JP6496895B2 - Mechanical anchor contact state detection apparatus and method - Google Patents

Mechanical anchor contact state detection apparatus and method Download PDF

Info

Publication number
JP6496895B2
JP6496895B2 JP2014217885A JP2014217885A JP6496895B2 JP 6496895 B2 JP6496895 B2 JP 6496895B2 JP 2014217885 A JP2014217885 A JP 2014217885A JP 2014217885 A JP2014217885 A JP 2014217885A JP 6496895 B2 JP6496895 B2 JP 6496895B2
Authority
JP
Japan
Prior art keywords
anchor
probe
contact
bolt
contact state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014217885A
Other languages
Japanese (ja)
Other versions
JP2016085115A (en
Inventor
筒井透
Original Assignee
有限会社ツツイ電子
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限会社ツツイ電子 filed Critical 有限会社ツツイ電子
Priority to JP2014217885A priority Critical patent/JP6496895B2/en
Publication of JP2016085115A publication Critical patent/JP2016085115A/en
Application granted granted Critical
Publication of JP6496895B2 publication Critical patent/JP6496895B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

本発明は、コンクリート、岩盤、構造体などの母材に穴を開け、この穴に挿入した、雄ねじ及び雌ねじアンカーを摩擦力によって保持する、ホールインアンカー、メカニカルアンカーの施工品質を簡便に計測する検査装置に関するものである。
経年した、アンカーに対しては、ゆるみ、腐食などの劣化が発生するが、母材との接触状態を検知することにより、劣化診断に利用することが出来る。
The present invention simply measures the construction quality of hole-in anchors and mechanical anchors, in which holes are drilled in a base material such as concrete, bedrock, structure, etc., and the male and female screw anchors inserted into the holes are held by frictional force. The present invention relates to an inspection device.
Aged anchors are subject to deterioration such as loosening and corrosion, but can be used for deterioration diagnosis by detecting the contact state with the base material.

トンネルの天井板を固定しているアンカーボルトが抜け落ち、走行中の車両に落下、多数の死傷者が出て、復旧対策のためにかなりの時間が道路通行止めになり人命だけでなく、多大な経済的損失をもたらした。アンカーボルトの打ち込み、固定不良が、安全性を損なうことは予想されていて、打設時の注意事項が明示されている、打音による検査方法以外に方法が無く、打音法は抜け落ち寸前のような極端な場合は有効性が認められるものの、代わる方法が存在していないため、非破壊で有効な技術が求められている。
本発明は、以上のような状況に鑑みて、考案されたものであり、新設打設の施工品質と既設の老朽化検査に有効である。
Anchor bolts that fix the ceiling plate of the tunnel fall off, fall into a running vehicle, a large number of casualties appear, and a considerable amount of time is closed for road restoration, not only human life but also a great economy Resulting in loss. Improper anchor bolt driving and fixing are expected to impair safety, and there are no methods other than the inspection method by hammering, in which precautions for placing are clearly stated. In such extreme cases, the effectiveness is recognized, but there is no alternative method, so a non-destructive and effective technique is required.
The present invention has been devised in view of the situation as described above, and is effective for the construction quality of newly-placed placement and the existing aging inspection.

特開2008−268116号公報JP 2008-268116 A

鉄道において、金属部品の取り付けゆるみ、車輪のひび割れ等の点検に打音法が用いられる、打音法とは、鉄部をハンマーで打撃して、発生する打撃音の高低でひび割れの有無を検知しようとする点検手法である。動作原理はハンマー打撃によって表面振動が起こり、ひび割れがある場合は表面長さが大きくなるために振動周波数が低くなり、聴覚検知できるというものである。打設されたアンカーボルトの、ゆるみを同様の手法で検知しようとすると、アンカーボルトは埋設されて、表面が固定されており、表面振動が阻害される。また、アンカーボルトには取り付けられた付属物があり、この付属物は、空中露出するため、表面振動を起こし、打音により発生した音の多くは、検査対象のアンカーボルトではなく、取り付けられた付属物から発生している。 In railways, the hammering method is used to check for loose mounting of metal parts, cracks on wheels, etc. The hammering method is used to hit the iron with a hammer and detect the presence or absence of cracks in the level of the generated hammering sound. This is an inspection method to be attempted. The principle of operation is that surface vibration is caused by hammering, and if there is a crack, the surface length is increased, so the vibration frequency is lowered and auditory detection is possible. If it is attempted to detect the looseness of the anchor bolts that have been laid, the anchor bolts are buried and the surface is fixed, and surface vibrations are hindered. Also, the anchor bolt has an attached accessory, and since this accessory is exposed in the air, it causes surface vibration, and most of the sound generated by the hitting sound is not attached to the anchor bolt to be inspected. Generated from the appendages.

聴音によらず、アンカーボルトに加速度センサー、またはAEセンサーを取り付け、ハンマー打撃による振動を受信して、FFTなどの手法を用いて共振特性を求め、卓越した受信振動周波数を比較してアンカーボルトのゆるみ、腐食を検出しようとする方法が試みられている。
一見合理的な手法と思われるが、打撃によって発生する振動周波数が低い、すなわち波長が長いため数十cmから1m程度のアンカーボルトでは共振は得られず、得られたとしている振動は、センサーの取り付け部のぐらつき振動であったり、空中露出部の振動や、付属物の振動を誤認している例が大半である。
Regardless of the listening sound, an acceleration sensor or AE sensor is attached to the anchor bolt, the vibration caused by hammering is received, the resonance characteristics are obtained using a technique such as FFT, and the excellent received vibration frequency is compared to compare the anchor bolt Attempts have been made to detect loosening and corrosion.
At first glance, this seems to be a reasonable method, but the vibration frequency generated by the impact is low, that is, the wavelength is long, so resonance cannot be obtained with an anchor bolt of about several tens of centimeters to 1 meter. In most cases, the vibration of the mounting part, the vibration of the exposed part in the air, and the vibration of the accessory are mistaken.

解決を求められる条件は、検査対象アンカーボルトが数ヘルツ〜数キロヘルツの可聴振動数で振動しやすい付属構造物が取り付けられた状態で、更にアンカーボルトがぐらつきのない状態であり、コンクリート、岩盤等に取り付いている状態であって、アンカーボルトの引き抜き耐力が劣化しているものを分別することである。 The condition that requires solution is that the anchor bolt to be inspected is attached with an attached structure that easily vibrates at an audible frequency of several hertz to several kilohertz, and that the anchor bolt is not wobbled, such as concrete, bedrock, etc. It is the state which is in the state where it is attached to, and the pulling-out strength of the anchor bolt is deteriorated.

アンカーボルトを穴に固定する拡張摩擦部位頭部に接触する有効面積を確保するために、探触子形状を最適にした。
アンカーボルト固定穴壁面とボルト固定接触面界面から得られる、反射信号を比較解析する超音波送受信装置を設けた。
拡張摩擦部位頭部が埋没している場合、探触子との音響結合を確保するために円筒形、または円筒分割形状中間媒質を設けた。
In order to secure an effective area to contact the head of the extended friction part where the anchor bolt is fixed to the hole, the probe shape was optimized.
An ultrasonic transmission / reception device for comparing and analyzing reflected signals obtained from the anchor bolt fixing hole wall surface and the bolt fixing contact surface interface was provided.
When the extended friction part head is buried, a cylindrical or cylindrical divided intermediate medium is provided to ensure acoustic coupling with the probe.

メカニカルアンカーの打設不良に関して、主として発生する原因は、打撃不足によるコンクリートなどの固定支持媒体への密着不足により、引き抜き強度が減少しメカニカルアンカーとしての必要機能を発揮できないことれある、本発明によると打設後において、非破壊にメカニカルアンカーの機能良否が簡易に判定できる。
メカニカルアンカーの機能良否とは、設計引き抜き強度と打設後の引き抜き強度の差であり、差が小さいほど良である。
Regarding the mechanical anchor placement failure, the main cause is that due to insufficient adhesion to a fixed support medium such as concrete due to insufficient hammering, the pullout strength is reduced and the necessary function as a mechanical anchor may not be exhibited. After the placement, it is possible to easily determine whether the mechanical anchor is functioning properly or not.
The mechanical quality of the mechanical anchor is the difference between the design pullout strength and the pullout strength after placement, and the smaller the difference, the better.

打設不良要因の一つに、コンクリートなどの固定支持媒体の穴径が大きい場合、穴内面の荒れ、清掃不良等がある、メカニカルアンカーに接着剤を併用する時があるが、本発明は上記固定支持体とアンカーとの接触状態を検知するので、アンカーの機能良否が簡易に判定できる。
新設打設時においては、アンカー施工状態の管理が容易となる、また経年した既設アンカーにおいては、腐朽、ゆるみが発生するが、劣化診断装置として、機能するため、大量に用いられている、高速道路遮音壁、トンネルのジェットファン、照明器具などの付属物取り付け安全性に貢献すると共に非破壊で簡便であるという効果を持つため、大きな経済効果が期待できる。
探触子を径方向拡張部位頭部に接触させることを特徴とするため、対象ボルトが雄ねじ、雌ねじに限定されず、径方向拡張手段に依存することがない。
One of the causes of poor placement is when the hole diameter of a fixed support medium such as concrete is large, there are times when the inner surface of the hole is rough, poor cleaning, etc., the adhesive is used together with the mechanical anchor. Since the contact state between the fixed support and the anchor is detected, it is possible to easily determine whether the anchor function is good or bad.
When installing new equipment, it becomes easy to manage the state of anchor construction, and the existing anchors that have been aged will decay and loosen, but they are used in large quantities because they function as deterioration diagnosis devices. A great economic effect can be expected because it contributes to the safety of attaching accessories such as road noise barriers, tunnel jet fans, and lighting fixtures, and is also non-destructive and simple.
Since the probe is brought into contact with the head of the radially expanded portion, the target bolt is not limited to the male screw and the female screw, and does not depend on the radially extending means.

雄ねじ型ボルトの打設方法で、打設前を解説した説明図である。It is explanatory drawing explaining the before setting by the setting method of a male thread type | mold bolt. 雄ねじ型ボルトの打設方法で、打設後を解説した説明図である。It is explanatory drawing explaining after the placement by the placement method of the external thread type bolt. 雌ねじ型ボルトの打設方法で、打設前を解説した説明図である。It is explanatory drawing explaining the before setting by the setting method of a female thread type | mold bolt. 雌ねじ型ボルトの打設方法で、打設後を解説した説明図である。It is explanatory drawing explaining the after-placement by the placement method of an internal thread type | mold bolt. ピン打ち込み雄ねじ型ボルトの打設方法で、打設前を解説した説明図である。It is explanatory drawing explaining before driving | running | working by the driving | running method of a pin driving | operation male screw type volt | bolt. ピン打ち込み雄ねじ型ボルトの打設方法で、打設後を解説した説明図である。It is explanatory drawing explaining after the driving | running | working by the driving | running method of a pin drive-in male screw type volt | bolt. 雄ねじ型ボルトの打設後、半月型探触子をスリーブに装着した説明図である(実施例1)。(Example 1) which is the explanatory view which attached the half moon type probe to the sleeve after placement of a male screw type bolt. 雄ねじ型ボルトの打設後、円筒型探触子をスリーブに装着した説明図である(実施例2)。(Example 2) which is the explanatory view which attached the cylindrical probe to the sleeve after placement of the external thread type bolt. 雄ねじ型ボルトの打設後、斜角型探触子を管状中間媒体を介してスリーブに装着した説明図である(実施例3)。(Example 3) which is the explanatory view which attached the bevel type | mold probe to the sleeve through the tubular intermediate medium after the male thread type | mold bolt was laid. 雌ねじ型ボルトの打設後、半月型探触子をスリーブに装着した説明図である(実施例4)。(Example 4) which is the explanatory drawing which attached the half-moon type probe to the sleeve after placement of a female screw type bolt. 雌ねじ型ボルトの打設後、円筒型探触子をスリーブに装着した説明図である(実施例5)。(Example 5) which is the explanatory view which attached the cylindrical probe to the sleeve after driving of the internal thread type bolt. 雌ねじ型ボルトの打設後、斜角型探触子をスリーブに装着した説明図である(実施例6)。(Example 6) which is the explanatory drawing which attached the bevel type probe to the sleeve after driving of the internal thread type bolt. ピン打ち込み雄ねじ型ボルトの打設後、半月型探触子を頭部に装着した説明図である(実施例7)。(Example 7) which is the explanatory drawing which attached the half-moon type probe to the head after placement of a pin driving male screw type bolt. ピン打ち込み雄ねじ型ボルトの打設後、円筒型探触子を頭部に装着した説明図である(実施例8)。(Example 8) which is the explanatory drawing which attached the cylindrical probe to the head after the driving of the pin driving male screw type bolt. ピン打ち込み雄ねじ型ボルトの打設後、斜角型探触子を頭部に装着した説明図である(実施例9)。(Example 9) which is the explanatory drawing which attached the bevel type | mold probe to the head after the driving | running | working of a pin drive-in male screw type | mold bolt. 半月型探触子の構造を解説した説明図である。It is explanatory drawing explaining the structure of the half moon type probe. 円筒型探触子の構造を解説した説明図である。It is explanatory drawing explaining the structure of the cylindrical probe. 振動子集成、半月型探触子の構造を解説した説明図である。It is explanatory drawing explaining the structure of a vibrator assembly and a half moon type probe. 雄ねじ型ボルトの打設時に、スリーブが埋没、中間媒体でかさ上げした、説明断面図である(実施例10)。(Example 10) which is an explanatory sectional view in which a sleeve was buried and raised with an intermediate medium when a male screw type bolt was placed. 半月型探触子表面に中間媒体を接着した説明図である(実施例11)。(Example 11) which is the explanatory drawing which adhered the intermediate medium to the half moon type probe surface. 接触状態検知装置と探触子接続を解説した図である。It is the figure explaining the contact state detection apparatus and the probe connection. 接触状態検知装置ブロック図である。It is a contact state detection apparatus block diagram. 正常接触状態を示す受信信号波形である。It is a received signal waveform which shows a normal contact state. 不良接触状態を示す受信信号波形である。It is a received signal waveform which shows a bad contact state.

1 雄ねじ型アンカーボルト
2 打ち込み拡張前スリーブ
2a 打ち込み拡張後のスリーブ
3 はかま
4 コンクリート岩盤などの固定支持体の穴
5 ピン打ち込み雄ねじ型ボルトのピン
6 管状伝搬中間媒体
7 斜角探触子
8 半月型探触子
9 半月探触子の支持体
9a 管形状探触子の支持体
10 振動子
10a 円形小振動子
10b 角形小振動子
11 円筒探触子
12 接続コード、コネクタ、半月探触子
13 接続コード、コネクタ、円筒探触子
14 接続コード、コネクタ、斜角探触子
15 接触状態検知装置
DESCRIPTION OF SYMBOLS 1 Male screw type anchor bolt 2 Sleeve 2a before driving expansion 2 Sleeve 3 after driving expansion 4 Hole of fixed support body, such as concrete bedrock 5 Pin driving pin 6 of male screw type bolt Tubular propagation intermediate medium 7 Angle probe 8 Half moon type Probe 9 Half-moon probe support 9a Tube-shaped probe support 10 Transducer 10a Circular small transducer 10b Square small transducer 11 Cylindrical probe 12 Connection cord, connector, half-moon probe 13 Connection Cord, connector, cylindrical probe 14 Connection cord, connector, oblique probe 15 Contact state detection device

メカニカルアンカーは、機能上ねじ形状が雄ねじ、雌ねじの2種類に分けられ、ボルトの細径太径によっても構造に違いがある、このため、アンカー種類ごとに最適な探触子形状と、使用時に必要となる伝搬中間媒体を考案した。 Mechanical anchors are functionally divided into two types of threads, male and female, and there are differences in structure depending on the small diameter and large diameter of the bolt. Therefore, the optimal probe shape for each anchor type and The necessary propagation intermediate medium was devised.

図22は本発明の機能動作を表す、接触状態検知装置ブロック図である。超音波を送受信する送受信部と、着脱交換可能なコネクターによって探触子に接続されている、送信パルスは、スパイク波、パルス幅が可変できる矩形、または、基本周波数と波数が可変可能なバースト波が利用可能であるが、周波数純度が高いバースト波を用いることが望ましい。
10振動子は圧電型セラミックが形状が小さく最適であるが、磁歪型振動子も利用可能である。
FIG. 22 is a block diagram of the contact state detection device showing the functional operation of the present invention. The transmission pulse is connected to the probe by a transceiver that transmits and receives ultrasonic waves and a detachable connector. The transmission pulse is a spike wave, a rectangle with variable pulse width, or a burst wave with variable fundamental frequency and wave number. However, it is desirable to use a burst wave with high frequency purity.
The 10 vibrators are optimally made of a piezoelectric ceramic, but a magnetostrictive vibrator can also be used.

図22に示す超音波送受信部と本実施例で示した、探触子から得られる受信信号は、コンクリート、岩盤、金属体などの固形固定支持体表面とアンカーボルトの機械接触面図から壁面微小信号と多重信号の混合した信号が受信される、図23は正常接触状態を示した図であり、信号強度、距離方向への尾引きが小さい特徴を持つ。 The received signal obtained from the probe shown in FIG. 22 and the ultrasonic transmission / reception unit shown in FIG. 22 is obtained from the surface of a solid support such as concrete, rock, metal, etc. FIG. 23 is a diagram showing a normal contact state in which a mixed signal of a signal and a multiplexed signal is received, and has a characteristic that the signal strength and tailing in the distance direction are small.

図24は不良接触状態の代表的受信波形である。信号強度、距離方向への尾引きが大きい特徴を持つ。信号強度が最大位置が、探触子とスリーブあるいは、ボルトの先端に該当し、得られる受信信号は反射時間であるが、あらかじめ推定した音速との積を2で割った数値が距離に該当するので、スリーブ、ボルトの長さを求めることが出来る。
図23,図24の横軸は距離に換算表示した値である、縦軸は対数スケールであり、リニアースケールに比較して小さな信号は大きく表示されている。
FIG. 24 shows a typical received waveform in a poor contact state. The signal strength and the tailing in the distance direction are significant. The position where the signal strength is maximum corresponds to the tip of the probe and the sleeve or bolt, and the obtained reception signal is the reflection time, but the product of the product of the estimated sound speed divided by 2 corresponds to the distance. Therefore, the length of the sleeve and bolt can be obtained.
The horizontal axis of FIGS. 23 and 24 is a value converted into a distance, the vertical axis is a logarithmic scale, and a small signal is displayed larger than the linear scale.

判定方法は、同じ形状のアンカーボルトで校正パターンを、図23正常接触状態を示す受信信号波形、図24不良接触状態を示す受信信号波形、を波形パターンメモリーに参照信号として記録しておく、対象被測定アンカーボルトに探触子を接触し、受信パターンを得た後、波形パターン比較部で、あらかじめ記録されてある参照波形パターンを順次読み出し、差分を比較して、判定出力を得る。 The determination method is to record the calibration pattern with the anchor bolt of the same shape, the received signal waveform showing the normal contact state in FIG. 23, and the received signal waveform showing the bad contact state in FIG. 24 as a reference signal in the waveform pattern memory. After the probe is brought into contact with the anchor bolt to be measured to obtain the reception pattern, the waveform pattern comparison unit sequentially reads the reference waveform patterns recorded in advance, compares the differences, and obtains a determination output.

図22の波線で囲まれた部分はハードウエアーでも実現可能であるが、コンピューターとソフトウエアーで容易に実現出来る、内容は波形マッチングのソフト処理であるので、記載を省略した。 The portion surrounded by the wavy line in FIG. 22 can be realized by hardware, but can be easily realized by a computer and software. The content is a software processing of waveform matching, and thus the description is omitted.

図23は正常接触状態を示す受信信号波形である、図7雄ねじ型ボルトを打設後、半月型探触子をスリーブに接触させて収録した典型的な波形パターンで、多重反射信号の距離方向の尾引きが少ない、良好接触状態比較参照信号として用いることが出来る。
図24は不良接触状態を示す受信信号波形である、多重反射信号の距離方向の尾引きが大きい、波形パターンは不良接触状態比較参照信号として用いることが出来る。
図23,図24の波形は模式図ではなく、実際収録した波形であり、目視してもその違いは明らかである。図22の波形パターンメモリーに記録された、多種のボルトに対する、同様の、良否波形パターンがメモリーに記録されており、差分を比較して判定される。
FIG. 23 shows a received signal waveform indicating a normal contact state. FIG. 7 shows a typical waveform pattern recorded after placing a male screw-type bolt and contacting a half-moon type probe with a sleeve. Can be used as a good contact state comparison reference signal.
FIG. 24 shows a received signal waveform indicating a bad contact state. A waveform pattern having a large tail in the distance direction of the multiple reflection signal can be used as a bad contact state comparison reference signal.
The waveforms in FIGS. 23 and 24 are not schematic diagrams, but are actually recorded waveforms, and the difference is clear even when visually observed. Similar pass / fail waveform patterns for various bolts recorded in the waveform pattern memory of FIG. 22 are recorded in the memory, and the determination is made by comparing the differences.

実施例に図示された探触子は、接続コードを介して超音波送受信装置に接続され、受信された微小反射信号を表示部に表示すると共に、記録部で記録され、判定解析部で、反射信号の各距離ごとの信号強度を判定して、メカニカルアンカーと支持体との接触状態を検知する、実施例は探触子以降共通であるので、図示することを省略した。
図21が接触状態検知装置と探触子接続を解説した図である。15接触状態検知装置に実施例に示した探触子が接続コードを介して接続され、コネクターで差し替え可能な構造である。
メカニカルアンカーボルトに探触子を装着する際には、P波であればゼリー状の伝搬媒質、SH波であれば、せん断応力を持つ粘性伝搬媒質を塗布した後、探触子を接触するのは、一般的な超音波計測と同様である。
The probe illustrated in the embodiment is connected to the ultrasonic transmission / reception device via a connection cord, and displays the received minute reflection signal on the display unit, and is recorded by the recording unit, and reflected by the determination analysis unit. The signal intensity for each distance of the signal is determined, and the contact state between the mechanical anchor and the support is detected. Since the examples are common after the probe, the illustration is omitted.
FIG. 21 is a diagram explaining the contact state detection device and probe connection. The probe shown in the embodiment is connected to the 15-contact state detection device via a connection cord and can be replaced with a connector.
When attaching a probe to a mechanical anchor bolt, if a P wave is applied, a jelly-like propagation medium is applied. If an SH wave is applied, a viscous propagation medium having a shear stress is applied and then the probe is contacted. Is the same as general ultrasonic measurement.

図1は太径雄ねじ型メカニカルアンカーを、4打設穴に挿入した状態である、2打ち込み拡張前スリーブは拡張しておらず、4打設穴内面には接触していない。   FIG. 1 shows a state in which a large-diameter male screw type mechanical anchor is inserted into the four driving holes, and the sleeve before two driving expansion is not expanded and is not in contact with the inner surface of the four driving holes.

図2は図1アンカーの打設完了状態を示している、図1の2打ち込み前拡張ボルトスリーブを、同じ口径の筒状治具で打撃することにより、3はかま、と衝突し、スリーブ先端がスリット根もとで径方向に拡張して、2a打ち込み拡張後のスリーブ形状に変形して、4打設穴内面と接触する。
この、接触状況が、強固であればアンカー機能は良好であり、1雄ねじ型アンカーボルトの引抜き耐力は設計値を満たした状況にある。
FIG. 2 shows a state in which the anchor has been placed in FIG. 1. By striking the expansion bolt sleeve 2 in FIG. 1 with a cylindrical jig having the same diameter, 3 collides with the hook, and the tip of the sleeve is It expands in the radial direction at the base of the slit, deforms into a sleeve shape after being driven and expanded by 2a, and comes into contact with the inner surface of the four driving holes.
If this contact state is strong, the anchor function is good, and the pull-out strength of the single male thread type anchor bolt satisfies the design value.

図7は本実施例1の半月型探触子をスリーブに装着した説明図である。8半月型探触子と図示省略されている接続ケーブルで、超音波送受信装置に接続されている。2a打ち込み拡張後のスリーブ下端で反射した超音波は多重反射を繰り返し、アンカーと支持体との接触状態を反映した受信信号の特徴を呈する、図23が正常接触状態を示す典型受信信号波形である、図24が不良接触を示す受信信号波形である、4固定支持体の穴と2a打ち込み拡張後のスリーブとの接触が減少するほど多重反射信号レベルが増大する。 FIG. 7 is an explanatory diagram in which the half-moon type probe of the first embodiment is mounted on a sleeve. It is connected to the ultrasonic transmission / reception apparatus by an 8 crescent probe and a connection cable (not shown). The ultrasonic wave reflected by the lower end of the sleeve after the 2a driving expansion repeats multiple reflections and exhibits the characteristics of the received signal reflecting the contact state between the anchor and the support. FIG. 23 is a typical received signal waveform showing the normal contact state. FIG. 24 shows a received signal waveform indicating a bad contact, and the multiple reflection signal level increases as the contact between the hole of the 4 fixed support and the sleeve after the 2a driving expansion decreases.

図8は本実施例2の円筒型探触子をスリーブに装着した説明図である。11が円筒探触子であり、その構造は図17である、10振動子と2a打ち込み拡張後のスリーブとの接触面積が大きくなるため、高感度で送受信できる利点があり、1回の接触でにスリーブ全周の接触状態を評価することが出来る、2aスリーブの接触面にキズがあったり、荒れていると、11が円筒探触子との接触が妨げられ、接触面積の拡大が反面感度低下と安定性を阻害するという欠点もある。 FIG. 8 is an explanatory diagram in which the cylindrical probe of the second embodiment is mounted on a sleeve. Reference numeral 11 denotes a cylindrical probe, and the structure thereof is as shown in FIG. 17. Since the contact area between the 10 transducers and the sleeve 2a after being expanded is large, there is an advantage that transmission / reception can be performed with high sensitivity. The contact state of the entire circumference of the sleeve can be evaluated. If the contact surface of the 2a sleeve is scratched or rough, contact with the cylindrical probe 11 is obstructed, and the contact area is enlarged. There is also the disadvantage of hindering degradation and stability.

図9は雄ねじ型ボルトの打設後、7斜角型探触子を6管状伝搬中間媒体を介してスリーブに装着した説明図である。実施例1、実施例2では探触子から送受信される信号波はP波であるが、実施例3では、SV波、SH波が利用可能である。 FIG. 9 is an explanatory diagram in which a 7-bevel probe is mounted on a sleeve via a 6-pipe propagation intermediate medium after the male screw bolt is placed. In the first and second embodiments, the signal wave transmitted and received from the probe is a P wave. In the third embodiment, an SV wave and an SH wave can be used.

図3は雌ねじ型ボルトの打設方法で、打設前を解説した説明図である。2スリーブ上端を平面ハンマーで打ち込むことによって、3はかま、と衝突し、スリーブ先端がスリット根もとで径方向に拡張して、2a打ち込み拡張後のスリーブ形状に変形して、4打設穴内面と接触固着する。
スリーブ内面にネジが切られている所が実施例1と異なるが、スリーブ拡張構造は同じである。
図10は雌ねじ型ボルトの打設後、8半月型探触子を2aスリーブに装着した説明図である、得られる信号波形は、実施例1と同等であるので解説は省略する。
FIG. 3 is an explanatory diagram explaining the pre-casting method by the female screw-type bolt driving method. 2 By hitting the upper end of the sleeve with a flat hammer, 3 collides with the hook, the sleeve tip expands in the radial direction at the base of the slit, deforms into the sleeve shape after the 2a drive expansion, Adheres to and sticks to.
Although the place where the screw is cut in the sleeve inner surface is different from the first embodiment, the sleeve expansion structure is the same.
FIG. 10 is an explanatory diagram in which an 8 crescent probe is mounted on the 2a sleeve after the internal thread type bolt is placed. The signal waveform obtained is the same as that of the first embodiment, and the description is omitted.

図11は雌ねじ型ボルトの打設後、11円筒型探触子をスリーブに装着した説明図である。雄ねじボルトの実施例2と同等であるので解説は省略する。 FIG. 11 is an explanatory view in which an 11-cylindrical probe is attached to the sleeve after the female screw-type bolt is placed. Since this is the same as the male screw bolt of Example 2, the explanation is omitted.

図12は雌ねじ型ボルトの打設後、斜角型探触子をスリーブに装着した説明図である。6管状伝搬中間媒体を介してスリーブ頭部と音響結合する構造であり、SV波、SH波が利用可能である。 FIG. 12 is an explanatory view in which the bevel type probe is mounted on the sleeve after the female screw type bolt is placed. The structure is acoustically coupled to the sleeve head via six tubular propagation intermediate media, and SV waves and SH waves can be used.

図13はピン打ち込み雄ねじ型ボルトの打設後、半月型探触子を頭部に装着した説明図である。5ピン打ち込み雄ねじ型ボルトのピンを避けて
1雄ねじ型アンカーボルト頭部と音響結合する、半月の曲率は、5のピン頭部と1雄ねじ型アンカーボルト頭部を勘案して決定する。
FIG. 13 is an explanatory view in which a half-moon type probe is mounted on the head after the pin driving male screw type bolt is driven. The curvature of the half moon, which avoids the pin of the 5-pin driven male screw type bolt and is acoustically coupled with the head of the 1 male screw type anchor bolt, is determined in consideration of the head of the 5 pin and the male screw type anchor bolt head.

図14はピン打ち込み雄ねじ型ボルトの打設後、円筒型探触子を頭部に装着した説明図である。5ピン打ち込み雄ねじ型ボルトのピンを避けて11円筒型探触子が1雄ねじ型アンカーボルト頭部全面と接触して音響結合する構造である。 FIG. 14 is an explanatory view in which a cylindrical probe is mounted on the head after the pin driving male screw type bolt is driven. The 11-cylindrical probe is in contact with the entire surface of the head of the male screw type anchor bolt and avoids the pin of the male screw type bolt.

図15はピン打ち込み雄ねじ型ボルトの打設後、斜角型探触子を頭部に装着した説明図である。7斜角探触子を1雄ねじ型アンカーボルト頭部に直接接触することが可能であるので、中間伝搬媒体は不要である。 FIG. 15 is an explanatory view in which a bevel type probe is mounted on the head after the pin driving male screw type bolt is placed. Since the 7-bevel probe can be in direct contact with the head of one male threaded anchor bolt, no intermediate propagation medium is required.

探触子の構造を説明する、図16は半月型探触子の構造を解説した斜図である、9半月探触子の支持体に10振動子がバッキング材を介して接着されている、振動子表面は保護膜が接着されている。 FIG. 16 is a perspective view illustrating the structure of the half-moon probe, and 10 transducers are bonded to the support of the nine-half moon probe via a backing material. A protective film is bonded to the surface of the vibrator.

図17は円筒型探触子の構造を解説した斜図である、9a管形状探触子の支持体に10中空振動子がバッキング材を介して接着されている、振動子表面は保護膜が接着されている。 FIG. 17 is a perspective view illustrating the structure of a cylindrical probe, in which a 10 hollow vibrator is bonded to a support of a 9a tube-shaped probe via a backing material, and a protective film is provided on the vibrator surface. It is glued.

図18は振動子集成半月型探触子の構造を解説した振動子面から見た平面図である、半月型探触子は一枚の半月型だけでなく、図18に示す10a円形小振動子、10b角形小振動子で集成し、各振動子を細い電線で並列に接続して構成することも可能である、連続して円形に集成することも可能である。 FIG. 18 is a plan view seen from the transducer surface explaining the structure of the transducer assembly meniscus probe. The half-moon probe is not only a single half-moon type but also a 10a circular small vibration shown in FIG. It is also possible to assemble with a small 10b square small vibrator and connect each vibrator in parallel with a thin electric wire, and it is also possible to assemble in a continuous circle.

図19は雄ねじ型ボルトの打設時に、2aスリーブが、4コンクリート岩盤などの固定支持体の穴に埋没、6中間媒体でかさ上げした、説明断面図である。この状態では、2aスリーブ頭部に探触子を接触することが出来ないため、6管状伝搬中間媒体を挿入し、4コンクリート岩盤などの固定支持体の穴よりかさ上げし、探触子と接触出来るようにした。中間伝搬媒体の材質は、アクリル樹脂、ポリスチレン樹脂音響減衰の小さなものが好ましい。 FIG. 19 is an explanatory cross-sectional view in which a 2a sleeve is buried in a hole of a fixed support body such as a 4 concrete bedrock and raised with 6 intermediate media when a male screw type bolt is placed. In this state, since the probe cannot contact the 2a sleeve head, 6 tubular propagation intermediate media are inserted, raised from the hole of the fixed support such as 4 concrete bedrock, and contacted with the probe. I made it possible. The material of the intermediate propagation medium is preferably an acrylic resin or polystyrene resin having a small acoustic attenuation.

6中間伝搬媒体は管状で説明してあるが、管の径方向の部分分割型として、4コンクリート岩盤などの固定支持体の穴よりかさ上げして、図16半月型探触子を用いても実現できる。 6 The intermediate propagation medium has been described as a tube, but as a partially divided type in the radial direction of the pipe, it is possible to use a half-moon type probe as shown in FIG. realizable.

図20は半月型探触子表面に中間伝搬媒体を接着した説明図である。7中間媒体をあらかじめ予想される陥没長さより長く作成しておくと、6中間伝搬媒体の長さの違うものを用意しておく手間が省けるが、中間伝搬媒体は音響減衰するため、感度低下を招く欠点がある。
図示しないが同様に図17円筒型探触子表面に円筒型中間伝搬媒体を接着することも可能である、中間伝搬媒体の材質は、アクリル樹脂、ポリスチレン樹脂などの音響減衰の小さなものが好ましい。
FIG. 20 is an explanatory diagram in which an intermediate propagation medium is bonded to the surface of the half-moon type probe. 7 If the intermediate medium is created longer than the anticipated depression length, it is possible to save the trouble of preparing a medium with a different length of the 6 intermediate propagation medium. However, since the intermediate propagation medium attenuates the sound, the sensitivity is lowered. There are disadvantages to invite.
Although not shown, a cylindrical intermediate propagation medium can also be adhered to the surface of the cylindrical probe in FIG. 17. The intermediate propagation medium is preferably made of a material having a small acoustic attenuation such as acrylic resin or polystyrene resin.

本発明は土木、建築分野に関する後施工メカニカルアンカーの打設品質管理、既設アンカーの劣化判定を簡便に行うものに関するものであるが、構造体に摩擦固定する構造であれば、機械と部品の締結他広く利用可能性が見込まれる。  TECHNICAL FIELD The present invention relates to a method for performing placement quality control of post-installed mechanical anchors related to the civil engineering and construction fields, and simple determination of deterioration of existing anchors. Other possibilities are expected to be widely used.

Claims (3)

径方向拡張部位を有する機械構造アンカーにおいて、上記アンカーの径方向拡張部位に連続する空中突出部に電気音響変換手段を装着し、上記電気音響変換手段と接続ケーブルを介して接続された超音波送受信装置を用い、上記径方向拡張接触部位固定支持体壁面接触界面から得られる電気信号波形パターンを記録する波形パターンメモリーと、あらかじめ記録されている良否波形パターンと参照比較する波形マッチングソフト処理を行うコンピューター比較部を有して、機械構造アンカーと、固定支持体との接触状態を検知することを特徴とする検知装置。 In a mechanical structure anchor having a radially extending portion, ultrasonic transmission / reception in which an electroacoustic transducer is attached to an aerial protrusion continuous to the radially expanded portion of the anchor and connected to the electroacoustic transducer via a connection cable Using a device, a waveform pattern memory for recording an electric signal waveform pattern obtained from the radially expanded contact portion and the fixed support wall contact interface, and a waveform matching software process for comparing and comparing with a pre-recorded pass / fail waveform pattern A detection device comprising a computer comparison unit for detecting a contact state between a mechanical structure anchor and a fixed support. 請求項1の検知装置を使用し、
アンカーの径方向拡張部位に連続する空中突出部に接触装着する電気音響変換手段の接触面形状が、半月形状または中空円形の振動面を有する電気音響変換手段を上記アンカー空中突出部にゼリー状伝搬媒質あるいはせん断応力を持つ粘性伝搬媒質を塗布接触して、上記アンカーの径方向拡張部位と、固定支持体壁面との接触状態を検知する測定方法。
Using the detection device of claim 1,
Electroacoustic transducer means having a half-moon-shaped or hollow circular vibrating surface in contact with the aerial protrusion continuous with the radially extending portion of the anchor in the aerial protrusion is transmitted in a jelly-like manner to the anchor aerial protrusion. A measurement method in which a medium or a viscous propagation medium having a shear stress is applied and contacted to detect a contact state between the radially expanded portion of the anchor and a fixed support wall surface .
請求項1の、アンカーの径方向拡張部位に連続する空中突出部と、接触装着する電気音響変換手段の間に、円筒中間伝搬媒体または、分割円筒の中間伝搬媒体を有する請求項2の測定方法。























The measuring method according to claim 2, wherein a cylindrical intermediate propagation medium or an intermediate propagation medium of a divided cylinder is provided between the aerial protrusion continuous to the radially extending portion of the anchor and the electroacoustic conversion means to be contact-mounted. .























JP2014217885A 2014-10-26 2014-10-26 Mechanical anchor contact state detection apparatus and method Active JP6496895B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014217885A JP6496895B2 (en) 2014-10-26 2014-10-26 Mechanical anchor contact state detection apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014217885A JP6496895B2 (en) 2014-10-26 2014-10-26 Mechanical anchor contact state detection apparatus and method

Publications (2)

Publication Number Publication Date
JP2016085115A JP2016085115A (en) 2016-05-19
JP6496895B2 true JP6496895B2 (en) 2019-04-10

Family

ID=55972849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014217885A Active JP6496895B2 (en) 2014-10-26 2014-10-26 Mechanical anchor contact state detection apparatus and method

Country Status (1)

Country Link
JP (1) JP6496895B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6555801B2 (en) * 2015-03-30 2019-08-07 株式会社ケー・エフ・シー Maintenance method for attachments in concrete structures
JP7463031B2 (en) 2020-03-18 2024-04-08 株式会社電業社機械製作所 Pull-out test machine and pull-out test method
JP7507577B2 (en) 2020-03-19 2024-06-28 菱電湘南エレクトロニクス株式会社 Ultrasonic transmission/reception device and ultrasonic transmission/reception program
CN112611626B (en) * 2020-11-19 2022-12-27 铜陵有色金属集团铜冠建筑安装股份有限公司 Expansion type connecting device for anchor rod drawing test

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5254415A (en) * 1975-10-29 1977-05-02 Oki Electric Ind Co Ltd Ultrasonic transmitter and receiver
JPH03272456A (en) * 1990-03-20 1991-12-04 Hitachi Cable Ltd Measuring method for adhesion between rubber stress cone and insulator
JPH1182810A (en) * 1997-09-08 1999-03-26 Sekisui Chem Co Ltd Inspection device for embedded pipe sediment contact situation and inspection method
ZA200405176B (en) * 2003-06-30 2005-04-26 Csir Method and apparatus for testing installation quality in a grouted anchor system
JP5397969B2 (en) * 2007-04-24 2014-01-22 有限会社ツツイ電子 Embedded soundness separation device
JP5896242B2 (en) * 2013-05-20 2016-03-30 株式会社アミック A method for diagnosing the state of anchoring between anchor bolts and concrete

Also Published As

Publication number Publication date
JP2016085115A (en) 2016-05-19

Similar Documents

Publication Publication Date Title
JP6496895B2 (en) Mechanical anchor contact state detection apparatus and method
US8576661B2 (en) Device and method for imaging of non-linear and linear properties of formations surrounding a borehole
US20040123665A1 (en) Nondestructive detection of reinforcing member degradation
CA2758942A1 (en) Casing thickness evaluation method
US8553495B2 (en) Device and method for imaging of non-linear and linear properties of formations surrounding a borehole
EP2622379B1 (en) Device and method for imaging of non-linear and linear properties of formations surrounding a borehole
CN104536003A (en) Ultrasonic distance measuring method and device based on multiple emission frequencies
CN109100421A (en) The device and method of built-in type detection anchor rope grouting compactness
JP3198840U (en) Prop road boundary inspection system
JP2003028622A (en) Method for measuring shape of structure and method for measuring degradation/damage
JP2005148064A (en) Device and method for detecting change or damage to pressure vessel during or after pressure test
JP4577957B2 (en) Tunnel diagnostic equipment
KR20100045283A (en) Evaluation method for bonding state of shotcrete
KR100862028B1 (en) Measuring system for grouting-defect of rock-bolt and Measuring method using the same
JP2001074706A (en) Method for diagnosing ground anchor
WO2016099288A1 (en) Plug integrity evaluation method
CN113567559B (en) Ultrasonic detection device and method for corrosion of inhaul cable steel wire
JP6989925B2 (en) Stress measurement method for concrete structures and stress measurement system for concrete structures
JP2017155479A (en) Anchor and diagnosis method
JP6366313B2 (en) Fluid identification device and fluid identification method
JP4329008B2 (en) Concrete pole crack evaluation system
JP4646012B2 (en) Nondestructive inspection equipment for concrete structures
JP2000002692A (en) Method for searching defect in concrete structure or behind the structure
JP2007051991A (en) Method and system for measuring wall thickness of metal pipe
RU2443867C1 (en) Method to control engagement of bolting with rock massif and device for its realisation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190108

R150 Certificate of patent or registration of utility model

Ref document number: 6496895

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250