JP6495843B2 - Evaluation method, evaluation apparatus, and program for wireless communication system - Google Patents

Evaluation method, evaluation apparatus, and program for wireless communication system Download PDF

Info

Publication number
JP6495843B2
JP6495843B2 JP2016032174A JP2016032174A JP6495843B2 JP 6495843 B2 JP6495843 B2 JP 6495843B2 JP 2016032174 A JP2016032174 A JP 2016032174A JP 2016032174 A JP2016032174 A JP 2016032174A JP 6495843 B2 JP6495843 B2 JP 6495843B2
Authority
JP
Japan
Prior art keywords
scatterer
radio wave
wave
radio
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016032174A
Other languages
Japanese (ja)
Other versions
JP2017152847A (en
Inventor
誓治 大森
誓治 大森
和徳 赤羽
和徳 赤羽
望月 伸晃
伸晃 望月
肇 勝田
肇 勝田
原田 充
充 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2016032174A priority Critical patent/JP6495843B2/en
Publication of JP2017152847A publication Critical patent/JP2017152847A/en
Application granted granted Critical
Publication of JP6495843B2 publication Critical patent/JP6495843B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、無線通信システムの評価方法、評価装置及びプログラムに関する。   The present invention relates to an evaluation method, an evaluation apparatus, and a program for a wireless communication system.

無線通信における多重波によるフェージングの影響を計算機シミュレーションにて定量評価を行うことは、実環境における実験評価より簡易に行えるので有用である。計算機シミュレーションにおいて、多重波環境を模擬するためのモデルとして電波散乱体モデルを用いる手法がある(非特許文献1)。電波散乱体モデルは、主に見通し外セルラ環境でのフェージング評価に用いられ、角度βの方向に速度vで移動する端末の周囲に複数の電波散乱体が存在し、送信信号が電波散乱体それぞれで反射され、各反射波が受信点である端末で合成されるというモデルである。   It is useful to quantitatively evaluate the effects of fading due to multiple waves in wireless communication by computer simulation, because it is easier to perform than experimental evaluation in a real environment. In computer simulation, there is a method using a radio scatterer model as a model for simulating a multi-wave environment (Non-Patent Document 1). The radio wave scatterer model is mainly used for fading evaluation in a non-line-of-sight cellular environment, and there are a plurality of radio wave scatterers around a terminal moving at a velocity v in the direction of angle β, and the transmission signal is a radio wave scatterer. This is a model in which each reflected wave is synthesized at a terminal that is a reception point.

図6は、電波散乱体モデルの概要を示す図である。送信機から送信された送信信号s(t)は、端末の周囲に存在するn個の電波散乱体で反射され、端末に到達する。N個の電波散乱体で反射された反射波それぞれの伝搬位相はη(n=1,2,…,N)である。n個の電波散乱体で反射された反射波それぞれが合成された、受信点での受信信をr(t)とすると、送信信号s(t)と受信信号r(t)との関係は式(1)で表される。

Figure 0006495843
FIG. 6 is a diagram showing an outline of the radio wave scatterer model. The transmission signal s (t) transmitted from the transmitter is reflected by n radio wave scatterers existing around the terminal and reaches the terminal. The propagation phase of each of the reflected waves reflected by the N radio wave scatterers is η n (n = 1, 2,..., N). When r (t) is a reception signal at the reception point where the reflected waves reflected by n radio wave scatterers are combined, the relationship between the transmission signal s (t) and the reception signal r (t) is an expression. It is represented by (1).
Figure 0006495843

式(1)におけるfはドップラー周波数であり、f=v/λである(λは送信信号の搬送波の波長)。また、βは端末の移動方向βが電波散乱体nから端末への方向となす角度である。ここで、端末の周囲の電波散乱体による反射波の伝搬位相ηがそれぞれ無相関であり、−2π<η≦2πの範囲でランダムに決定される場合、振幅成分|A(t)|はレイリー分布に、位相成分θは一様分布に従い、式(2)の関係が成立する。

Figure 0006495843
In Equation (1), f d is a Doppler frequency and f d = v / λ (λ is the wavelength of the carrier wave of the transmission signal). Β n is an angle formed by the moving direction β of the terminal with the direction from the radio wave scatterer n to the terminal. Here, when the propagation phase η n of the reflected wave by the radio wave scatterer around the terminal is uncorrelated and is determined randomly in the range of −2π <η n ≦ 2π, the amplitude component | A (t) | Follows the Rayleigh distribution and the phase component θ follows the uniform distribution, and the relationship of Expression (2) is established.
Figure 0006495843

一般に見通し外の多重波環境において、フェージングチャネルの振幅はレイリー分布に、位相は一様分布になるといわれているので、計算機シミュレーションにおいて式(1)の電波散乱体モデルをフェージングチャネルモデルとして用いることができる。   In general, in a multi-wave environment where there is no line of sight, it is said that the amplitude of the fading channel has a Rayleigh distribution and the phase has a uniform distribution. it can.

J. D. Parsons, "The Mobile Radio Propagation Channel, Second Edition", John Wiley & Sons,LTD, 2000J. D. Parsons, "The Mobile Radio Propagation Channel, Second Edition", John Wiley & Sons, LTD, 2000

しかしながら、前述の手法における電波散乱体モデルは同一偏波内でのモデルである。そのため、偏波MIMO(Multiple-Input Multiple-Output)などの異なる偏波を組み合わせて伝送を行う無線通信システムにおけるチャネル特性などを評価する計算機シミュレーションに前述の電波散乱体モデルを適用しても、偏波間の影響を考慮していないため、得られる評価結果には改善の余地があった。   However, the radio wave scatterer model in the above-described method is a model within the same polarization. Therefore, even if the above-mentioned radio wave scatterer model is applied to a computer simulation for evaluating channel characteristics and the like in a wireless communication system that performs transmission by combining different polarizations such as polarization MIMO (Multiple-Input Multiple-Output). Since the effect between waves was not taken into account, there was room for improvement in the evaluation results obtained.

前述の事情に鑑み、本発明は、異なる偏波を組み合わせて伝送を行う無線通信システムに対するシミュレーションの精度を向上させることができる無線通信システムの評価方法、評価装置及びプログラムを提供することを目的としている。   In view of the foregoing circumstances, an object of the present invention is to provide a wireless communication system evaluation method, evaluation device, and program capable of improving the accuracy of simulation for a wireless communication system that performs transmission by combining different polarizations. Yes.

本発明の一態様は、異なる偏波を組み合わせて伝送を行う無線通信システムの評価方法であって、送信点と受信点との間における見通し外の多重波環境における電波散乱体に関する電波散乱体情報を取得する電波散乱体情報取得ステップと、前記電波散乱体において前記送信点から送信された送信信号が反射した際の前記異なる偏波間における成分の分配比を示す偏波変換量を、電波散乱体情報に基づいて電波散乱体ごとに算出する偏波変換量算出ステップと、前記偏波変換量算出ステップにより算出される偏波変換量と前記電波散乱体情報とに基づいて、前記受信点における前記異なる偏波それぞれの受信成分を前記電波散乱体での反射波ごとに算出する受信成分算出ステップと、前記受信点に移動により、前記電波散乱体において反射される前記反射波が受けるドップラー変動による位相回転量を電波散乱体ごとに算出するドップラー変動算出ステップと、前記受信成分算出ステップにより算出される受信成分に前記ドップラー変動算出ステップにより算出される位相回転量を加えた後に、前記異なる偏波ごとに加算する加算処理ステップと、を有する無線通信システムの評価方法である。   One aspect of the present invention is a method for evaluating a wireless communication system that performs transmission by combining different polarizations, and includes information on radio scatterers in a radio wave scatterer in an out-of-sight multiwave environment between a transmission point and a reception point. Radio wave scatterer information acquisition step, and a radio wave scatterer that indicates a polarization conversion amount indicating a distribution ratio of components between the different polarizations when a transmission signal transmitted from the transmission point is reflected on the radio wave scatterer. A polarization conversion amount calculating step for each radio wave scatterer based on the information; a polarization conversion amount calculated by the polarization conversion amount calculating step; and the radio wave scatterer information based on the polarization conversion amount and the radio wave scatterer information. A reception component calculation step of calculating reception components of different polarized waves for each reflected wave at the radio wave scatterer, and reflection at the radio wave scatterer by moving to the reception point. A Doppler fluctuation calculation step for calculating for each radio wave scatterer a phase rotation amount due to Doppler fluctuation received by the reflected wave, and a phase rotation amount calculated by the Doppler fluctuation calculation step for the reception component calculated by the reception component calculation step. Is added to each of the different polarizations, and then the wireless communication system evaluation method.

また、本発明の一態様は、上記の無線通信システムの評価方法において、前記偏波変換量算出ステップでは、前記電波散乱体情報に含まれる前記電波散乱体における反射面に対する前記送信信号の入射面の斜角度と前記電波散乱体の誘電率とに基づいて、入射面に平行なTM波成分と入射面に垂直なTE波成分との反射係数を算出し、TM波成分とTE波成分との前記反射係数を用いて前記電波散乱体により反射される前記反射波のTM波成分とTE波成分とを算出し、算出した前記反射波のTM波成分とTE波成分とを合成することで偏波変換量を算出する。   Further, according to an aspect of the present invention, in the evaluation method of the wireless communication system, in the polarization conversion amount calculating step, an incident surface of the transmission signal with respect to a reflection surface in the radio wave scatterer included in the radio wave scatterer information The reflection coefficient between the TM wave component parallel to the incident surface and the TE wave component perpendicular to the incident surface is calculated on the basis of the oblique angle and the dielectric constant of the radio wave scatterer, and the TM wave component and the TE wave component are calculated. The TM wave component and the TE wave component of the reflected wave reflected by the radio wave scatterer are calculated using the reflection coefficient, and the calculated TM wave component and the TE wave component are synthesized. Calculate the amount of wave conversion.

また、本発明の一態様は、上記の無線通信システムの評価方法において、前記加算処理ステップにより算出される前記受信点における前記異なる偏波ごとの受信成分と前記送信信号とに基づいて、前記送信点と前記受信点との間におけるチャネル特性を算出するチャネル特性算出ステップ、を更に有する。   Further, according to an aspect of the present invention, in the evaluation method for the wireless communication system, the transmission may be performed based on the reception component and the transmission signal for each different polarization at the reception point calculated by the addition processing step. A channel characteristic calculating step of calculating a channel characteristic between the point and the reception point.

また、本発明の一態様は、異なる偏波を組み合わせて伝送を行う無線通信システムの評価装置であって、送信点と受信点との間における見通し外の多重波環境における電波散乱体に関する電波散乱体情報を取得する電波散乱体情報取得部と、前記電波散乱体において前記送信点から送信された送信信号が反射した際の前記異なる偏波間における成分の分配比を示す偏波変換量を、電波散乱体情報に基づいて電波散乱体ごとに算出する偏波変換量算出部と、前記偏波変換量算出部が算出する偏波変換量と前記電波散乱体情報とに基づいて、前記受信点における前記異なる偏波それぞれの受信成分を前記電波散乱体での反射波ごとに算出する受信成分算出部と、前記受信点に移動により、前記電波散乱体において反射される前記反射波が受けるドップラー変動による位相回転量を電波散乱体ごとに算出するドップラー変動算出部と、前記受信成分算出部が算出する受信成分に前記ドップラー変動算出部が算出する位相回転量を加えた後に、前記異なる偏波ごとに加算する加算処理部と、を備える評価装置である。   Another embodiment of the present invention is an evaluation apparatus for a wireless communication system that performs transmission by combining different polarizations, and the radio wave scattering related to the radio wave scatterer in a multi-wave environment that is not visible between the transmission point and the reception point. A radio wave scatterer information acquisition unit for acquiring body information, and a polarization conversion amount indicating a distribution ratio of components between the different polarizations when a transmission signal transmitted from the transmission point is reflected on the radio wave scatterer. Based on the polarization conversion amount calculated by the polarization conversion amount calculation unit and the radio wave scatterer information, the polarization conversion amount calculation unit that calculates for each radio wave scatterer based on the scatterer information, and at the reception point A reception component calculation unit that calculates reception components of each of the different polarized waves for each reflected wave at the radio wave scatterer, and a signal received by the reflected wave reflected by the radio wave scatterer by moving to the reception point. The Doppler fluctuation calculation unit that calculates the phase rotation amount due to the puller fluctuation for each radio wave scatterer, and the phase rotation amount calculated by the Doppler fluctuation calculation unit is added to the reception component calculated by the reception component calculation unit, and then the different deviations are added. It is an evaluation apparatus provided with the addition process part added for every wave.

また、本発明の一態様は、上記の無線通信システムの評価方法コンピュータに実行させるためのプログラムである。   One embodiment of the present invention is a program for causing a computer to execute the above-described evaluation method computer for a wireless communication system.

本発明によれば、異なる偏波を組み合わせて伝送を行う無線通信システムに対するシミュレーションの精度を向上することが可能となる。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to improve the precision of the simulation with respect to the radio | wireless communications system which transmits by combining different polarized waves.

本実施形態による無線通信システムの評価方法を示すフローチャート。6 is a flowchart showing a method for evaluating a wireless communication system according to the present embodiment. 電波反射の概要を示す図。The figure which shows the outline | summary of a radio wave reflection. 入射ベクトルが媒質境界面に対して斜めとなる一例を示す図。The figure which shows an example in which an incident vector becomes diagonal with respect to a medium boundary surface. 本実施形態の電波散乱体モデルの概要を示す図。The figure which shows the outline | summary of the electromagnetic wave scatterer model of this embodiment. 本実施形態における無線通信システムの評価装置の構成例を示すブロック図。The block diagram which shows the structural example of the evaluation apparatus of the radio | wireless communications system in this embodiment. 電波散乱体モデルの概要を示す図。The figure which shows the outline | summary of a radio wave scatterer model.

以下、図面を参照して、本発明の実施形態における無線通信システムの評価方法、評価装置及びプログラムを説明する。図1は、本実施形態による無線通信システムの評価方法を示すフローチャートである。本実施形態の評価方法では、複数の電波散乱体における送信信号の入射面に対する傾斜角度に基づいて、異なる偏波間の偏波変換量を決定し、無線通信システムの評価を行うことを特徴としている。この評価方法では、垂直偏波で送信される信号s(t)と水平偏波で送信される信号s(t)とについて、電波散乱体nによる反射で生じる伝搬位相ηと偏波変換量Pnhとが算出される。なお、n=1,2,…,Nである。 Hereinafter, a wireless communication system evaluation method, evaluation device, and program according to embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a flowchart showing a method for evaluating a wireless communication system according to the present embodiment. The evaluation method according to the present embodiment is characterized in that the amount of polarization conversion between different polarizations is determined based on the inclination angle of the transmission signal with respect to the incident surface of the plurality of radio wave scatterers, and the wireless communication system is evaluated. . In this evaluation method, the propagation phase η n and the polarization generated by the reflection by the radio wave scatterer n for the signal s v (t) transmitted by the vertically polarized wave and the signal s h (t) transmitted by the horizontally polarized wave. A conversion amount P nh is calculated. Note that n = 1, 2,..., N.

本実施形態による無線通信システムの評価方法では、図6に示した電波散乱体モデルのように、送信機から送信された送信信号がN個の電波散乱体で反射され端末で受信されるモデルが用いられる。なお、本実施形態では、送信信号は、垂直偏波の信号s(t)と水平偏波の信号s(t)とである。無線通信システムの評価が開始されると、評価装置は、電波散乱体情報を取得し(ステップS11)、各電波散乱体の伝搬位相を取得する(ステップS12)。続いて、評価装置は、取得した電波散乱体情報に基づいて、電波散乱体ごとに偏波変換量Pnhを算出する(ステップS13)。 In the radio communication system evaluation method according to the present embodiment, there is a model in which a transmission signal transmitted from a transmitter is reflected by N radio wave scatterers and received by a terminal, such as the radio wave scatterer model shown in FIG. Used. In the present embodiment, the transmission signals are a vertically polarized signal s v (t) and a horizontally polarized signal s h (t). When the evaluation of the wireless communication system is started, the evaluation device acquires radio wave scatterer information (step S11) and acquires the propagation phase of each radio wave scatterer (step S12). Subsequently, the evaluation device calculates a polarization conversion amount P nh for each radio wave scatterer based on the acquired radio wave scatterer information (step S13).

評価装置は、送信信号s(t)、s(t)と、算出した偏波変換量Pnhとに基づいて、受信点における垂直偏波と水平偏波との受信成分を電波散乱物体ごとに算出する(ステップS14)。評価装置は、垂直偏波と水平偏波との受信成分に対するドップラー変動による位相回転量を電波散乱物体ごとに算出し(ステップS15)、電波散乱体ごとの垂直偏波と水平偏波とそれぞれの受信成分を加算処理して受信点(端末)で得られる各偏波の受信成分r(t)、r(t)を取得し(ステップS16)、評価を終了する。例えば、評価装置は、受信点で得られる各偏波の受信成分r(t)、r(t)と、送信信号s(t)、s(t)とから送信機から端末までのチャネル特性の評価を行う。 Based on the transmission signals s v (t) and s h (t) and the calculated polarization conversion amount P nh , the evaluation device converts the reception components of the vertical polarization and the horizontal polarization at the reception point into a radio wave scattering object. It calculates for every (step S14). The evaluation apparatus calculates a phase rotation amount due to Doppler fluctuations with respect to the reception components of the vertical polarization and the horizontal polarization for each radio wave scattering object (step S15), and each of the vertical polarization and the horizontal polarization for each radio wave scatterer is calculated. The received components r v (t) and r h (t) obtained at the receiving point (terminal) are obtained by adding the received components (step S16), and the evaluation ends. For example, the evaluation device is received component r v of each polarization obtained at the receiving point (t), and r h (t), transmission signal s v (t), from the transmitter to the terminal from the s h (t) Evaluation of channel characteristics.

以下、無線通信システムの評価方法における各ステップの処理について、より詳細に説明する。   Hereinafter, the process of each step in the evaluation method of the wireless communication system will be described in more detail.

(ステップS11の処理)
評価装置は、電波散乱体に関する情報である電波散乱体情報を取得する。電波散乱体情報は、シミュレーションにおいて用いる電波散乱体の個数Nと、電波散乱体ごとの送信信号の入射面に対する反射面の斜角度α、(n=1,2,…,N)と、電波散乱体の誘電率、透磁率及び誘電率とを含む。電波散乱体の個数Nと斜角度αとには、事前に定められた値が用いられてもよいし、乱数器を用いて発生させた乱数に基づいた値が用いられてもよい。
(Process of step S11)
The evaluation device acquires radio wave scatterer information that is information about the radio wave scatterer. The radio scatterer information includes the number N of radio scatterers used in the simulation, the oblique angle α n of the reflection surface with respect to the incident surface of the transmission signal for each radio scatterer (n = 1, 2,..., N), the radio wave Including the dielectric constant, permeability and dielectric constant of the scatterer. A predetermined value may be used as the number N of radio wave scatterers and the oblique angle α n , or a value based on a random number generated using a random number generator may be used.

(ステップS12の処理)
評価装置は、N個の電波散乱体それぞれを介したパスの伝搬位相ηを取得する。伝搬位相ηには、事前に定められた値が用いられてもよいし、乱数器を用いた発生させた乱数に基づいた値(−2π<η≦2π)が用いられてもよい。
(Process of step S12)
The evaluation device acquires the propagation phase η n of the path through each of the N radio wave scatterers. As the propagation phase η n , a predetermined value may be used, or a value (−2π <η n ≦ 2π) based on a random number generated using a random number generator may be used.

(ステップS13の処理)
評価装置は、偏波変換量Pnhとして、事前に定められた値を用いてもよいし、以下の手法により算出した値を用いてもよい。偏波変換量Pnhを算出する場合、評価装置は、電波散乱体ごとにTM波成分とTE波成分との反射係数を算出し、反射係数から反射後のTM波成分とTE波成分とを算出し、反射後のTE波成分、TMは成分それぞれを合成することで偏波変換量Pnhを算出する。
(Process of step S13)
The evaluation apparatus may use a predetermined value as the polarization conversion amount P nh , or may use a value calculated by the following method. When calculating the polarization conversion amount P nh , the evaluation device calculates the reflection coefficient of the TM wave component and the TE wave component for each radio wave scatterer, and calculates the TM wave component and the TE wave component after reflection from the reflection coefficient. The TE wave component and TM after reflection are calculated, and the polarization conversion amount P nh is calculated by combining the components.

異なる偏波面で送信された送信信号s(t)、s(t)は、端末において受信されるまでの伝搬経路において、ビルなどの建造物や地面にて反射や回折する。図2は、電波反射の概要を示す図である。図2には、誘電率、透磁率及び誘電率がε、μ、σの媒質Iと、誘電率、透磁率及び誘電率がε、μ、σの媒質IIとが接する平面境界に入射角θで電磁波が入射した場合が示されている。電磁波が平面境界に入射すると、反射波及び透過波が生じる。xy平面を入射面とすると、電界が入射面に平行な場合(TM入射)と電界が入射面に垂直な場合(TE入射)とのそれぞれにおいて、フレネルの反射係数が定義される。式(3)はTM入射の場合の反射係数RTMを表し、式(4)はTE入射の場合における反射係数RTEを表す。

Figure 0006495843
Figure 0006495843
Transmission signals s v (t) and s h (t) transmitted at different polarization planes are reflected or diffracted by a building such as a building or the ground in a propagation path until they are received by the terminal. FIG. 2 is a diagram showing an outline of radio wave reflection. In FIG. 2, a medium I having dielectric constant, magnetic permeability and dielectric constant of ε 1 , μ 1 and σ 1 and a medium II having dielectric constant, magnetic permeability and dielectric constant of ε 2 , μ 2 and σ 2 are in contact with each other. The case where electromagnetic waves are incident on the plane boundary at an incident angle θ i is shown. When electromagnetic waves are incident on a plane boundary, reflected waves and transmitted waves are generated. When the xy plane is the incident surface, the Fresnel reflection coefficient is defined in each of the case where the electric field is parallel to the incident surface (TM incidence) and the case where the electric field is perpendicular to the incident surface (TE incidence). Equation (3) represents the reflection coefficient R TM in the case of TM incidence, and Equation (4) represents the reflection coefficient R TE in the case of TE incidence.
Figure 0006495843
Figure 0006495843

なお、媒質I及び媒質IIそれぞれの誘電率、透磁率及び誘電率には、事前に定められた値が用いられる。また、式(3)及び式(4)におけるnは媒質Iに対する媒質IIの相対複素屈折率であり式(5)で与えられる。

Figure 0006495843
Note that predetermined values are used for the dielectric constant, the magnetic permeability, and the dielectric constant of each of the medium I and the medium II. Further, n in the expressions (3) and (4) is a relative complex refractive index of the medium II with respect to the medium I and is given by the expression (5).
Figure 0006495843

しかしながら、実伝搬環境では入射ベクトルは媒質境界に対して斜めとなる場合が支配的である。図3は、入射ベクトルが媒質境界面に対して斜めとなる一例を示す図である。図3に示すように、電界E θと、電界E θと直交する電界E φの2はが同時に入射する場合について考える。ここで、電界E θと電界E φとは互いに無相関な独立した電界成分である。図3に示す例では、電界E θ方向ベクトルをx軸方向とし、媒質境界面であるxz面に垂直な方向をy軸としている。このとき、図2に示した例と同様に、xy平面を入射面とする。入射点から反射点(図3においてx軸、y軸及びz軸が交わる点)へのベクトルIと入射面とがなす角度をαとすると、(E θ,E φ)とTM成分(E TM)及びTE成分(E TE)との関係は、式(6)で表される。

Figure 0006495843
However, in an actual propagation environment, the incident vector is dominant when it is oblique to the medium boundary. FIG. 3 is a diagram illustrating an example in which the incident vector is inclined with respect to the medium boundary surface. As shown in FIG. 3, consider the case where the electric field E i theta, 2 field E i phi perpendicular to the electric field E i theta has simultaneously incident. Here, the electric field E i θ and the electric field E i φ are independent electric field components that are uncorrelated with each other. In the example shown in FIG. 3, the electric field E i θ direction vector is the x-axis direction, and the direction perpendicular to the xz plane, which is the medium boundary surface, is the y-axis. At this time, as in the example shown in FIG. If the angle formed by the vector I from the incident point to the reflection point (the point where the x-axis, y-axis and z-axis intersect in FIG. 3) and the incident surface is α, (E i θ , E i φ ) and the TM component ( The relationship between E i TM ) and the TE component (E i TE ) is expressed by equation (6).
Figure 0006495843

ここで、反射後の電界を入射電界(E θ,E φ)と同じ座標面で考えると、同様に、反射波の電界成分(E θ,E φ)とTM成分(E TM)及びTE成分(E TE)との関係は、式(7)で表される。

Figure 0006495843
Here, when the electric field after reflection is considered in the same coordinate plane as the incident electric field (E i θ , E i φ ), similarly, the electric field components (E r θ , E r φ ) and the TM component (E r relationship between TM) and TE component (E r TE) is represented by the formula (7).
Figure 0006495843

ここで、フレネルの法則により、入射波と反射波とについて式(8)で表される関係が成立する。

Figure 0006495843
Here, according to Fresnel's law, the relationship represented by Expression (8) is established between the incident wave and the reflected wave.
Figure 0006495843

式(6)より(E TM,E TE)を導出し、式(7)を式(8)に代入すると、式9)が得られる。

Figure 0006495843
When (E i TM , E i TE ) is derived from Expression (6) and Expression (7) is substituted into Expression (8), Expression 9 is obtained.
Figure 0006495843

ここで、式(9)における、R11、R12、R21及びR22は、式(10−1)及び(10−2)で表される。

Figure 0006495843
Here, R 11 , R 12 , R 21 and R 22 in Formula (9) are represented by Formulas (10-1) and (10-2).
Figure 0006495843

式(3)、式(4)より、RTM≠RTEであり、式(9)から(E θ,E φ)が入射面に対して角度αで斜め入射すると、その反射波成分(E θ,E φ)の両方にE θとE φとが分配されることが分かる。ここでは、送信信号が2偏波を含む場合について説明したが、偏波数を増やした場合においても同様に各偏波間にて成分の分配が生じる。 From Equations (3) and (4), R TM ≠ R TE , and when (E i θ , E i φ ) is obliquely incident on the incident surface at an angle α from Equation (9), its reflected wave component It can be seen that E i θ and E i φ are distributed to both (E r θ , E r φ ). Here, the case where the transmission signal includes two polarized waves has been described. However, even when the number of polarized waves is increased, the components are similarly distributed between the polarized waves.

式(9)より、式(11−1)及び(11−2)が得られる。

Figure 0006495843
Expressions (11-1) and (11-2) are obtained from Expression (9).
Figure 0006495843

(R12/R11)が電波散乱体での反射により水平偏波から垂直偏波へ分配される電力比となる。また、(R21/R22)が電波散乱体での反射により垂直偏波から水平偏波へ分配される電力比となる。すなわち、(R12/R11)と(R21/R22)とが偏波変換量Pnhとなる。偏波変換量は、垂直偏波と水平偏波との間において、反射の際に生じる成分の分配比である。 (R 12 / R 11 ) is the power ratio distributed from horizontal polarization to vertical polarization due to reflection by the radio wave scatterer. In addition, (R 21 / R 22 ) is a power ratio distributed from vertical polarization to horizontal polarization due to reflection by the radio wave scatterer. That is, (R 12 / R 11 ) and (R 21 / R 22 ) become the polarization conversion amount P nh . The polarization conversion amount is a distribution ratio of components generated during reflection between vertical polarization and horizontal polarization.

評価装置は、電波散乱体nで反射され端末に達するパスnにおける入射面に対する斜角度αと、電波散乱体nの電率、透磁率及び誘電率がε、μ、σとを用いて、電波散乱体ごとに偏波変換量Pnhを算出する。なお、偏波変換量Pnhの算出では、電波散乱体と媒質境界面をなすもう一方の媒体に、例えば空気を仮定して空気中の電率、透磁率及び誘電率を用いてもよいし、真空を仮定して真空中の電率、透磁率及び誘電率を用いてもよい。 The evaluation apparatus calculates the oblique angle α n with respect to the incident surface in the path n that is reflected by the radio wave scatterer n and reaches the terminal, and the electric conductivity, magnetic permeability, and dielectric constant of the radio wave scatterer n are ε n , μ n , and σ n . The polarization conversion amount P nh is calculated for each radio wave scatterer. In the calculation of the polarization conversion amount P nh , for example, air may be used as the other medium that forms the boundary surface between the radio wave scatterer and the medium, and the electric conductivity, magnetic permeability, and dielectric constant in the air may be used. Assuming a vacuum, the electric conductivity, magnetic permeability and dielectric constant in the vacuum may be used.

(ステップS14の処理)
簡単のために端末が移動しない準静的環境(f=0)を考え、電波散乱体nで反射された送信信号の垂直偏波成分と水平偏波成分とをそれぞれsnv(t)、snh(t)とし、電波散乱体nで反射され端末に到達するパスnの端末における受信信号の垂直偏波成分と水平偏波成分とをそれぞれrnv(t)、rnh(t)とする。準静的環境における電波散乱体モデルでは、式(12−1)及び(12−2)が成立する。なお、ηは、電波散乱体nで反射され端末に達するパスnにおける伝搬位相である。

Figure 0006495843
(Process of step S14)
Considering a quasi-static environment (f d = 0) in which the terminal does not move for simplicity, s nv (t), the vertical polarization component and the horizontal polarization component of the transmission signal reflected by the radio wave scatterer n, respectively, Let s nh (t) be r nv (t), r nh (t), and r nv (t), respectively, the vertical polarization component and horizontal polarization component of the received signal at the terminal of the path n that is reflected by the radio wave scatterer n and reaches the terminal. To do. In the radio wave scatterer model in the quasi-static environment, equations (12-1) and (12-2) are established. Note that η n is a propagation phase in a path n that is reflected by the radio wave scatterer n and reaches the terminal.
Figure 0006495843

この電波散乱体モデルでは、反射により信号電力は損失されず、位相成分のみ回転することが仮定されている。この仮定の下、反射による電力分配により、一方の偏波成分が他方の偏波成分へ加算されることを考慮すると、式(13−1)及び(13−2)が得られる。式(13−1)及び(13−2)それぞれの第2項成分である(R12/R11)、(R21/R22)がそれぞれ偏波変換量Pnhである。

Figure 0006495843
In this radio wave scatterer model, it is assumed that the signal power is not lost due to reflection, and only the phase component rotates. Under this assumption, when considering that one polarization component is added to the other polarization component by power distribution by reflection, equations (13-1) and (13-2) are obtained. (R 12 / R 11 ) and (R 21 / R 22 ), which are the second term components of the formulas (13-1) and (13-2), are the polarization conversion amounts P nh , respectively.
Figure 0006495843

図4は、式(13−1)及び(13−2)で表される本実施形態の電波散乱体モデルの概要を示す図である。送信機から送信される送信信号s(t)は、N個の電波散乱体それぞれで反射された後に端末に到達する。電波散乱体nで反射された反射波の垂直偏波成分と水平偏波成分とはそれぞれrnv(t)、rnh(t)、(n=1,2,…,N)で得られる。評価装置は、式(13−1)及び(13−2)を用いて、電波散乱体ごとに端末へ到達する信号の垂直偏波成分rnv(t)と水平偏波成分rnh(t)とを算出する。 FIG. 4 is a diagram showing an outline of the radio wave scatterer model of the present embodiment represented by the equations (13-1) and (13-2). The transmission signal s (t) transmitted from the transmitter reaches the terminal after being reflected by each of the N radio scatterers. The vertical polarization component and the horizontal polarization component of the reflected wave reflected by the radio wave scatterer n are obtained by r nv (t), r nh (t), (n = 1, 2,..., N), respectively. The evaluation apparatus uses the equations (13-1) and (13-2) to calculate the vertical polarization component r nv (t) and the horizontal polarization component r nh (t) of the signal reaching the terminal for each radio wave scatterer. And calculate.

(ステップS15の処理)
電波散乱体ごとのドップラー変動の算出は、例えば事前に与えられる最大ドップラー変動量fに基づいて行われる。評価装置は、垂直偏波成分rnv(t)と水平偏波成分rnh(t)に、最大ドップラー変動量fに基づいた値{exp(jcos(β・f)t)}を乗算することでドップラー変動による位相回転量を算出する。ここで、βは端末の移動方向ベクトルであり、事前に与えられた値を用いてもよいし、乱数器を用いて得られたランダムな値を用いてもよい。
(Process of step S15)
The calculation of the Doppler fluctuation for each radio wave scatterer is performed based on, for example, the maximum Doppler fluctuation amount f d given in advance. The evaluation apparatus uses a value {exp (jcos (β n · f d ) t)} based on the maximum Doppler variation f d for the vertical polarization component r nv (t) and the horizontal polarization component r nh (t). The phase rotation amount due to Doppler fluctuation is calculated by multiplication. Here, β n is a moving direction vector of the terminal, and a value given in advance may be used, or a random value obtained using a random number generator may be used.

(ステップS16の処理)
評価装置は、電波散乱体ごとに算出された反射波(rnv(t)、rnh(t))に対して加算処理を行い、端末において受信される信号の垂直偏波成分r(t)と水平偏波成分r(t)とを算出する。垂直偏波成分r(t)と水平偏波成分r(t)とは、式(14−1)及び(14−2)で表される。

Figure 0006495843
(Process of step S16)
The evaluation apparatus performs addition processing on the reflected wave (r nv (t), r nh (t)) calculated for each radio wave scatterer, and the vertical polarization component r v (t of the signal received at the terminal ) And the horizontal polarization component r h (t). The vertical polarization component r v (t) and the horizontal polarization component r h (t) are expressed by equations (14-1) and (14-2).
Figure 0006495843

以上の処理により、評価装置は、偏波交換効果による偏波間の電力交換(電力分配)を反映したモデルを用いたしシミュレーションを行うことができ、偏波間の相関の影響を考慮したシミュレーションを行うことができる。また、このシミュレーションでは、送信機から端末までの伝搬経路における電波散乱体による反射で生じる偏波ずれを考慮して端末での受信信号やチャネル特性が算出されるので、偏波多重を行う無線通信システムの改良、改善に役立てることができる。例えば、水平偏波と垂直偏波とに対応する送受信アンテナが固定されている場合に、受信側で得られた受信信号における水平偏波成分と垂直偏波成分との相関に基づいて、各成分を分離、合成することによりダイバーシティ効果を得ることができ、伝送品質を改善することができる。   With the above processing, the evaluation device can perform simulation by using a model that reflects the power exchange (power distribution) between polarized waves due to the polarization exchange effect, and perform the simulation considering the influence of the correlation between polarizations. Can do. Also, in this simulation, the received signal and channel characteristics at the terminal are calculated taking into account the polarization deviation caused by the reflection by the radio wave scatterer in the propagation path from the transmitter to the terminal. It can be used to improve the system. For example, when a transmission / reception antenna corresponding to horizontal polarization and vertical polarization is fixed, each component is determined based on the correlation between the horizontal polarization component and the vertical polarization component in the received signal obtained on the reception side. Diversifying and synthesizing can obtain a diversity effect and improve transmission quality.

図5は、本実施形態における無線通信システムの評価装置1の構成例を示すブロック図である。評価装置1は、垂直偏波と水平偏波とを組み合わせた送信信号snv(t)、snh(t)を入力し、電波散乱体モデルを適用した見通し外の多重波環境におけるチャネル特性を算出する。評価装置1は、電波散乱体情報取得部11と、伝搬位相取得部12と、偏波変換量算出部13と、受信成分算出部14と、ドップラー変動算出部15と、加算処理部16と、チャネル特性算出部17とを備える。 FIG. 5 is a block diagram illustrating a configuration example of the evaluation apparatus 1 of the wireless communication system in the present embodiment. The evaluation apparatus 1 inputs transmission signals s nv (t) and s nh (t) that are a combination of vertical polarization and horizontal polarization, and evaluates channel characteristics in an out-of-sight multiwave environment to which a radio scatterer model is applied. calculate. The evaluation apparatus 1 includes a radio wave scatterer information acquisition unit 11, a propagation phase acquisition unit 12, a polarization conversion amount calculation unit 13, a reception component calculation unit 14, a Doppler fluctuation calculation unit 15, an addition processing unit 16, A channel characteristic calculation unit 17.

電波散乱体情報取得部11は、電波散乱体情報を取得し、取得した電波散乱体情報を偏波変換量算出部13へ出力する。電波散乱体情報取得部11は、外部の記憶装置から電波散乱体情報を読み出すことで取得してもよいし、乱数器を用いて発生させた乱数に基づいた値で電波散乱体情報を生成してもよいし、評価装置1を利用するユーザにより入力された電波散乱体情報を取得してもよい。伝搬位相取得部12は、各電波散乱体の伝搬位相を取得し、取得した伝搬位相を受信成分算出部14へ出力する。伝搬位相取得部12は、電波散乱体情報取得部11と同様に、外部の記憶装置から伝搬位相を読み出すことで取得してもよいし、乱数器を用いて発生させた乱数に基づいた値で伝搬位相を生成してもよいし、評価装置1を利用するユーザにより入力された伝搬位相を取得してもよい。   The radio wave scatterer information acquisition unit 11 acquires radio wave scatterer information, and outputs the acquired radio wave scatterer information to the polarization conversion amount calculation unit 13. The radio scatterer information acquisition unit 11 may acquire the radio scatterer information by reading the radio scatterer information from an external storage device, or generates radio scatterer information with a value based on a random number generated using a random number generator. Alternatively, radio wave scatterer information input by a user who uses the evaluation device 1 may be acquired. The propagation phase acquisition unit 12 acquires the propagation phase of each radio wave scatterer and outputs the acquired propagation phase to the reception component calculation unit 14. Similarly to the radio wave scatterer information acquisition unit 11, the propagation phase acquisition unit 12 may acquire the propagation phase by reading the propagation phase from an external storage device, or may be a value based on a random number generated using a random number generator. A propagation phase may be generated, or a propagation phase input by a user using the evaluation device 1 may be acquired.

偏波変換量算出部13は、電波散乱体情報取得部11から入力される電波散乱体情報に基づいて、電波散乱体ごとに偏波変換量Pnhを算出する。偏波変換量算出部13は、算出した各電波散乱体の偏波変換量Pnhを受信成分算出部14へ出力する。受信成分算出部14は、入力される送信信号snv(t)、snh(t)と、偏波変換量算出部13により算出された偏波変換量Pnhとに基づいて、受信点における垂直偏波と水平偏波との受信成分を電波散乱物体ごとに算出する。受信成分算出部14は、算出した垂直偏波と水平偏波との受信成分をドップラー変動算出部15へ出力する。 The polarization conversion amount calculation unit 13 calculates the polarization conversion amount P nh for each radio wave scatterer based on the radio wave scatterer information input from the radio wave scatterer information acquisition unit 11. The polarization conversion amount calculation unit 13 outputs the calculated polarization conversion amount P nh of each radio wave scatterer to the reception component calculation unit 14. Based on the input transmission signals s nv (t) and s nh (t) and the polarization conversion amount P nh calculated by the polarization conversion amount calculation unit 13, the reception component calculation unit 14 The reception components of vertical polarization and horizontal polarization are calculated for each radio wave scattering object. The reception component calculation unit 14 outputs the calculated reception components of vertical polarization and horizontal polarization to the Doppler fluctuation calculation unit 15.

ドップラー変動算出部15は、受信成分算出部14により算出された垂直偏波と水平偏波との受信成分に対するドップラー変動による位相回転量を電波散乱物体ごとに算出する。ドップラー変動算出部15は、ドップラー変動による位相回転を加えた垂直偏波と水平偏波との受信成分を加算処理部16へ出力する。加算処理部16は、ドップラー変動算出部15により算出された電波散乱体ごとの垂直偏波と水平偏波とそれぞれの受信成分を加算処理して受信点(端末)で得られる各偏波の受信成分r(t)、r(t)を算出する。加算処理部16は、算出した受信成分r(t)、r(t)をチャネル特性算出部17へ出力する。 The Doppler fluctuation calculation unit 15 calculates, for each radio wave scattering object, a phase rotation amount due to Doppler fluctuations with respect to the reception components of the vertical polarization and the horizontal polarization calculated by the reception component calculation unit 14. The Doppler fluctuation calculation unit 15 outputs the reception components of the vertical polarization and the horizontal polarization to which the phase rotation due to the Doppler fluctuation is added to the addition processing unit 16. The addition processing unit 16 adds the vertical polarization and horizontal polarization for each radio wave scatterer calculated by the Doppler fluctuation calculation unit 15 and the respective reception components, and receives each polarization obtained at the reception point (terminal). Components r v (t) and r h (t) are calculated. The addition processing unit 16 outputs the calculated reception components r v (t) and r h (t) to the channel characteristic calculation unit 17.

チャネル特性算出部17は、加算処理部16により算出された受信成分r(t)、r(t)と、送信信号snv(t)、snh(t)とに基づいて、送信信号の送信点から受信点までの伝送環境におけるチャネル特性を算出する。チャネル特性算出部17は、算出したチャネル特性を示すチャネル情報を外部の装置へ出力する。 The channel characteristic calculation unit 17 transmits the transmission signal based on the reception components r v (t) and r h (t) calculated by the addition processing unit 16 and the transmission signals s nv (t) and s nh (t). The channel characteristics in the transmission environment from the transmission point to the reception point are calculated. The channel characteristic calculation unit 17 outputs channel information indicating the calculated channel characteristic to an external device.

本実施形態の評価装置1によれば、偏波交換効果による偏波間の電力交換を反映したモデルを用いたしシミュレーションにより、偏波間に存在する相関により変化するチャネル特性を得ることができ、シミュレーションの精度を向上させることができる。   According to the evaluation apparatus 1 of the present embodiment, channel characteristics that change due to the correlation existing between polarizations can be obtained by simulation using a model that reflects power exchange between polarizations due to the polarization exchange effect. Accuracy can be improved.

なお、本実施形態においては、電波散乱体情報と、各電波散乱体の伝搬位相とを別途取得する構成を示したが、電波散乱体情報に伝搬位相を含めてもよい。この場合、無線通信システムの評価方法におけるステップS12が省かれるとともに、評価装置1における伝搬位相取得部12が省かれる。   In addition, in this embodiment, although the structure which acquires separately the electromagnetic wave scatterer information and the propagation phase of each electromagnetic wave scatterer was shown, you may include a propagation phase in electromagnetic wave scatterer information. In this case, step S12 in the evaluation method of the wireless communication system is omitted, and the propagation phase acquisition unit 12 in the evaluation apparatus 1 is omitted.

前述した実施形態における評価装置1の全て又は一部をコンピュータで実現するようにしてもよい。例えば、評価装置1が有する構成要素それぞれを実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現してもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD−ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。更に「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含んでもよい。また、このプログラムは、前述した構成要素の一部を実現するためのものであってもよく、更に前述した構成要素をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであってもよく、PLD(Programmable Logic Device)やFPGA(Field Programmable Gate Array)等のハードウェアを用いて実現されるものであってもよい。   You may make it implement | achieve all or one part of the evaluation apparatus 1 in embodiment mentioned above with a computer. For example, it is realized by recording a program for realizing each component of the evaluation apparatus 1 on a computer-readable recording medium, causing the computer system to read and execute the program recorded on the recording medium. Also good. Here, the “computer system” includes an OS and hardware such as peripheral devices. The “computer-readable recording medium” refers to a storage device such as a flexible medium, a magneto-optical disk, a portable medium such as a ROM and a CD-ROM, and a hard disk incorporated in a computer system. Further, the “computer-readable recording medium” is a program that dynamically holds a program for a short time, like a communication line when a program is transmitted via a network such as the Internet or a communication line such as a telephone line. In this case, a volatile memory inside a computer system serving as a server or a client in that case may be included and a program held for a certain period of time. In addition, this program may be for realizing some of the above-described components, and further, the above-described components can be realized in combination with a program already recorded in the computer system. Alternatively, it may be realized using hardware such as PLD (Programmable Logic Device) or FPGA (Field Programmable Gate Array).

以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。   The embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration is not limited to this embodiment, and includes designs and the like that do not depart from the gist of the present invention.

異なる偏波を組み合わせて伝送を行う無線通信システムに対するシミュレーションの精度を向上することが不可欠な用途にも適用できる。   It can also be applied to applications where it is essential to improve the accuracy of simulation for a wireless communication system that performs transmission by combining different polarizations.

1…評価装置
11…電波散乱体情報取得部
12…伝搬位相取得部
13…偏波変換量算出部
14…受信成分算出部
15…ドップラー変動算出部
16…加算処理部
17…チャネル特性算出部
DESCRIPTION OF SYMBOLS 1 ... Evaluation apparatus 11 ... Radio scatterer information acquisition part 12 ... Propagation phase acquisition part 13 ... Polarization conversion amount calculation part 14 ... Reception component calculation part 15 ... Doppler fluctuation calculation part 16 ... Addition processing part 17 ... Channel characteristic calculation part

Claims (5)

異なる偏波を組み合わせて伝送を行う無線通信システムの評価方法であって、
送信点と受信点との間における見通し外の多重波環境における電波散乱体に関する電波散乱体情報を取得する電波散乱体情報取得ステップと、
前記電波散乱体において前記送信点から送信された送信信号が反射した際の前記異なる偏波間における成分の分配比を示す偏波変換量を、電波散乱体情報に基づいて電波散乱体ごとに算出する偏波変換量算出ステップと、
前記偏波変換量算出ステップにより算出される偏波変換量と前記電波散乱体情報とに基づいて、前記受信点における前記異なる偏波それぞれの受信成分を前記電波散乱体での反射波ごとに算出する受信成分算出ステップと、
前記受信点に移動により、前記電波散乱体において反射される前記反射波が受けるドップラー変動による位相回転量を電波散乱体ごとに算出するドップラー変動算出ステップと、
前記受信成分算出ステップにより算出される受信成分に前記ドップラー変動算出ステップにより算出される位相回転量を加えた後に、前記異なる偏波ごとに加算する加算処理ステップと、
を有する無線通信システムの評価方法。
An evaluation method for a wireless communication system that performs transmission by combining different polarizations,
Radio wave scatterer information acquisition step for acquiring radio wave scatterer information related to the radio scatterer in a multi-wave environment outside the line of sight between the transmission point and the reception point;
A polarization conversion amount indicating a distribution ratio of components between the different polarized waves when a transmission signal transmitted from the transmission point is reflected in the radio scatterer is calculated for each radio scatterer based on the radio scatterer information. A step of calculating the amount of polarization conversion;
Based on the polarization conversion amount calculated in the polarization conversion amount calculation step and the radio wave scatterer information, the reception component of each of the different polarizations at the reception point is calculated for each reflected wave at the radio wave scatterer. Receiving component calculation step,
A Doppler fluctuation calculating step for calculating, for each radio wave scatterer, a phase rotation amount due to Doppler fluctuation received by the reflected wave reflected by the radio wave scatterer by moving to the reception point;
An addition processing step of adding each of the different polarized waves after adding the phase rotation amount calculated by the Doppler fluctuation calculation step to the reception component calculated by the reception component calculation step;
A method for evaluating a wireless communication system comprising:
前記偏波変換量算出ステップでは、
前記電波散乱体情報に含まれる前記電波散乱体における反射面に対する前記送信信号の入射面の斜角度と前記電波散乱体の誘電率とに基づいて、入射面に平行なTM波成分と入射面に垂直なTE波成分との反射係数を算出し、
TM波成分とTE波成分との前記反射係数を用いて前記電波散乱体により反射される前記反射波のTM波成分とTE波成分とを算出し、
算出した前記反射波のTM波成分とTE波成分とを合成することで偏波変換量を算出する、
請求項1に記載の無線通信システムの評価方法。
In the polarization conversion amount calculating step,
Based on the oblique angle of the incident surface of the transmission signal with respect to the reflecting surface in the radio wave scatterer included in the radio wave scatterer information and the dielectric constant of the radio wave scatterer, the TM wave component parallel to the incident surface and the incident surface Calculate the reflection coefficient with the vertical TE wave component,
Calculating the TM wave component and the TE wave component of the reflected wave reflected by the radio wave scatterer using the reflection coefficient of the TM wave component and the TE wave component;
Calculating the polarization conversion amount by combining the TM wave component and the TE wave component of the calculated reflected wave;
The wireless communication system evaluation method according to claim 1.
前記加算処理ステップにより算出される前記受信点における前記異なる偏波ごとの受信成分と前記送信信号とに基づいて、前記送信点と前記受信点との間におけるチャネル特性を算出するチャネル特性算出ステップ、を更に有する、
請求項1又は請求項2に記載の無線通信システムの評価方法。
A channel characteristic calculation step of calculating a channel characteristic between the transmission point and the reception point based on the reception component and the transmission signal for each different polarization at the reception point calculated by the addition processing step; Further having
The method for evaluating a wireless communication system according to claim 1 or 2.
異なる偏波を組み合わせて伝送を行う無線通信システムの評価装置であって、
送信点と受信点との間における見通し外の多重波環境における電波散乱体に関する電波散乱体情報を取得する電波散乱体情報取得部と、
前記電波散乱体において前記送信点から送信された送信信号が反射した際の前記異なる偏波間における成分の分配比を示す偏波変換量を、電波散乱体情報に基づいて電波散乱体ごとに算出する偏波変換量算出部と、
前記偏波変換量算出部が算出する偏波変換量と前記電波散乱体情報とに基づいて、前記受信点における前記異なる偏波それぞれの受信成分を前記電波散乱体での反射波ごとに算出する受信成分算出部と、
前記受信点に移動により、前記電波散乱体において反射される前記反射波が受けるドップラー変動による位相回転量を電波散乱体ごとに算出するドップラー変動算出部と、
前記受信成分算出部が算出する受信成分に前記ドップラー変動算出部が算出する位相回転量を加えた後に、前記異なる偏波ごとに加算する加算処理部と、
を備える評価装置。
An evaluation apparatus for a wireless communication system that performs transmission by combining different polarizations,
A radio wave scatterer information acquisition unit for acquiring radio wave scatterer information relating to the radio scatterer in a multi-wave environment outside the line of sight between the transmission point and the reception point;
A polarization conversion amount indicating a distribution ratio of components between the different polarized waves when a transmission signal transmitted from the transmission point is reflected in the radio scatterer is calculated for each radio scatterer based on the radio scatterer information. A polarization conversion amount calculation unit;
Based on the polarization conversion amount calculated by the polarization conversion amount calculation unit and the radio wave scatterer information, the reception component of each of the different polarizations at the reception point is calculated for each reflected wave at the radio wave scatterer. A reception component calculation unit;
A Doppler fluctuation calculation unit for calculating, for each radio wave scatterer, a phase rotation amount due to Doppler fluctuations received by the reflected wave reflected by the radio wave scatterer by moving to the reception point;
An addition processing unit for adding each of the different polarizations after adding the phase rotation amount calculated by the Doppler fluctuation calculation unit to the reception component calculated by the reception component calculation unit;
An evaluation apparatus comprising:
請求項1から請求項3のいずれか一項に記載の無線通信システムの評価方法をコンピュータに実行させるためのプログラム。     The program for making a computer perform the evaluation method of the radio | wireless communications system as described in any one of Claims 1-3.
JP2016032174A 2016-02-23 2016-02-23 Evaluation method, evaluation apparatus, and program for wireless communication system Active JP6495843B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016032174A JP6495843B2 (en) 2016-02-23 2016-02-23 Evaluation method, evaluation apparatus, and program for wireless communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016032174A JP6495843B2 (en) 2016-02-23 2016-02-23 Evaluation method, evaluation apparatus, and program for wireless communication system

Publications (2)

Publication Number Publication Date
JP2017152847A JP2017152847A (en) 2017-08-31
JP6495843B2 true JP6495843B2 (en) 2019-04-03

Family

ID=59739838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016032174A Active JP6495843B2 (en) 2016-02-23 2016-02-23 Evaluation method, evaluation apparatus, and program for wireless communication system

Country Status (1)

Country Link
JP (1) JP6495843B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07162376A (en) * 1993-12-10 1995-06-23 Hitachi Ltd Testing device for terminal communication condition
JP4038440B2 (en) * 2003-02-21 2008-01-23 株式会社エヌ・ティ・ティ・ドコモ Multipath generation apparatus, multiwave fading simulator, and multipath generation method
JP5195214B2 (en) * 2008-09-19 2013-05-08 富士通株式会社 Antenna characteristic evaluation system
WO2010139840A1 (en) * 2009-06-03 2010-12-09 Elektrobit System Test Oy Over-the-air test
JP5724163B2 (en) * 2009-08-28 2015-05-27 富士通株式会社 Antenna evaluation apparatus and antenna evaluation method
JP2011257326A (en) * 2010-06-11 2011-12-22 Panasonic Corp Antenna evaluation system and antenna evaluation method

Also Published As

Publication number Publication date
JP2017152847A (en) 2017-08-31

Similar Documents

Publication Publication Date Title
Lin et al. 3-D indoor positioning for millimeter-wave massive MIMO systems
Wang et al. A general 3D space-time-frequency non-stationary THz channel model for 6G ultra-massive MIMO wireless communication systems
Priebe et al. Non-specular scattering modeling for THz propagation simulations
Yin et al. Scatterer localization using large-scale antenna arrays based on a spherical wave-front parametric model
JP5280544B2 (en) Wireless test
Priebe et al. AoA, AoD and ToA characteristics of scattered multipath clusters for THz indoor channel modeling
Santos et al. Seabed geoacoustic characterization with a vector sensor array
Liu et al. 3D non-stationary wideband tunnel channel models for 5G high-speed train wireless communications
Jing et al. MIMO OTA test for a mobile station performance evaluation
JP2014518385A (en) Over the air test
Hong et al. Joint channel parameter estimation and scatterers localization
JP6495843B2 (en) Evaluation method, evaluation apparatus, and program for wireless communication system
Belbase et al. Study of propagation mechanisms and identification of scattering objects in indoor multipath channels at 11 GHz
Arikawa et al. A simplified MIMO channel characteristics evaluation scheme based on ray tracing and its application to indoor radio systems
Pradhan et al. Robust optimization of ris in terahertz under extreme molecular re-radiation manifestations
Zhou et al. Spatial focusing of time-reversed UWB electromagnetic waves in a hallway environment
Li et al. Gigantic MIMO channel characterization: Challenges and enabling solutions
Li et al. Spectrum recovery for clutter removal in penetrating radar imaging
Virk et al. Full-wave characterization of indoor office environment for accurate coverage analysis
Nazlı et al. Application of the generalized pencil of function method to time reversal imaging
Feraidooni et al. 3-D target localization based on bi-static range measurements in widely separated mimo radars
Thet et al. Extended reduced‐rank joint estimation of direction of arrival with mutual coupling for coherent signals
Niwaria et al. A Literature Survey Different Algorithms of MUSIC and MVDR DOA Estimation
Zwick et al. A novel antenna concept for double-directional channel measurements
Kaske et al. Modelling and synthesis of dense multipath propagation components in the angular domain

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190307

R150 Certificate of patent or registration of utility model

Ref document number: 6495843

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150