JP6498219B2 - Manufacturing method of products obtained by hot rolling, direct cold rolling without pickling, reduction annealing, and hot dipping - Google Patents

Manufacturing method of products obtained by hot rolling, direct cold rolling without pickling, reduction annealing, and hot dipping Download PDF

Info

Publication number
JP6498219B2
JP6498219B2 JP2016570338A JP2016570338A JP6498219B2 JP 6498219 B2 JP6498219 B2 JP 6498219B2 JP 2016570338 A JP2016570338 A JP 2016570338A JP 2016570338 A JP2016570338 A JP 2016570338A JP 6498219 B2 JP6498219 B2 JP 6498219B2
Authority
JP
Japan
Prior art keywords
rolling
hot
pickling
cold rolling
reduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016570338A
Other languages
Japanese (ja)
Other versions
JP2017523301A (en
Inventor
俊 李
俊 李
寧 譚
寧 譚
慶 格 孟
慶 格 孟
闖 関
闖 関
良 権 史
良 権 史
曉 明 何
曉 明 何
Original Assignee
宝山鋼鉄股▲分▼有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宝山鋼鉄股▲分▼有限公司 filed Critical 宝山鋼鉄股▲分▼有限公司
Publication of JP2017523301A publication Critical patent/JP2017523301A/en
Application granted granted Critical
Publication of JP6498219B2 publication Critical patent/JP6498219B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0222Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating in a reactive atmosphere, e.g. oxidising or reducing atmosphere
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0278Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/024Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/12Aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F17/00Multi-step processes for surface treatment of metallic material involving at least one process provided for in class C23 and at least one process covered by subclass C21D or C22F or class C25
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/14Cleaning or pickling metallic material with solutions or molten salts with alkaline solutions
    • C23G1/19Iron or steel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Coating With Molten Metal (AREA)
  • Metal Rolling (AREA)

Description

本発明は、溶融めっき製品の製造方法に関し、特に、熱間圧延、酸洗不要の直接冷間圧延、還元アニール、および溶融めっきにより得られた製品の製造方法に関する。   The present invention relates to a method for producing a hot dipped product, and more particularly, to a method for producing a product obtained by hot rolling, direct cold rolling without pickling, reduction annealing, and hot dipping.

従来、冷間圧延溶融亜鉛めっき製品の製造において、熱間圧延板が、まず、連続酸洗タンデム冷間圧延機を通過し、熱間圧延板表面の酸化鉄皮が除去され、冷間圧延により適当な厚さに変形して、溶融めっきを施す際に、アルカリ洗浄により脱脂してから、還元アニールを施したあと、溶融亜鉛めっきが完成する。しかしながら、この伝統的な溶融亜鉛めっき製品の製造は、プロセスが長く、製造効率が悪く、かつ、酸洗工程による環境汚染の問題がひどいため、鋼鉄企業にとって、省エネルギーおよび環境保護における最大の障害である。また、鉄の酸化物は酸洗工程において大量除去されるので、製品の歩留りが低くなる。なお、腐食性が強い酸は、生産設備に対して要求があり、かつ、廃酸の処理などの段階が必要とするので、生産およびメンテナンスのコストが高くなる。よって、酸洗不要の溶融亜鉛めっき製品およびその製造プロセスの開発、すなわち、酸洗工程を抜くのは、薄帯の製造企業にとって昔からの夢であり、鋼鉄企業の持続的発展にとって重要な意義がある。   Conventionally, in the manufacture of cold-rolled hot-dip galvanized products, the hot-rolled sheet first passes through a continuous pickling tandem cold-rolling machine, and the iron oxide skin on the surface of the hot-rolled sheet is removed. When deforming to an appropriate thickness and performing hot-dip plating, degreasing is performed by alkali cleaning, and after reduction annealing, hot-dip galvanization is completed. However, the production of this traditional hot dip galvanized product is the biggest obstacle to energy conservation and environmental protection for steel companies due to the long process, poor production efficiency and severe environmental pollution problems caused by the pickling process. is there. Further, since a large amount of iron oxide is removed in the pickling process, the yield of the product is lowered. It should be noted that a highly corrosive acid is required for production facilities and requires a stage such as treatment of waste acid, which increases production and maintenance costs. Therefore, the development of hot-dip galvanized products and their manufacturing processes, that is, the removal of the pickling process, has been an old dream for thin strip manufacturing companies and has important implications for the sustainable development of steel companies. There is.

特許番号US6258186B1およびKR100905653B1には、酸洗不要の熱間圧延溶融亜鉛めっき製品を高速で製造する方法が開示されている。基本原理については、酸洗の代わりに、水素ガスのような還元ガスを用いて熱間圧延帯鋼表面の酸化鉄皮を還元する。しかしながら、酸化鉄皮の還元速度が遅いため、製造ライン全体の稼働が影響を受けている。よって、上記特許においては、還元を加速し、還元の速度と亜鉛めっきの速度を合わせるために、熱間圧延帯鋼を巻き取る過程における冷却速度を制御することにより、酸化物における酸化第二鉄の含有量が20%以上になるように向上させる。酸化第二鉄が比較的に還元されやすいが、その効果は非常に限られている。よって、技術全体の発展は、依然として還元速率および効率に制約されている。   Patent Nos. US6258186B1 and KR100905563B1 disclose a method for producing hot-rolled hot-dip galvanized products that do not require pickling at high speed. Regarding the basic principle, instead of pickling, a reducing gas such as hydrogen gas is used to reduce the iron oxide skin on the surface of the hot rolled steel strip. However, since the reduction rate of the iron oxide skin is slow, the operation of the entire production line is affected. Therefore, in the above patent, ferric oxide in the oxide is controlled by controlling the cooling rate in the process of winding the hot-rolled steel strip in order to accelerate the reduction and match the reduction rate and the galvanization rate. The content is improved so as to be 20% or more. Although ferric oxide is relatively easy to reduce, its effect is very limited. Therefore, the development of the entire technology is still limited by the reduction rate and efficiency.

熱間圧延板表面の酸化鉄皮の使用性能に対する検討について、特開平06−033449号公報には、「タイトスケール」という鋼板が開示されており、該鋼板表面の酸化鉄皮が主に四酸化三鉄からなり、その構成が緻密であり、後続の仕上加工で変形する過程において、酸化鉄皮が脱落することなく、鋼板と一緒に変形し、酸化鉄皮が付いたまま使用する。使用者の要求が満足されるので、後で酸化鉄皮が付いたままの冷間圧延をしない。中国出願201010235928.X号、201010298939.2号、200710010183.5号、201010010116.5号、201010209526.2号、201010189410.7号および200510047958.7号には、酸洗不要の自動車フレーム用鋼の製造方法が開示されている。上記特許は、すべて、熱間圧延のプロセス過程を制御することにより、熱間圧延板表面の酸化鉄皮が主に四酸化三鉄からなるようにする。上記特許は、すべて、熱間圧延板を酸化鉄皮が付いたまま使用することに関するものであり、かつ酸化鉄皮付熱間圧延板が変形する場合に曲がれることになり、冷間圧延変形に関するものではなく、後続の溶融亜鉛めっきまたは他の合金の溶融めっきにも関するものではない。   Regarding the examination on the use performance of the iron oxide skin on the surface of the hot rolled sheet, JP 06-033449 discloses a steel plate called “tight scale”, and the iron oxide skin on the surface of the steel plate is mainly tetraoxide. It is made of ferrous iron, and its structure is dense. In the process of deformation in the subsequent finishing process, the iron oxide skin is deformed together with the steel plate without being dropped and used with the iron oxide skin attached. Since the user's requirement is satisfied, cold rolling with an iron oxide skin is not performed later. Chinese application 201010235928. No. X, 201010298939.2, 200710010183.5, 201010110116.5, 201020109526.2, 201010189410.7, and 2005100047958.7 disclose a method for producing steel for automobile frames that does not require pickling. Yes. In all the above patents, the iron oxide skin on the surface of the hot rolled sheet is mainly composed of triiron tetroxide by controlling the hot rolling process. All of the above patents relate to the use of hot-rolled sheets with an iron oxide skin attached, and when the hot-rolled steel sheet with iron oxide skin is deformed, it is bent and relates to cold rolling deformation It does not relate to subsequent hot dip galvanizing or hot dip plating of other alloys.

本発明は、伝統的な溶融亜鉛めっきのプロセスの不足に対して、熱間圧延、酸洗不要の直接冷間圧延、還元アニール、および溶融めっきにより得られた製品の製造方法を提供することを目的とする。熱間圧延、冷間圧延の後、直接に還元してから、溶融めっきを施すことにより、酸洗およびそれに関する工程を抜くことができるとともに、工程が短く、効率がよく、コストが安い環境保護タイプの溶融めっき製品の製造を実現することができる。また、熱間圧延板表面の酸化鉄皮の構成は主にFeおよびFeOを主とし、酸化鉄皮の厚さが比較的に薄く、酸化鉄皮付の冷間圧延により、溶融めっきなどの関係プロセスを施す。 The present invention provides a method for producing a product obtained by hot rolling, pickling-free direct cold rolling, reduction annealing, and hot dipping in response to a lack of traditional hot dip galvanizing processes. Objective. Direct reduction after hot rolling and cold rolling, and then hot dipping to remove pickling and related processes, and the process is short, efficient and low cost. The production of a type of hot dip plating product can be realized. Moreover, the structure of the iron oxide skin on the surface of the hot rolled sheet is mainly composed of Fe 3 O 4 and FeO, and the thickness of the iron oxide skin is relatively thin. By cold rolling with the iron oxide skin, And other related processes.

本発明に係る熱間圧延、酸洗不要の直接冷間圧延、還元アニール、および溶融めっきにより得られた製品の製造方法は、
スラブに対して脱スケールを施した後、粗延ミルによる粗圧延、仕上ミルによる仕上圧延、冷却装置による冷却、およびコイラーによる巻き取りを順次に実行するとともに、出銑温度を低下し、圧延速度を向上させることにより、酸化鉄皮の厚さを低下させ、圧延後の冷却速度および巻取速度を同時に制御することにより、熱間圧延板表面の酸化鉄皮の構成を制御し、酸化鉄皮の粘着力を向上させ、かつ酸化鉄皮の厚さを低下させる、熱間圧延ユニットにより行われる熱間圧延工程と、
圧延圧力、張力、変形率および圧延パスを含む冷間圧延のプロセスパラメータを最適化し、圧延潤滑液を用いることにより、酸化鉄皮が冷間圧延の過程で、基体に伴って良好に塑性変形するようにして、表面品質がよく、板形状もよい酸化鉄皮付板を得る、冷間圧延ユニットにより行われる冷間圧延工程と、
還元性ガスを導入して還元の温度および時間を制御することにより、酸化鉄皮を徹底的に還元し、帯鋼が亜鉛めっきポットに入る時の温度まで冷却する、還元炉により行われる還元アニール工程と、
還元アニール工程の後、直接に亜鉛めっきポットに投入して、数秒間で滞留させ、溶融めっきを完成する、溶融めっき工程と、を含む。
The manufacturing method of the product obtained by hot rolling according to the present invention, direct cold rolling without pickling, reduction annealing, and hot dipping,
After descaling the slab, rough rolling by a rough rolling mill, finish rolling by a finishing mill, cooling by a cooling device, and winding by a coiler are sequentially performed, and the rolling temperature is lowered to reduce the rolling speed. By improving the thickness, the thickness of the iron oxide skin is reduced, and the cooling rate and rolling speed after rolling are controlled simultaneously, thereby controlling the structure of the iron oxide skin on the surface of the hot rolled sheet, A hot rolling process performed by a hot rolling unit that improves the adhesive strength of the steel and reduces the thickness of the iron oxide skin,
By optimizing the cold rolling process parameters including rolling pressure, tension, deformation rate and rolling pass, and using the rolling lubricant, the iron oxide skin is plastically deformed along with the substrate during the cold rolling process. Thus, the surface quality is good, a plate with a good plate shape is obtained, a cold rolling process performed by a cold rolling unit,
Reduction annealing performed in a reduction furnace that introduces a reducing gas and controls the temperature and time of reduction to thoroughly reduce the iron oxide skin and cool it to the temperature when the strip enters the galvanizing pot. Process,
After the reduction annealing step, a hot dip plating step is performed, in which the galvanizing pot is directly put into a galvanizing pot and retained for several seconds to complete hot dip plating.

本発明の製造方法は、冷間圧延工程の後、脱脂リンス機の中で、アルカリ脱脂剤を用いて冷間圧延の過程で表面に残留した油汚れおよび粉塵を除去し、リンスして、乾燥する、脱脂工程をさらに含む。   The manufacturing method of the present invention removes oil stains and dust remaining on the surface in the process of cold rolling using an alkaline degreasing agent in a degreasing rinse machine after the cold rolling step, rinses, and dries A degreasing step is further included.

熱間圧延工程において、出銑温度が1100〜1250℃であり、最終圧延温度が800〜900℃であり、巻取温度が550〜600℃であり、圧延速度が8〜20m/sであり、圧延後の冷却速度が7〜30℃/sである。   In the hot rolling step, the milling temperature is 1100 to 1250 ° C., the final rolling temperature is 800 to 900 ° C., the winding temperature is 550 to 600 ° C., and the rolling speed is 8 to 20 m / s, The cooling rate after rolling is 7 to 30 ° C./s.

前記出銑温度が1150〜1200℃であり、最終圧延温度が840〜870℃であり、巻取温度が550〜570℃であり、圧延速度が14〜18m/sであり、冷却速度が15〜20℃/sである。   The tapping temperature is 1150 to 1200 ° C., the final rolling temperature is 840 to 870 ° C., the winding temperature is 550 to 570 ° C., the rolling speed is 14 to 18 m / s, and the cooling speed is 15 to 20 ° C./s.

前記出銑温度が1170または1200℃であり、最終圧延温度が850または860℃であり、巻取温度が550または560℃であり、圧延速度が17または18m/sであり、冷却速度が19または20℃/sである。   The tapping temperature is 1170 or 1200 ° C., the final rolling temperature is 850 or 860 ° C., the winding temperature is 550 or 560 ° C., the rolling speed is 17 or 18 m / s, and the cooling speed is 19 or 20 ° C./s.

熱間圧延工程において、得られた熱間圧延板の厚さが1.0〜6mmであり、熱間圧延板表面の酸化鉄皮の平均厚さが5〜10μmであり、酸化鉄皮の構成がFeおよびFeOを主とし、その中、Feの含有量が50重量%以上である。 In the hot rolling step, the thickness of the obtained hot rolled sheet is 1.0 to 6 mm, the average thickness of the iron oxide skin on the surface of the hot rolled sheet is 5 to 10 μm, and the structure of the iron oxide skin Is mainly composed of Fe 3 O 4 and FeO, in which the content of Fe 3 O 4 is 50% by weight or more.

前記熱間圧延板の厚さが1.5〜4mmであり、前記Feの含有量が65%以上である。 The hot rolled sheet has a thickness of 1.5 to 4 mm, and the content of Fe 3 O 4 is 65% or more.

冷間圧延工程において、圧延が1〜2パス以内で完成され、パスごとの変形率が1.0%〜90%に制御される。   In the cold rolling process, rolling is completed within 1 to 2 passes, and the deformation rate for each pass is controlled to 1.0% to 90%.

前記圧延が1パスで完成され、変形率が50%〜80%に制御される。
冷間圧延工程において、圧延エマルジョンとして、脱イオン水またはパームオイルが用いられ、冷間圧延圧下率が1.0%〜90%である。
The rolling is completed in one pass, and the deformation rate is controlled to 50% to 80%.
In the cold rolling step, deionized water or palm oil is used as the rolling emulsion, and the cold rolling reduction ratio is 1.0% to 90%.

前記冷間圧延圧下率が50%〜80%である。
還元アニール工程において、還元温度が500〜1000℃であり、還元時間が60〜300sであり、還元性ガスがHまたはCOと不活性ガスの混合物であり、その中、HまたはCOの濃度が3%を下回らない。
The cold rolling reduction ratio is 50% to 80%.
In the reduction annealing step, the reduction temperature is 500 to 1000 ° C., the reduction time is 60 to 300 s, and the reducing gas is a mixture of H 2 or CO and an inert gas, in which the concentration of H 2 or CO Does not fall below 3%.

前記還元温度が750〜950℃であり、滞留時間が120〜300sであり、HまたはCOの濃度が10%〜75%である。 The reduction temperature is 750 to 950 ° C., the residence time is 120 to 300 s, and the concentration of H 2 or CO is 10% to 75%.

前記還元温度が800℃、850℃または900℃であり、滞留時間が180s、240sまたは300sであり、HまたはCOの濃度が15%、25%または30%である。 The reduction temperature is 800 ° C., 850 ° C. or 900 ° C., the residence time is 180 s, 240 s or 300 s, and the concentration of H 2 or CO is 15%, 25% or 30%.

還元アニール工程において、反応に関与しないHまたはCOがサイクルされる。
溶融めっき工程において、得られた溶融めっき製品が溶融純亜鉛めっき、溶融亜鉛―アルミニウム―マグネシウムめっき、溶融アルミニウム―亜鉛めっきまたは溶融アルミニウム―シリコンめっき製品を含む。
In the reduction annealing step, H 2 or CO that does not participate in the reaction is cycled.
In the hot dip plating process, the hot dip galvanized product obtained includes hot dip galvanizing, hot dip zinc-aluminum-magnesium plating, hot dip aluminum-zinc plating or hot dip aluminum-silicon plating product.

本発明に係る熱間圧延、酸洗不要の直接冷間圧延、還元アニール、および溶融めっきにより得られた製品の製造方法は、伝統的なプロセスと比べて、酸洗ユニットが不要、工程が短く、効率がよいプロセスであるとともに、実際の需要を満足できる性能があり、溶融亜鉛めっきに関る伝統的な技術と比べて、酸化鉄皮を酸洗により除去する必要がなく、例えば、塩酸、硫酸のような腐食性がある媒体を使用しないため、酸洗による環境汚染の問題を根本的に解決することができる。本発明によれば、厚さの仕様が異なる溶融めっき製品を得ることができ、特に、厚い溶融亜鉛めっき製品を得ることができる。また、得られた製品は、表面品質に対する要求が厳しなく、耐食性および機械性に対してある程度の要求がある場合、例えば、様々な建築用鋼、電力施設用鋼、高速道路および様々な橋梁ガードレール、倉庫およびプラント用鋼などの領域に特に有用である。   The manufacturing method of products obtained by hot rolling, direct cold rolling without pickling, reduction annealing, and hot dipping according to the present invention does not require a pickling unit and the process is shorter than the traditional process. In addition to being an efficient process and capable of satisfying actual demand, it is not necessary to remove the iron oxide skin by pickling as compared with the traditional technology related to hot dip galvanization. Since a corrosive medium such as sulfuric acid is not used, the problem of environmental pollution due to pickling can be fundamentally solved. According to the present invention, hot-dip galvanized products having different thickness specifications can be obtained, and in particular, thick hot-dip galvanized products can be obtained. In addition, the obtained product is not strictly required for the surface quality, and there are some requirements for corrosion resistance and mechanical properties, for example, various construction steels, power facility steels, highways and various bridge guardrails. Especially useful in areas such as warehouse and plant steel.

本発明の一実施例における熱間圧延、酸洗不要の直接冷間圧延、還元アニール、および溶融めっきにより得られた製品の製造方法のプロセスルートを示す模式図である。It is a schematic diagram which shows the process route of the manufacturing method of the product obtained by the hot rolling in one Example of this invention, the direct cold rolling which does not need pickling, reduction annealing, and hot dipping. 本発明の応用実施例1で得られた熱間圧延板が50%の冷間圧延を経た後の酸化鉄皮の断面の金相顕微写真である。It is a gold phase micrograph of the cross section of the iron oxide skin after the hot-rolled sheet obtained in Application Example 1 of the present invention has undergone 50% cold rolling. 本発明の応用実施例1で得られた熱間圧延板が50%の冷間圧延を経た後の酸化鉄皮の表面形態写真である。It is a surface form photograph of the iron oxide skin after the hot-rolled sheet obtained in Application Example 1 of the present invention has undergone 50% cold rolling. 本発明の応用実施例1で得られた亜鉛めっき板の断面の走査写真である。It is a scanning photograph of the section of the galvanized board obtained in application example 1 of the present invention. 本発明の応用実施例1で得られた亜鉛めっき板が180°曲がれた後の表面の写真である。It is a photograph of the surface after the galvanized board obtained in application example 1 of the present invention bent 180 degrees. 本発明の応用実施例2で得られた亜鉛―アルミニウム―マグネシウムめっき板の断面の走査である。It is the scanning of the cross section of the zinc-aluminum-magnesium plating plate obtained in the application example 2 of this invention.

本発明の上記目的、特徴および利点をより明確に、解かりやすくにするためには、以下、図面を参照しながら本発明の具体的な実施形態について詳細に説明する。まず、説明しなければならないのは、本発明が下記の実施形態に限定されるものではなく、当業者が下記の実施形態で反映された主旨によって本発明を理解し、本発明の主旨に基づいて、各技術用語を最も幅広い理解すべきである。図面において、同じ符号は同じ要素を示す。   In order to make the above objects, features, and advantages of the present invention clearer and easier to understand, specific embodiments of the present invention will be described in detail below with reference to the drawings. First, it should be explained that the present invention is not limited to the following embodiments, and those skilled in the art understand the present invention based on the gist reflected in the following embodiments, and based on the gist of the present invention. Therefore, each technical term should be understood in the widest range. In the drawings, the same reference numeral indicates the same element.

図1は、本発明の一実施例における熱間圧延、酸洗不要の直接冷間圧延、還元アニール、および溶融めっきにより得られた製品の製造方法のプロセスルートを示す図である。図に示すように、この亜鉛めっき製品の製造方法は、以下の工程を含む。   FIG. 1 is a diagram showing a process route of a method for producing a product obtained by hot rolling, direct cold rolling without pickling, reduction annealing, and hot dipping in one embodiment of the present invention. As shown in the figure, the method for manufacturing a galvanized product includes the following steps.

(1) 熱間圧延ユニットにより熱間圧延工程を行う。当該工程において、熱間圧延板1を脱スケールした後、粗延ミル2による粗圧延、仕上ミル3による仕上圧延、冷却装置4による冷却、コイラー5による巻き取りを順次に実行するとともに、出銑温度を低下し、圧延速度を向上させることにより、酸化鉄皮の厚さを低下させ、圧延後の冷却速度および巻取速度を同時に制御することにより、熱間圧延板表面の酸化鉄皮の構成を制御し、酸化鉄皮の粘着力を向上させて、比較的に薄い、かつ特定の酸化鉄皮構成を有する熱間圧延板を得る。これにより、還元速度を向上させ、徹底的な還元を保証することに有利であるだけではなく、熱間圧延板が酸化鉄皮を付いて冷間圧延される際に脱落を防止することにも有利である。   (1) A hot rolling process is performed by a hot rolling unit. In this process, after the hot rolled plate 1 is descaled, rough rolling by the rough rolling mill 2, finish rolling by the finishing mill 3, cooling by the cooling device 4, and winding by the coiler 5 are sequentially performed. By reducing the temperature and improving the rolling speed, the thickness of the iron oxide skin is reduced, and the cooling rate and the winding speed after rolling are simultaneously controlled, thereby forming the iron oxide skin on the surface of the hot rolled sheet. Is controlled to improve the adhesive strength of the iron oxide skin to obtain a hot-rolled sheet that is relatively thin and has a specific iron oxide skin configuration. This is not only advantageous for improving the reduction rate and guaranteeing thorough reduction, but also for preventing hot-rolled sheets from falling off when cold rolled with iron oxide skin. It is advantageous.

(2) 冷間圧延ユニットにより冷間圧延工程を行う。当該工程において、熱間圧延板を酸化鉄皮と一緒に冷間圧延し、必要に応じて適当な厚さまで圧延し、圧延の過程で、圧延のパラメータを調整して、圧延圧力、張力、変形率および圧延パスを含む冷間圧延のプロセスパラメータを最適化し、圧延潤滑液を用いることにより、酸化鉄皮が冷間圧延の過程で、脱落、ローラーに対する粘着などの現象が生じることなく、基体に伴って良好に塑性変形することを保証し、表面品質がよく、板形状もよい酸化鉄皮付板を得る。   (2) A cold rolling process is performed by a cold rolling unit. In this process, the hot-rolled sheet is cold-rolled together with the iron oxide skin, rolled to an appropriate thickness as necessary, and the rolling parameters are adjusted in the course of rolling, and the rolling pressure, tension, deformation By optimizing the cold rolling process parameters including the rolling rate and rolling pass, and using the rolling lubricant, the iron oxide skin can be applied to the substrate without causing phenomena such as falling off and sticking to the roller during the cold rolling process. Accordingly, it is ensured that plastic deformation is good, and a plate with iron oxide skin having a good surface quality and a good plate shape is obtained.

(3) 脱脂リンス機6により脱脂工程を行う。当該工程において、アルカリ脱脂剤を用いて冷間圧延の過程で表面に残留した油汚れおよび粉塵を除去し、リンスして、乾燥する。冷間圧延で純水を用いた場合は、当該工程において、アルカリ脱脂剤を用いる必要がない。   (3) A degreasing process is performed by the degreasing rinse machine 6. In the said process, the oil stain | pollution | contamination and dust which remained on the surface in the process of cold rolling are removed using an alkaline degreasing agent, and it rinses and dries. When pure water is used in cold rolling, it is not necessary to use an alkaline degreasing agent in this step.

(4) 還元アニール炉により還元アニール工程を行う。当該工程において、還元炉に投入した後、加熱区域7、均熱区域8に通過させ、還元性ガスを導入して、温度および時間に対する二重制御により、500〜1000℃で60〜300sの還元を行い、酸化鉄皮を徹底的に還元し、冷却区域9に通過させ、帯鋼が亜鉛めっきポットに入る時の温度まで冷却し、該温度が、一般的に460℃程度である。   (4) A reduction annealing process is performed in a reduction annealing furnace. In this process, after being put into a reduction furnace, it is passed through a heating zone 7 and a soaking zone 8 and a reducing gas is introduced, and a reduction of 60 to 300 s is performed at 500 to 1000 ° C. by double control over temperature and time. The iron oxide skin is thoroughly reduced, passed through the cooling zone 9, and cooled to the temperature at which the steel strip enters the galvanizing pot, and the temperature is generally about 460 ° C.

(5) 溶融亜鉛めっき槽10に投入して溶融めっき工程を行う。当該工程において、還元アニール工程の後、直接に溶融亜鉛めっき槽10(すなわち、亜鉛めっきポット)に投入して、数秒間で滞留させ、溶融めっきを完成する。   (5) The hot dip galvanizing tank 10 is charged to perform the hot dip plating process. In this process, after the reduction annealing process, it is directly put into a hot dip galvanizing tank 10 (that is, a galvanizing pot) and retained for several seconds to complete hot dip plating.

試験および計算を重ねて行ったところ、上記工程(1)において、出銑温度を1100〜1250℃に、最終圧延温度を800〜900℃に、巻取温度を550〜600℃に、圧延速度が8〜20m/sに、圧延後の冷却速度が7〜30℃/sに制御する。出銑温度が1150〜1200℃であり、最終圧延温度が840〜870℃であり、巻取温度が550〜570℃であり、圧延速度が14〜18m/sであり、冷却速度が15〜20℃/sであることが好ましい。出銑温度が1170または1200℃であり、最終圧延温度が850または860℃であり、巻取温度が550または560℃であり、圧延速度が17または18m/sであり、冷却速度が19または20℃/sであることがより好ましい。上記制御により得られた熱間圧延板の厚さが1.0〜6mmであり、好ましくは1.5〜4mmであり、先行技術より遥かに薄いであり、熱間圧延板表面の酸化鉄皮の平均厚さが5〜10μmである(熱間圧延板表面の酸化鉄皮の平均厚さとは、熱間圧延板における代表的な位置、例えば、頭部、中部、尾部および側辺部などで、それぞれ少なくとも三つの点で厚さを測定し、各点で測定した酸化鉄皮の厚さの総和を測量点の数量の総和で除算して、得られた結果である)。該酸化鉄皮の構成はFeおよびFeOを主とし、その中、Feの含有量が50重量%以上であり、好ましくは65重量%以上である。これにより、該酸化鉄皮の厚さを比較的に薄くにすることができるため、還元に有利であり、粘附力がよいため、皮が付いたまま冷間圧延を施すことに有利ある。 When the test and calculation were repeated, in the above step (1), the rolling temperature was 1100 to 1250 ° C, the final rolling temperature was 800 to 900 ° C, the winding temperature was 550 to 600 ° C, and the rolling speed was The cooling rate after rolling is controlled to 7 to 30 ° C./s to 8 to 20 m / s. The tapping temperature is 1150 to 1200 ° C., the final rolling temperature is 840 to 870 ° C., the winding temperature is 550 to 570 ° C., the rolling speed is 14 to 18 m / s, and the cooling speed is 15 to 20 It is preferable that it is ° C / s. The tapping temperature is 1170 or 1200 ° C., the final rolling temperature is 850 or 860 ° C., the winding temperature is 550 or 560 ° C., the rolling speed is 17 or 18 m / s, and the cooling speed is 19 or 20 More preferably, it is ° C / s. The thickness of the hot rolled sheet obtained by the above control is 1.0 to 6 mm, preferably 1.5 to 4 mm, which is much thinner than the prior art, and the iron oxide skin on the surface of the hot rolled sheet (The average thickness of the iron oxide skin on the surface of the hot-rolled sheet is a typical position on the hot-rolled sheet, for example, the head, the middle, the tail and the side part) This is the result obtained by measuring the thickness at at least three points, and dividing the total thickness of the iron oxide skin measured at each point by the total number of survey points). The iron oxide skin is mainly composed of Fe 3 O 4 and FeO, and the content of Fe 3 O 4 is 50% by weight or more, preferably 65% by weight or more. Thereby, since the thickness of the iron oxide skin can be made relatively thin, it is advantageous for reduction, and since the adhesive strength is good, it is advantageous for cold rolling with the skin attached.

上記工程(2)において、圧延エマルジョンとして、脱イオン水またはパームオイルが用いられ、冷間圧延圧下率が1.0%〜100%であり、好ましくは、冷間圧延圧下率が50%〜80%である。圧延が1〜2パス以内で完成され、パスごとの変形率が1.0%〜100%に制御される。圧延が1パスで完成され、変形率が50%〜80%に制御されることがより好ましい。   In the above step (2), deionized water or palm oil is used as the rolling emulsion, the cold rolling reduction is 1.0% to 100%, and preferably the cold rolling reduction is 50% to 80. %. Rolling is completed within 1 to 2 passes, and the deformation rate for each pass is controlled to 1.0% to 100%. More preferably, the rolling is completed in one pass and the deformation rate is controlled to 50% to 80%.

上記冷間圧延制御により、酸化鉄皮は冷間圧延の過程で、脱落、ローラーに対する粘着などの現象が生じることなく、基体に伴って良好に塑性変形し、表面品質がよく、板形状もよい酸化鉄皮付板を得ることができる。   By the above cold rolling control, the iron oxide skin does not drop off and does not stick to the roller during the cold rolling process, and deforms well with the substrate, has good surface quality, and has a good plate shape. A plate with iron oxide skin can be obtained.

上記工程(4)において、還元性ガスがHまたはCOと不活性ガスの混合物であり、その中、HまたはCOの濃度が3%を下回らない。還元温度が750〜950℃であり、滞留時間が120〜300sであり、HまたはCOの濃度が10%〜75%であることが好ましい。還元温度が800℃、850℃または900℃であり、滞留時間が180s、240sまたは300sであり、HまたはCOの濃度が15%、25%または30%であることがより好ましい。 In the step (4), the reducing gas is a mixture of H 2 or CO and an inert gas, and the concentration of H 2 or CO does not fall below 3%. The reduction temperature is preferably 750 to 950 ° C., the residence time is 120 to 300 s, and the concentration of H 2 or CO is preferably 10% to 75%. More preferably, the reduction temperature is 800 ° C., 850 ° C. or 900 ° C., the residence time is 180 s, 240 s or 300 s, and the concentration of H 2 or CO is 15%, 25% or 30%.

上記工程(4)において、酸化鉄皮が純鉄に還元されることにより、金属の収率が向上する。それとともに、還元性ガスであるHまたはCOは、HOまたはCOに酸化され、環境に二次汚染を引き起こすことがない。反応に関与しないHまたはCOはサイクルされることができる。 In the above step (4), the yield of the metal is improved by reducing the iron oxide skin to pure iron. At the same time, the reducing gas, H 2 or CO, is oxidized to H 2 O or CO 2 without causing secondary pollution to the environment. H 2 or CO that does not participate in the reaction can be cycled.

上記工程(5)に得られた溶融めっき製品は、溶融純亜鉛めっき、溶融亜鉛―アルミニウム―マグネシウムめっき、溶融アルミニウム―亜鉛めっき、溶融アルミニウム―シリコンめっき、および他の溶融合金めっき製品を含む。   The hot dip plated product obtained in the above step (5) includes hot dip galvanized, hot dip zinc-aluminum-magnesium plated, hot dip aluminum-zinc plated, hot dip aluminum-silicon plated, and other hot-dip alloy plated products.

以下、応用実施例および図面を参照して、本発明に係る熱間圧延板に対して酸洗抜きで直接に冷間圧延し、還元し、溶融純亜鉛めっきを行うプロセス技術について詳細に説明する。   Hereinafter, with reference to application examples and drawings, a process technique for directly cold-rolling the hot-rolled sheet according to the present invention by pickling and reducing and hot-dip galvanizing will be described in detail. .

スラブを1200℃まで加熱し、炉内で180分間滞留させた。出銑温度は1100℃であった。高圧水で脱スケールした後、粗圧延を施し、再び高圧水で脱スケールして、仕上圧延を施した。仕上圧延の初期温度が980℃であり、最終温度が870であり、巻取温度が600℃であり、圧延速度が20m/sであり、圧延後の冷却速度が8℃/sであるとした。得られた熱間圧延板の厚さが3.6mmであり、表面にある酸化鉄皮の平均厚さが8μmであり、その中、四酸化三鉄の含有量が少なくとも50%であった。潤滑剤として、エマルジョンまたは純水が用いられた。熱間圧延板に対して、酸化鉄皮が付いたまま冷間圧延を施し、厚さが1.8mmになるまで冷間圧延し、変形率が50%であった。アルカリ液で洗浄を施し(純水で圧延を潤滑した場合、アルカリ洗浄が必要ではなく、湯だけで洗浄してもよい)、吹き乾かした後、還元炉に投入した。還元温度が1000℃であり、時間が60sであり、水素ガスの濃度が20%であるとした。460℃程度まで冷却して亜鉛めっきポットに投入し、3秒間で滞留させた。これにより、亜鉛の溶融めっきを完成し、1.8mm程度の溶融亜鉛めっき製品が得られた。   The slab was heated to 1200 ° C. and stayed in the furnace for 180 minutes. The tapping temperature was 1100 ° C. After descaling with high-pressure water, rough rolling was performed, descaling was again performed with high-pressure water, and finish rolling was performed. The initial temperature of finish rolling is 980 ° C., the final temperature is 870, the coiling temperature is 600 ° C., the rolling speed is 20 m / s, and the cooling rate after rolling is 8 ° C./s. . The thickness of the obtained hot-rolled sheet was 3.6 mm, the average thickness of the iron oxide skin on the surface was 8 μm, among which the content of triiron tetroxide was at least 50%. An emulsion or pure water was used as the lubricant. The hot-rolled sheet was cold-rolled with an iron oxide skin and cold-rolled until the thickness became 1.8 mm, and the deformation rate was 50%. After washing with an alkaline solution (when rolling is lubricated with pure water, alkali washing is not necessary, it may be washed only with hot water), and it was blown and dried, and then put into a reduction furnace. The reduction temperature was 1000 ° C., the time was 60 s, and the hydrogen gas concentration was 20%. It was cooled to about 460 ° C., charged into a galvanizing pot, and allowed to stay for 3 seconds. Thereby, the hot dip galvanization of zinc was completed and the hot dip galvanization product of about 1.8 mm was obtained.

実施例1に得られた熱間圧延板が50%の冷間圧延を経た後の酸化鉄皮の断面の金相顕微写真を図2に示す、酸化鉄皮の厚さが薄くになって、不連続的になり始めたが、酸化鉄皮が脱落したり、或いは基板に圧入したりするという現象が明らかではなかった。該酸化鉄皮の表面形態写真を図3に示す、酸化物(すなわち、酸化鉄皮)が圧延方向に沿って帯状に分布して、不連続的な分布になり始めた。実施例1で得られた亜鉛めっき板の断面の走査写真を図4に示す、酸化鉄皮がほぼ徹底的に還元され、酸化鉄皮の残留が明らかではなかった。得られた亜鉛めっき板が180°曲がれた後のめっき層の表面の写真を図5に示す、めっき層の付着力が良好であり、クラックまたは亜鉛層の脱落が明らかではなかった。   The gold phase micrograph of the cross section of the iron oxide skin after the hot-rolled sheet obtained in Example 1 undergoes 50% cold rolling is shown in FIG. Although it began to become discontinuous, it was not clear that the iron oxide peeled off or was pressed into the substrate. The surface morphology photograph of the iron oxide skin is shown in FIG. 3, and the oxide (that is, the iron oxide skin) is distributed in a strip shape along the rolling direction and begins to have a discontinuous distribution. The scanning photograph of the cross section of the galvanized plate obtained in Example 1 is shown in FIG. 4, and the iron oxide skin was almost thoroughly reduced, and the residual iron oxide skin was not clear. FIG. 5 shows a photograph of the surface of the plated layer after the obtained galvanized plate is bent by 180 °. The adhesion of the plated layer is good, and cracks or detachment of the zinc layer was not obvious.

スラブを1230℃まで加熱し、炉内で210分間滞留させた。出銑温度は1170℃であった。高圧水で脱スケールした後、粗圧延を施し、再び高圧水で脱スケールして、仕上圧延を施した。仕上圧延の初期温度が930℃であり、最終温度が850であり、巻取温度が560℃であり、圧延速度が12m/sであり、圧延後の冷却速度が20℃/sであるとした。得られた熱間圧延板の厚さが3.05mmであり、表面にある酸化鉄皮の平均厚さが7μmであり、その中、四酸化三鉄の含有量が少なくとも65%であった。潤滑剤として、エマルジョンまたは純水が用いられた。熱間圧延板に対して、酸化鉄皮が付いたまま冷間圧延を施し、2.9mmになるまで冷間圧延し、変形率が5%であった。アルカリ液で洗浄を施し(純水で圧延を潤滑した場合、アルカリ洗浄が必要ではなく、湯だけで洗浄してもよい)、吹き乾かした後、還元炉に投入した。還元温度が800℃であり、時間が180sであり、水素ガスの濃度が50%であるとした。470℃程度まで冷却して亜鉛めっきポットに投入し、5秒間で滞留させた。これにより、亜鉛―アルミニウム―マグネシウムの溶融めっきを完成し、2.90mm程度の溶融亜鉛―アルミニウム―マグネシウムめっき製品が得られた。図6には、これにより得られた亜鉛―アルミニウム―マグネシウムめっき板の断面の走査図を示しており、めっき層が連続的で完全であり、酸化鉄皮が徹底的に還元され、そのエネルギースペクトルの分析が表1に示されている。   The slab was heated to 1230 ° C. and allowed to stay in the furnace for 210 minutes. The tapping temperature was 1170 ° C. After descaling with high-pressure water, rough rolling was performed, descaling was again performed with high-pressure water, and finish rolling was performed. The initial temperature of finish rolling is 930 ° C., the final temperature is 850, the winding temperature is 560 ° C., the rolling speed is 12 m / s, and the cooling rate after rolling is 20 ° C./s. . The thickness of the obtained hot-rolled sheet was 3.05 mm, the average thickness of the iron oxide skin on the surface was 7 μm, and among them, the content of triiron tetroxide was at least 65%. An emulsion or pure water was used as the lubricant. The hot-rolled sheet was cold-rolled with an iron oxide skin and cold-rolled to 2.9 mm, and the deformation rate was 5%. After washing with an alkaline solution (when rolling is lubricated with pure water, alkali washing is not necessary, it may be washed only with hot water), and it was blown and dried, and then put into a reduction furnace. The reduction temperature was 800 ° C., the time was 180 s, and the hydrogen gas concentration was 50%. After cooling to about 470 ° C., it was put into a galvanizing pot and allowed to stay for 5 seconds. Thus, zinc-aluminum-magnesium hot-dip plating was completed, and a hot-dip zinc-aluminum-magnesium plating product of about 2.90 mm was obtained. FIG. 6 shows a cross-sectional scan of the resulting zinc-aluminum-magnesium plated plate, where the plating layer is continuous and complete, the iron oxide skin is thoroughly reduced, and its energy spectrum. The analysis is shown in Table 1.

スラブを1180℃まで加熱し、炉内で250分間滞留させた。出銑温度は1200℃であった。高圧水で脱スケールした後、粗圧延を施し、再び高圧水で脱スケールして、仕上圧延を施した。仕上圧延の初期温度が950℃であり、最終温度が800であり、巻取温度が550℃であり、圧延速度が10m/sであり、圧延後の冷却速度が30℃/sであるとした。得られた熱間圧延板の厚さが4mmであり、表面にある酸化鉄皮の平均厚さが5μmであり、その中、四酸化三鉄の含有量が少なくとも70%であった。潤滑剤として、エマルジョンまたは純水が用いられた。熱間圧延板に対して、酸化鉄皮が付いたまま冷間圧延を施し、変形率が70%であった。アルカリ液で洗浄を施し(水を用いた場合、アルカリ洗浄が必要ではない)、吹き乾かした後、還元炉に投入した。還元温度が600℃であり、時間が300sであり、水素ガスの濃度が20%であった。465℃程度まで冷却して亜鉛めっきポットに投入し、3秒間で滞留させた。これにより、溶融亜鉛めっきを完成し、めっき液の成分が1.2Al重量%―Znであり、2.9mm程度の溶融アルミニウム―亜鉛めっき製品が得られた。   The slab was heated to 1180 ° C. and allowed to stay in the furnace for 250 minutes. The tapping temperature was 1200 ° C. After descaling with high-pressure water, rough rolling was performed, descaling was again performed with high-pressure water, and finish rolling was performed. The initial temperature of finish rolling is 950 ° C., the final temperature is 800, the winding temperature is 550 ° C., the rolling speed is 10 m / s, and the cooling rate after rolling is 30 ° C./s. . The thickness of the obtained hot-rolled sheet was 4 mm, and the average thickness of the iron oxide skin on the surface was 5 μm. Among them, the content of triiron tetroxide was at least 70%. An emulsion or pure water was used as the lubricant. The hot-rolled sheet was cold-rolled with the iron oxide skin attached, and the deformation rate was 70%. After washing with an alkaline solution (when water is used, alkali washing is not necessary), the mixture was blown dry and then put into a reduction furnace. The reduction temperature was 600 ° C., the time was 300 s, and the hydrogen gas concentration was 20%. After cooling to about 465 ° C., it was put into a galvanizing pot and allowed to stay for 3 seconds. Thereby, hot dip galvanization was completed, and the component of the plating solution was 1.2 Al wt% -Zn, and a hot dip galvanized product of about 2.9 mm was obtained.

スラブを1200℃まで加熱し、炉内で200分間滞留させた。出銑温度は1250℃であった。高圧水で脱スケールした後、粗圧延を施し、再び高圧水で脱スケールして、仕上圧延を施した。仕上圧延の初期温度が980℃であり、最終温度が880であり、巻取温度が570℃であり、圧延速度が18m/sであり、圧延後の冷却速度が12℃/sであるとした。得られた熱間圧延板の厚さが3.6mmであり、表面にある酸化鉄皮の平均厚さが8μmであり、その中、四酸化三鉄の含有量が少なくとも50%であった。潤滑剤として、エマルジョンまたは純水が用いられた。熱間圧延板に対して、酸化鉄皮が付いたまま冷間圧延を施し、厚さが1.5mmになるまで冷間圧延し、変形率が58%であった。アルカリ液で洗浄を施し(純水で圧延を潤滑した場合、アルカリ洗浄が必要ではなく、湯だけで洗浄してもよい)、吹き乾かした後、還元炉に投入した。還元温度が900℃であり、時間が120sであり、水素ガスの濃度が20%であるとした。460℃程度まで冷却して亜鉛めっきポットに投入し、3秒間で滞留させた。これにより、溶融亜鉛めっきを完成し、亜鉛液の成分が1.6Al重量%―1.6Mg―Zn%であり、1.2mm程度の溶融亜鉛―アルミニウム―マグネシウムめっき製品が得られた。   The slab was heated to 1200 ° C. and kept in the furnace for 200 minutes. The tapping temperature was 1250 ° C. After descaling with high-pressure water, rough rolling was performed, descaling was again performed with high-pressure water, and finish rolling was performed. The initial temperature of finish rolling is 980 ° C., the final temperature is 880, the winding temperature is 570 ° C., the rolling speed is 18 m / s, and the cooling rate after rolling is 12 ° C./s. . The thickness of the obtained hot-rolled sheet was 3.6 mm, the average thickness of the iron oxide skin on the surface was 8 μm, among which the content of triiron tetroxide was at least 50%. An emulsion or pure water was used as the lubricant. The hot-rolled sheet was cold-rolled with an iron oxide skin and cold-rolled until the thickness became 1.5 mm, and the deformation rate was 58%. After washing with an alkaline solution (when rolling is lubricated with pure water, alkali washing is not necessary, it may be washed only with hot water), and it was blown and dried, and then put into a reduction furnace. The reduction temperature was 900 ° C., the time was 120 s, and the hydrogen gas concentration was 20%. It was cooled to about 460 ° C., charged into a galvanizing pot, and allowed to stay for 3 seconds. As a result, hot dip galvanization was completed, and a zinc solution component of 1.6 Al wt% -1.6 Mg-Zn% and a hot dip zinc-aluminum-magnesium plating product of about 1.2 mm was obtained.

出銑温度が1230℃であり、炉内で200分間滞留した。出銑温度は1190℃であった。高圧水で脱スケールした後、粗圧延を施し、再び高圧水で脱スケールして、仕上圧延を施した。仕上圧延の初期温度が950℃であり、最終温度が900であり、巻取温度が550℃であり、圧延速度が21m/sであり、圧延後の冷却速度が15℃/sであるとした。得られた熱間圧延板の厚さが3.6mmであり、表面にある酸化鉄皮の平均厚さが8μmであり、その中、四酸化三鉄の含有量が少なくとも50%であった。潤滑剤としてエマルジョンまたは純水が用いられた。熱間圧延板に対して、酸化鉄皮が付いたまま冷間圧延を施し、厚さが1.5mmになるまで冷間圧延し、変形率が58%であった。アルカリ液で洗浄を施し(純水で圧延を潤滑した場合、アルカリ洗浄が必要ではなく、湯だけで洗浄してもよい)、吹き乾かした後、還元炉に投入した。還元温度が900℃であり、時間が120sであり、水素ガスの濃度が20%であっるとした。680℃程度まで冷却して亜鉛めっきポットに投入し、3秒間で滞留させた。亜鉛液の成分が11Si重量%―Al%であり、1.2mm程度の溶融アルミニウム―シリコンめっき製品が得られた。   The tapping temperature was 1230 ° C., and it stayed in the furnace for 200 minutes. The tapping temperature was 1190 ° C. After descaling with high-pressure water, rough rolling was performed, descaling was again performed with high-pressure water, and finish rolling was performed. The initial temperature of finish rolling is 950 ° C., the final temperature is 900, the winding temperature is 550 ° C., the rolling speed is 21 m / s, and the cooling rate after rolling is 15 ° C./s. . The thickness of the obtained hot-rolled sheet was 3.6 mm, the average thickness of the iron oxide skin on the surface was 8 μm, among which the content of triiron tetroxide was at least 50%. Emulsion or pure water was used as the lubricant. The hot-rolled sheet was cold-rolled with an iron oxide skin and cold-rolled until the thickness became 1.5 mm, and the deformation rate was 58%. After washing with an alkaline solution (when rolling is lubricated with pure water, alkali washing is not necessary, it may be washed only with hot water), and it was blown and dried, and then put into a reduction furnace. The reduction temperature was 900 ° C., the time was 120 s, and the hydrogen gas concentration was 20%. It was cooled to about 680 ° C., charged into a galvanizing pot, and allowed to stay for 3 seconds. A component of the zinc solution was 11 Si wt% -Al%, and a molten aluminum-silicon plating product of about 1.2 mm was obtained.

実施例2〜5が実施例1と同じように、期待に応えうる溶融めっき製品を正常に得ること、および該製品に明らかなスキップめっきまたはめっき層の脱落がないことは、実践により証明された。   It was proved by practice that Examples 2-5, as in Example 1, were successful in obtaining a hot-dip plated product that could meet expectations and that there was no obvious skip plating or plating layer shedding. .

以上に述べたように、本発明は、熱間圧延のプロセスを調整することにより、熱間圧延板表面の酸化鉄皮の構成を制御して、熱間圧延板に対して、酸化鉄皮が付いたまま冷間圧延を施し、酸化鉄皮が冷間圧延変形の過程で脱落することなく、基体に伴って塑性変形するようにして、還元性ガス(COまたはH)と酸化鉄皮の反応により金属鉄を生成して、最後に、溶融亜鉛めっきを施す。該プロセスは、伝統的な溶融亜鉛めっきのプロセスと比べて、酸洗およびそれに関する工程を抜き、酸化鉄皮を酸洗により除去する必要がなく、例えば、塩酸、硫酸のような腐食性がある媒体を使用しないため、酸洗による環境汚染の問題を根本的に解決することができ、工程が短く、効率がよく、コストが安い環境保護タイプの溶融亜鉛めっきプロセスであり、実際の需要を満足できる性能を持っている。 As described above, the present invention controls the structure of the iron oxide skin on the surface of the hot rolled plate by adjusting the hot rolling process, and the iron oxide skin is applied to the hot rolled plate. Cold rolling is applied, and the iron oxide skin is plastically deformed along with the substrate without falling off in the process of cold rolling deformation, so that the reducing gas (CO or H 2 ) and the iron oxide skin Metallic iron is produced by the reaction, and finally hot dip galvanizing is performed. Compared with the traditional hot dip galvanizing process, the process eliminates the pickling and related steps and does not require the iron oxide skin to be removed by pickling, and is corrosive such as hydrochloric acid and sulfuric acid. Since no medium is used, the problem of environmental pollution caused by pickling can be fundamentally solved, and it is an environmental protection type hot dip galvanizing process that is short in process, efficient, and low in cost, meeting actual demand. It has performance that can be done.

本発明に係る熱間圧延、酸洗不要の直接冷間圧延、還元アニール、および溶融めっきにより得られた製品の製造方法によれば、厚さの仕様が異なる溶融めっき製品を得ることができ、特に、厚い溶融亜鉛めっき製品を得ることができる。また、得られた製品が表面品質に対する要求が厳しなく、耐食性および機械性に対してある程度の要求がある場合、例えば、様々な建築用鋼、電力施設用鋼、高速道路および様々な橋梁ガードレール、貯蔵およびプラント用鋼などの領域に特に有用である。   According to the method of manufacturing a product obtained by hot rolling, direct cold rolling without pickling, reduction annealing, and hot dipping according to the present invention, it is possible to obtain hot-dipped products with different thickness specifications, In particular, a thick hot dip galvanized product can be obtained. In addition, when the obtained product does not have strict requirements on surface quality and there are some requirements on corrosion resistance and mechanical properties, for example, various construction steels, steels for electric power facilities, highways and various bridge guardrails, It is particularly useful in areas such as storage and plant steel.

以上に挙げられたものは、ただ本発明の具体的な実施例だけであり、本発明は上記実施例に限定されるものではなく、それらに基づいて、似通った変化形態がたくさんあることを注意すべきである。当業者が本発明に開示された内容から直接に導き出し、または連想した変体の全ては、本発明の保護範囲に含まれる。すなわち、当業者は、本発明に記載された上記内容を読んだ後、本発明に対して、様々な変更または修正を行うことができ、それらの等価形態も、本願に添付されている請求の範囲により限定された範囲に含まれると理解すべきである。   The above is only a specific embodiment of the present invention, and the present invention is not limited to the above embodiment, and there are many similar variations based on them. Should. All variants derived or associated directly by the person skilled in the art from the content disclosed in the present invention fall within the protection scope of the present invention. That is, a person skilled in the art can make various changes or modifications to the present invention after reading the above description described in the present invention, and equivalent forms thereof are also claimed in the claims attached to the present application. It should be understood that it falls within the scope limited by the scope.

Claims (13)

熱間圧延、酸洗不要の直接冷間圧延、還元アニール、および溶融めっきにより得られた製品の製造方法であって、
スラブに対して脱スケールを施した後、粗延ミルによる粗圧延、仕上ミルによる仕上圧延、冷却装置による冷却、およびコイラーによる巻き取りを順次に実行する、熱間圧延ユニットにより行われる熱間圧延工程を備え、前記熱間圧延工程において、スラブの出銑温度が1100〜1250℃であり、最終圧延温度が800〜900℃であり、巻取温度が550〜600℃であり、圧延速度が8〜20m/sであり、圧延後の冷却速度が7〜30℃/sであることを特徴とし、前記熱間圧延、酸洗不要の直接冷間圧延、還元アニール、および溶融めっきにより得られた製品の製造方法はさらに、
延潤滑液が圧延に用いられ、圧延が1〜2パス以内で完成され、パスごとの変形率が1.0%〜90%に制御されることを特徴とする、冷間圧延ユニットにより行われる冷間圧延工程と、
還元性ガスを導入することにより、酸化鉄皮を還元し、次いで帯鋼が亜鉛めっきポットに入る時の温度まで冷却する、還元炉により行われる還元アニール工程とを備え、還元温度が500〜1000℃であり、還元時間が60〜300sであり、還元性ガスがH 2 またはCOと不活性ガスの混合物であり、その中、H 2 またはCOの濃度が3%を下回らないことを特徴とし、前記熱間圧延、酸洗不要の直接冷間圧延、還元アニール、および溶融めっきにより得られた製品の製造方法はさらに、
還元アニール工程の後、直接に亜鉛めっきポットに投入して、数秒間で滞留させ、溶融めっきを完成する、溶融めっき工程と、を含むことを特徴とする、熱間圧延、酸洗不要の直接冷間圧延、還元アニール、および溶融めっきにより得られた製品の製造方法。
A method for producing a product obtained by hot rolling, direct cold rolling without pickling, reduction annealing, and hot dipping,
It was subjected to descaling against the slab, rough rolling by Sonobe mill, finishing finish by mill rolling, cooling by a cooling device, and you sequentially perform the winding by a coiler, hot performed by hot rolling units A rolling step , and in the hot rolling step, the slab tapping temperature is 1100 to 1250 ° C, the final rolling temperature is 800 to 900 ° C, the winding temperature is 550 to 600 ° C, and the rolling speed is 8 to 20 m / s, the cooling rate after rolling is 7 to 30 ° C./s, obtained by hot rolling, direct cold rolling without pickling, reduction annealing, and hot dipping. The manufacturing method of the product
Rolling lubricant is used for rolling, the rolling is completed within 1-2 path, characterized in that the deformation rate of each path is controlled to 1.0% to 90%, row by cold rolling units Cold rolling process,
The introduction to Rukoto a reducing gas, and based on changing the iron oxide skin and then cooled to a temperature at which the strip enters the galvanizing pot, and a reduction annealing process performed by the reducing furnace, the reducing temperature It is 500 to 1000 ° C., the reduction time is 60 to 300 s, the reducing gas is a mixture of H 2 or CO and an inert gas, and the concentration of H 2 or CO does not fall below 3%. The method for producing a product obtained by hot rolling, direct cold rolling without pickling, reduction annealing, and hot dipping is further provided.
After the reduction annealing process, it is directly put into a galvanizing pot and retained in a few seconds to complete the hot dipping process. A method for producing a product obtained by cold rolling, reduction annealing, and hot dipping.
冷間圧延工程の後、脱脂リンス機の中で、アルカリ脱脂剤を用いて冷間圧延の過程で表面に残留した油汚れおよび粉塵を除去し、リンスして、乾燥する、脱脂工程をさらに含むことを特徴とする、請求項1に記載の熱間圧延、酸洗不要の直接冷間圧延、還元アニール、および溶融めっきにより得られた製品の製造方法。   After the cold rolling process, the degreasing and rinsing machine further includes a degreasing process that removes oil stains and dust remaining on the surface in the cold rolling process using an alkaline degreasing agent, rinses and dries. The method for producing a product obtained by hot rolling according to claim 1, direct cold rolling without pickling, reduction annealing, and hot dipping. 前記出銑温度が1150〜1200℃であり、最終圧延温度が840〜870℃であり、巻取温度が550〜570℃であり、圧延速度が14〜18m/sであり、冷却速度が15〜20℃/sであることを特徴とする、請求項に記載の熱間圧延、酸洗不要の直接冷間圧延、還元アニール、および溶融めっきにより得られた製品の製造方法。 The tapping temperature is 1150 to 1200 ° C., the final rolling temperature is 840 to 870 ° C., the winding temperature is 550 to 570 ° C., the rolling speed is 14 to 18 m / s, and the cooling speed is 15 to The method for producing a product obtained by hot rolling according to claim 1 , direct cold rolling without pickling, reduction annealing, and hot dipping, characterized by being 20 ° C / s. 前記出銑温度が1170または1200℃であり、最終圧延温度が850または860℃であり、巻取温度が550または560℃であり、圧延速度が17または18m/sであり、冷却速度が19または20℃/sであることを特徴とする、請求項に記載の熱間圧延、酸洗不要の直接冷間圧延、還元アニール、および溶融めっきにより得られた製品の製造方法。 The tapping temperature is 1170 or 1200 ° C., the final rolling temperature is 850 or 860 ° C., the winding temperature is 550 or 560 ° C., the rolling speed is 17 or 18 m / s, and the cooling speed is 19 or The method for producing a product obtained by hot rolling according to claim 1 , direct cold rolling without pickling, reduction annealing, and hot dipping, characterized by being 20 ° C / s. 熱間圧延工程において、得られた熱間圧延板の厚さが1.0〜6mmであり、熱間圧延板表面の酸化鉄皮の平均厚さが5〜10μmであり、酸化鉄皮の構成がFe34およびFeOを主とし、その中、Fe34の含有量が50重量%以上であることを特徴とする、請求項1に記載の熱間圧延、酸洗不要の直接冷間圧延、還元アニール、および溶融めっきにより得られた製品の製造方法。 In the hot rolling step, the thickness of the obtained hot rolled sheet is 1.0 to 6 mm, the average thickness of the iron oxide skin on the surface of the hot rolled sheet is 5 to 10 μm, and the structure of the iron oxide skin There was mainly Fe 3 O 4 and FeO, therein, Fe 3 content of O 4 is equal to or less than 50% by weight, hot-rolling according to claim 1, pickling unwanted direct cold A method for producing a product obtained by hot rolling, reduction annealing, and hot dipping. 前記熱間圧延板の厚さが1.5〜4mmであり、前記Fe34の含有量が65%以上であることを特徴とする、請求項に記載の熱間圧延、酸洗不要の直接冷間圧延、還元アニール、および溶融めっきにより得られた製品の製造方法。 The hot-rolled and pickling-free according to claim 5 , wherein the hot-rolled sheet has a thickness of 1.5 to 4 mm, and the Fe 3 O 4 content is 65% or more. Of products obtained by direct cold rolling, reduction annealing, and hot dipping. 前記圧延が1パスで完成され、変形率が50%〜80%に制御されることを特徴とする、請求項に記載の熱間圧延、酸洗不要の直接冷間圧延、還元アニール、および溶融めっきにより得られた製品の製造方法。 The hot rolling according to claim 1 , direct cold rolling without pickling, reduction annealing, and characterized in that the rolling is completed in one pass and the deformation rate is controlled to 50% to 80%. A method for producing a product obtained by hot dipping. 冷間圧延工程において、前記圧延潤滑液として、脱イオン水またはパームオイルが用いられ、冷間圧延圧下率が1.0%〜90%であることを特徴とする、請求項に記載の熱間圧延、酸洗不要の直接冷間圧延、還元アニール、および溶融めっきにより得られた製品の製造方法。 In the cold rolling process, as the rolling lubricant, deionized water or palm oil is used, and wherein the cold rolling reduction rate of 1.0% to 90%, heat of claim 1 A method for producing a product obtained by hot rolling, direct cold rolling without pickling, reduction annealing, and hot dipping. 前記冷間圧延圧下率が50%〜80%であることを特徴とする、請求項に記載の熱間圧延、酸洗不要の直接冷間圧延、還元アニール、および溶融めっきにより得られた製品の製造方法。 The product obtained by hot rolling according to claim 8 , direct cold rolling without pickling, reduction annealing, and hot dipping, wherein the cold rolling reduction is 50% to 80% Manufacturing method. 前記還元温度が750〜950℃であり、滞留時間が120〜300sであり、H2またはCOの濃度が10%〜75%であることを特徴とする、請求項に記載の熱間圧延、酸洗不要の直接冷間圧延、還元アニール、および溶融めっきにより得られた製品の製造方法。 The hot rolling according to claim 1 , wherein the reduction temperature is 750 to 950 ° C., the residence time is 120 to 300 s, and the concentration of H 2 or CO is 10% to 75%. A method for producing a product obtained by direct cold rolling, reduction annealing, and hot dipping without pickling. 前記還元温度が800℃、850℃または900℃であり、滞留時間が180s、240sまたは300sであり、H2またはCOの濃度が15%、25%または30%であることを特徴とする、請求項に記載の熱間圧延、酸洗不要の直接冷間圧延、還元アニール、および溶融めっきにより得られた製品の製造方法。 The reduction temperature is 800 ° C., 850 ° C. or 900 ° C., the residence time is 180 s, 240 s or 300 s, and the concentration of H 2 or CO is 15%, 25% or 30%, Item 2. A method for producing a product obtained by hot rolling according to Item 1 , direct cold rolling without pickling, reduction annealing, and hot dipping. 還元アニール工程において、反応に関与しないH2またはCOがサイクルされることを特徴とする、請求項に記載の熱間圧延、酸洗不要の直接冷間圧延、還元アニール、および溶融めっきにより得られた製品の製造方法。 In the reduction annealing step, H 2 or CO that does not participate in the reaction is cycled, obtained by hot rolling according to claim 1 , direct cold rolling without pickling, reduction annealing, and hot dipping. Manufacturing method for finished products. 溶融めっき工程において、得られた溶融めっき製品が溶融純亜鉛めっき、溶融亜鉛―アルミニウム―マグネシウムめっき、溶融アルミニウム―亜鉛めっきまたは溶融アルミニウム―シリコンめっき製品を含むことを特徴とする、請求項1に記載の熱間圧延、酸洗不要の直接冷間圧延、還元アニール、および溶融めっきにより得られた製品の製造方法。   The hot-dip galvanized product obtained in the hot-dip plating step includes hot-dip galvanized, hot-dip zinc-aluminum-magnesium plated, hot-dip aluminum-zinc plated or hot-dip aluminum-silicon plated products. Of products obtained by hot rolling, direct cold rolling without pickling, reduction annealing, and hot dipping.
JP2016570338A 2014-05-30 2015-01-19 Manufacturing method of products obtained by hot rolling, direct cold rolling without pickling, reduction annealing, and hot dipping Active JP6498219B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201410239138.7 2014-05-30
CN201410239138.7A CN105297033A (en) 2014-05-30 2014-05-30 Production method of hot-rolling, pickling-free, direct-cold-rolling and reduction annealing hot-dip product
PCT/CN2015/070983 WO2015180500A1 (en) 2014-05-30 2015-01-19 Method for producing hot-plated product by hot rolling, direct cold rolling without pickling, and reduction annealing

Publications (2)

Publication Number Publication Date
JP2017523301A JP2017523301A (en) 2017-08-17
JP6498219B2 true JP6498219B2 (en) 2019-04-10

Family

ID=54698041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016570338A Active JP6498219B2 (en) 2014-05-30 2015-01-19 Manufacturing method of products obtained by hot rolling, direct cold rolling without pickling, reduction annealing, and hot dipping

Country Status (6)

Country Link
JP (1) JP6498219B2 (en)
KR (1) KR102337241B1 (en)
CN (1) CN105297033A (en)
DE (1) DE112015002553T5 (en)
RU (1) RU2690866C2 (en)
WO (1) WO2015180500A1 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105803331B (en) * 2016-05-31 2018-01-12 武汉钢铁有限公司 A kind of directly AHSS plate of galvanizing and preparation method thereof
CN106909723B (en) * 2017-02-16 2020-03-31 燕山大学 Method for optimally setting relation curve between emulsion flow and rolling speed in cold rolling process
CN106967991A (en) * 2017-02-24 2017-07-21 谢松甫 Iron wire degreasing, the method for impurity elimination and its application in zinc-plated production technology
CN107236853B (en) * 2017-06-26 2019-03-26 武汉钢铁有限公司 Short route rolls zinc-aluminum-magnesium coating hot forming steel and its manufacturing method
CN107649522A (en) * 2017-10-31 2018-02-02 攀钢集团攀枝花钢铁研究院有限公司 Surface quality of hot rolled steel coils control method
CN107858619A (en) * 2017-11-16 2018-03-30 宋德兴 A kind of loose mail hot-dip galvanizing technique
US11208711B2 (en) 2018-11-15 2021-12-28 Psitec Oy Method and an arrangement for manufacturing a hot dip galvanized rolled high strength steel product
CN111334733A (en) * 2020-04-30 2020-06-26 苏州鑫吴钢结构工程有限公司 Galvanizing method for steel pipe with support
CN112417639B (en) * 2020-09-15 2023-08-04 东北大学 Digital analysis method for structural evolution of hot-rolled low-carbon steel oxide scale
CN113136537B (en) * 2021-03-31 2022-10-04 首钢京唐钢铁联合有限责任公司 Method for improving surface quality of hot-base galvanized strip steel
CN113088855A (en) * 2021-03-31 2021-07-09 山东钢铁集团日照有限公司 High-speed stable production method of CQ-grade thin-specification galvanized sheet
CN113930599B (en) * 2021-09-24 2023-06-13 首钢集团有限公司 Manufacturing method for improving galvanized HSLA (high speed polyethylene) tissue uniformity
CN114480805A (en) * 2021-12-09 2022-05-13 鞍钢股份有限公司 Method for controlling surface quality of hot-rolled O5 plate
CN115074623B (en) * 2022-06-16 2023-08-25 唐山钢铁集团高强汽车板有限公司 Zinc-plated hot stamping steel resistant to hydrogen induced cracking and production method thereof
CN115449712B (en) * 2022-09-14 2023-06-09 浙江东南新材科技有限公司 High-strength pickled plate and preparation method thereof
CN116103597A (en) * 2023-03-15 2023-05-12 燕山大学 Method for forecasting temperature change in zinc pot in hot dip aluminum-zinc plating process

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54133438A (en) * 1978-04-08 1979-10-17 Nippon Steel Corp Manufacture of plated steel sheet
JPS583924A (en) * 1981-06-30 1983-01-10 Nippon Steel Corp Production of cold rolled steel plate
CN1017352B (en) * 1988-12-12 1992-07-08 武汉钢铁公司 Production technology for cold-rolled biphase steel
JPH1060613A (en) * 1996-08-20 1998-03-03 Nkk Corp Galvannealed steel sheet excellent in powdering resistance and plating adhesion and its production
JP3471560B2 (en) * 1997-04-22 2003-12-02 株式会社神戸製鋼所 Manufacturing method of hot-dip galvanized steel sheet with excellent plating adhesion
US6068887A (en) * 1997-11-26 2000-05-30 Kawasaki Steel Corporation Process for producing plated steel sheet
KR100368551B1 (en) * 1998-12-29 2003-03-28 주식회사 포스코 Manufacturing method of high speed hot dip galvanized hot rolled steel sheet
KR100905653B1 (en) * 2002-12-27 2009-06-30 주식회사 포스코 Preparing method of non-pickling galvanized hot-rolled steel sheet with excellent coating adhesion
EP2143816B1 (en) * 2007-04-11 2020-02-26 Nippon Steel Corporation Hot dip plated high-strength steel sheet for press forming use excellent in low-temperature toughness and process for production thereof
RU2361935C1 (en) * 2008-01-09 2009-07-20 Открытое акционерное общество "Северсталь" (ОАО "Северсталь") Manufacturing method of hot-galvanised rolled metal of heavy duty
JP5391607B2 (en) * 2008-08-05 2014-01-15 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet with excellent appearance and method for producing the same
JP2010222676A (en) * 2009-03-25 2010-10-07 Sumitomo Metal Ind Ltd Hot dip galvannealed steel sheet and method for producing the same
CN101624676B (en) * 2009-07-15 2011-02-16 东北大学 Hot-rolled beam steel with a tensile strength of more than 710MPa and preparation method thereof
CN101948991B (en) * 2010-09-21 2012-12-05 浙江华达钢业有限公司 Corrosion-resistant hot galvanized steel plate and preparation method thereof
CN101935802B (en) * 2010-09-30 2012-07-04 攀钢集团钢铁钒钛股份有限公司 Method for producing 490MPa level acid-washing-free hot rolled steel plate
CN102172622A (en) * 2011-01-29 2011-09-07 首钢总公司 Production method of black steel for 510L automobile frame
WO2013047739A1 (en) * 2011-09-30 2013-04-04 新日鐵住金株式会社 High-strength hot-dip galvanized steel sheet with excellent mechanical cutting characteristics, high-strength alloyed hot-dip galvanized steel sheet, and method for producing said sheets
CN102586702A (en) * 2012-02-15 2012-07-18 河北钢铁股份有限公司邯郸分公司 Black surface steel production method with using condition of roll forming oiling-free process
CN102560288A (en) * 2012-02-15 2012-07-11 河北钢铁股份有限公司邯郸分公司 Production method of black rust steel under service conditions of punch forming with oil coating process

Also Published As

Publication number Publication date
RU2016152001A3 (en) 2018-11-08
DE112015002553T5 (en) 2017-03-23
KR102337241B1 (en) 2021-12-09
WO2015180500A1 (en) 2015-12-03
KR20170010794A (en) 2017-02-01
JP2017523301A (en) 2017-08-17
CN105297033A (en) 2016-02-03
RU2016152001A (en) 2018-07-03
RU2690866C2 (en) 2019-06-06

Similar Documents

Publication Publication Date Title
JP6498219B2 (en) Manufacturing method of products obtained by hot rolling, direct cold rolling without pickling, reduction annealing, and hot dipping
CN102312167B (en) High-strength hot rolled steel plate for double-sided enamel and manufacturing method thereof
CN105537311B (en) A kind of copper strips production technology for automobile contact
CN106244967B (en) Cold-rolling of steel plate coating integration produces unit and its production technology
CN110004354A (en) Ferrite-group stainless steel cold-rolled steel sheet and its manufacturing method
CN110359001A (en) A kind of process and its equipment for producing think gauge hot substrate and having colored galvanizing production
RU2701242C2 (en) Method of making hot-plated articles from thin steel strip directly from molten steel without etching
KR100260225B1 (en) The method of hot high tension zinc plating with reduced unplated portions
CN112126855A (en) Production method of cold-rolled weather-resistant steel with yield strength of more than 310MPa
CN105220101B (en) The method for exempting from pickling hot dip sheet band product is directly produced by molten steel
CN111549307A (en) Production process of hot-dip aluminum-plated silicon steel plate
KR101543913B1 (en) Apparatus for alloy plated steel sheet having excellent surface appearance and method for the same
CN109797347A (en) A kind of 400MPa grades of floor support plate industry hot radical is without spangle high-strength galvanizing plate and its production method
CN105215053B (en) The production method of pickling electroplated product is exempted from hot rolling
CN105543750A (en) Acid washing-free direct hot galvanizing method of hot-rolled strip steel
CN105268740A (en) Production method for hot rolling pickling-free hot-dip product direct reduction
JP3634257B2 (en) Ni diffusion-plated steel sheet manufacturing method and steel sheet
CN215251102U (en) Ultrathin hot-base non-spangle hot-galvanized sheet production unit
KR20140001557A (en) Method for manufacturing alloy plated steel sheet having excellent surface appearance
CN114130842A (en) Method for removing oxide skin of high Cr-Si alloyed 1000-plus 1800 MPa-level hot forming steel
CN102690937B (en) Production method of steel for thin-specification sand-spraying-free and shot-blasting-free structure
CN113549837A (en) Production method of SS50-1 high-strength galvanized plate
JP3580541B2 (en) Surface-treated steel sheet excellent in workability and corrosion resistance of processed part and method for producing the same
CN210394491U (en) Continuous pickling leveling galvanizing combined unit
CN114908288B (en) Super-thick hot-rolled pickled plate and preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190312

R150 Certificate of patent or registration of utility model

Ref document number: 6498219

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250