JP6505262B2 - コントロールモーメントジャイロ - Google Patents

コントロールモーメントジャイロ Download PDF

Info

Publication number
JP6505262B2
JP6505262B2 JP2017566499A JP2017566499A JP6505262B2 JP 6505262 B2 JP6505262 B2 JP 6505262B2 JP 2017566499 A JP2017566499 A JP 2017566499A JP 2017566499 A JP2017566499 A JP 2017566499A JP 6505262 B2 JP6505262 B2 JP 6505262B2
Authority
JP
Japan
Prior art keywords
gimbal
axis
rotor
bearing
spin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2017566499A
Other languages
English (en)
Other versions
JPWO2017138165A1 (ja
Inventor
宗孝 柏
宗孝 柏
福島 一彦
一彦 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2017138165A1 publication Critical patent/JPWO2017138165A1/ja
Application granted granted Critical
Publication of JP6505262B2 publication Critical patent/JP6505262B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/24Guiding or controlling apparatus, e.g. for attitude control
    • B64G1/28Guiding or controlling apparatus, e.g. for attitude control using inertia or gyro effect
    • B64G1/286Guiding or controlling apparatus, e.g. for attitude control using inertia or gyro effect using control momentum gyroscopes (CMGs)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G3/00Other motors, e.g. gravity or inertia motors
    • F03G3/08Other motors, e.g. gravity or inertia motors using flywheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/24Guiding or controlling apparatus, e.g. for attitude control
    • B64G1/28Guiding or controlling apparatus, e.g. for attitude control using inertia or gyro effect
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/02Rotary gyroscopes
    • G01C19/04Details
    • G01C19/16Suspensions; Bearings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/02Rotary gyroscopes
    • G01C19/04Details
    • G01C19/16Suspensions; Bearings
    • G01C19/18Suspensions; Bearings providing movement of rotor with respect to its rotational axes

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Gyroscopes (AREA)

Description

この発明は、宇宙機にトルクを与えて宇宙機の姿勢を制御するコントロールモーメントジャイロに関するものである。
宇宙機に搭載され、宇宙機にトルクを与えて宇宙機の姿勢制御を行うための姿勢制御用アクチュエータとして、コントロールモーメントジャイロ(CMG)が用いられる。
CMGは、スピン軸受によって支持され、スピン軸周りに高速で回転するロータを、スピン軸と直交するジンバル軸周りにトルクモジュールにより回転させることで、スピン軸およびジンバル軸に対して直交する出力軸周りに、ロータが持つ角運動量とジンバル軸周りの角速度に比例したジャイロトルクが発生する。この発生したトルクを、CMGから宇宙機インターフェースを通じて宇宙機に伝達させて、宇宙機の姿勢を制御する。
このとき、CMGが出力するトルクは、ロータから宇宙機インターフェースまでの荷重伝達経路を通過して宇宙機に伝達されることから、CMGが出力するトルクの伝達効率は、ロータから宇宙機インターフェースまでの荷重伝達経路上のCMG構体の伝達特性に大きく依存する。特に、従来のCMGでは、ロータから宇宙機インターフェースまでの荷重伝達経路上に、ロータを真空に封止するための薄肉で低剛性なロータカバーが含まれることに加え、荷重伝達経路上にはロータカバー以外にも複数の構造部品が直列的に配置されているため、荷重伝達経路自体が長くなり、荷重伝達経路上のCMG構体の支持剛性が低い。
このような状況を鑑み、ロータをジンバル軸周りに回転させるジンバル軸受として、大口径のジンバル軸受を用いることに加え、その大口径のジンバル軸受をロータのスピン軸とトルクモジュールとの間に配置し、かつスピン軸に近い位置に配置することで、ロータから宇宙機インターフェースまでの荷重伝達経路を短く、かつ高剛性とするようにした従来のCMGが提案されている(例えば特許文献1参照)。
特許第5357558号公報
特許文献1に示されている従来のCMGでは、ジンバル軸受は、距離的に、トルクモジュールよりもスピン軸に近い位置に配置されているものの、スピン軸とトルクモジュールの間に配置されるため、スピン軸とジンバル軸受の間にはわずかながらも距離が生じる。そのため、ロータの回転中に、ロータを回転支持する2対のスピン軸受のアライメント誤差に起因して生じるスピン軸の軸方向の回転に同期した軸振動によって、ジンバル軸受にはスピン軸の軸方向の軸振動に起因したラジアル荷重に加えて、スピン軸とジンバル軸受の間の距離に応じたモーメント荷重も加わることになる。そのため、ロータの軸振動によってジンバル軸受にラジアル荷重のみが加わる場合と比べて、ジンバル軸受の動作寿命が短くなる。また、短いながらもロータからジンバル軸受までの荷重伝達経路には、ロータの軸振動に対して撓みを生じるインナージンバル構造が存在する。そのため、ロータで生じた軸振動はロータからジンバル軸受を経由して宇宙機インターフェースへと伝達される間に、インナージンバル構造に起因した共振特性によって増幅されて宇宙機へと伝達される。宇宙機に伝達された軸振動は、擾乱として宇宙機に搭載された観測機器や宇宙機自体の姿勢に作用することとなり、高精度な観測や姿勢制御が必要な宇宙機にとっては大きな課題となる。加えて、ジンバル軸受がスピン軸の軸線に対してジンバル軸受の軸線と平行な方向にシフトした位置に配置されているので、ロータからジンバル軸受までの荷重伝達経路に存在するインナージンバルを剛な構造として、ロータの軸振動に起因する撓みの発生を抑制する必要がある。そのため、インナージンバルを肉厚で剛な形状とする必要があり、インナージンバルが大型化し、CMG全体が大型化するという課題がある。
この発明は、上記課題を解決するためになされたもので、ロータの軸振動に起因してジンバル軸受に作用するモーメント荷重の発生を抑制し、ジンバル軸受の長寿命化を図るとともに、スピン軸からジンバル軸受への荷重伝達経路中にロータの軸振動に起因して撓みを生じる構造物をなくして、ロータの軸振動に起因して宇宙機に働く攪乱の増大を抑制できる小型のコントロールモーメントジャイロを提供する。
この発明のコントロールモーメントジャイロは、インナージンバルと、上記インナージンバルによってスピン軸周りに回転可能に保持されたロータと、上記インナージンバルに設けられ、上記ロータを上記スピン軸周りに回転させるスピンモータと、上記インナージンバルを上記スピン軸と直交するジンバル軸周りに回転可能に保持するステータと、上記インナージンバルと上記ステータとの間に、上記ジンバル軸と直交し、かつ上記スピン軸を含む平面を挟んで相対して、上記平面に接して、又は上記平面を含んで配置されたジンバル軸受と、上記ステータに設けられ、上記インナージンバルを上記ジンバル軸周りに回転させるトルクモジュールと、を備える。
この発明によれば、ジンバル軸受が、ジンバル軸と直交し、かつスピン軸を含む平面を挟んで相対して配置されている。そこで、ロータの軸振動によりジンバル軸受に作用するモーメント荷重は生じないので、ジンバル軸受の長寿命化が図られる。また、スピン軸からジンバル軸受への荷重伝達経路中にロータの軸振動に起因して撓みを生じる構造物がないので、ロータの軸振動が増幅されて宇宙機に伝達されることがなく、宇宙機に働く攪乱を小さく抑えることができる。
さらに、インナージンバルは、厚みや形状に因らずに、構成としてロータの軸振動に対して剛であるので、インナージンバルの寸法を短くでき、コントロールモーメントジャイロの小型化が図られる。
この発明の実施の形態1に係るコントロールモーメントジャイロを示す上面図である。 この発明の実施の形態1に係るコントロールモーメントジャイロを示す側面図である。 この発明の実施の形態1に係るコントロールモーメントジャイロを示す断面図である。 従来のコントロールモーメントジャイロを示す断面図である。 この発明の実施の形態2に係るコントロールモーメントジャイロを示す断面図である。 この発明の実施の形態3に係るコントロールモーメントジャイロを示す断面図である。 この発明の実施の形態4に係るコントロールモーメントジャイロを示す断面図である。 この発明の実施の形態5に係るコントロールモーメントジャイロを示す断面図である。 この発明の実施の形態6に係るコントロールモーメントジャイロを示す上面図である。 この発明の実施の形態6に係るコントロールモーメントジャイロを示す側面図である。 この発明の実施の形態7に係るコントロールモーメントジャイロを示す断面図である。 この発明の実施の形態8に係るコントロールモーメントジャイロを示す断面図である。
実施の形態1.
図1はこの発明の実施の形態1に係るコントロールモーメントジャイロを示す上面図、図2はこの発明の実施の形態1に係るコントロールモーメントジャイロを示す側面図、図3はこの発明の実施の形態1に係るコントロールモーメントジャイロを示す断面図である。図4は従来のコントロールモーメントジャイロを示す断面図である。
図1から図3において、コントロールモーメントジャイロ100は、円筒状に作製されたステータ10と、円筒状に作製され、ステータ10にジンバル軸7周りに回転可能に支持されて、ステータ10内に設けられたインナージンバル9と、ステータ10に設けられて、インナージンバル9をジンバル軸7周りに回転させるトルクモジュール8と、インナージンバル9にジンバル軸7と直交するスピン軸5周りに回転可能に支持されて、インナージンバル9内に設けられたロータ1と、インナージンバル9に設けられ、ロータ1をスピン軸5周りに回転させるスピンモータ3と、ステータ10に設けられた宇宙機インターフェース11と、を備える。
ロータ1は、両端を2対のスピン軸受2にスピン軸5周りに回転可能に支持されるシャフト1aと、シャフト1aに一体に設けられ、スピン軸5周りの慣性モーメントを高める慣性要素と、で構成される。慣性要素は、一般的には、スピン軸5から離れた位置に質量を持つような回転リングや、円筒または円錐殻で構成される。なお、地上での試験時には、ロータ1の回転中の風損によるトルク損失を防ぐ目的で、ロータ1を真空に封止するためのロータカバー(図示せず)などがロータ1を覆うように取り付けられる。
スピン軸受2は、ロータ1をスピン軸5周りに回転可能に支持するように、シャフト1aの両端に配置される。スピン軸受2は、一般的に、ロータ1のシャフト1aの一端に対して軸受内の玉の接触角が異なるアンギュラ玉軸受を2つ以上組み合わせた構成で用いられ、ロータ1の回転中にスピン軸受2に作用するラジアル荷重とスラスト荷重に対して十分な剛性を持った上で、モーメント荷重に対しても十分な剛性を有する。また、周辺温度環境の変化に伴うロータ1の熱変形やシャフト1aの両端に配置されたスピン軸受2の軸心ずれを緩和する目的で、シャフト1aの両端に配置される2対のスピン軸受2の内、1対をスピン軸受ハウジング4に対して軸受外輪を剛に支持する固定軸受とし、もう1対をスピン軸受ハウジング4に対して空隙を設けて内部に粘性流体や弾性部材などを封入した状態で支持する浮遊軸受で構成される。
スピンモータ3は、図示していないが、永久磁石が配置されたスピンモータロータと、励磁用の巻線が配置されたスピンモータステータと、で構成される。そして、スピンモータ3のスピンモータロータが、シャフト1aに固定され、スピンモータ3のスピンモータステータが、スピン軸受ハウジング4に固定されている。スピンモータロータとスピンモータステータとは、わずかな空隙を持って対向して配置されている。スピンモータ3は、ロータ1への回転指令に応じて、スピンモータステータ内の巻線を励磁し、ロータ1をスピン軸5周りに回転させる。
スピン軸受ハウジング4は、ジンバル軸7を挟んで相対するようにインナージンバル9の内周面に取り付けられる。スピン軸受ハウジング4の内部には、スピン軸受2と、スピンモータ3が配置される。そして、スピン軸受2の外輪と、スピンモータ3のスピンモータステータとが、スピン軸受ハウジング4に固定支持される。これにより、ロータ1は、ジンバル軸7と直交するスピン軸5周りに回転可能にインナージンバル9に取り付けられる。
ジンバル軸受6は、インナージンバル9とステータ10との間に配置される。これにより、インナージンバル9がジンバル軸7の周りに回転できるようにステータ10に支持される。また、ジンバル軸受6は、軸受内の玉の接触角が異なるアンギュラ玉軸受を2つ組み合わせた構成で用いられ、ロータ1の回転中にジンバル軸受6に作用するラジアル荷重とスラスト荷重に対して十分な剛性を持った上で、モーメント荷重に対しても十分な剛性を有する。このとき、ジンバル軸受6を構成する1対のアンギュラ玉軸受は、ジンバル軸7と直交し、かつスピン軸5を含む平面を挟むようにインナージンバル9とステータ10との間に配置される。そして、ジンバル軸受6は、円筒状のインナージンバル9の外周を回転可能に支持するために、インナージンバル9がジンバル軸受6の内輪に収まるような大きさの口径のリング状の軸受が使用される。
トルクモジュール8は、励磁用の巻線が配置されたジンバルモータステータ8aと、永久磁石が配置されたジンバルモータロータ8bと、で構成される。ジンバルモータステータ8aは、ステータ10の内周面上に全周に渡って配置、固定され、ジンバルモータロータ8bは、インナージンバル9の外周面上に全周に渡って配置、固定される。このとき、ジンバルモータステータ8aとジンバルモータロータ8bとは、わずかな空隙を持って対向して配置される。また、ジンバルモータステータ8aおよびジンバルモータロータ8bは、ジンバル軸7と直交する、スピン軸5を含む平面上に配置される。そこで、トルクモジュール8は、ジンバル軸7の軸線と平行な方向にジンバル軸受6と並んで、ジンバル軸受6に隣接して配置される。ここで、トルクモジュール8がジンバル軸受6に隣接するとは、ジンバル軸7の軸線と平行な方向におけるトルクモジュール8とジンバル軸受6との間の距離が、トルクモジュール8のジンバル軸7の軸線と平行な方向の寸法と、ジンバル軸受6のジンバル軸7の軸線と平行な方向の寸法と、のなかの最も大きな寸法未満であることを意味する。
なお、図3においては、トルクモジュール8は、ジンバル軸受6を構成する1対のアンギュラ玉軸受の間に配置される。このとき、トルクモジュール8には、インナージンバル9とステータ10との間の相対回転角を測定するための角度センサ、例えば、エンコーダ、レゾルバ、タコメータなどを備える構成としてもよい。ただし、使用する角度センサとしては、インナージンバル9とステータ10の相対回転角を非接触で計測するものが望ましい。また、トルクモジュール8には、スピンモータ3への回転指令および電力を、もしくは回転指令ないしは電力を、回転境界面を越えて伝達するのに適合した装置、例えば、スリップリングなどを備える構成としてもよい。トルクモジュール8は、外部からの回転指令に応じて、インナージンバル9をジンバル軸7の周りに回転させることで、スピン軸受ハウジング4を介してインナージンバル9に支持された、スピン軸5の周りに高速で回転するロータ1をジンバル軸7の周りに回転駆動する。
インナージンバル9は、円筒状に作製され、スピン軸受ハウジング4と、ジンバル軸受6と、の間に配置される。このとき、インナージンバル9の内周にはスピン軸受ハウジング4が固定され、インナージンバル9の外周にはジンバル軸受6の内輪が固定される。なお、インナージンバル9の形状に関しては、円筒状の形状に限ることなく、機能を満足する範囲において様々な形状とすることが考えられる。また、インナージンバル9とスピン軸受ハウジング4との固定方法についても、インナージンバル9の内周に直接固定する方法に限ることなく、インナージンバル9に取り付け用のリブを設けて、そのリブを介してスピン軸受ハウジング4をインナージンバル9に固定する構成としてもよい。さらに、インナージンバル9は、スピン軸受ハウジング4とジンバル軸受6の内輪との間を、ロータ1が出力する荷重に対して十分に剛に結合することができる範囲において、可能な限り薄肉の形状であることが望ましい。
ステータ10は、円筒状に作製され、ステータ10の内周にはジンバル軸受6の外輪が固定され、トルクモジュール8が配置される。さらに、ステータ10の外周面ないしは側面に宇宙機インターフェース11が設けられる。このとき、ステータ10の形状は、円筒状の形状に限ることなく、機能を満足する範囲において様々な形状とすることが考えられる。
宇宙機インターフェース11は、ステータ10と、宇宙機(図示せず)のCMG取り付け部と、の間に配置される。宇宙機インターフェース11は、ステータ10の外周上ないしは側面上に設けられ、ステータ10の全周ないしは一部で宇宙機のCMG取り付け部に対してボルトなどを用いて剛に接続される。このとき、宇宙機インターフェース11は、ステータ10の一部で構成してもよいし、ステータ10に対して別の部品を取り付けることで構成してもよい。ここでは、宇宙機インターフェース11は、スピン軸5の軸線に接するように、ステータ10の外周面上に設けられているが、スピン軸5の軸線上あるいはスピン軸5の軸線に近接した位置に設けてもよい。また、宇宙機インターフェース11を環状に構成し、ジンバル軸7と直交し、かつスピン軸5を含む平面が内部を通るように、当該平面に接するように、あるいは当該平面に隣接するように、ステータ10の外周面に設けてもよい。ここで、宇宙機インターフェース11がジンバル軸7と直交し、かつスピン軸5を含む平面に隣接するとは、ジンバル軸7の軸線と平行な方向における宇宙機インターフェース11と当該平面との間の距離が、宇宙機インターフェース11のジンバル軸7の軸線と平行な方向の寸法、すなわち厚さと、ロータ1のシャフト1aの直径と、ステータ10のジンバル軸7の軸線と平行な方向の寸法と、のなかの最も大きな寸法未満であることを意味する。
このように構成されたCMG100では、シャフト1aの両端を2対のスピン軸受2で支持されたロータ1が、スピンモータ3によりスピン軸5の周りに高速で回転駆動される。そして、ジンバル軸受6で支持されたインナージンバル9が、トルクモジュール8によりジンバル軸7の周りに回転駆動される。そこで、スピン軸5の周りに高速回転するロータ1が、ジンバル軸7の周りに回転する。これにより、高速回転するロータ1の慣性モーメントと角速度で生成される角運動量と、ジンバル軸7の周りの角速度と、に比例した出力トルクが、スピン軸5とジンバル軸7との2軸に直交するトルク出力軸12の周りに出力される。トルク出力軸12の周りに出力されたトルクは、ステータ10に配置された宇宙機インターフェース11を通じて宇宙機に伝達され、宇宙船の姿勢が制御される。
つぎに、実施の形態1による効果を説明するために、図4を用いて従来のCMG200の構造について簡単に説明する。
従来のCMG200は、ステータ22と、ステータ22にジンバル軸受20,24を介して支持されて、ジンバル軸19周りに回転可能に配置されたインナージンバル18と、ステータ22に設けられて、インナージンバル18をジンバル軸19周りに回転させるトルクモジュール21と、インナージンバル18に取り付けられたスピン軸受ハウジング17と、スピン軸受ハウジング17にスピン軸受14を介して支持され、スピン軸16周りに回転可能に配置されたロータ13と、スピン軸受ハウジング17に設けられ、ロータ13をスピン軸16周りに回転させるスピンモータ15と、ステータ22に設けられた宇宙機インターフェース25と、を備えている。
このように構成された従来のCMG200では、ジンバル軸受20は、距離的に、トルクモジュール21よりもスピン軸16に近い位置に配置されており、図4中点線で示される荷重伝達経路が構成される。そこで、ロータ13の回転中に、ロータ13を回転支持する2対のスピン軸受14のアライメント誤差に起因して生じる、ロータ13の回転に同期したスピン軸16の軸方向の軸振動によって、ジンバル軸受20にはスピン軸16の軸方向の軸振動に起因したラジアル荷重に加えて、スピン軸16とジンバル軸受20の間の距離に応じたモーメント荷重が加わるので、ジンバル軸受20の動作寿命が短くなる。また、ロータ13からジンバル軸受20までの荷重伝達経路には、ロータ13の軸振動に対して撓みを生じるインナージンバル18が存在する。そのため、ロータ13で生じた軸振動は、ロータ13からジンバル軸受20を経由して宇宙機インターフェース25へと伝達される間に、インナージンバル18の軸振動に対して撓みを生じる振動モードの共振特性によって増幅されて宇宙機へと伝達される。宇宙機に伝達された軸振動は、擾乱として宇宙機に搭載された観測機器や宇宙機自体の姿勢に作用する。加えて、ジンバル軸受20をスピン軸16とトルクモジュール21の間で、かつスピン軸16に近い位置に配置するように構成しているため、ジンバル軸受20およびトルクモジュール21が配置されるステータ22の寸法が長くなるだけでなく、トルクモジュール21で回転駆動されるインナージンバル18の寸法もトルクモジュール21と接続されるために長くなる必要があり、結果としてCMG200全体の外形が大型化してしまう。
このように、従来のCMG200では、ロータ13の回転中に生じた軸振動によって、スピン軸16の軸方向の軸振動に起因したラジアル荷重に加えて、スピン軸16とジンバル軸受20との間の距離に比例したモーメント荷重がジンバル軸受20に対して作用していた。この実施の形態1によれば、ロータ1が配置されたインナージンバル9を回転可能に支持するジンバル軸受6が、ジンバル軸7と直交する、スピン軸5を含む平面を挟むように配置されているので、ロータ1で発生する軸振動によってモーメント荷重がジンバル軸受6に生じることがない。そこで、ジンバル軸受6に対してはラジアル荷重のみが作用することになる。そのため、ジンバル軸受6に作用する荷重は、従来のCMG200におけるジンバル軸受20に比べて小さくなり、ジンバル軸受6の動作寿命を長く設計することが可能となる。
さらに、従来のCMG200では、ロータ13からジンバル軸受20までの荷重伝達経路にインナージンバル18が存在しているので、ロータ13で発生した軸振動は、インナージンバル18の軸振動に対して撓みを生じる振動モードの共振特性により増幅されて宇宙機へと伝達されていた。この実施の形態1によれば、スピン軸5の軸方向に関して、スピン軸受ハウジング4とジンバル軸受6との間に配設されたインナージンバル9は、宇宙機において課題となる振動の周波数の範囲においては、ほぼ剛と見なすことが可能である。そこで、ロータ1からジンバル軸受6までの荷重伝達経路上に、ロータ1の軸振動に対して撓みを生じる構造体が存在しないので、ロータ1で生じた軸振動は、ロータ1から宇宙機へと伝達される間に増幅されることがないため、宇宙機に働く擾乱の大きさを非常に小さく抑えることができる。
また、従来のCMG200では、ロータ13からジンバル軸受20までの荷重伝達経路上にあるインナージンバル18を、可能な限り剛なものとする必要があるために、肉厚で剛な形状となり、インナージンバル18が大型化すると共に重量が重くなっている。この実施の形態1によれば、インナージンバル9は、その厚みや形状に因らずに、構成としてロータ1の軸振動に対して剛であるので、インナージンバル9の寸法を小型化することができ、重量も軽くすることが可能である。
さらに、従来のCMG200では、ジンバル軸受20をスピン軸16とトルクモジュール21との間に配置し、特にスピン軸16により近い位置に配置しているので、ステータ22に対するジンバル軸受20の取り付け位置とトルクモジュール21の取り付け位置が遠くなる。これにより、ジンバル軸受20とトルクモジュール21とが配置されるステータ22の寸法が、ジンバル軸19の軸方向に長くなり、ステータ22が大型化する。それに加えて、トルクモジュール21によりインナージンバル18を回転駆動するために、インナージンバル18にはジンバル軸受20で支持される構造とは別に、ジンバルシャフト23を設ける必要があり、インナージンバル18の大型化と重量増を招いている。また、ジンバルシャフト23を介してインナージンバル18に駆動トルクを与えるトルクモジュール21の位置と、インナージンバル18を軸支するジンバル軸受20との位置がジンバル軸7の軸方向に離れているので、インナージンバル18を安定、かつ滑らかに回転させるためには、ジンバル軸受20とは別に第2のジンバル軸受24をトルクモジュール21の近傍に新たに配置する必要があり、更なる重量の増加を招いている。
これに対して、この実施の形態1によれば、ジンバル軸受6がジンバル軸7と直交する、スピン軸5を含む平面を挟むように配置され、トルクモジュール8がジンバル軸受6に隣接して、スピン軸5の軸線上に配置されているので、ジンバル軸受6とトルクモジュール8とが配置されるステータ10の寸法を、ジンバル軸7の軸方向に関して短くすることができ、ステータ10の小型化が図られる。加えて、トルクモジュール8でインナージンバル9を回転駆動するために、別途ジンバルシャフトを設ける必要がないので、インナージンバル9を小型化できるとともに、従来のCMG200で必要であった第2のジンバル軸受24を削減することが可能となるため、CMG100全体の寸法を薄く小型にできるとともに、CMG100全体の軽量化を図ることができる。
さらに、従来のCMG200では、スピン軸16に対するトルクモジュール21の配置の関係上、従来のCMG200全体の重心位置はスピン軸16からジンバル軸19の軸方向に離れた位置となる。そのため、ロケット打ち上げ時の正弦波振動およびランダム振動による並進方向の振動入力に対して、従来のCMG200に曲げ振動が誘発されないように、従来のCMG200全体の重心位置を含むよう宇宙機インターフェース25を配置しようとしても、宇宙機インターフェース25を、従来のCMG200全体の重心支持と、スピン軸16から宇宙機インターフェース25までのジンバル軸19の軸方向の距離の最短化とを両立して配置することが構成上できないという課題がある。
これに対して、この実施の形態1によれば、CMG100全体の構成がスピン軸5に対して回転対称に配置されるので、CMG100全体の重心位置はほぼスピン軸5上に存在している。そのため、宇宙機インターフェース11を、CMG100全体を重心支持するように配置することと、スピン軸5から宇宙機インターフェース11までのジンバル軸7の軸方向の距離を最短化することとは、宇宙機インターフェース11をスピン軸5上に配置することで自然に両立可能である。これにより、ロケット打ち上げ時の振動環境に対して頑強なCMG100が得られるという効果がある。
実施の形態2.
図5はこの発明の実施の形態2に係るコントロールモーメントジャイロを示す断面図である。
図5において、ジンバル軸受6は、インナージンバル9とステータ10との間に、ジンバル軸7と直交するスピン軸5を含む平面と接するように、当該平面の上部に配置されている。トルクモジュール8は、ジンバル軸7と直交するスピン軸5を含む平面を挟んで、ジンバル軸受6に隣接して当該平面の下部に配置されている。ここで、トルクモジュール8がジンバル軸受6に隣接するとは、ジンバル軸7の軸線と平行な方向におけるトルクモジュール8とジンバル軸受6との間の距離が、トルクモジュール8のジンバル軸7の軸線と平行な方向の寸法と、ジンバル軸受6のジンバル軸7の軸線と平行な方向の寸法と、のなかの最も大きな寸法未満であることを意味する。
なお、他の構成は、上記実施の形態1と同様に構成されている。
このように構成されたCMG101においても、上記実施の形態1によるCMG100と同様に動作する。そして、ジンバル軸受6がスピン軸5の軸線と接するように配置されているので、ロータ1で発生する軸振動によってジンバル軸受6に対してモーメント荷重が生じることがなく、ジンバル軸受6に対してはラジアル荷重のみが作用することになる。また、スピン軸5の軸方向に関して、スピン軸受ハウジング4とジンバル軸受6との間に配設されたインナージンバル9は、宇宙機において課題となる振動の周波数の範囲においては、ほぼ剛と見なすことが可能である。そこで、ロータ1からジンバル軸受6までの荷重伝達経路上に、ロータ1の軸振動に対して撓みを生じる構造体が存在しない。また、ジンバル軸受6がスピン軸5の軸線と接するように配置され、トルクモジュール8がジンバル軸受6に隣接して配置され、かつジンバル軸受6とトルクモジュール8とがスピン軸5の軸線を挟むように配置されているので、ジンバル軸受6とトルクモジュール8とが配置されるステータ10の寸法を、ジンバル軸7の軸方向に関して短くすることができ、ステータ10の小型化が図られる。さらに、トルクモジュール8でインナージンバル9を回転駆動するために、別途ジンバルシャフトを設ける必要がないので、インナージンバル9の小型化が図られる。したがって、実施の形態2においても、上記実施の形態1と同様の効果が得られる。
この実施の形態2によれば、CMG101全体の重心位置は、上記実施の形態1と異なり、CMG101全体の構成がスピン軸5に対して回転対称な配置ではないものの、上記実施の形態1と同様に、ほぼスピン軸5に近い位置に存在する。そこで、宇宙機インターフェース11をスピン軸5の軸線に近い位置に配置することで、ロケット打ち上げ時の振動環境に対して頑強な構成とすることができる。
また、実施の形態2によれば、ジンバル軸受6を構成する1対のアンギュラ玉軸受を組み合わせるのに際して、予め組み合わせ軸受として生産管理された1対のアンギュラ玉軸受を用いることが可能となる。そこで、ジンバル軸受6の組み立て管理が容易になるとともに、ジンバル軸受6に対する予圧の調整も容易となる。また、トルクモジュール8をジンバル軸受6を構成する1対のアンギュラ玉軸受の間に配置する必要がないため、トルクモジュール8の寸法や配置に制約がなくなるという効果がある。
なお、上記実施の形態2では、ジンバル軸受6が、スピン軸5の軸線、すなわちジンバル軸7と直交し、かつスピン軸5を含む平面と接するように配置されているが、ジンバル軸受6は、当該平面がジンバル軸受6の内部を通るように、すなわち当該平面を含むように配置されてもよい。
実施の形態3.
図6はこの発明の実施の形態3に係るコントロールモーメントジャイロを示す断面図である。
図6において、ジンバル軸受6は、インナージンバル9とステータ10との間に、ジンバル軸7と直交するスピン軸5を含む平面と接するように、当該平面の下部に配置されている。トルクモジュール8は、ジンバル軸7と直交するスピン軸5を含む平面を挟んで、ジンバル軸受6に隣接して当該平面の上部に配置されている。ここで、トルクモジュール8がジンバル軸受6に隣接するとは、ジンバル軸7の軸線と平行な方向におけるトルクモジュール8とジンバル軸受6との間の距離が、トルクモジュール8のジンバル軸7の軸線と平行な方向の寸法と、ジンバル軸受6のジンバル軸7の軸線と平行な方向の寸法と、のなかの最も大きな寸法未満であることを意味する。
なお、他の構成は、上記実施の形態2と同様に構成されている。
このように、実施の形態3によるCMG101Aは、スピン軸5と宇宙機インターフェース11に対するジンバル軸受6とトルクモジュール8の配置が逆になっている点を除いて、実施の形態2によるCMG101と同様に構成されている。
したがって、CMG101Aにおいても、CMG101と同様に動作し、同様の効果が得られる。
実施の形態4.
図7はこの発明の実施の形態4に係るコントロールモーメントジャイロを示す断面図である。
図7において、トルクモジュール81は、ステータ10の側面に配置されている。トルクモジュール81が出力する回転トルクをインナージンバル9に伝達する回転伝達機構82が、トルクモジュール81とインナージンバル9との間に設けられている。トルクモジュール81は、回転トルクを出力できるものであればよく、例えばモータが用いられる。また、回転伝達機構82は、回転トルクを伝達できるものであればよく、例えばギアやベルトが用いられる。
なお、他の構成は、上記実施の形態1と同様に構成されている。
このように構成されたCMG102においても、上記実施の形態1によるCMG100と同様に動作し、同様の効果が得られる。
実施の形態4によれば、例えば、モータからなるトルクモジュール81を用いていたので、トルクモジュール8内の励磁用の巻線が配置されたジンバルモータステータ8aを、ステータ10の内周面上の全周にわたって配置する必要がなく、加えて永久磁石が配置されたジンバルモータロータ8bを、インナージンバル9の外周面上の全周にわたって配置する必要がなくなる。そのため、トルクモジュール81の組み立て性が向上するに加えて、高コストな永久磁石や励磁用巻線の使用量を大幅に削減することができるため、CMG102の製造コストを低減できるという効果がある。
なお、上記実施の形態4では、実施の形態1によるCMG100におけるトルクモジュール8に替えてトルクモジュール81を用いているが、実施の形態2,3によるCMG101,101Aにおけるトルクモジュール8に替えてトルクモジュール81を用いても、同様の効果が得られる。
実施の形態5.
図8はこの発明の実施の形態5に係るコントロールモーメントジャイロを示す断面図である。
図8において、ロータ1Aの最大直径Φが、シャフト1aの両端を回転可能に支持する2対のスピン軸受2間の長さLと略同じに構成されている。
なお、他の構成は、上記実施の形態1と同様に構成されている。
このように構成されたCMG103においても、上記実施の形態1と同様に動作し、上記実施の形態1と同様の効果が得られる。
この実施の形態5によれば、インナージンバル9の内周で構成される空間に対して、ロータ1Aがスピン軸5の周りに回転中に通過する空間をより効率的に使用できるようになる。さらに、ロータ1Aの直径Φをインナージンバル9の内周に収まる範囲でほぼ最大近くまで大きくしているので、ロータ1Aの持つ慣性モーメントを増加させる効果がある。
なお、上記実施の形態5では、実施の形態1によるCMG100におけるロータ1に替えてロータ1Aを用いているが、実施の形態2−4によるCMG101,101A,102におけるロータ1に替えてロータ1Aを用いても、同様の効果が得られる。
実施の形態6.
図9はこの発明の実施の形態6に係るコントロールモーメントジャイロを示す上面図、図10はこの発明の実施の形態6に係るコントロールモーメントジャイロを示す側面図である。
図9および図10において、ロータ1Bの外径が、スピン軸受ハウジング4と、インナージンバル9と、ステータ10との中で、ジンバル軸7の軸方向寸法が最も長い部材の寸法以下に構成されている。
なお、他の構成は、上記実施の形態1と同様に構成されている。
このように構成されたCMG104においても、上記実施の形態1と同様に動作し、上記実施の形態1と同様の効果が得られる。
この実施の形態6によれば、ロータ1Bの最大外径が、スピン軸受ハウジング4と、インナージンバル9と、ステータ10との中で、ジンバル軸方向寸法が最も長い部材の寸法以下となっているので、ロータ1Bが、スピン軸受ハウジング4と、インナージンバル9と、ステータ10との中で、ジンバル軸方向寸法が最も長い部材からジンバル軸7の軸方向に突出することがない。そこで、CMG104のジンバル軸7の軸方向の寸法が非常に小さくになり、宇宙機への取り付け性が大幅に向上する。さらに、ロータ1Bの形状は、ロータ1Bのシャフト1aとほぼ同心となる円柱形状となるため、製造が容易で、また複雑な機械加工や溶接による組み合わせ加工が不要となるため、ロータ1B内の静的・動的な不釣り合いを非常に小さくすることが可能という効果がある。
なお、上記実施の形態6では、実施の形態1によるCMG100におけるロータ1に替えてロータ1Bを用いているが、実施の形態2−4によるCMG101,101A,102におけるロータ1に替えてロータ1Bを用いても、同様の効果が得られる。
実施の形態7.
図11この発明の実施の形態7に係るコントロールモーメントジャイロを示す断面図である。
図11では、インナージンバル9Aは、ロータ1の下部にジンバル軸7と同軸のジンバルシャフト90を備え、ジンバル軸受6,60により、ステータ10Aにジンバル軸7の周りに回転可能に支持されている。ジンバル軸受6を構成する1対のアンギュラ玉軸受が、ジンバル軸7と直交し、かつスピン軸5を含む平面を挟み、かつ当該平面に接ようにインナージンバル9Aとステータ10Aとの間に配置される。トルクモジュール8が、ジンバルシャフト90を回転駆動するようにステータ10A内に配置されている。
なお、他の構成は、上記実施の形態1と同様に構成されている。
このように構成されたCMG105においても、上記実施の形態1によるCMG100と同様に動作する。
この実施の形態7によれば、ロータ1が配置されたインナージンバル9Aを回転可能に支持するジンバル軸受6が、ジンバル軸7と直交する、スピン軸5を含む平面を挟むように配置されているので、ロータ1で発生する軸振動によってモーメント荷重がジンバル軸受6に生じることがない。そこで、ジンバル軸受6に対してはラジアル荷重のみが作用することになり、ジンバル軸受6の動作寿命を長く設計することが可能となる。
また、スピン軸5の軸方向に関して、スピン軸受ハウジング4とジンバル軸受6との間に配設されたインナージンバル9Aは、宇宙機において課題となる振動の周波数の範囲においては、ほぼ剛と見なすことが可能である。そこで、ロータ1からジンバル軸受6までの荷重伝達経路上に、ロータ1の軸振動に対して撓みを生じる構造体が存在しない。そのため、ロータ1で生じた軸振動は、ロータ1から宇宙機へと伝達される間に増幅されることがないため、宇宙機に働く擾乱の大きさを非常に小さく抑えることができる。
また、インナージンバル9Aは、スピン軸5の軸方向に関して、スピン軸受ハウジング4とジンバル軸受6との間に配設されているので、その厚みや形状に因らずに、構成としてロータ1の軸振動に対して剛である。そこで、インナージンバル9Aの寸法を小型化することができ、CMG105の小型化が図られる。
この実施の形態7では、ジンバル軸受6の取り付け位置とトルクモジュール8の取り付け位置とが遠くなるので、ステータ10Aのジンバル軸7の軸方向の寸法が大きくなる。しかし、インナージンバル9のジンバルシャフト90の直径を小さく設定することができるため、トルクモジュール8の大きさを小さくすることができ、特別に大口径のトルクモジュール8を用意する必要がない。
なお、上記実施の形態7では、実施の形態1によるCMG100におけるインナージンバル9およびステータ10に替えてインナージンバル9Aおよびステータ10Aを用いているが、実施の形態2−6によるCMG101,101A,102,103,104におけるインナージンバル9およびステータ10に替えてインナージンバル9Aおよびステータ10Aを用いて同様の効果が得られる。
実施の形態8.
図12この発明の実施の形態8に係るコントロールモーメントジャイロを示す断面図である。
図12において、インナージンバル9Aは、ロータ1の上部にジンバル軸7と同軸のジンバルシャフト90を備え、ジンバル軸受6,60により、ステータ10Aにジンバル軸7の周りに回転可能に支持されている。ジンバル軸受6を構成する1対のアンギュラ玉軸受が、ジンバル軸7と直交し、かつスピン軸5を含む平面を挟み、かつ当該平面に接ようにインナージンバル9Aとステータ10Aとの間に配置される。トルクモジュール8が、ジンバルシャフト90を回転駆動するようにステータ10A内に配置されている。
なお、他の構成は、上記実施の形態7と同様に構成されている。
このように、実施の形態8によるCMG105Aは、スピン軸5と宇宙機インターフェース11に対するジンバル軸受6とトルクモジュール8の配置が逆になっている点を除いて、実施の形態7によるCMG105と同様に構成されている。
したがって、CMG105Aにおいても、CMG105と同様に動作し、同様の効果が得られる。
なお、上記実施の形態8においても、上記実施の形態7と同様に、実施の形態2−6によるCMG101,101A,102,103,104におけるインナージンバル9およびステータ10に替えてインナージンバル9Aおよびステータ10Aを用いて同様の効果が得られる。

Claims (8)

  1. 宇宙機に配備するコントロールモーメントジャイロであって、
    インナージンバルと、
    上記インナージンバルによってスピン軸周りに回転可能に保持されたロータと、
    上記インナージンバルに設けられ、上記ロータを上記スピン軸周りに回転させるスピンモータと、
    上記インナージンバルを上記スピン軸と直交するジンバル軸周りに回転可能に保持するステータと、
    上記インナージンバルと上記ステータとの間に、上記ジンバル軸と直交し、かつ上記スピン軸を含む平面を挟んで相対して、上記平面に接して、又は上記平面を含んで配置されたジンバル軸受と、
    上記ステータに設けられ、上記インナージンバルを上記ジンバル軸周りに回転させるトルクモジュールと、を備えるコントロールモーメントジャイロ。
  2. 上記トルクモジュールは、上記ジンバル軸受に隣接して上記ステータに設けられていることを特徴とする請求項1に記載のコントロールモーメントジャイロ。
  3. 上記ジンバル軸受は、上記平面を挟んで相対する2つのアンギュラ玉軸受により構成されている請求項1又は請求項2記載のコントロールモーメントジャイロ。
  4. 上記トルクモジュールは、2つの上記アンギュラ玉軸受の間に設けられている請求項3に記載のコントロールモーメントジャイロ。
  5. 上記ジンバル軸受は、上記平面に接して配置され、
    上記トルクモジュールは、上記平面を挟んで上記ジンバル軸受と相対して配置されている請求項2に記載のコントロールモーメントジャイロ。
  6. 上記平面を含んで、上記平面に接して、又は上記平面に隣接して設けられ、上記宇宙機と上記ステータとを接続するインターフェースを備えた請求項1から請求項5のいずれか1項に記載のコントロールモーメントジャイロ。
  7. 上記ロータの最大直径が、上記ロータのシャフトの両端を回転可能に支持する軸受間の長さと同じである請求項1から請求項6のいずれか1項に記載のコントロールモーメントジャイロ。
  8. 上記ロータの最大直径が、上記ステータおよび上記インナージンバルのなかの上記ジンバル軸の軸方向の最大寸法以下である請求項1から請求項6のいずれか1項に記載のコントロールモーメントジャイロ。

JP2017566499A 2016-02-10 2016-07-25 コントロールモーメントジャイロ Expired - Fee Related JP6505262B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016023440 2016-02-10
JP2016023440 2016-02-10
PCT/JP2016/071709 WO2017138165A1 (ja) 2016-02-10 2016-07-25 コントロールモーメントジャイロ

Publications (2)

Publication Number Publication Date
JPWO2017138165A1 JPWO2017138165A1 (ja) 2018-07-12
JP6505262B2 true JP6505262B2 (ja) 2019-04-24

Family

ID=59562978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017566499A Expired - Fee Related JP6505262B2 (ja) 2016-02-10 2016-07-25 コントロールモーメントジャイロ

Country Status (4)

Country Link
US (1) US11021272B2 (ja)
EP (1) EP3415867A4 (ja)
JP (1) JP6505262B2 (ja)
WO (1) WO2017138165A1 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018047817A1 (ja) * 2016-09-09 2018-03-15 三菱電機株式会社 姿勢制御装置、姿勢制御システム、地上局、人工衛星、姿勢制御方法及びプログラム
CN108253993B (zh) * 2018-01-09 2020-08-25 北京卫星环境工程研究所 星载控制力矩陀螺的微振动扰振力测试装置
US11945697B2 (en) 2018-02-08 2024-04-02 Vita Inclinata Ip Holdings Llc Multiple remote control for suspended load control equipment apparatus, system, and method
US12092459B2 (en) * 2018-03-28 2024-09-17 Verton IP Pty Ltd Arrangements for rotational apparatus
CN109466801A (zh) * 2018-11-20 2019-03-15 中国人民解放军战略支援部队航天工程大学 一种磁悬浮万向球
US11834305B1 (en) 2019-04-12 2023-12-05 Vita Inclinata Ip Holdings Llc Apparatus, system, and method to control torque or lateral thrust applied to a load suspended on a suspension cable
US11618566B1 (en) 2019-04-12 2023-04-04 Vita Inclinata Technologies, Inc. State information and telemetry for suspended load control equipment apparatus, system, and method
CN110435931B (zh) * 2019-08-12 2021-09-07 北京航空航天大学 一种磁悬浮控制力矩陀螺高速转子装置
KR102188740B1 (ko) 2019-12-04 2020-12-08 한국항공대학교산학협력단 가변 속도 제어 모멘트 자이로스코프 장치
US12099337B1 (en) * 2019-12-06 2024-09-24 Vita Inclinata Ip Holdings Llc Control moment gyroscope hoist stabilization system, method, and apparatus
CN112859942B (zh) * 2020-12-31 2022-04-15 北京航空航天大学 一种陀螺框架伺服系统高精度位置辨识方法
KR102638909B1 (ko) * 2021-08-30 2024-02-21 주식회사 엠앤씨솔루션 제어 모멘트 자이로
US11992444B1 (en) 2023-12-04 2024-05-28 Vita Inclinata Ip Holdings Llc Apparatus, system, and method to control torque or lateral thrust applied to a load suspended on a suspension cable

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3442143A (en) * 1960-07-20 1969-05-06 Bell Aerospace Corp Gyroscope
US3483760A (en) * 1967-08-14 1969-12-16 Bendix Corp Apparatus and method for cancellation of spring rate in gyroscope with flexural support
US3630091A (en) * 1970-06-01 1971-12-28 North American Rockwell Rate and/or acceleration sensor
US4242917A (en) * 1978-07-03 1981-01-06 Sperry Corporation Isolation flexure for gyroscopes
US4267737A (en) * 1978-12-04 1981-05-19 The Bendix Corporation Dual suspension gyroscopic device having powered gimbal support
US20070240529A1 (en) * 2006-04-17 2007-10-18 Zeyher Craig H Planetary gyroscopic drive system
US20090100957A1 (en) * 2007-10-23 2009-04-23 Honeywell International, Inc. Rotor assemblies having shafts with integral bearing raceways
FR2924191B1 (fr) * 2007-11-22 2009-12-11 Astrium Sas Dispositif modulaire d'isolation multi-axes de vibrations et de chocs, a base d'elastomere.
US8205514B2 (en) 2008-01-18 2012-06-26 Honeywell International Inc. Control moment gyroscope
US7997157B2 (en) * 2008-02-11 2011-08-16 Honeywell International Inc. Control moment gyroscope
US7985162B2 (en) * 2008-03-19 2011-07-26 Honeywell International Inc. Signal torque module assembly for use in control moment gyroscope
US9199746B2 (en) * 2009-05-19 2015-12-01 University Of Florida Research Foundation, Inc. Attitude control system for small satellites
US9354079B2 (en) 2012-05-21 2016-05-31 Honeywell International Inc. Control moment gyroscopes including torsionally-stiff spoked rotors and methods for the manufacture thereof
KR101474274B1 (ko) * 2013-03-25 2014-12-18 한국항공우주연구원 제어 모멘트 자이로

Also Published As

Publication number Publication date
JPWO2017138165A1 (ja) 2018-07-12
EP3415867A4 (en) 2019-02-20
EP3415867A1 (en) 2018-12-19
US11021272B2 (en) 2021-06-01
US20190016480A1 (en) 2019-01-17
WO2017138165A1 (ja) 2017-08-17

Similar Documents

Publication Publication Date Title
JP6505262B2 (ja) コントロールモーメントジャイロ
US7997157B2 (en) Control moment gyroscope
JP5820099B2 (ja) 小型衛星内における運動量制御システムに基づくコントロールモーメントジャイロスコープ
US8002251B2 (en) Vibration reduction system employing active bearing mounts
US8205514B2 (en) Control moment gyroscope
US8876060B2 (en) Split flywheel assembly with attitude jitter minimization
US4242917A (en) Isolation flexure for gyroscopes
US8596151B2 (en) Momentum exchange assemblies and inner gimbal assemblies for use in control moment gyroscopes
WO2023095285A1 (ja) 直動回転モータ
CN107792397B (zh) 一种完全非接触的双框架磁悬浮控制力矩陀螺
US2898765A (en) Gyroscope
JPS6214762B2 (ja)
JP5629121B2 (ja) モーメント制御装置内に配備するための一体化ダンピング部材を有するローターアセンブリ
JP3095282B2 (ja) 構造物に対して積み荷を支持し回転させる装置
US3503269A (en) Means for supporting a rotor of a single degree of freedom gyroscope
US3499333A (en) Means for supporting and torquing a rotors of a multiple degree of freedom gyroscope
US3323374A (en) Control apparatus
WO2022041005A1 (en) Transmission device, robotic joint, and robot
US20240364198A1 (en) Magnetic transmission system
US2983151A (en) Damping apparatus
JP2021181812A (ja) 摩擦伝動装置
JP2023026350A (ja) 回転電機の回転子
TWM480814U (zh) 防震型外轉子馬達
JPH04258525A (ja) 光偏向装置
JP2003113893A (ja) 回転体

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180320

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190326

R150 Certificate of patent or registration of utility model

Ref document number: 6505262

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees