1に実施例の最大蛍光波長を示した。最大強度が1.0となる波長が実施例の最大蛍光波長を意味する。
(5) Measurement of Maximum Excitation Wavelength and Maximum Fluorescence Wavelength of Composite Particles Using a spectrofluorophotometer (FP-8600, manufactured by JASCO Corporation), the composite particles synthesized in the examples and comparative examples are irradiated with a certain wavelength. The approximate fluorescence wavelength was determined, and the maximum excitation wavelength was measured by irradiating the fluorescence wavelength. The fluorescence wavelength was measured by irradiating the composite particle with the maximum excitation wavelength, and the maximum fluorescence wavelength was determined. The measurement results are shown in Table 1. The setting conditions of the apparatus are shown in Table 2. Further, FIG. 1 shows the maximum fluorescence wavelength of the example. The wavelength at which the maximum intensity is 1.0 means the maximum fluorescence wavelength of the example.

(6)複合粒子の蛍光量子収率の測定
実施例及び比較例で合成した複合粒子を石英セルに充填し、絶対PL量子収率測定装置(浜松ホトニクス社製、Quantaurus-QY C11347-01)を用い、先に求めた最大蛍光波長付近における蛍光量子収率を測定した。測定結果は表1に示した。
(6) Measurement of fluorescence quantum yield of composite particles The composite particles synthesized in Examples and Comparative Examples are packed in a quartz cell, and an absolute PL quantum yield measurement apparatus (Quantaurus-QY C11347-01, manufactured by Hamamatsu Photonics Co., Ltd.) is obtained. The fluorescence quantum yield in the vicinity of the maximum fluorescence wavelength determined previously was measured. The measurement results are shown in Table 1.

Figure 0006508798
Figure 0006508798

Figure 0006508798
Figure 0006508798

表1から、水熱合成により有機無機複合蛍光材料を製造する場合、形状が鱗片状のベーマイトからなる有機無機複合蛍光材料のみが高い蛍光特性を示した。混合法により有機無機複合蛍光材料を製造する場合は、どのような形状のベーマイトからなる有機無機複合蛍光材料も高い蛍光特性を示した。また、実施例のいずれのベーマイトも比表面積が20m/g以下であったが、比較例4、5の擬ベーマイトを担体とするものは、擬ベーマイトであり、粒子サイズが小さく、擬ベーマイトに付着したエオシンY同士の距離が近くなったため相互作用を発生し、濃度消光を起こして蛍光が弱くなったものと推測される。また、量子収率については、この数値が0.03以上であれば強い蛍光を発することができるものと考えられる。 From Table 1, when manufacturing an organic-inorganic composite fluorescent material by hydrothermal synthesis, only the organic-inorganic composite fluorescent material consisting of boehmite in a scaly shape exhibited high fluorescence characteristics. In the case of producing the organic-inorganic composite fluorescent material by the mixing method, the organic-inorganic composite fluorescent material made of boehmite of any shape exhibited high fluorescence characteristics. Moreover, although the specific surface area was 20 m 2 / g or less in any of the boehmite of the examples, the one using the pseudo-boehmite of Comparative Examples 4 and 5 as a carrier is pseudo-boehmite, the particle size is small, and pseudo-boehmite is used. It is presumed that due to the distance between the attached eosins Y becoming close, an interaction occurs and concentration quenching occurs to weaken the fluorescence. With regard to the quantum yield, it is considered that if this value is 0.03 or more, strong fluorescence can be emitted.

Claims (4)

ベーマイトにエオシンYが担持され、量子収率が0.03以上であることを特徴とする有機無機複合蛍光材料。   An organic-inorganic hybrid fluorescent material characterized in that eosin Y is supported on boehmite and the quantum yield is 0.03 or more. ベーマイトの比表面積が20m/g以下であることを特徴とする請求項1に記載の有機無機複合蛍光材料。 The organic-inorganic hybrid fluorescent material according to claim 1, wherein the specific surface area of boehmite is 20 m 2 / g or less. 水酸化アルミニウムとエオシンYとソーダ灰と水とからなるスラリーを水熱合成することを特徴とする鱗片状のベーマイトにエオシンYが担持された有機無機複合蛍光材料の製造方法。   A method for producing an organic-inorganic composite fluorescent material, wherein eosin Y is supported on scaly boehmite characterized by hydrothermally synthesizing a slurry comprising aluminum hydroxide, eosin Y, soda ash and water. ベーマイトとエオシンYと水とからなるスラリーを撹拌し混合することを特徴とする有機無機複合蛍光材料の製造方法。   A method for producing an organic-inorganic hybrid fluorescent material, comprising: stirring and mixing a slurry comprising boehmite, eosin Y and water.
JP2015158837A 2015-08-11 2015-08-11 Organic-inorganic composite fluorescent material and method for producing the same Active JP6508798B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015158837A JP6508798B2 (en) 2015-08-11 2015-08-11 Organic-inorganic composite fluorescent material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015158837A JP6508798B2 (en) 2015-08-11 2015-08-11 Organic-inorganic composite fluorescent material and method for producing the same

Publications (2)

Publication Number Publication Date
JP2017036398A JP2017036398A (en) 2017-02-16
JP6508798B2 true JP6508798B2 (en) 2019-05-08

Family

ID=58047709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015158837A Active JP6508798B2 (en) 2015-08-11 2015-08-11 Organic-inorganic composite fluorescent material and method for producing the same

Country Status (1)

Country Link
JP (1) JP6508798B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023104219A (en) * 2022-01-17 2023-07-28 三菱鉛筆株式会社 Writing instrument product

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04142371A (en) * 1990-10-02 1992-05-15 Kao Corp Composite pigment
KR101142725B1 (en) * 2003-03-13 2012-05-04 니치아 카가쿠 고교 가부시키가이샤 Light emitting film, luminescent device, method for manufacturing light emitting film and method for manufacturing luminescent device
CN1974712A (en) * 2006-12-18 2007-06-06 天津理工大学 Hydrothermal growth process of titanate-base red luminophor
JP5324112B2 (en) * 2008-03-19 2013-10-23 関東電化工業株式会社 Boehmite fine particles and method for producing the same
DE102009043762A1 (en) * 2009-09-30 2011-03-31 Clariant International Ltd. Process for dyeing anodized aluminum surfaces
JP5946054B2 (en) * 2011-09-06 2016-07-05 川研ファインケミカル株式会社 Method for producing alumina self-supporting thin film containing luminescent transition metal

Also Published As

Publication number Publication date
JP2017036398A (en) 2017-02-16

Similar Documents

Publication Publication Date Title
Wu et al. Scalable synthesis of organic-soluble carbon quantum dots: superior optical properties in solvents, solids, and LEDs
Ding et al. Luminescent carbon quantum dots and their application in cell imaging
Zhang et al. Zeolite-confined carbon dots: tuning thermally activated delayed fluorescence emission via energy transfer
Zong et al. Synthesis of photoluminescent carbogenic dots using mesoporous silica spheres as nanoreactors
Bedekar et al. Rare-earth doped gadolinia based phosphors for potential multicolor and white light emitting deep UV LEDs
Dutta et al. Dual function of rare earth doped nano Bi 2 O 3: white light emission and photocatalytic properties
JP5368557B2 (en) β-type sialon phosphor, its use and production method
JP2010532911A (en) Luminescent lamp containing metal clusters confined in molecular sieves
Dwivedi et al. A commercial approach for the fabrication of bulk and nano phosphors converted into highly efficient white LEDs
Xu et al. Control mechanism behind broad fluorescence from violet to orange in ZnO quantum dots
Han et al. Solid-state N, P-doped carbon dots conquer aggregation-caused fluorescence quenching and couple with europium metal-organic frameworks toward white light-emitting diodes
He et al. Luminescent properties and energy transfer of luminescent carbon dots assembled mesoporous Al2O3: Eu3+ co-doped materials for temperature sensing
Li et al. Water-soluble Tb 3+ and Eu 3+ complexes based on task-specific ionic liquid ligands and their application in luminescent poly (vinyl alcohol) films
CN106939163B (en) A kind of preparation method of the fluorescent functional organic clay of height water dispersible
Kadam et al. Eu (iii)-Doped tri-calcium Ca 3 (1− X− Z) MZ (PO 4) 2 AX: X host array: optical investigations of down-conversion red phosphor for boosting display intensity and high color purity
Mu et al. CNDs@ zeolite: new room-temperature phosphorescent materials derived by pyrolysis of organo-templated zeolites
Gugula et al. Facile surface engineering of CuInS 2/ZnS quantum dots for LED down-converters
Li et al. Preparation and luminescence of transparent zeolite L-polymer hybrid materials
Chen et al. Red C-dots and C-dot films: solvothermal synthesis, excitation-independent emission and solid-state-lighting
Tian et al. Tunable luminescence of silver-exchanged SOD zeolite thermally treated under mild conditions
JP6508798B2 (en) Organic-inorganic composite fluorescent material and method for producing the same
Kwon et al. Synthesis design of Y3Al5O12: Ce3+ phosphor for fabrication of ceramic converter in automotive application
Kang et al. Green synthetic strategy of BCNO nanostructure and phosphor-based light–Emitting diodes
JP2005226069A5 (en)
Song et al. Wet-chemical preparation of barium magnesium orthophosphate, Ba 2 Mg (PO 4) 2: Eu 2+, nanorod phosphor with enhanced optical and photoluminescence properties

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180717

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190327

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190330

R150 Certificate of patent or registration of utility model

Ref document number: 6508798

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250