JP6508670B2 - Cartilage degeneration inhibitor - Google Patents

Cartilage degeneration inhibitor Download PDF

Info

Publication number
JP6508670B2
JP6508670B2 JP2014265992A JP2014265992A JP6508670B2 JP 6508670 B2 JP6508670 B2 JP 6508670B2 JP 2014265992 A JP2014265992 A JP 2014265992A JP 2014265992 A JP2014265992 A JP 2014265992A JP 6508670 B2 JP6508670 B2 JP 6508670B2
Authority
JP
Japan
Prior art keywords
cgrp
cartilage degeneration
bone
bibn4096
subchondral bone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014265992A
Other languages
Japanese (ja)
Other versions
JP2016124813A (en
Inventor
智幸 中佐
智幸 中佐
正和 石川
正和 石川
越智 光夫
光夫 越智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hiroshima University NUC
Original Assignee
Hiroshima University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hiroshima University NUC filed Critical Hiroshima University NUC
Priority to JP2014265992A priority Critical patent/JP6508670B2/en
Publication of JP2016124813A publication Critical patent/JP2016124813A/en
Application granted granted Critical
Publication of JP6508670B2 publication Critical patent/JP6508670B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、軟骨変性抑制剤に関する。 The present invention relates to a cartilage degeneration inhibitors.

関節破壊をきたす代表的な疾患である変形性関節症(OA)は、はかり知れない苦痛と運動機能障害をもたらす。日本では、総人口125,000万人のうちOAの患者数は1,200万人であって、要治療者は700万人と言われている。しかし、OAの原因は解明されておらず、OAの進行を防ぐ薬剤は存在しない。このため、OAの進行例に対して人工関節置換術などの手術療法を行っているのが現状である。また、OAに対する保存療法として、筋力訓練および可動域訓練といったリハビリテーション、温熱治療などの物理療法、装具療法、ヒアルロン酸の関節内投与、各種消炎鎮痛剤の投与が行われている。原発性のOAだけでなく、半月板損傷または切除後、あるいは外傷後においてもOAは発生する。さらに、これからの高齢化社会を考えると対象となる患者数は相当数になると考えられる。   Osteoarthritis (OA), a typical disease that causes joint destruction, results in profound pain and motor dysfunction. In Japan, the total number of patients with OA is 12 million out of a total population of 1250 million, and it is said that 7 million people need treatment. However, the cause of OA has not been elucidated, and there is no drug that prevents the progression of OA. For this reason, at present, surgical treatment such as artificial joint replacement is performed on advanced cases of OA. In addition, as conservative treatment for OA, rehabilitation such as strength training and range of motion training, physical therapy such as thermal treatment, orthosis, intraarticular administration of hyaluronic acid, and administration of various anti-inflammatory and analgesic agents are performed. In addition to primary OA, OA also occurs after meniscal injury or resection, or after trauma. Furthermore, considering the future aging society, the number of patients targeted will be considerable.

関節軟骨は一旦損傷すると自己修復することができない。したがって、これまで、軟骨に焦点をあてた研究が多くなされてきた。その一方で、軟骨を支える軟骨下骨の重要性が認識されてきている。軟骨下骨は、軟骨の恒常性に重要な役割を担っている。軟骨下骨の変化が軟骨変性に影響を与えているという報告もある。実際のOA患者では、OAの進行により軟骨下骨の骨硬化および骨棘形成といった変化がみられる。初期のOAでは、まず軟骨下骨の骨硬化がみられる。   Articular cartilage can not self-repair once it is damaged. Therefore, until now, many studies have focused on cartilage. On the other hand, the importance of subchondral bone supporting cartilage has been recognized. Subchondral bone plays an important role in cartilage homeostasis. There are also reports that changes in subchondral bone affect cartilage degeneration. In actual OA patients, changes such as osteosclerosis and osteophyte formation of subchondral bone are seen as progression of OA. In the early stage of OA, bone hardening of the subchondral bone is observed first.

近年、感覚神経が骨代謝を制御していることが明らかとなった。神経ペプチドであるカルシトニン遺伝子関連ペプチド(calcitonin gene−related peptide;CGRP)は、骨芽細胞分化・増殖の促進、破骨細胞分化の抑制に重要な役割を担うことが示されている。CGRPの発現は、疼痛において増加し、OAの疼痛にも重要な役割を担うことが示されている。   In recent years, it has become clear that sensory nerves control bone metabolism. The neuropeptide calcitonin gene-related peptide (calcitonin gene-related peptide; CGRP) has been shown to play an important role in promoting osteoblast differentiation / proliferation and suppressing osteoclast differentiation. CGRP expression is increased in pain and has been shown to play an important role in OA pain.

非特許文献1には、CGRP抗体を投与したOAモデルラットを用いたOAにおける疼痛に関する研究が開示されている。また、OAでの軟骨下骨の変化を制御することで、OAの進行を抑制するという試みが報告されている。例えば、非特許文献2には、骨粗鬆症治療薬であるビスフォスフォネートを、実際にOAの患者に投与した臨床試験の結果が開示されている。   Non-Patent Document 1 discloses a study on pain in OA using an OA model rat administered a CGRP antibody. In addition, attempts have been reported to control the progression of OA by controlling the changes in subchondral bone in OA. For example, Non-Patent Document 2 discloses the results of a clinical test in which bisphosphonate, which is an osteoporosis treatment, was actually administered to a patient with OA.

Benschop RJ、外16名、「Development of a novel antibody to calcitonin gene−related peptide for the treatment of osteoarthritis−related pain.」、Osteoarthritis Cartilage、2014、22(4)、578−585Benschop RJ, 16 others, "Development of a novel antibody to calcitonin gene-related peptide for the treatment of osteoarthritis-related pain.", Osteoarthritis Cartilage, 2014, 22 (4), 578-585 Nishii T、外4名、「Alendronate treatment for hip osteoarthritis: prospective randomized 2−year trial.」、Clinical Rheumatology、2013、32(12)、1759−1766Nishii T, 4 others, "Alendronate treatment for hip osteoarthritis: prospective randomized 2-year trial.", Clinical Rheumatology, 2013, 32 (12), 1759-1766

しかし、上記非特許文献1では、CGRP抗体のOAにおける疼痛に対する効果が評価されており、CGRP抗体のOAにおける骨代謝および軟骨変性への影響については評価されていない。したがって、OAの軟骨変性を抑制できる薬剤はいまだ見出されていない。また、上記非特許文献2によれば、臨床試験の結果、ビスフォスフォネートはOAの進行を抑制できなかった。   However, in the above Non-Patent Document 1, the effect of CGRP antibody on pain in OA is evaluated, and the effect of CGRP antibody on bone metabolism and cartilage degeneration in OA is not evaluated. Therefore, a drug that can suppress cartilage degeneration of OA has not been found yet. Moreover, according to the above-mentioned nonpatent literature 2, as a result of a clinical test, bisphosphonate was not able to control progress of OA.

進行性の疾患であるOAを初期の段階で薬剤によって抑制できれば、手術療法が減り、患者への恩恵のみならず医療経済的効果も大きい。したがって、OAに対して安全で低浸襲に投与できる薬剤の開発が急務である。   If the progressive disease OA can be controlled by drugs at an early stage, surgical treatment is reduced, and not only benefits for patients but also medical economic effects are great. Therefore, there is an urgent need to develop a drug that can be administered safely and with low invasiveness to OA.

本発明は、上記実情に鑑みてなされたものであり、安全で低浸襲に関節破壊を抑制することができる軟骨変性抑制剤を提供することを目的とする。 This invention is made in view of the said situation, and it aims at providing the cartilage degeneration inhibitor which can suppress joint destruction safely and with low invasion.

発明者は、初期のOAにおける骨硬化、特に軟骨下骨の硬化を防ぐことができれば、軟骨変性の進行、ひいては関節変性症が抑制できるものと考え、鋭意研究を重ねた。その結果、本発明を完成させた。すなわち、
本発明の観点に係る軟骨変性抑制剤は、
オルセゲパントを含む。
The inventor considered that the progress of cartilage degeneration and eventually joint degeneration could be suppressed if it was possible to prevent osteosclerosis in the early stage of OA, in particular the hardening of the subchondral bone, and conducted intensive studies. As a result, the present invention is completed. That is,
Cartilage degeneration inhibitor according to the perspective of the present invention,
Including Orsege Pant .

本発明によれば、安全で低浸襲に関節破壊を抑制することができる。   According to the present invention, joint destruction can be suppressed safely and with low invasion.

OAモデルマウスのサフラニン−O染色された膝関節切片の画像を示す図である。It is a figure which shows the image of the safranin-O stained knee joint section of OA model mouse. OAモデルマウスの変形性関節症スコアを示す図である。It is a figure which shows the osteoarthritis score of OA model mouse. OAモデルマウスの軟骨下骨の面積の割合を示す図である。It is a figure which shows the ratio of the area of the subchondral bone of OA model mouse. OAモデルマウスのオステオカルシンを染色した膝関節切片の画像および骨髄細胞におけるオステオカルシン陽性細胞の割合を示す図である。FIG. 8 shows images of osteocalcin-stained knee joint sections of OA model mice and the percentage of osteocalcin-positive cells in bone marrow cells. OAモデルマウスの酒石酸耐性酸フォスファターゼ(TRAP)を染色した膝関節切片の画像および単位面積当たりのTRAP陽性細胞の個数を示す図である。It is a figure which shows the image of the knee joint section which stained tartaric acid resistant acid phosphatase (TRAP) of OA model mouse, and the number of TRAP positive cells per unit area. OAモデルマウスのCGRPを標識した膝関節切片の画像および視野の総面積に対するCGRP陽性領域の割合を示す。The ratio of the CGRP positive area to the image of the knee joint section labeled with CGRP of the OA model mouse and the total area of the visual field is shown. BIBN4096を投与したOAモデルマウスのサフラニン−O染色された膝関節切片の画像を示す図である。It is a figure which shows the image of the safranin-O-stained knee joint section of OA model mouse | mouth which administered BIBN4096. BIBN4096を投与したOAモデルマウスの変形性関節症スコアを示す図である。It is a figure which shows the osteoarthritis score of OA model mouse | mouth which administered BIBN4096. BIBN4096を投与したOAモデルマウスのマトリックスメタロプロテナーゼ(MMP)13を染色した膝関節切片の画像を示す図である。It is a figure which shows the image of the knee joint section which stained matrix metalloproteinase (MMP) 13 of OA model mouse | mouth which administered BIBN4096. BIBN4096を投与したOAモデルマウスにおける軟骨細胞中のMMP13陽性細胞の割合を示す図である。It is a figure which shows the ratio of the MMP13 positive cell in the chondrocytes in OA model mouse | mouth which administered BIBN4096. BIBN4096を投与したOAモデルマウスの軟骨下骨の面積の割合を示す図である。It is a figure which shows the ratio of the area of the subchondral bone of OA model mouse | mouth which administered BIBN4096. マイクロコンピューター断層撮影(μCT)で得られた画像および内側骨端(A)の長さと外側骨端(B)の長さとの比を示す図である。FIG. 2 shows an image obtained by micro-computed tomography (μCT) and the ratio of the length of the medial end (A) to the length of the lateral end (B). BIBN4096を投与したOAモデルマウスのオステオカルシンを染色した膝関節切片の画像および骨髄細胞におけるオステオカルシン陽性細胞の割合を示す図である。FIG. 6 shows images of osteocalcin-stained knee joint sections of OA model mice administered BIBN4096 and the percentage of osteocalcin-positive cells in bone marrow cells. BIBN4096を投与したOAモデルマウスのTRAPを染色した膝関節切片の画像および単位面積当たりのTRAP陽性細胞の個数を示す図である。It is a figure which shows the image of the knee joint section which stained TRAP of OA model mouse which administered BIBN4096, and the number of TRAP positive cells per unit area. 培養細胞におけるオステオカルシンの発現量およびALP活性を示す。The expression level and ALP activity of osteocalcin in a cultured cell are shown. TRAPを染色した培養細胞の画像を示す図である。It is a figure which shows the image of the cultured cell which stained TRAP. 培養細胞におけるTRAP陽性細胞の個数を示す図である。It is a figure which shows the number of TRAP positive cells in a cultured cell. リセドロネートを投与したOAモデルマウスのサフラニン−O染色された膝関節切片の画像を示す図である。It is a figure which shows the image of the safranin-O-stained knee joint section of OA model mouse | mouth which administered risedronate.

本発明に係る実施の形態について説明する。
(実施の形態)
実施の形態について詳細に説明する。本実施の形態に係る軟骨変性抑制剤は、CGRP受容体拮抗剤を含む。CGRP受容体は、GPCR calcitonin receptor−like receptor(CLR)、Receptor Activity Modifying Protein(RAMP)および細胞内のReceptor Component Protein(RCP)から構成されるヘテロ三量体タンパク質である。37個のアミノ酸からなるペプチドであるCGRPがCGRP受容体に結合すると、細胞内のcAMPが増加し、血管拡張などの作用をもたらす。
An embodiment according to the present invention will be described.
Embodiment
The embodiment will be described in detail. The cartilage degeneration inhibitor according to the present embodiment contains a CGRP receptor antagonist. The CGRP receptor is a heterotrimeric protein composed of GPCR calcitonin receptor-like receptor (CLR), receptor activity modifying protein (RAMP) and intracellular receptor component protein (RCP). When CGRP, which is a 37-amino acid peptide, binds to the CGRP receptor, intracellular cAMP is increased, resulting in actions such as vasodilation.

CGRP受容体拮抗剤は、CGRPに拮抗して、CGRPとCGRP受容体との相互作用を阻害し、CGRP受容体からのシグナルを遮断する任意の物質である。CGRP受容体拮抗剤は、CGRPとCGRP受容体との相互作用を直接的、あるいは間接的に抑制するあらゆる物質、例えば、合成物、天然物、ペプチド、抗体およびアプタマーなどの核酸を含む。CGRP受容体拮抗剤としては、例えば、オルセゲパント(BIBN4096)、テルカゲパント(MK−0974)およびMS−694153などが挙げられる。また、CGRP受容体拮抗剤としてベンゾジアゼピンCGRP受容体拮抗物質(例えば、国際公開第2005/013894号参照)を用いてもよい。   A CGRP receptor antagonist is any substance that antagonizes CGRP, inhibits the interaction between CGRP and the CGRP receptor, and blocks the signal from the CGRP receptor. CGRP receptor antagonists include any substance that directly or indirectly inhibits the interaction between CGRP and CGRP receptor, for example, nucleic acids such as synthetic products, natural products, peptides, antibodies and aptamers. As a CGRP receptor antagonist, for example, Orsegepanto (BIBN4096), Telkage panto (MK-0974), MS-694153 and the like can be mentioned. Alternatively, benzodiazepine CGRP receptor antagonists (see, for example, WO 2005/013894) may be used as a CGRP receptor antagonist.

CGRP受容体拮抗剤は、公知の方法で合成してもよいし、市販のものを使用してもよいし、化合物ライブラリに含まれる化合物の中から、CGRP受容体拮抗作用を有する化合物として選択した化合物であってもよい。CGRP受容体拮抗作用を有する化合物の選択には、既知の方法、例えば、ヒトCGRP受容体を発現する細胞を用いた受容体結合アッセイなどを利用できる。CGRP受容体を発現する細胞は、遺伝子組み換え技術により作製できる。例えば、当該細胞から公知の方法で膜を単離し、放射性ヨウ素で標識したヒトCGRPおよび被験物質を、単離した膜とインキュベーションした後に、放射性ヨウ素に基づいて膜画分に含まれるヒトCGRPを定量することで、CGRP受容体拮抗作用を有する化合物を選択できる。   The CGRP receptor antagonist may be synthesized by a known method, or a commercially available one may be used, or a compound included in the compound library is selected as a compound having CGRP receptor antagonistic activity. It may be a compound. For selection of compounds having CGRP receptor antagonistic activity, known methods such as receptor binding assay using cells expressing human CGRP receptor can be used. Cells expressing the CGRP receptor can be produced by genetic engineering techniques. For example, after the membrane is isolated from the cells by a known method, and radioactive iodine labeled human CGRP and a test substance are incubated with the isolated membrane, human CGRP contained in the membrane fraction is quantified based on the radioactive iodine. Thus, compounds having CGRP receptor antagonistic activity can be selected.

CGRP受容体拮抗剤は、CGRPに相互作用することでCGRPとCGRP受容体との相互作用を阻害する物質でもよい。したがって、CGRP受容体拮抗剤は、例えば、ALD403およびLY2951742などのCGRP抗体であってもよい。なお、公知の抗体作製方法で、CGRPに対する抗体を作製してもよい。   The CGRP receptor antagonist may be a substance that inhibits the interaction between CGRP and CGRP receptor by interacting with CGRP. Thus, a CGRP receptor antagonist may be, for example, a CGRP antibody such as ALD403 and LY2951742. An antibody against CGRP may be produced by a known antibody production method.

本実施の形態に係る軟骨変性抑制剤は、有効成分として上記CGRP受容体拮抗剤を含む。当該軟骨変性抑制剤は、公知の方法で製造される。上記軟骨変性抑制剤の剤形は、限定されないが、錠剤、カプセル剤、注射剤、液剤、直腸坐剤、膣坐剤、経鼻吸収剤、経皮吸収剤、経肺吸収剤および口腔内吸収剤などである。当該軟骨変性抑制剤は、例えば、薬理的に許容される担体と配合された合剤であってもよい。薬理的に許容される担体は、製剤素材として用いられる各種の有機担体物質または無機担体物質である。また、当該軟骨変性抑制剤には、白糖、緩衝剤などの薬理的に許容される添加剤が含まれてもよい。必要に応じて、防腐剤、抗酸化剤、着色剤、甘味剤などの添加物を用いることもできる。   The cartilage degeneration inhibitor according to the present embodiment contains the above CGRP receptor antagonist as an active ingredient. The said cartilage degeneration inhibitor is manufactured by a well-known method. The dosage form of the above cartilage degeneration inhibitor is not limited, but tablets, capsules, injections, solutions, rectal suppositories, vaginal suppositories, nasal absorbents, transdermal absorbents, pulmonary absorbents and buccal absorption Agents. The cartilage degeneration inhibitor may be, for example, a combination compounded with a pharmacologically acceptable carrier. The pharmacologically acceptable carrier is various organic carrier substances or inorganic carrier substances used as pharmaceutical materials. Further, the cartilage degeneration inhibitor may contain pharmacologically acceptable additives such as sucrose and a buffer. Additives such as preservatives, antioxidants, coloring agents, and sweeteners can also be used, if necessary.

本実施の形態に係る軟骨変性抑制剤は、下記実施例1に示すように、軟骨下骨の骨硬化および軟骨変性を抑制する。そこで、当該軟骨変性抑制剤は、好ましくは軟骨変性疾患の患者に投与される。軟骨変性抑制剤の投与方法は任意であるが、好ましくは経口投与または静脈内注射である。当該軟骨変性抑制剤の投与量は、患者の体重、病態など患者の状態に応じて適宜調整されるが、有効成分であるCGRP受容体拮抗剤の1日の投与量にして1人あたり0.1mg〜1g、または1〜100mg、好ましくは2.5〜10mgである。もちろん、投与回数、投与間隔などの投与方法は、患者の状態を見ながら、適宜調整することができる。   The cartilage degeneration inhibitor according to the present embodiment suppresses bone hardening and cartilage degeneration of subchondral bone as shown in Example 1 below. Therefore, the cartilage degeneration inhibitor is preferably administered to a patient with a cartilage degeneration disease. Although the administration method of the cartilage degeneration inhibitor is optional, it is preferably oral administration or intravenous injection. The dose of the cartilage degeneration inhibitor is appropriately adjusted according to the patient's body weight, condition of the patient such as the condition, etc., and the dose of the active ingredient CGRP receptor antagonist per day is 0. It is 1 mg to 1 g, or 1 to 100 mg, preferably 2.5 to 10 mg. Of course, the administration method such as the administration frequency and the administration interval can be appropriately adjusted while observing the condition of the patient.

以上詳細に説明したように、本実施の形態に係る軟骨変性抑制剤は、軟骨下骨の骨硬化および軟骨変性を抑制する。軟骨には血管がなく、軟骨変性抑制剤の患部への効率的な輸送が問題となり得るが、軟骨下骨には血管があるため、当該軟骨変性抑制剤は、血行を介して軟骨下骨に到達でき、薬効が効率よく得られる。したがって、当該軟骨変性抑制剤は、安全で低浸襲に関節破壊を抑制することができる。   As described above in detail, the cartilage degeneration inhibitor according to the present embodiment suppresses bone hardening and cartilage degeneration of subchondral bone. There are no blood vessels in the cartilage, and efficient transport of the cartilage degeneration inhibitor to the affected area may be a problem. However, since there is a blood vessel in the subchondral bone, the cartilage degeneration inhibitor is effective in treating the subchondral bone via blood circulation. It can be reached and medicinal effects can be obtained efficiently. Therefore, the cartilage degeneration inhibitor is safe and can suppress joint destruction with low invasion.

また、上記軟骨変性抑制剤は、上記CGRP受容体拮抗剤としてオルセゲパントを含んでもよいこととした。オルセゲパントは、偏頭痛の治療薬として臨床試験で使用されているため、患者に安全に投与できる。   Further, the above-mentioned cartilage degeneration inhibitor may contain orsegepant as the above-mentioned CGRP receptor antagonist. It can be safely administered to patients because it is used in clinical trials as a treatment for migraine headaches.

また、別の実施の形態では、軟骨変性抑制剤として使用するためのCGRP受容体拮抗剤が提供される。他の実施の形態は、軟骨変性抑制剤の製造のためのCGRP受容体拮抗剤の使用である。さらに別の実施の形態では、CGRP受容体拮抗剤を投与する工程を含む、軟骨下骨の骨硬化を抑制する方法、またはCGRP受容体拮抗剤を投与する工程を含む、軟骨変性を抑制する方法が提供される。さらに他の実施の形態では、CGRP受容体拮抗剤を、軟骨疾患の患者に投与する工程を含む、軟骨疾患の治療方法が提供される。   In another embodiment, provided is a CGRP receptor antagonist for use as a cartilage degeneration inhibitor. Another embodiment is the use of a CGRP receptor antagonist for the manufacture of a cartilage degeneration inhibitor. In yet another embodiment, a method of suppressing osteosclerosis of the subchondral bone comprising administering a CGRP receptor antagonist, or a method of inhibiting cartilage degeneration, comprising administering a CGRP receptor antagonist Is provided. In yet another embodiment, there is provided a method of treating a cartilage disease, comprising the step of administering a CGRP receptor antagonist to a patient with a cartilage disease.

下記実施例1に示すように、CGRP受容体拮抗剤は、軟骨下骨の骨硬化を抑制する。軟骨下骨の骨硬化は、上述のように、実際のOA患者において、OAの進行とともに見られる。このため、上記CGRP受容体拮抗剤は、変形性関節症抑制剤に有効成分として含まれてもよい。   As shown in Example 1 below, a CGRP receptor antagonist inhibits bone hardening of subchondral bone. Subchondral bone osteosclerosis is seen with the progression of OA in actual OA patients, as described above. Therefore, the CGRP receptor antagonist may be contained as an active ingredient in the osteoarthritis inhibitor.

別の実施の形態では、変形性関節症抑制剤として使用するためのCGRP受容体拮抗剤が提供される。他の実施の形態は、変形性関節症抑制剤の製造のためのCGRP受容体拮抗剤の使用である。さらに別の実施の形態では、CGRP受容体拮抗剤を、変形性関節症の患者に投与する工程を含む、変形性関節症の治療方法が提供される。   Another embodiment provides a CGRP receptor antagonist for use as an osteoarthritis inhibitor. Another embodiment is the use of a CGRP receptor antagonist for the manufacture of an osteoarthritis inhibitor. In yet another embodiment, there is provided a method of treating osteoarthritis comprising administering a CGRP receptor antagonist to a patient with osteoarthritis.

以下の実施例により、本発明をさらに具体的に説明するが、本発明は実施例によって限定されるものではない。なお、本実施例のすべての結果は、平均値±標準偏差で示した。3群または4群の比較は、Turkey−Kramer post hoc検定で行った。2群間の差の検出には、Mann Whitney U検定を用いた。P値が0.05未満の場合を統計的に有意であるとした。   The present invention will be described more specifically by the following examples, but the present invention is not limited by the examples. In addition, all the results of this example are shown by mean value ± standard deviation. Comparison of 3 groups or 4 groups was performed by the Turkey-Kramer post hoc test. The Mann Whitney U test was used to detect differences between the two groups. A P value less than 0.05 was considered statistically significant.

(実施例1:CGRP受容体拮抗剤の軟骨変性抑制作用の検討)
以下の手順でOAモデルマウスを作製した。まず、10週齢のC57/BL6マウスの右膝関節の内側側副靭帯を切離するOA手術を行った。軟骨下骨の早期変化を評価するために、OA手術を施したマウスを過剰量の麻酔で2日後および7日後に安楽死させた(各時点においてn=6)。擬似手術(sham)を施したマウスも同様に安楽死させた(n=6)。
Example 1 Examination of Cartilage Degeneration Inhibitory Effect of CGRP Receptor Antagonist
An OA model mouse was produced by the following procedure. First, OA surgery was performed in which the medial collateral ligament of the right knee joint of a 10-week-old C57 / BL6 mouse was dissected. To assess early changes in subchondral bone, mice undergoing OA surgery were euthanized after 2 and 7 days of excess anesthesia (n = 6 at each time point). Mice subjected to sham operation (sham) were similarly euthanized (n = 6).

OAの進展に対するCGRP受容体拮抗剤の効果を調べるために、OA手術後に、オルセゲパント(BIBN4096、Tocris Bioscience社製)を0.6mg/kg/100μlの投与量で、腹腔内に注射することでマウスに投与した。コントロール群には、同じ投与量でリン酸緩衝生理食塩水(PBS)を投与した。   To investigate the effect of CGRP receptor antagonist on the development of OA, mice were injected intraperitoneally with orsegepant (BIBN4096, Tocris Bioscience) at a dose of 0.6 mg / kg / 100 μl after OA surgery. Given to The control group received phosphate buffered saline (PBS) at the same dose.

注射から1週間後、4週間後および8週間後に、膝関節を回収し、4%パラホルムアルデヒド(PFA)で固定後、μCTおよび組織学的評価を行った。μCTでは、4%PFAでの24時間の固定後、高解像度μCT装置(SkyScan1176、東洋テクニカ社製)を、マニュアルに従って用いて検体を解析した。得られた画像を再構成し、sham、コントロール群およびBIBN4096投与群について、内側骨端の長さおよび外側骨端の長さを算出した。   Knee joints were collected one week after injection, four weeks and eight weeks later, and after fixation with 4% paraformaldehyde (PFA), μCT and histologic evaluation were performed. In μCT, after fixing for 24 hours in 4% PFA, the sample was analyzed using a high resolution μCT apparatus (SkyScan 1176, manufactured by Toyo Technica Co., Ltd.) according to the manual. The obtained images were reconstructed, and the lengths of the medial end and the lateral end were calculated for sham, the control group and the BIBN4096 administration group.

上記の4%PFAで固定した膝関節を20%エチレンジアミン四酢酸(EDTA)で2週間かけて脱灰し、パラフィンに包埋した。膝関節の内側区画の中央の荷重負荷領域から採取された4μmの厚さの矢状切片を組織学的評価のために作製した。サフラニン−O ファストグリーン法で切片を染色し、内側大腿顆および脛骨プラトーにおける病理学的変化を、マウスにおける関節変性症における膝軟骨の評価に関するOARSI(Osteo Arthritis Research Society International)勧告に基づいて評価した。   The knee joint fixed with 4% PFA was decalcified with 20% ethylenediaminetetraacetic acid (EDTA) for 2 weeks and embedded in paraffin. A 4 μm thick sagittal section taken from the load bearing area in the middle of the medial compartment of the knee joint was prepared for histological evaluation. The sections were stained with the Safranin-O Fast Green method and pathological changes in the medial femoral condyle and tibial plateau were assessed based on the OARSI (Osteo Arthritis Research Society International) recommendation for the evaluation of knee cartilage in joint degeneration in mice .

各切片に関して、内側プラトーの骨端における軟骨下骨の面積/組織の面積(BT/TV、%)を、画像解析装置(BZ−9000、キーエンス社製)を用いて測定した。他の切片を、免疫組織化学およびTRAP染色に使用した。TRAP染色には、和光純薬工業社製のキットをマニュアルに従って用いた。軟骨下骨の骨端におけるTRAP陽性細胞を各切片について計数した。   For each section, the subchondral bone area / tissue area (BT / TV,%) at the epiphysis of the inner plateau was measured using an image analyzer (BZ-9000, manufactured by Keyence Corporation). Other sections were used for immunohistochemistry and TRAP staining. For TRAP staining, a kit manufactured by Wako Pure Chemical Industries, Ltd. was used according to the manual. TRAP positive cells in the epiphysis of the subchondral bone were counted for each section.

免疫組織化学評価では、まず、パラフィンに包埋した膝関節の切片を、キシレン置換ro−Par Clearant(Anatech社製)で脱パラフィン処理し、段階希釈されたエタノールおよび水で戻した。抗原脱マスキングでは、10mMのクエン酸ナトリウム緩衝液(pH6.0)中の切片を電子レンジで加熱し、1.5分間、80〜85℃で維持した。抗原脱マスキングの後、スライドを室温で20分間冷却した。PBSで洗浄後、5%血清を用いて、30分間室温で切片をブロックした。   For immunohistochemical evaluation, first, paraffin-embedded knee joint sections were deparaffinized with xylene-substituted ro-Par Clearant (Anatech) and returned with serially diluted ethanol and water. For antigen unmasking, sections in 10 mM sodium citrate buffer (pH 6.0) were microwaved and held at 80-85 ° C. for 1.5 minutes. After antigen unmasking, the slides were cooled at room temperature for 20 minutes. After washing with PBS, sections were blocked for 30 minutes at room temperature with 5% serum.

続いて、抗CGRP抗体(50倍希釈、Abcam社製)、抗オステオカルシン抗体(2000倍希釈、タカラバイオ社製)および抗MMP13抗体(50倍希釈、BD Bioscience Pharmingen社製)を、4℃で一晩、切片とインキュベートした。PBSで洗浄後、切片をビオチン化ヤギ抗ウサギ二次抗体と室温で30分間インキュベートした。なお、CGRPに対する二次抗体としては、Alexa Fluor 488−コンジュゲーティッド抗ウサギIgG(Molecular Probes;Invitrogen社製)を用いた。   Subsequently, anti-CGRP antibody (50-fold dilution, manufactured by Abcam), anti-osteocalcin antibody (2000-fold dilution, manufactured by Takara Bio) and anti-MMP 13 antibody (50-fold dilution, manufactured by BD Bioscience Pharmingen) are prepared at 4 ° C. Incubate with sections overnight. After washing with PBS, sections were incubated with biotinylated goat anti-rabbit secondary antibody for 30 minutes at room temperature. As a secondary antibody against CGRP, Alexa Fluor 488-conjugated anti-rabbit IgG (Molecular Probes; Invitrogen) was used.

次に、Vectastain ABC−APアルカリフォスファターゼ(Vector Laboratories社製)を用いて切片を30分間インキュベートした。スライドを洗浄し、切片をアルカリフォスファターゼ基質と20〜30分間インキュベートした。   Next, the sections were incubated for 30 minutes using Vectastain ABC-AP alkaline phosphatase (Vector Laboratories). Slides were washed and sections were incubated with alkaline phosphatase substrate for 20-30 minutes.

免疫組織化学シグナルは、次のように定量した。骨形成解析に関しては、軟骨下骨の骨端における骨髄細胞の総数を計数し、オステオカルシン陽性細胞の割合を算出した。CGRP発現に関しては、軟骨下骨の骨端の5箇所の視野を無作為に選択し、ImageJソフトウェア(国立衛生研究所)を用いて、200倍拡大下で各CGRP陽性領域を測定した。ここでは、各視野の総面積に対するCGRP陽性領域の割合を算出した。MMP13の発現に関しては、400倍拡大下で切片の4枚の写真を撮影し、各写真について切片の関節軟骨にみられる全軟骨細胞中のMMP13陽性細胞の個数を計数した。   Immunohistochemical signals were quantified as follows. For bone formation analysis, the total number of bone marrow cells in the epiphysis of subchondral bone was counted to calculate the percentage of osteocalcin positive cells. For CGRP expression, 5 fields of the epiphysis of the subchondral bone were randomly selected, and each CGRP positive area was measured under a 200-fold magnification using ImageJ software (National Institutes of Health). Here, the ratio of CGRP positive area to the total area of each visual field was calculated. For the expression of MMP13, four photographs of the section were taken under 400 × magnification, and for each photograph, the number of MMP13 positive cells in total chondrocytes found in articular cartilage of the section was counted.

(結果)
図1は、OAモデルマウスの膝関節から作製した切片の画像を示す。内側側副靭帯を切離したOAモデルマウスでは、2日、7日と経時的に軟骨下骨の骨形成が進み、骨髄腔の減少がみられた。また、OAモデルマウスでは、経時的に軟骨変性が進行していた。なお、以下で説明する図中のバーは100μmの長さを示す。
(result)
FIG. 1 shows an image of a section prepared from the knee joint of an OA model mouse. In the OA model mice in which the medial collateral ligament was dissected, bone formation of the subchondral bone proceeded with the passage of 2 days and 7 days, and the decrease of the bone marrow cavity was observed. In addition, in the OA model mouse, cartilage degeneration progressed over time. In addition, the bar in the figure demonstrated below shows 100 micrometers in length.

OAモデルマウスの脛骨および大腿骨に関して、OAの程度を示すOARSIスコアを図2に示す。OAモデルマウスでは、経時的に、脛骨および大腿骨の両方でOAが統計的に有意に進行していた。図3は、OAモデルマウスの組織の面積に対する軟骨下骨の面積の割合を示す。膝関節が正常なshamと比較して、7日目では、軟骨下骨の面積が増加していた。   An OARSI score indicating the degree of OA is shown in FIG. 2 for the tibia and femur of the OA model mouse. In OA model mice, OA progressed statistically significantly in both tibia and femur over time. FIG. 3 shows the ratio of the area of subchondral bone to the area of tissue in OA model mice. The subchondral bone area was increased at day 7 as compared to the normal knee sham.

図4は、免疫組織化学評価において、オステオカルシンを染色したOAモデルマウスの膝関節の切片の画像および骨髄細胞に対するオステオカルシン陽性細胞の割合を示す。OAが進行するにつれて、軟骨下骨の骨髄腔が減少した。また、オステオカルシン陽性細胞、すなわち骨芽細胞の割合が有意に増加していた。図5は、免疫組織化学評価において、TRAPを染色したOAモデルマウスの膝関節の切片の画像および単位面積あたりのTRAP陽性細胞の個数を示す。2日目では、TRAP陽性細胞、すなわち破骨細胞の個数が増加するが、7日目に減少していた。図6は、軟骨下骨におけるCGRPを標識した膝関節切片の画像と各視野の総面積に対するCGRP陽性領域の割合を示す。OAモデルマウスの軟骨下骨において、CGRPの発現が経時的に増加していた。   FIG. 4 shows images of sections of knee joints of OA model mice stained with osteocalcin and ratios of osteocalcin positive cells to bone marrow cells in immunohistochemical evaluation. As OA progressed, the subchondral bone marrow cavity decreased. In addition, the proportion of osteocalcin positive cells, ie, osteoblasts, was significantly increased. FIG. 5 shows an image of a knee joint section of a TRAP-stained OA model mouse and the number of TRAP-positive cells per unit area in an immunohistochemical evaluation. On the second day, the number of TRAP-positive cells, ie osteoclasts, increased but decreased on the seventh day. FIG. 6 shows images of knee joint sections labeled with CGRP in subchondral bone and the ratio of CGRP positive area to the total area of each visual field. In the subchondral bone of OA model mice, the expression of CGRP increased with time.

OAモデルマウスにBIBN4096を投与した場合の膝関節切片の画像を図7に示す。コントロール群では、1、4、8週と経時的に軟骨下骨の骨硬化および軟骨変性が進行していた。一方、BIBN4096投与群では、軟骨下骨の骨硬化は軽度で、軟骨変性の進行も軽度であった。図8は、コントロール群およびBIBN4096投与群のOARSIスコアを示す。BIBN4096投与群では、OARSIスコアが有意に低値を示した。   Images of knee joint sections when BIBN4096 is administered to OA model mice are shown in FIG. In the control group, bone hardening and cartilage degeneration of the subchondral bone progressed with 1, 4, 8 weeks over time. On the other hand, in the BIBN4096 administration group, the osteochondral bone was hardened in a mild degree and the progress of cartilage degeneration was also light. FIG. 8 shows the OARSI scores of the control group and the BIBN4096 administration group. In the BIBN4096 administration group, the OARSI score showed a significantly low value.

OAモデルマウスの膝関節切片における軟骨変性マーカーMMP13の発現を図9に示す。コントロール群に比較して、BIBN4096投与群におけるMMP13の発現は少なかった。図10に示すように、BIBN4096投与群における軟骨細胞中のMMP13陽性細胞の割合は、コントロール群に対して有意に少なかった。図11は、BIBN4096投与群における組織の面積に対する軟骨下骨の面積の割合を示す。軟骨下骨の骨量は、コントロール群と比較して、1、4および8週目においても有意に小さいことが示された。   The expression of the cartilage degeneration marker MMP13 in knee joint sections of OA model mice is shown in FIG. There was less expression of MMP13 in the BIBN4096 administration group as compared to the control group. As shown in FIG. 10, the percentage of MMP13 positive cells in chondrocytes in the BIBN4096 administration group was significantly smaller than in the control group. FIG. 11 shows the ratio of the area of subchondral bone to the area of tissue in the BIBN4096 administration group. The bone mass of the subchondral bone was shown to be significantly smaller at 1, 4 and 8 weeks as compared to the control group.

μCTによる解析で得られた画像および内側骨端の長さと外側骨端の長さとの比を図12に示す。コントロール群では、脛骨内側顆の骨硬化を認め、切離した内側骨端の長さが短くなっていた。一方、BIBN4096投与群では、脛骨内側顆の骨硬化が認められず、内側骨端の長さはshamと同程度であった。   The image obtained by analysis by μCT and the ratio of the length of the medial end to the length of the lateral end are shown in FIG. In the control group, bone hardening of the medial tibial condyle was observed, and the length of the medial epiphysis separated was short. On the other hand, in the BIBN4096 administration group, no bone hardening of the medial tibial condyle was observed, and the length of the medial end was equal to that of sham.

図13は、BIBN4096投与群において、オステオカルシンを染色した膝関節の切片の画像および骨髄細胞に対するオステオカルシン陽性細胞の割合を示す。BIBN4096投与群における骨芽細胞の割合は、コントロール群と比較して有意に小さかった。図14は、TRAPを染色したBIBN4096投与群の膝関節の切片の画像および単位面積あたりのTRAP陽性細胞の個数を示す。BIBN4096投与群における破骨細胞の個数は、コントロール群と比較して有意に増加していた。   FIG. 13 shows an image of a section of a knee joint stained with osteocalcin and the ratio of osteocalcin-positive cells to bone marrow cells in the BIBN4096-administered group. The percentage of osteoblasts in the BIBN4096 administration group was significantly smaller than that in the control group. FIG. 14 shows an image of the knee joint section of the BIBN4096-administered group stained with TRAP and the number of TRAP-positive cells per unit area. The number of osteoclasts in the BIBN4096 administration group was significantly increased as compared to the control group.

(実施例2:骨形成に対するBIBN4096の影響)
第2継代および第3継代のヒト骨髄間葉幹細胞(MSC)(Life Technologies社製)を、10%ウシ胎児血清(FBS)および1%ペニシリン/ストレプトマイシンを含むMSC成長培地(StemPro MSC SFM、Life Technologies社製)で増殖させた。第4継代のMSCを12穴プレートに播種し、骨形成を誘導した。10%FBSおよび1%ペニシリン/ストレプトマイシンを含む骨形成誘導培地(StemPro osteogenesis differentiation kit、Life Technologies社製)を、1週間に2回交換し、21日間インキュベートした。なお、100nMのCGRP(ペプチド研究所製)をさらに含む骨形成誘導培地、および100nMのCGRPとBIBN4096とをさらに含む骨形成誘導培地でも同様に骨形成を誘導した。
Example 2 Influence of BIBN 4096 on Bone Formation
Second and third passage human bone marrow mesenchymal stem cells (MSC) (manufactured by Life Technologies), MSC growth medium (StemPro MSC SFM) containing 10% fetal bovine serum (FBS) and 1% penicillin / streptomycin (Manufactured by Life Technologies). Passage 4 MSCs were seeded in 12-well plates to induce bone formation. An osteogenesis induction medium (StemPro osteogenesis differentiation kit, manufactured by Life Technologies) containing 10% FBS and 1% penicillin / streptomycin was changed twice a week and incubated for 21 days. In addition, bone formation induction medium was similarly induced by the bone formation induction medium further containing 100 nM CGRP (manufactured by Peptide Laboratories) and the bone formation induction medium further containing 100 nM CGRP and BIBN4096.

21日間のインキュベート後、リアルタイムポリメラーゼ連鎖反応(PCR)解析のために、Trizol(Life Technologies社製)を用いてRNAを単離した。そして、アルカリフォスファターゼ活性の評価のためにタンパク質を抽出した。   After 21 days of incubation, RNA was isolated using Trizol (Life Technologies) for real-time polymerase chain reaction (PCR) analysis. Then, proteins were extracted for evaluation of alkaline phosphatase activity.

リアルタイムPCR解析では、まず、Superscript VLIO kit(Invitrogen社製)をマニュアルに従って用いて、1μgの全RNAから相補的DNAを合成した。リアルタイムPCRのプローブには、Taqman Gene Expression Assays probes(Life Technologies社製)のオステオカルシン(Hs01587814_g1)およびGADPH(Hs02758991_m1)を用いた。各遺伝子の発現を、GADPHの発現に対して評価した。リアルタイムPCRのデータ解析には、ΔΔCt法を用いた。   For real-time PCR analysis, first, using a Superscript VLIO kit (manufactured by Invitrogen) according to the manual, complementary DNA was synthesized from 1 μg of total RNA. As a probe for real-time PCR, osteocalcin (Hs01587814_g1) and GADPH (Hs02758991_m1) of Taqman Gene Expression Assays probes (manufactured by Life Technologies) were used. The expression of each gene was assessed against the expression of GADPH. The ΔΔCt method was used for data analysis of real-time PCR.

骨形成マーカーであるアルカリフォスファターゼ(ALP)活性の評価では、0.1%Triton Xで処理して細胞溶解物を収集し、14,000rpmで15分間遠心分離した。ALP assay kit(和光純薬工業社製)をマニュアルに従って用いて、上清を評価した。マイクロプレート分光計で405nmの吸光度を各試料について測定した。   For evaluation of alkaline phosphatase (ALP) activity, a bone formation marker, cell lysates were collected by treatment with 0.1% Triton X, and centrifuged at 14,000 rpm for 15 minutes. The supernatant was evaluated using ALP assay kit (manufactured by Wako Pure Chemical Industries, Ltd.) according to the manual. The absorbance at 405 nm was measured for each sample on a microplate spectrometer.

(結果)
図15は、オステオカルシンの発現量およびALP活性を示す。CGRP存在下で、骨形成の誘導によるオステオカルシンの発現が増加した。一方、BIBN4096を加えることで、オステオカルシンの発現量が有意に低下した。同様に、CGRP存在下では、ALP活性が増加した。一方、BIBN4096を加えることで、ALP活性が有意に低下した。
(result)
FIG. 15 shows the expression level and ALP activity of osteocalcin. In the presence of CGRP, osteocalcin expression was increased by induction of bone formation. On the other hand, the addition of BIBN4096 significantly reduced the expression level of osteocalcin. Similarly, ALP activity increased in the presence of CGRP. On the other hand, addition of BIBN4096 significantly reduced ALP activity.

(実施例3:破骨細胞形成に対するBIBN4096の影響)
12穴プレートで、Raw 264.7細胞を、10%FBSおよび1%ペニシリン/ストレプトマイシンを含むα−ミニマル・エッセンシャル培地で培養した。破骨細胞形成を評価するために、3日ごとに50ng/mLのM−CSF(和光純薬工業社製)および50ng/mLのRANKL(和光純薬工業社製)を含む培地に交換し、1週間培養した。なお、100nMのCGRPをさらに含む培地、および100nMのCGRPとBIBN4096とをさらに含む培地でも同様に培養した。7日目に、和光純薬工業社製の上記キットを用いて、細胞のTRAPを染色した。4個以上の核を有するTRAP陽性多核細胞を破骨細胞として同定した。200倍拡大の顕微鏡観察下で、各ウェルで顕微鏡の10視野における破骨細胞を計数した。すべての実験は3重に、少なくとも3回行った。
Example 3 Effect of BIBN 4096 on Osteoclastogenesis
Raw 264.7 cells were cultured in α-minimal essential medium containing 10% FBS and 1% penicillin / streptomycin in 12-well plates. In order to evaluate osteoclastogenesis, the medium is changed every 3 days to a medium containing 50 ng / mL M-CSF (manufactured by Wako Pure Chemical Industries, Ltd.) and 50 ng / mL RANKL (manufactured by Wako Pure Chemical Industries), Culture was performed for one week. The medium was also cultured in the same manner as in the medium further containing 100 nM CGRP, and the medium further containing 100 nM CGRP and BIBN4096. On the seventh day, TRAP of cells was stained using the above kit manufactured by Wako Pure Chemical Industries, Ltd. TRAP positive multinucleated cells having 4 or more nuclei were identified as osteoclasts. Osteoclasts in 10 fields of the microscope were counted in each well under microscopic observation at 200 × magnification. All experiments were performed at least three times in triplicate.

(結果)
TRAPを染色した細胞の画像を図16に示す。破骨細胞への分化誘導によって確認されたTRAP陽性細胞が、CGRPを加えることで減少した。一方、BIBN4096を加えると、TRAP陽性細胞が増加した。図17は、TRAP陽性細胞(破骨細胞)の個数を示す。BIBN4096を加えることで、TRAP陽性細胞の個数が有意に増加した。
(result)
An image of TRAP-stained cells is shown in FIG. The TRAP positive cells confirmed by the induction of differentiation to osteoclasts were reduced by adding CGRP. On the other hand, addition of BIBN4096 increased TRAP-positive cells. FIG. 17 shows the number of TRAP-positive cells (osteoclasts). Addition of BIBN4096 significantly increased the number of TRAP-positive cells.

以上の結果より、早期OAにおいて、軟骨変性に関連する軟骨下骨の硬化およびCGRPの発現増加が示された。さらに、CGRP受容体拮抗剤がこの軟骨下骨の骨硬化および軟骨変性を抑制し、OAを抑制することが実証された。   From the above results, in early OA, it was shown that hardening of subchondral bone associated with cartilage degeneration and increased expression of CGRP. Furthermore, it has been demonstrated that CGRP receptor antagonists inhibit this subchondral bone osteosclerosis and cartilage degeneration and inhibit OA.

(比較例)
上記OAモデルマウスに、ビスフォスフォネートの1種であるリセドロネートを、OA手術後に0.06mg/kg/100μlの投与量で静脈内に投与した。投与から1週間後および4週間後に、膝関節を回収し、上記実施例1と同様に組織学的評価を行った。
(Comparative example)
In the above OA model mice, risedronate, which is one of bisphosphonates, was intravenously administered at a dose of 0.06 mg / kg / 100 μl after OA surgery. One week and four weeks after administration, the knee joint was recovered and histologically evaluated in the same manner as in Example 1 above.

(結果)
図18は、リセドロネートの投与から1週間後および4週間後のサフラニン−O ファストグリーン法で染色した膝関節の切片の画像を示す。図7のBIBN4096投与群の1週および4週と比較して、軟骨下骨の骨硬化および軟骨変性の進行が認められる。ビスフォスフォネートは、破骨細胞の機能を抑制するため、軟骨下骨の骨硬化および軟骨変性を抑制できないと考えられる。
(result)
FIG. 18 shows images of sections of a knee joint stained with Safranin-O Fast Green 1 week and 4 weeks after risedronate administration. Progression of osteosclerosis and cartilage degeneration of the subchondral bone is observed as compared with 1 week and 4 weeks of the BIBN4096 administration group of FIG. 7. Bisphosphonates are considered to be incapable of suppressing osteosclerosis and cartilage degeneration of the subchondral bone because they suppress the function of osteoclasts.

上述した実施の形態は、本発明を説明するためのものであり、本発明の範囲を限定するものではない。すなわち、本発明の範囲は、実施の形態ではなく、特許請求の範囲によって示される。そして、特許請求の範囲内およびそれと同等の発明の意義の範囲内で施される様々な変形が、本発明の範囲内とみなされる。   The embodiments described above are for explaining the present invention, and do not limit the scope of the present invention. That is, the scope of the present invention is indicated not by the embodiments but by the claims. And, various modifications made within the scope of the claims and the meaning of the invention are considered to be within the scope of the present invention.

本発明は、軟骨変性を抑制するための医薬に好適である。本発明に係る軟骨変性抑制剤は、OAの進行例に対する手術療法を減少させ、運動機能障害の抑制、運動機能の向上および患者の生活の質の向上に寄与する。 The present invention is suitable for pharmaceuticals for inhibiting cartilage degeneration. Cartilage degeneration inhibitor according to the present invention reduces the surgical therapy for advanced cases of OA, suppression of motor dysfunction, which contributes to the improvement of improvement and quality of life of patients motor function.

Claims (1)

オルセゲパントを含む、
軟骨変性抑制剤。
Including Orsege Pant ,
Cartilage degeneration inhibitor.
JP2014265992A 2014-12-26 2014-12-26 Cartilage degeneration inhibitor Expired - Fee Related JP6508670B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014265992A JP6508670B2 (en) 2014-12-26 2014-12-26 Cartilage degeneration inhibitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014265992A JP6508670B2 (en) 2014-12-26 2014-12-26 Cartilage degeneration inhibitor

Publications (2)

Publication Number Publication Date
JP2016124813A JP2016124813A (en) 2016-07-11
JP6508670B2 true JP6508670B2 (en) 2019-05-08

Family

ID=56358808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014265992A Expired - Fee Related JP6508670B2 (en) 2014-12-26 2014-12-26 Cartilage degeneration inhibitor

Country Status (1)

Country Link
JP (1) JP6508670B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003212898B2 (en) * 2002-02-01 2008-10-02 Omeros Corporation Compositions and methods for systemic inhibition of cartilage degradation
EP1758653A2 (en) * 2004-06-17 2007-03-07 Osteologix A/S Treatments comprising strontium for rheumatic and arthritic diseases and pain
GB0521139D0 (en) * 2005-10-18 2005-11-23 Univ Sheffield Therapeutic agent
PT2265288T (en) * 2008-03-04 2016-07-14 Labrys Biologics Inc Methods of treating inflammatory pain

Also Published As

Publication number Publication date
JP2016124813A (en) 2016-07-11

Similar Documents

Publication Publication Date Title
Zhou et al. Kinsenoside attenuates osteoarthritis by repolarizing macrophages through inactivating NF-κB/MAPK signaling and protecting chondrocytes
Latourte et al. Emerging pharmaceutical therapies for osteoarthritis
Hannon et al. Arthroscopic bone marrow stimulation and concentrated bone marrow aspirate for osteochondral lesions of the talus: a case-control study of functional and magnetic resonance observation of cartilage repair tissue outcomes
WO2015048091A1 (en) Orexin-control of bone formation and loss
Fujio et al. Conditioned media from hypoxic‐cultured human dental pulp cells promotes bone healing during distraction osteogenesis
US20160310537A1 (en) Transdiscal Administration Of Specific Inhibitors Of Pro-Inflammatory Cytokines
Geng et al. Pharmaceutical inhibition of glycogen synthetase kinase 3 beta suppresses wear debris-induced osteolysis
US9192653B2 (en) Protecting and repairing cartilage and musculoskeletal soft tissues
US20210113687A1 (en) Methods for treating inflammation
Yao et al. Reduced PDGF‐AA in subchondral bone leads to articular cartilage degeneration after strenuous running
Herath et al. Stimulation of angiogenesis by cilostazol accelerates fracture healing in mice
DK3119417T3 (en) Dosage schedule for FGF-18 compound
Wu et al. Specific inhibition of FAK signaling attenuates subchondral bone deterioration and articular cartilage degeneration during osteoarthritis pathogenesis
Yan et al. Aliskiren has chondroprotective efficacy in a rat model of osteoarthritis through suppression of the local renin-angiotensin system
Xu et al. Role of low‐intensity pulsed ultrasound in regulating macrophage polarization to accelerate tendon–bone interface repair
Naujokat et al. Therapy of antigen-induced arthritis of the temporomandibular joint via platelet-rich plasma injections in domestic pigs
JP6508670B2 (en) Cartilage degeneration inhibitor
EP4267245A1 (en) Method
US20100216778A1 (en) Pain remedy containing rock inhibitor
JP2019506386A (en) Method for treating osteonecrosis using LLP2A-bisphosphonate compounds
Xu et al. Effect of ermiao fang with xixin (herba asari mandshurici) on bone marrow stem cell directional homing to a focal zone in an osteoarthritis rat model
Wegner et al. The effect of losartan on the development of post-traumatic joint stiffness in a rat model
CN111432839A (en) Ectopic ossification and treatment method
US20210322508A1 (en) Peptides and compositions for targeted treatment and imaging
Steverink Postoperative skeletal pain: Development of non-opioid treatment strategies

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190327

R150 Certificate of patent or registration of utility model

Ref document number: 6508670

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees