JP6498491B2 - Simple concentration analysis method for metal components in solution - Google Patents

Simple concentration analysis method for metal components in solution Download PDF

Info

Publication number
JP6498491B2
JP6498491B2 JP2015066997A JP2015066997A JP6498491B2 JP 6498491 B2 JP6498491 B2 JP 6498491B2 JP 2015066997 A JP2015066997 A JP 2015066997A JP 2015066997 A JP2015066997 A JP 2015066997A JP 6498491 B2 JP6498491 B2 JP 6498491B2
Authority
JP
Japan
Prior art keywords
filter
sample solution
metal component
concentration
analysis method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015066997A
Other languages
Japanese (ja)
Other versions
JP2016186468A (en
Inventor
雅典 服部
雅典 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chubu Electric Power Co Inc
Original Assignee
Chubu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu Electric Power Co Inc filed Critical Chubu Electric Power Co Inc
Priority to JP2015066997A priority Critical patent/JP6498491B2/en
Publication of JP2016186468A publication Critical patent/JP2016186468A/en
Application granted granted Critical
Publication of JP6498491B2 publication Critical patent/JP6498491B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Description

本発明は、例えば火力発電所の排煙脱硫装置から排出される排水中に含まれるセレン等の金属成分の濃度を蛍光X線によって簡易かつ迅速に分析でき、排水中の金属成分の濃度管理を容易に行うための溶液中に含まれる金属成分の簡易濃度分析方法に関する。   The present invention can easily and quickly analyze the concentration of metal components such as selenium contained in the waste water discharged from the flue gas desulfurization equipment of a thermal power plant, for example, by controlling the concentration of the metal components in the waste water. The present invention relates to a simple concentration analysis method for metal components contained in a solution for easy execution.

火力発電所の排煙脱硫装置から排出される排水中には、セレン(Se)、ヒ素(As)、水銀(Hg)、カドミウム(Cd)等の金属成分が含まれている。排水中に含まれる金属成分は、水質汚濁防止法により規定される濃度以下になるように管理しなければならない。排水中の金属成分を分析する方法としては、例えば蛍光X線を利用した分析方法が知られている。   The wastewater discharged from the flue gas desulfurization apparatus of the thermal power plant contains metal components such as selenium (Se), arsenic (As), mercury (Hg), and cadmium (Cd). The metal components contained in the wastewater must be controlled so that the concentration is below the level specified by the Water Pollution Control Law. As a method for analyzing metal components in waste water, for example, an analysis method using fluorescent X-rays is known.

この種の蛍光X線分析方法が、例えば特許文献1に記載されている。この蛍光X線分析方法は、液体試料を濾紙等のシート状物に滴下して乾燥させた状態で、試料にX線を照射して試料から発生する蛍光X線に基づいて試料の分析を行うものである。前記シート状物は複数枚重ねて用いられ、複数枚重ねたシート状物に液体試料を滴下した後、乾燥させることにより、分析用試料が作製される。   This type of fluorescent X-ray analysis method is described in Patent Document 1, for example. In this fluorescent X-ray analysis method, a sample is analyzed based on fluorescent X-rays generated from a sample by irradiating the sample with X-rays in a state where a liquid sample is dropped on a sheet-like material such as filter paper and dried. Is. A plurality of the sheet-like materials are used in an overlapping manner, and a liquid sample is dropped onto the plurality of sheet-like materials, which are then dried, thereby preparing an analysis sample.

特開平7−55733号公報Japanese Unexamined Patent Publication No. 7-55733

前述した特許文献1に記載されている従来構成の蛍光X線分析方法においては、複数枚のシート状物に滴下された液体試料は乾燥した状態で分析されることから、液体試料中に含まれる金属成分等の分析成分は、乾燥の過程でシート状物中に不均一に残存する傾向を示す。このため、照射されたX線によって分析成分から発生する蛍光X線にむらが生じ、分析精度が低下するという欠点がある。   In the fluorescent X-ray analysis method having the conventional configuration described in Patent Document 1 described above, the liquid sample dropped on the plurality of sheets is analyzed in a dry state, and thus included in the liquid sample. Analytical components such as metal components tend to remain unevenly in the sheet-like material during the drying process. For this reason, there is a disadvantage that the fluorescent X-rays generated from the analysis component are uneven due to the irradiated X-rays and the analysis accuracy is lowered.

加えて、液体試料を複数枚のシート状物に滴下することから、1枚のシート状物に比べて多量の液体試料が含浸される。このため、液体試料が含浸された複数枚のシート状物を乾燥させるためには、長い乾燥時間と余分な手間を要する。乾燥時間を短縮させるために乾燥器を使用すると、その温度調節を行ったり、湿度調節を行ったり、複数枚のシート状物の乾燥状態を確認したりしなければならず、余分な装置や面倒な作業を必要とし、簡易かつ迅速な分析を行うことができなかった。   In addition, since a liquid sample is dropped onto a plurality of sheet-like objects, a larger amount of liquid sample is impregnated than one sheet-like object. For this reason, in order to dry a plurality of sheet-like materials impregnated with the liquid sample, a long drying time and extra labor are required. If a dryer is used to shorten the drying time, it is necessary to adjust the temperature, adjust the humidity, and check the dryness of multiple sheets. It was not possible to perform simple and quick analysis.

そこで、本発明の目的とするところは、溶液中に含まれる金属成分の濃度を簡易な操作によって迅速に分析することができる溶液中に含まれる金属成分の簡易濃度分析方法を提供することにある。   Accordingly, an object of the present invention is to provide a simple concentration analysis method for a metal component contained in a solution, which can quickly analyze the concentration of the metal component contained in the solution by a simple operation. .

上記の目的を達成するために、本発明の溶液中に含まれる金属成分の簡易濃度分析方法は、金属成分が含まれる試料溶液を、試料溶液含浸用のフィルタに滴下し、該フィルタが試料溶液の含浸によって湿潤状態にあるとき、そのフィルタにX線を照射し、フィルタ中の金属成分によって発せられる蛍光X線を蛍光X線分析装置で分析して試料溶液中に含まれる金属成分の濃度を分析することを特徴とする。   In order to achieve the above object, a simple concentration analysis method for a metal component contained in a solution of the present invention is a method in which a sample solution containing a metal component is dropped onto a filter for impregnating a sample solution, and the filter is used as a sample solution. When the filter is in a wet state, the filter is irradiated with X-rays, and the fluorescent X-rays emitted by the metal components in the filter are analyzed with a fluorescent X-ray analyzer to determine the concentration of the metal components contained in the sample solution. It is characterized by analyzing.

前記フィルタは、複数枚の濾紙を重ね合せて形成されることが好ましい。
前記濾紙の枚数は、誘導結合プラズマ(ICP)による分析方法で得られる金属成分の濃度に近い値を示すように決定されることが好ましい。
The filter is preferably formed by overlapping a plurality of filter papers.
The number of the filter papers is preferably determined so as to show a value close to the concentration of the metal component obtained by the analysis method using inductively coupled plasma (ICP).

前記濾紙の枚数は2〜4枚であることが好ましい。
前記試料溶液が複数枚の濾紙に含浸され、含浸された試料溶液中に含まれる金属成分によって発せられる蛍光X線を蛍光X線分析装置で分析することが好ましい。
The number of filter papers is preferably 2 to 4.
It is preferable that a plurality of filter papers are impregnated with the sample solution, and the fluorescent X-rays emitted by the metal components contained in the impregnated sample solution are analyzed with a fluorescent X-ray analyzer.

前記金属成分はセレン、ヒ素、水銀又はカドミウムであることが好ましい。
前記金属成分が含まれる試料溶液を予備フィルタで濾過した後、その濾液を試料溶液含浸用のフィルタに滴下することが好ましい。
The metal component is preferably selenium, arsenic, mercury or cadmium.
It is preferable to filter the sample solution containing the metal component with a preliminary filter and then drop the filtrate onto the filter for impregnating the sample solution.

前記予備フィルタは、試料溶液含浸用のフィルタと同じフィルタで形成されることが好ましい。   The preliminary filter is preferably formed of the same filter as the filter for impregnating the sample solution.

本発明の溶液中に含まれる金属成分の簡易濃度分析方法によれば、溶液中に含まれる金属成分の濃度を簡易な操作によって迅速に分析することができるという効果を奏する。   According to the simple concentration analysis method for the metal component contained in the solution of the present invention, the concentration of the metal component contained in the solution can be quickly analyzed by a simple operation.

(a)は実施形態における金属成分の簡易濃度分析方法に用いられる4枚の濾紙と1枚の予備濾紙を示す斜視図、(b)は4枚の濾紙及び1枚の予備濾紙を重ね合せ、その上から金属成分が含まれる試料溶液を滴下する状態を示す断面図、(c)は試料溶液の滴下後、予備濾紙を取り除いた状態を示す断面図、(d)は4枚の濾紙の湿潤状態でX線を照射し、濾紙内の金属成分により発せられる蛍光X線を示す断面図。(A) is a perspective view showing four filter papers and one preliminary filter paper used in the simple metal component concentration analysis method in the embodiment, (b) is a superposition of four filter papers and one preliminary filter paper, A cross-sectional view showing a state in which a sample solution containing a metal component is dropped from above, (c) is a cross-sectional view showing a state in which the preliminary filter paper is removed after dropping the sample solution, and (d) is a wetness of four filter papers Sectional drawing which shows the fluorescent X ray emitted by the X-ray | X_line in a state and emitted by the metal component in a filter paper. (a)は実施形態の分析方法において、照射されるX線の強度と発せられる蛍光X線の強度を模式的に示す説明図、(b)は従来の分析方法において、照射されるX線の強度と発せられる蛍光X線の強度を模式的に示す説明図。(A) is explanatory drawing which shows typically the intensity | strength of the X-ray irradiated and the intensity | strength of the fluorescent X-ray | X_line emitted in the analysis method of embodiment, (b) is the X-ray | X_line irradiated in the conventional analysis method. Explanatory drawing which shows intensity | strength and the intensity | strength of the fluorescent X-ray | X_line emitted. 従来法の誘導結合プラズマ(ICP)によるセレンの濃度(mg/L)と、実施形態の蛍光X線を用いた簡易濃度分析方法によるセレンの濃度(mg/L)との関係を示すグラフ。The graph which shows the relationship between the density | concentration (mg / L) of selenium by the inductively coupled plasma (ICP) of the conventional method, and the density | concentration (mg / L) of selenium by the simple density | concentration analysis method using the fluorescent X ray of embodiment. 濾紙の枚数と、実施形態の蛍光X線を用いた簡易濃度分析方法によるセレンの濃度(mg/L)との関係を示すグラフ。The graph which shows the relationship between the number of filter papers, and the density | concentration (mg / L) of selenium by the simple density | concentration analysis method using the fluorescent X ray of embodiment.

以下、本発明の実施形態を図1〜図4に基づいて詳細に説明する。
図1(d)に示すように、溶液中に含まれる金属成分の簡易濃度分析方法は、試料溶液含浸用のフィルタ10に金属成分を含む試料溶液の含浸によって湿潤状態にあるとき、X線照射装置12からX線(入射X線)13を照射し、フィルタ10中の金属成分から発せられる蛍光X線14を蛍光X線分析装置15で分析することにより行われる。入射X線13の一部はフィルタ10を透過する透過X線16となる。
Hereinafter, embodiments of the present invention will be described in detail with reference to FIGS.
As shown in FIG. 1 (d), the simple concentration analysis method for the metal component contained in the solution is such that X-ray irradiation is performed when the sample solution impregnating filter 10 is in a wet state by impregnation of the sample solution containing the metal component. X-rays (incident X-rays) 13 are emitted from the device 12 and the fluorescent X-rays 14 emitted from the metal components in the filter 10 are analyzed by the fluorescent X-ray analyzer 15. Part of the incident X-rays 13 becomes transmission X-rays 16 that pass through the filter 10.

前記試料溶液としては、例えば火力発電所の排煙脱硫装置からの排水ほか、金属成分を含む排水等が対象となる。金属成分を含む排水は、金属成分の濃度が水質汚濁防止法に定められた規制値を下回るように管理しなければならない。金属成分の種類は特に制限されないが、重金属又は軽金属として例えばセレン(Se)、ヒ素(As)、水銀(Hg)、カドミウム(Cd)等が挙げられる。   Examples of the sample solution include waste water from a flue gas desulfurization device of a thermal power plant, waste water containing a metal component, and the like. Wastewater containing metal components must be managed so that the concentration of metal components falls below the regulation value stipulated in the Water Pollution Control Law. The type of the metal component is not particularly limited, and examples of the heavy metal or light metal include selenium (Se), arsenic (As), mercury (Hg), and cadmium (Cd).

図1(a)に示すように、前記フィルタ10は複数枚の濾紙11、例えば4枚の濾紙11a、11b、11c、11dにより構成される。濾紙11の枚数は特に制限されないが、2〜4枚であることが好ましい。濾紙11が1枚の場合には、濾紙11に含浸される試料溶液すなわち試料溶液中の金属成分の含浸量が少なくなりやすく、金属成分によって発せられる蛍光X線14が弱くなるため好ましくない。その一方、濾紙11が5枚以上の場合には、濾紙11に含浸される試料溶液が過剰となり、金属成分による蛍光X線14が強くなって金属成分の濃度管理が難しくなる傾向を示す。   As shown in FIG. 1A, the filter 10 includes a plurality of filter papers 11, for example, four filter papers 11a, 11b, 11c, and 11d. The number of filter papers 11 is not particularly limited, but is preferably 2 to 4 sheets. When the number of the filter paper 11 is one, the sample solution impregnated in the filter paper 11, that is, the amount of impregnation of the metal component in the sample solution tends to decrease, and the fluorescent X-ray 14 emitted by the metal component becomes weak, which is not preferable. On the other hand, when the number of the filter papers 11 is five or more, the sample solution impregnated in the filter papers 11 becomes excessive, and the fluorescent X-rays 14 due to the metal components become strong, and the concentration management of the metal components tends to be difficult.

この試料溶液含浸用のフィルタ10のほかに、試料溶液中の夾雑物(固形分)を除去するために予備フィルタ17を使用することが好ましい。この予備フィルタ17は、前記試料溶液含浸用のフィルタ10と同じフィルタ10、例えば前記濾紙11が用いられる。   In addition to the filter 10 for impregnating the sample solution, it is preferable to use a preliminary filter 17 in order to remove impurities (solid content) in the sample solution. As the preliminary filter 17, the same filter 10 as the sample solution impregnation filter 10, for example, the filter paper 11 is used.

図1(b)に示すように、前記複数枚の濾紙11、すなわち4枚の濾紙11a、11b、11c、11dは重ね合せて使用される。予備フィルタ17としての濾紙11も、前記4枚の濾紙11a、11b、11c、11d上に重ね合されて使用される。   As shown in FIG. 1B, the plurality of filter papers 11, that is, the four filter papers 11a, 11b, 11c, and 11d are used in an overlapping manner. The filter paper 11 as the preliminary filter 17 is also used by being superimposed on the four filter papers 11a, 11b, 11c, and 11d.

次に、溶液中に含まれる金属成分の簡易濃度分析方法について具体的に説明する。
図1(a)に示すように、試料溶液含浸用のフィルタ10として同一種類の4枚の濾紙11a、11b、11c、11dを用意するとともに、予備フィルタ17として試料溶液含浸用のフィルタ10と同じ種類の濾紙11を1枚用意する。この濾紙11としては、例えば東洋濾紙株式会社製のAdvantec 5C(JIS P 3801に規定される5種Cに相当するもので、質量118g/m、厚さ0.22mm)が用いられる。
Next, a simple concentration analysis method for metal components contained in the solution will be specifically described.
As shown in FIG. 1A, four filter papers 11a, 11b, 11c, and 11d of the same type are prepared as the filter 10 for impregnating the sample solution, and the same as the filter 10 for impregnating the sample solution as the preliminary filter 17 Prepare one type of filter paper 11. As this filter paper 11, for example, Advantec 5C manufactured by Toyo Filter Paper Co., Ltd. (corresponding to 5 types C defined in JIS P 3801, mass 118 g / m 2 , thickness 0.22 mm) is used.

図1(b)に示すように、前記試料溶液含浸用のフィルタ10としての4枚の濾紙11a、11b、11c、11dを重ね合せるとともに、その上に予備フィルタ17としての濾紙11を重ね合せる。そして、試料溶液滴下装置18から試料溶液19を濾紙11上に滴下する。すると、試料溶液19は予備フィルタ17としての濾紙11を通過して夾雑物が取り除かれ、その濾液が試料溶液含浸用のフィルタ10としての濾紙11a、11b、11c、11dに浸入する。試料溶液19が最も下部の濾紙11dに達し、その濾紙11dを通過したときに試料溶液滴下装置18から試料溶液19の滴下を停止する。   As shown in FIG. 1B, the four filter papers 11a, 11b, 11c, and 11d as the sample solution impregnating filter 10 are overlaid, and the filter paper 11 as the preliminary filter 17 is overlaid thereon. Then, the sample solution 19 is dropped onto the filter paper 11 from the sample solution dropping device 18. Then, the sample solution 19 passes through the filter paper 11 as the preliminary filter 17 to remove impurities, and the filtrate enters the filter papers 11a, 11b, 11c, and 11d as the filter 10 for impregnating the sample solution. When the sample solution 19 reaches the lowermost filter paper 11d and passes through the filter paper 11d, the dropping of the sample solution 19 from the sample solution dropping device 18 is stopped.

図1(c)の二点鎖線に示すように、試料溶液19の滴下を停止した後には予備フィルタ17としての濾紙11を取り除く。この操作により、試料溶液含浸用のフィルタ10としての4枚の濾紙11a、11b、11c、11dに含浸された試料溶液19中の金属成分濃度を分析することができる。   As shown by the two-dot chain line in FIG. 1C, after stopping the dropping of the sample solution 19, the filter paper 11 as the preliminary filter 17 is removed. By this operation, the concentration of the metal component in the sample solution 19 impregnated in the four filter papers 11a, 11b, 11c, and 11d as the filter 10 for impregnating the sample solution can be analyzed.

図1(d)に示すように、試料溶液19が含浸された4枚の濾紙11a、11b、11c、11dが湿潤状態となっているときに、4枚の濾紙11a、11b、11c、11dにX線照射装置12から入射X線13を照射する。このとき、濾紙11a、11b、11c、11d内に含浸されている試料溶液19中の金属成分から蛍光X線14が発せられる。この蛍光X線14は蛍光X線分析装置15で測定され、蛍光X線14のエネルギーにより金属成分の種類が特定され、蛍光X線14の強さにより試料溶液19中に含まれる金属成分の濃度が分析される。   As shown in FIG. 1D, when the four filter papers 11a, 11b, 11c, and 11d impregnated with the sample solution 19 are in a wet state, the four filter papers 11a, 11b, 11c, and 11d The incident X-rays 13 are irradiated from the X-ray irradiation device 12. At this time, fluorescent X-rays 14 are emitted from the metal components in the sample solution 19 impregnated in the filter papers 11a, 11b, 11c, and 11d. The fluorescent X-ray 14 is measured by the fluorescent X-ray analyzer 15, the type of the metal component is specified by the energy of the fluorescent X-ray 14, and the concentration of the metal component contained in the sample solution 19 is determined by the intensity of the fluorescent X-ray 14. Is analyzed.

前記X線照射装置12及び蛍光X線分析装置15としては、例えば両装置12,15を備えた携帯型蛍光X線分析装置が用いられる。この携帯型蛍光X線分析装置としては、例えば株式会社リガク製のリガクXL3tが使用される。該携帯型蛍光X線分析装置はエネルギー分散型方式の分析装置であって蛍光X線14のエネルギー自体を分析でき、複数元素の分析を行うことができる。   As the X-ray irradiation device 12 and the fluorescent X-ray analysis device 15, for example, a portable fluorescent X-ray analysis device including both the devices 12 and 15 is used. As this portable fluorescent X-ray analyzer, for example, Rigaku XL3t manufactured by Rigaku Corporation is used. The portable fluorescent X-ray analyzer is an energy dispersive analyzer and can analyze the energy of the fluorescent X-rays 14 and can analyze a plurality of elements.

次に、本実施形態の溶液中に含まれる金属成分の簡易濃度分析方法について作用を説明する。
さて、図1(b)に示すように、試料溶液含浸用のフィルタ10として4枚の濾紙11a、11b、11c、11dを重ね合せ、その上に予備フィルタ17としての濾紙11を重ね合せ、試料溶液滴下装置18から試料溶液19を濾紙11上に滴下する。試料溶液19が最も下部の濾紙11dを通過したとき、試料溶液19の滴下を停止する。濾紙11は、前記Advantec 5Cを使用した。また、試料溶液19は火力発電所の排煙脱硫装置からの排水を使用した。
Next, an effect | action is demonstrated about the simple concentration analysis method of the metal component contained in the solution of this embodiment.
As shown in FIG. 1 (b), four filter papers 11a, 11b, 11c, and 11d are overlaid as the filter 10 for impregnating the sample solution, and the filter paper 11 as the preliminary filter 17 is overlaid on the filter paper 11a. The sample solution 19 is dropped on the filter paper 11 from the solution dropping device 18. When the sample solution 19 passes through the lowermost filter paper 11d, the dropping of the sample solution 19 is stopped. As the filter paper 11, Advantec 5C was used. Moreover, the sample solution 19 used the waste_water | drain from the flue gas desulfurization apparatus of a thermal power plant.

次いで、図1(c)の二点鎖線に示すように、予備フィルタ17としての濾紙11を取り除く。図1(d)に示すように、夾雑物が除去された試料溶液19が4枚の濾紙11a、11b、11c、11dに含浸され、それらの濾紙11a、11b、11c、11dが湿潤状態にあるとき、それらの濾紙11a、11b、11c、11dに対してX線照射装置12から入射X線13を照射する。   Next, as shown by a two-dot chain line in FIG. 1C, the filter paper 11 as the preliminary filter 17 is removed. As shown in FIG. 1D, the sample solution 19 from which impurities are removed is impregnated into four filter papers 11a, 11b, 11c, and 11d, and the filter papers 11a, 11b, 11c, and 11d are in a wet state. At that time, incident X-rays 13 are irradiated from the X-ray irradiation device 12 to the filter papers 11a, 11b, 11c, and 11d.

このとき、図2(a)に示すように、本実施形態の簡易濃度分析方法によれば、濾紙11a、11b、11c、11dに照射された入射X線13は、濾紙11a、11b、11c、11d内に含浸されている試料溶液19中に溶解している金属成分としてのセレンイオン(Se4+、Se6+)に当たって蛍光X線14が発せられる。4枚の濾紙11a、11b、11c、11dには試料溶液19が十分に含浸されていることから、金属成分のイオンも濾紙11a、11b、11c、11d中に十分保持される。このため、発せられる蛍光X線14量が多くなり、蛍光X線14の分析精度が高められるとともに、濾紙11a、11b、11c、11dを透過する透過X線16は抑えられる。 At this time, as shown in FIG. 2A, according to the simple concentration analysis method of this embodiment, the incident X-rays 13 irradiated to the filter papers 11a, 11b, 11c, and 11d are filtered into the filter papers 11a, 11b, 11c, Fluorescent X-rays 14 are emitted upon selenium ions (Se 4+ , Se 6+ ) as metal components dissolved in the sample solution 19 impregnated in 11d. Since the four filter papers 11a, 11b, 11c, and 11d are sufficiently impregnated with the sample solution 19, the metal component ions are also sufficiently retained in the filter papers 11a, 11b, 11c, and 11d. For this reason, the amount of emitted fluorescent X-rays 14 is increased, the analysis accuracy of the fluorescent X-rays 14 is increased, and the transmitted X-rays 16 that pass through the filter papers 11a, 11b, 11c, and 11d are suppressed.

なお、X線照射装置12及び蛍光X線分析装置15としては、前記リガクXL3tを使用した。また、蛍光X線分析時の雰囲気は大気圧雰囲気であり、真空環境やヘリウムガス環境は必要とされない。   The Rigaku XL3t was used as the X-ray irradiation device 12 and the fluorescent X-ray analysis device 15. Moreover, the atmosphere at the time of fluorescent X-ray analysis is an atmospheric pressure atmosphere, and a vacuum environment and a helium gas environment are not required.

一方、図2(b)に示すように、従来法における試料溶液19にそのまま入射X線13を照射して、金属成分から発せられる蛍光X線14を分析する方法では、透過X線16量が多く、金属成分から発せられる蛍光X線14量はわずかである。従って、この従来法では、蛍光X線14による金属成分の濃度分析における分析精度が低くなる。   On the other hand, as shown in FIG. 2B, in the method in which the sample solution 19 in the conventional method is irradiated with incident X-rays 13 as they are and the fluorescent X-rays 14 emitted from the metal component are analyzed, the amount of transmitted X-rays 16 is increased. In many cases, the amount of fluorescent X-rays 14 emitted from the metal component is small. Therefore, in this conventional method, the analysis accuracy in the concentration analysis of the metal component by the fluorescent X-ray 14 is lowered.

ここで、本実施形態の簡易濃度分析方法と従来の誘導結合プラズマ(ICP)による分析方法との相関関係を検討する。
本実施形態の簡易濃度分析方法は上記手法で実施したのに対し、従来のICPによる分析方法は以下の手法で実施した。
Here, the correlation between the simple concentration analysis method of the present embodiment and the conventional analysis method using inductively coupled plasma (ICP) will be examined.
The simple concentration analysis method of this embodiment was performed by the above method, while the conventional analysis method by ICP was performed by the following method.

すなわち、前記火力発電所の排煙脱硫装置からの排水を50倍に希釈し、硫酸及び硝酸を添加した。これを100〜120℃に約1時間加熱した後、放冷した。さらに塩酸を添加し、80〜100℃で10分間加熱した後、放冷した。次いで、塩酸と水素化ホウ素ナトリウム(NaBH)でセレンの水素化を行った。 That is, the waste water from the flue gas desulfurization unit of the thermal power plant was diluted 50 times, and sulfuric acid and nitric acid were added. This was heated to 100-120 ° C. for about 1 hour and then allowed to cool. Further, hydrochloric acid was added and heated at 80 to 100 ° C. for 10 minutes, and then allowed to cool. Then, selenium was hydrogenated with hydrochloric acid and sodium borohydride (NaBH 4 ).

得られた試料溶液19をICPによって分析し、試料溶液19中のセレンの濃度(mg/L)を測定した。従来法のICPによるセレンの濃度(mg/L)を横軸にし、本実施形態の蛍光X線14を用いた簡易濃度分析方法によるセレンの濃度(mg/L)を縦軸にした結果を図3に示した。   The obtained sample solution 19 was analyzed by ICP, and the concentration (mg / L) of selenium in the sample solution 19 was measured. A graph showing the results of selenium concentration (mg / L) by conventional ICP on the horizontal axis and selenium concentration (mg / L) by the simple concentration analysis method using the fluorescent X-ray 14 of this embodiment on the vertical axis. It was shown in 3.

図3に示したように、本実施形態の簡易濃度分析方法によるセレンの濃度は、従来法によるセレンの濃度とほぼ一致する関係を示し、本実施形態の簡易濃度分析方法によってセレンの濃度を精度良く分析できることが明らかになった。   As shown in FIG. 3, the selenium concentration by the simple concentration analysis method of the present embodiment shows a relationship that almost coincides with the selenium concentration by the conventional method, and the selenium concentration is accurately determined by the simple concentration analysis method of the present embodiment. It became clear that it could be analyzed well.

従って、濾紙11の枚数は、次の手順によって決定することができる。
1)予めICP等による金属成分の高精度な分析方法で精度の高い分析結果を得る。
2)試料溶液19を用い、本実施形態の簡易濃度分析方法により様々な濾紙11枚数で分析を行う。
Therefore, the number of filter papers 11 can be determined by the following procedure.
1) A highly accurate analysis result is obtained in advance by a highly accurate analysis method of metal components by ICP or the like.
2) Using the sample solution 19, the analysis is performed with 11 different filter papers by the simple concentration analysis method of the present embodiment.

3)上記1)の結果と2)の結果を対応させて、1)の結果に近い結果が出る2)の濾紙11の枚数を確認する。
4)上記3)で確認した枚数の濾紙11を用いて現地で簡易濃度分析を行う。
3) The result of 1) and the result of 2) are associated with each other, and the number of filter papers 11 of 2) that gives a result close to the result of 1) is confirmed.
4) A simple concentration analysis is performed on site using the number of filter papers 11 confirmed in 3) above.

このようにして、試料溶液19中の金属成分の濃度管理を簡易に行うことができる。
例えば、前記従来法のICPによるセレンの濃度が5.05(mg/L)を示した条件(図4の太い直線)の試料溶液19について、本実施形態の蛍光X線14を用いた簡易濃度分析方法で濾紙11の枚数を変化させてセレンの濃度(mg/L)を分析した。その結果を図4に示した。
In this way, the concentration control of the metal component in the sample solution 19 can be easily performed.
For example, with respect to the sample solution 19 under the condition (thick straight line in FIG. 4) where the selenium concentration by the conventional ICP is 5.05 (mg / L), the simple concentration using the fluorescent X-ray 14 of this embodiment is used. The selenium concentration (mg / L) was analyzed by changing the number of filter papers 11 by the analysis method. The results are shown in FIG.

図4に示したように、濾紙11の枚数を2〜4枚に設定したとき、セレン濃度は従来法によるセレン濃度とほぼ一致する結果が得られた。従って、濾紙11の枚数は2〜4枚が好ましい。なお、濾紙11の枚数が4枚の場合にはセレン濃度は従来法によるセレン濃度より若干高い値を示すことから、排水中に含まれるセレンの濃度管理を行う上で好ましい。   As shown in FIG. 4, when the number of filter papers 11 was set to 2 to 4, the result was that the selenium concentration almost coincided with the selenium concentration by the conventional method. Therefore, the number of filter papers 11 is preferably 2 to 4. When the number of filter papers 11 is four, the selenium concentration is slightly higher than the selenium concentration by the conventional method, which is preferable in managing the concentration of selenium contained in the waste water.

以上詳述した実施形態によって得られる効果を以下にまとめて記載する。
(1)本実施形態の溶液中に含まれる金属成分の簡易濃度分析方法では、金属成分が含まれる試料溶液19を、試料溶液含浸用のフィルタ10に滴下し、該フィルタ10が試料溶液19の含浸によって湿潤状態にあるとき、そのフィルタ10に入射X線13を照射する。そして、フィルタ10中の金属成分によって発せられる蛍光X線14を蛍光X線分析装置15で分析して試料溶液19中に含まれる金属成分の濃度を分析する。
The effects obtained by the embodiment described in detail above are collectively described below.
(1) In the simple concentration analysis method of the metal component contained in the solution of the present embodiment, the sample solution 19 containing the metal component is dropped on the filter 10 for impregnating the sample solution. When in a wet state due to impregnation, the filter 10 is irradiated with incident X-rays 13. Then, the X-ray fluorescence 14 emitted by the metal component in the filter 10 is analyzed by the X-ray fluorescence analyzer 15 to analyze the concentration of the metal component contained in the sample solution 19.

このため、試料溶液含浸用のフィルタ10に試料溶液19を滴下し、入射X線13を照射して蛍光X線14を分析するという操作で、試料溶液19中の金属成分濃度を分析することができる。従って、分析操作が簡単で、分析結果を速やかに得ることができ、試料溶液19中の金属成分の濃度管理を容易化することができる。   For this reason, the metal component concentration in the sample solution 19 can be analyzed by dropping the sample solution 19 on the filter 10 for impregnating the sample solution, irradiating the incident X-ray 13 and analyzing the fluorescent X-ray 14. it can. Therefore, the analysis operation is simple, the analysis result can be obtained quickly, and the concentration management of the metal component in the sample solution 19 can be facilitated.

よって、本実施形態の溶液中に含まれる金属成分の簡易濃度分析方法によれば、溶液中に含まれる金属成分の濃度を簡易な操作によって迅速に分析することができる。
(2)前記フィルタ10は、複数枚の濾紙11a、11b、11c、11dを重ね合せて形成されている。このため、濾紙11の枚数によって濾紙11に含浸される試料溶液19量、すなわち金属成分量を調整することができ、金属成分の濃度分析を適切かつ精度良く実施することができる。
Therefore, according to the simple concentration analysis method for the metal component contained in the solution of the present embodiment, the concentration of the metal component contained in the solution can be quickly analyzed by a simple operation.
(2) The filter 10 is formed by overlapping a plurality of filter papers 11a, 11b, 11c, and 11d. Therefore, the amount of the sample solution 19 impregnated in the filter paper 11, that is, the amount of the metal component, can be adjusted by the number of the filter papers 11, and the concentration analysis of the metal component can be performed appropriately and accurately.

(3)前記濾紙11の枚数は、分析精度の高いICPによる分析方法で得られる金属成分の濃度に近い値を示すように決定される。従って、金属成分の濃度分析の精度を維持しつつ、簡易な操作によって分析を短時間で実施することができる。   (3) The number of the filter papers 11 is determined so as to show a value close to the concentration of the metal component obtained by the ICP analysis method with high analysis accuracy. Therefore, the analysis can be performed in a short time by a simple operation while maintaining the accuracy of the concentration analysis of the metal component.

(4)前記濾紙11の枚数は2〜4枚が好ましい。この場合には、ICPによる金属成分の分析結果に対応させて、試料溶液19中の金属成分の濃度管理を行うことができる。
(5)前記試料溶液19が複数枚の濾紙11に含浸され、含浸された試料溶液19中に含まれる金属成分によって発せられる蛍光X線14を蛍光X線分析装置15で分析することにより行われる。従って、濾紙11を複数枚重ね、そこに含まれる試料溶液19中の金属成分に基づく蛍光X線14を分析することにより、一層簡易な操作で分析を迅速に進めることができる。
(4) The number of the filter paper 11 is preferably 2 to 4. In this case, the concentration management of the metal component in the sample solution 19 can be performed in accordance with the analysis result of the metal component by ICP.
(5) The sample solution 19 is impregnated into a plurality of filter papers 11, and the fluorescent X-rays 14 emitted by the metal components contained in the impregnated sample solution 19 are analyzed by the fluorescent X-ray analyzer 15. . Accordingly, by analyzing a plurality of the filter papers 11 and analyzing the fluorescent X-rays 14 based on the metal components contained in the sample solution 19 contained therein, the analysis can be rapidly advanced with a simpler operation.

(6)前記金属成分はセレン、ヒ素、水銀又はカドミウムである。このため、例えば火力発電所の排煙脱硫装置からの排出される排水中の代表的な金属成分を容易に分析できるとともに、金属成分の濃度管理を簡易に行うことができる。   (6) The metal component is selenium, arsenic, mercury or cadmium. For this reason, for example, it is possible to easily analyze typical metal components in waste water discharged from a flue gas desulfurization device of a thermal power plant, and it is possible to easily manage the concentration of metal components.

(7)前記金属成分が含まれる試料溶液を予備フィルタ17で濾過した後、その濾液を試料溶液含浸用のフィルタ10に滴下する。この場合、試料溶液19中の夾雑物を予備フィルタ17で取り除くことができ、金属成分の濃度分析の精度を向上させることができる。   (7) After the sample solution containing the metal component is filtered by the preliminary filter 17, the filtrate is dropped on the filter 10 for impregnating the sample solution. In this case, contaminants in the sample solution 19 can be removed by the preliminary filter 17, and the accuracy of the concentration analysis of the metal component can be improved.

(8)前記予備フィルタ17は、試料溶液含浸用のフィルタ10と同じフィルタ10で形成されている。このため、材料構成を簡易にできるとともに、試料溶液19中の夾雑物を除去する操作を簡易かつ迅速に行うことができる。   (8) The preliminary filter 17 is formed of the same filter 10 as the sample solution impregnation filter 10. For this reason, while being able to simplify a material structure, the operation which removes the contaminant in the sample solution 19 can be performed simply and rapidly.

なお、前記実施形態を次のように変更して具体化することも可能である。
・前記4枚の濾紙11a、11b、11c、11dに滴下された試料溶液19が最も下部の濾紙11dを通過して一定量流れ出した後に試料溶液19の滴下を止めるようにしてもよい。或いは、試料溶液19の滴下終了後一定時間を経過しても、直ちに蛍光X線の分析をすることなく、4枚の濾紙11a、11b、11c、11dが湿潤状態にある間に蛍光X線の分析を行えばよい。
It should be noted that the embodiment described above can be modified and embodied as follows.
The dropping of the sample solution 19 may be stopped after the sample solution 19 dropped on the four filter papers 11a, 11b, 11c, and 11d passes through the lowermost filter paper 11d and flows out a certain amount. Alternatively, even if a predetermined time elapses after the completion of the dropping of the sample solution 19, the fluorescent X-rays are not analyzed immediately while the four filter papers 11a, 11b, 11c, and 11d are in a wet state. An analysis can be performed.

・前記濾紙11として、濾過性能等の性能の異なる複数の濾紙11を使用したり、厚さの異なる複数の濾紙11を使用したり、材質の異なる複数の濾紙11を使用したりしてもよい。   As the filter paper 11, a plurality of filter papers 11 having different performance such as filtration performance, a plurality of filter papers 11 having different thicknesses, or a plurality of filter papers 11 having different materials may be used. .

・試料溶液含浸用のフィルタ10として、前記濾紙11以外に、不織布、シート状の樹脂発泡体等を使用してもよい。
・前記予備フィルタ17として、試料溶液含浸用のフィルタ10とは異なるフィルタを用いてもよい。例えば、試料溶液19中の夾雑物の量に応じて、試料溶液含浸用のフィルタ10としての濾紙11よりも目の細かい濾紙又は目の粗い濾紙を用いてもよい。
As the filter 10 for impregnating the sample solution, in addition to the filter paper 11, a nonwoven fabric, a sheet-like resin foam, or the like may be used.
A filter different from the filter 10 for impregnating the sample solution may be used as the preliminary filter 17. For example, depending on the amount of contaminants in the sample solution 19, a filter paper with finer or coarser filter paper than the filter paper 11 as the filter 10 for impregnating the sample solution may be used.

10…試料溶液含浸用のフィルタ、11、11a、11b、11c、11d…濾紙、13…入射X線、14…蛍光X線、15…蛍光X線分析装置、17…予備フィルタ、19…試料溶液。   DESCRIPTION OF SYMBOLS 10 ... Filter for sample solution impregnation, 11, 11a, 11b, 11c, 11d ... Filter paper, 13 ... Incident X-ray, 14 ... X-ray fluorescence, 15 ... X-ray fluorescence analyzer, 17 ... Preliminary filter, 19 ... Sample solution .

Claims (6)

金属成分が含まれる試料溶液を、試料溶液含浸用のフィルタに滴下し、該フィルタが試料溶液の含浸によって湿潤状態にあるとき、そのフィルタにX線を照射し、フィルタ中の金属成分によって発せられる蛍光X線を蛍光X線分析装置で分析して試料溶液中に含まれる金属成分の濃度を分析する金属成分の簡易濃度分析方法であって、
前記フィルタは、複数枚の濾紙を重ね合せて形成され、
前記濾紙の枚数は、誘導結合プラズマ(ICP)による分析方法で得られる金属成分の濃度に近い値を示すように決定されることを特徴とする溶液中に含まれる金属成分の簡易濃度分析方法。
A sample solution containing a metal component is dropped on a filter for impregnating the sample solution, and when the filter is wet by the impregnation of the sample solution, the filter is irradiated with X-rays and emitted by the metal component in the filter. A method for analyzing a concentration of a metal component by analyzing a fluorescent X-ray with a fluorescent X-ray analyzer and analyzing a concentration of the metal component contained in a sample solution ,
The filter is formed by overlapping a plurality of filter papers,
A simple concentration analysis method for a metal component contained in a solution, wherein the number of the filter papers is determined to show a value close to the concentration of the metal component obtained by an analysis method using inductively coupled plasma (ICP) .
前記濾紙の枚数は2〜4枚である請求項に記載の溶液中に含まれる金属成分の簡易濃度分析方法。 2. The simple concentration analysis method for metal components contained in a solution according to claim 1 , wherein the number of the filter papers is 2 to 4. 前記試料溶液が複数枚の濾紙に含浸され、含浸された試料溶液中に含まれる金属成分によって発せられる蛍光X線を蛍光X線分析装置で分析する請求項1又は請求項2に記載の溶液中に含まれる金属成分の簡易濃度分析方法。 3. The solution according to claim 1, wherein the sample solution is impregnated into a plurality of filter papers, and the fluorescent X-rays emitted by the metal component contained in the impregnated sample solution are analyzed by a fluorescent X-ray analyzer. Simplified concentration analysis method for metal components in water 前記金属成分はセレン、ヒ素、水銀又はカドミウムである請求項1から請求項のいずれか一項に記載の溶液中に含まれる金属成分の簡易濃度分析方法。 The simple metal concentration analysis method for a metal component contained in a solution according to any one of claims 1 to 3 , wherein the metal component is selenium, arsenic, mercury, or cadmium. 前記金属成分が含まれる試料溶液を予備フィルタで濾過した後、その濾液を試料溶液含浸用のフィルタに滴下する請求項1から請求項のいずれか一項に記載の溶液中に含まれる金属成分の簡易濃度分析方法。 The metal component contained in the solution according to any one of claims 1 to 4 , wherein the sample solution containing the metal component is filtered through a preliminary filter, and then the filtrate is dropped onto the filter for impregnating the sample solution. Simple concentration analysis method. 前記予備フィルタは、試料溶液含浸用のフィルタと同じフィルタで形成されている請求項に記載の溶液中に含まれる金属成分の簡易濃度分析方法。 6. The simple concentration analysis method for a metal component contained in a solution according to claim 5 , wherein the preliminary filter is formed of the same filter as the filter for impregnating the sample solution.
JP2015066997A 2015-03-27 2015-03-27 Simple concentration analysis method for metal components in solution Active JP6498491B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015066997A JP6498491B2 (en) 2015-03-27 2015-03-27 Simple concentration analysis method for metal components in solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015066997A JP6498491B2 (en) 2015-03-27 2015-03-27 Simple concentration analysis method for metal components in solution

Publications (2)

Publication Number Publication Date
JP2016186468A JP2016186468A (en) 2016-10-27
JP6498491B2 true JP6498491B2 (en) 2019-04-10

Family

ID=57202903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015066997A Active JP6498491B2 (en) 2015-03-27 2015-03-27 Simple concentration analysis method for metal components in solution

Country Status (1)

Country Link
JP (1) JP6498491B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109738472A (en) * 2019-02-27 2019-05-10 上海精谱科技有限公司 A kind of method that x-ray fluorescence measures light element in silica sol liquid

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0755733A (en) * 1993-08-18 1995-03-03 Rigaku Ind Co Sample holding carrier for fluorescent x-ray analysis, and fluorescent x-ray analysis
US5818899A (en) * 1997-04-02 1998-10-06 Mcdermott Technology, Inc. X-ray fluorescence analysis of pulverized coal
JP2000065764A (en) * 1998-08-20 2000-03-03 Horiba Ltd X-ray fluorescence analysis of liquid sample
JP4174567B2 (en) * 2003-02-21 2008-11-05 株式会社堀場製作所 Simple quantitative analysis method for heavy metals and chemical substances in the environment
DE602004009082T2 (en) * 2003-08-01 2008-01-24 Rigaku Industrial Corp., Takatsuki Sample holder for X-ray fluorescence analysis with a thin liquid-absorbing element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109738472A (en) * 2019-02-27 2019-05-10 上海精谱科技有限公司 A kind of method that x-ray fluorescence measures light element in silica sol liquid

Also Published As

Publication number Publication date
JP2016186468A (en) 2016-10-27

Similar Documents

Publication Publication Date Title
Johansson Monitoring fibre surfaces with XPS in papermaking processes
Schleicher et al. The carbonate 14C background and its components at the Leibniz AMS facility
EP2593767B1 (en) Method and device for detecting explosive-substance particles in a gas flow
KR101160891B1 (en) Apparatus and method for treating semiconductor waste gas by electron beam
JP2001511882A (en) Spectroscopy sample holder
JP6498491B2 (en) Simple concentration analysis method for metal components in solution
DE2404298A1 (en) SAMPLING DEVICE FOR DYNAMOELECTRIC MACHINE
Shah et al. Preconcentration of lead from aqueous solution with activated carbon cloth prior to analysis by flame atomic absorption spectrometry: a multivariate study
DE102007057252A1 (en) Method for measuring outgassing in EUV lithography apparatus and EUV lithography apparatus
DE102008059112A1 (en) Sample collector and sample collection device for an analysis device and method for its operation
DE102017207030A1 (en) Method of cleaning optical elements for the ultraviolet wavelength range
KR101359275B1 (en) Method for examining a wafer with regard to a contamination limit and euv projection exposure system
Panumati et al. Adsorption of phenol from diluted aqueous solutions by activated carbons obtained from bagasse, oil palm shell and pericarp of rubber fruit.
Deshmukh et al. Orange peel activated carbon produced from waste orange peels for adsorption of methyl red
Chen et al. Rapid and nondestructive measurement of labile Mn, Cu, Zn, Pb and As in DGT by using field portable-XRF
DE19804971B4 (en) Analysis method for water-soluble impurities in a clean room atmosphere in the production of semiconductor components and device for carrying out this method
Can Equilibrium, kinetics and process design of acid yellow 132 adsorption onto red pine sawdust
JP2010091132A (en) Device and method for drying soil sample
JPH08155230A (en) Electret filter and its preparation
JP2019028078A (en) Method of inspecting gas diffusion electrode, and gas diffusion electrode
JP6622074B2 (en) Water quality analyzer, water quality analysis system
JP2019148470A (en) Method for promptly analyzing heavy metal contamination soil
JP2017166948A (en) Processing method of radiostrontium contaminated soil, and processing device thereof
JP2008164547A (en) Fluorescent x-ray analysis method
JP6239836B2 (en) Radioactive cesium adsorbent and method for purifying radioactive polluted water using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190313

R150 Certificate of patent or registration of utility model

Ref document number: 6498491

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250