JP6495094B2 - Perforated plate - Google Patents

Perforated plate Download PDF

Info

Publication number
JP6495094B2
JP6495094B2 JP2015101502A JP2015101502A JP6495094B2 JP 6495094 B2 JP6495094 B2 JP 6495094B2 JP 2015101502 A JP2015101502 A JP 2015101502A JP 2015101502 A JP2015101502 A JP 2015101502A JP 6495094 B2 JP6495094 B2 JP 6495094B2
Authority
JP
Japan
Prior art keywords
hole
perforated plate
diameter portion
hole diameter
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015101502A
Other languages
Japanese (ja)
Other versions
JP2016218197A (en
Inventor
山口 善三
善三 山口
伊知郎 山極
伊知郎 山極
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2015101502A priority Critical patent/JP6495094B2/en
Priority to PCT/JP2016/063587 priority patent/WO2016185907A1/en
Priority to CN201680028712.1A priority patent/CN107615375B/en
Priority to EP16796301.6A priority patent/EP3300073A4/en
Publication of JP2016218197A publication Critical patent/JP2016218197A/en
Application granted granted Critical
Publication of JP6495094B2 publication Critical patent/JP6495094B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/172Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using resonance effects

Description

本発明は、板形状または壁形状の閉塞部材との間に空気層が形成されるように配置される吸音部材としての多孔板に関する。本発明の多孔板は、例えば、車両等の防音材料として用いられる。   The present invention relates to a perforated plate as a sound absorbing member arranged so that an air layer is formed between a plate-shaped or wall-shaped blocking member. The porous plate of the present invention is used, for example, as a soundproof material for vehicles and the like.

車両等の防音材料としての多孔板に関する技術として、例えば特許文献1に記載されたものがある。特許文献1に記載の多孔吸音構造は、外側材(アウター材)および/または内側材(インナー材)の中空部側の面に、当該面との間に空気層が形成されるように多数の貫通孔を有する補強板材を取り付けるというものである。この多数の貫通孔を有する補強板材により上記中空部内に吸音性を付与している。この多孔吸音構造によると、内側材(インナー材)の下面に繊維系吸音材を取り付けることなく、吸音率が大きな周波数範囲を容易に広げることができる。   As a technique related to a perforated plate as a soundproof material for vehicles and the like, for example, there is one described in Patent Document 1. The porous sound-absorbing structure described in Patent Document 1 has a large number of air layers so that an air layer is formed between the outer member (outer member) and / or the inner member (inner member) on the hollow part side. A reinforcing plate having a through hole is attached. The reinforcing plate material having a large number of through-holes imparts sound absorption to the hollow portion. According to this porous sound absorbing structure, it is possible to easily widen a frequency range having a large sound absorption coefficient without attaching a fiber-based sound absorbing material to the lower surface of the inner material (inner material).

特開2014−48632号公報JP 2014-48632 A

補強板材に形成する貫通孔の具体的な詳細形状については、特許文献1に直接的な記載はない。補強板材への孔開け方法に関しては、特許文献1の段落0054にパンチング加工が例示されている。パンチング加工で開けられた孔は、板材の表面から裏面まで断面積が同じ円柱形状の孔となる。すなわち、特許文献1には、板材の表面から裏面まで断面積が同じ円柱形状の多数の孔を有する多孔板が開示されていると言える。   Patent Document 1 does not directly describe the specific detailed shape of the through hole formed in the reinforcing plate. Regarding the method for punching the reinforcing plate, punching is exemplified in paragraph 0054 of Patent Document 1. The hole opened by the punching process is a cylindrical hole having the same cross-sectional area from the front surface to the back surface of the plate material. That is, it can be said that Patent Document 1 discloses a porous plate having a large number of cylindrical holes having the same cross-sectional area from the front surface to the back surface of the plate material.

ここで、車両等の防音材料として多孔板を用いる場合、当該多孔板を補強版としても利用するか否かにかかわらず、多孔板に形成する貫通孔の数は少ない方が好ましい。貫通孔を多数、板に開けるとその分、板の強度が低下するからである。一方、貫通孔の数を単に少なくすると吸音率が低下してしまう。また、貫通孔の数を多くすると孔加工のコストが大となるという問題もある。さらには、貫通孔の数を多くし過ぎると、隣り合う貫通孔が干渉してしまうという問題もある。   Here, when a porous plate is used as a soundproof material for a vehicle or the like, it is preferable that the number of through holes formed in the porous plate is small regardless of whether the porous plate is also used as a reinforcing plate. This is because if a large number of through holes are formed in the plate, the strength of the plate is reduced accordingly. On the other hand, if the number of through-holes is simply reduced, the sound absorption rate is lowered. Further, there is a problem that the cost of drilling increases when the number of through holes is increased. Furthermore, when the number of through holes is increased too much, there is a problem that adjacent through holes interfere with each other.

本発明は、上記事情に鑑みてなされたものであって、その目的は、従来よりも少ない数の貫通孔で高い吸音率を得ることができる多孔板を提供することである。   The present invention has been made in view of the above circumstances, and an object thereof is to provide a perforated plate that can obtain a high sound absorption coefficient with a smaller number of through-holes than before.

本発明は、板形状または壁形状の閉塞部材との間に空気層が形成されるように配置される、多数の貫通孔を有する多孔板である。前記貫通孔は、当該多孔板の一方の面に形成される最大孔径部と、当該多孔板の他方の面に形成される最小孔径部と、を有し、当該多孔板の板厚方向の断面視において、前記最大孔径部と前記最小孔径部とを結ぶ直線よりも外側へ膨らんでいる。   The present invention is a perforated plate having a large number of through holes arranged so that an air layer is formed between a plate-shaped or wall-shaped blocking member. The through-hole has a maximum hole diameter portion formed on one surface of the perforated plate and a minimum hole diameter portion formed on the other surface of the perforated plate, and a cross section in the plate thickness direction of the perforated plate In view, it swells outward from a straight line connecting the maximum hole diameter portion and the minimum hole diameter portion.

貫通孔の形状に関し、最大孔径部と最小孔径部とを結ぶ直線よりも外側へ膨らんだ形状とすることで、音波の伝播に影響する貫通孔各部の板厚方向(音波が通過する方向)の厚さは、孔断面形状が一直線で形成されている場合に比べて小さくなる。すなわち、本発明に係る貫通孔の形状よると、貫通孔各部の板厚方向の厚さは、孔断面形状が一直線で形成されている場合に比べて、両貫通孔部を同じ孔径のところで比較した場合に小さくなる。これにより、少ない数の貫通孔でも高い吸音率を得ることができる。   Regarding the shape of the through-hole, by making the shape swelled outward from the straight line connecting the maximum hole diameter portion and the minimum hole diameter portion, the plate thickness direction (direction in which sound waves pass) of each portion of the through hole that affects the propagation of sound waves The thickness is smaller than when the hole cross-sectional shape is formed in a straight line. That is, according to the shape of the through-hole according to the present invention, the thickness in the plate thickness direction of each part of the through-hole is compared at the same hole diameter compared to the case where the hole cross-sectional shape is formed in a straight line. If it becomes smaller. Thereby, a high sound absorption coefficient can be obtained even with a small number of through holes.

本発明の一実施形態に係る多孔板を備える多孔吸音構造を示す断面図である。It is sectional drawing which shows a porous sound absorption structure provided with the porous plate which concerns on one Embodiment of this invention. 図1に示す多孔板の貫通孔部分の拡大図である。It is an enlarged view of the through-hole part of the perforated plate shown in FIG. 多孔板の流れ抵抗と音波の周波数との関係を示す図である。It is a figure which shows the relationship between the flow resistance of a perforated plate, and the frequency of a sound wave. 多孔板の貫通孔の2つの実施形態を示す断面図である。It is sectional drawing which shows two embodiment of the through-hole of a perforated plate. 多孔板の貫通孔の実施形態を示す断面図である。It is sectional drawing which shows embodiment of the through-hole of a perforated plate. 図4に示した貫通孔7と比較例に係る膨らみのない貫通孔との吸音率比較結果を示すグラフである。It is a graph which shows the sound absorption coefficient comparison result of the through-hole 7 shown in FIG. 4 and the through-hole which does not have a bulge which concerns on a comparative example. 図4に示した貫通孔6,7と比較例に係る膨らみのない貫通孔とが同じ吸音率になる孔の数の比較結果を示すグラフである。It is a graph which shows the comparison result of the number of the holes in which the through-holes 6 and 7 shown in FIG.

以下、本発明を実施するための形態について図面を参照しつつ説明する。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.

(多孔板を用いた吸音構造)
図1に示すように、本発明の一実施形態に係る多孔板1は、板形状または壁形状の閉塞部材2との間に空気層3が形成されるように、閉塞部材2との間に所定の間隔をあけて配置される。なお、空気層3が外部と連通しているのは、多孔板1の多数の貫通孔4部分のみである。すなわち、例えば、多孔板1の端と閉塞部材2とは、貫通孔等のない板で接続されて閉止されている。
(Sound absorbing structure using perforated plate)
As shown in FIG. 1, a porous plate 1 according to an embodiment of the present invention is provided between an obstruction member 2 so that an air layer 3 is formed between the obstruction member 2 having a plate shape or a wall shape. They are arranged at a predetermined interval. Note that the air layer 3 communicates with the outside only in a large number of through-holes 4 of the perforated plate 1. That is, for example, the end of the perforated plate 1 and the closing member 2 are connected and closed by a plate having no through hole or the like.

閉塞部材2とは、孔が開けられていない、すなわち、表面と裏面が連通していない部材のことである。また、閉塞部材2は、多孔板1を間に挟んで、騒音源5の反対側に配置される。   The closing member 2 is a member that is not perforated, that is, the front surface and the back surface are not in communication. Further, the closing member 2 is disposed on the opposite side of the noise source 5 with the perforated plate 1 interposed therebetween.

多孔板1および閉塞部材2の材料は、アルミニウム、アルミニウム合金、ステンレス、鉄、樹脂などである。   The material of the perforated plate 1 and the closing member 2 is aluminum, aluminum alloy, stainless steel, iron, resin, or the like.

(貫通孔の形状)
図2は、図1に示す多孔板1の貫通孔4部分の拡大図である。図2に示すように、貫通孔4は、多孔板1の一方の面S1に形成される最大孔径部11と、他方の面S2に形成される最小孔径部12とを有する。すなわち、貫通孔4は、多孔板1の表面と裏面とで直径が異なり、孔の表裏において孔の直径が最大(Dmax)、最小(Dmin)とされた貫通孔である。
(Shape of the through hole)
FIG. 2 is an enlarged view of the through hole 4 portion of the perforated plate 1 shown in FIG. As shown in FIG. 2, the through-hole 4 has a maximum hole diameter portion 11 formed on one surface S1 of the porous plate 1 and a minimum hole diameter portion 12 formed on the other surface S2. That is, the through hole 4 is a through hole in which the diameter is different between the front surface and the back surface of the porous plate 1 and the diameter of the hole is maximum (Dmax) and minimum (Dmin) on the front and back surfaces of the hole.

Dmin(最小孔径)は、多孔板1の板厚t以下とされる。Dminの最小値は、0.01mmである。孔径:0.01mmは、過減衰の影響により吸音率が向上しなくなる径である。すなわち、Dmin(最小孔径)は、0.01mm以上、板厚t以下とされる。   Dmin (minimum pore diameter) is set to a thickness t or less of the porous plate 1. The minimum value of Dmin is 0.01 mm. The hole diameter: 0.01 mm is a diameter at which the sound absorption rate is not improved due to the influence of excessive attenuation. That is, Dmin (minimum hole diameter) is 0.01 mm or more and a plate thickness t or less.

Dmax(最大孔径)は、Dmin(最小孔径)よりも大きな径であり、孔ピッチの1/2未満の径とされる。孔ピッチとは、隣り合う孔の中心間の距離である。   Dmax (maximum hole diameter) is larger than Dmin (minimum hole diameter), and is a diameter less than 1/2 of the hole pitch. The hole pitch is the distance between the centers of adjacent holes.

図2に示す、多孔板1の板厚t方向の断面視において、最大孔径部11と最小孔径部12との間の貫通孔4の壁面は、最大孔径部11と最小孔径部12とを結ぶ直線Lよりも径方向外側とされる。すなわち、貫通孔4は、当該直線Lよりも外側へ膨らんだ形状となっている。また、貫通孔4の断面積は、最大孔径部11が形成される多孔板1の一方の面S1から、最小孔径部12が形成される多孔板1の他方の面S2へ近づくにあたり、断面積が同じ、または断面積が小さくなるようにされる。図2に示す実施形態では、最大孔径部11からその下方の壁面位置13までは同じ断面積(最大断面積のまま)とされ、その後は、他方の面S2へ近づくにつれて断面積が連続的に徐々に小さくさるようにされている。   2, the wall surface of the through hole 4 between the maximum hole diameter portion 11 and the minimum hole diameter portion 12 connects the maximum hole diameter portion 11 and the minimum hole diameter portion 12 in a cross-sectional view of the porous plate 1 in the thickness t direction. The radial direction is outside the straight line L. That is, the through-hole 4 has a shape bulging outward from the straight line L. In addition, the cross-sectional area of the through-hole 4 is such that the cross-sectional area increases from one surface S1 of the porous plate 1 where the maximum hole diameter portion 11 is formed to the other surface S2 of the porous plate 1 where the minimum hole diameter portion 12 is formed. Are the same or the cross-sectional area is reduced. In the embodiment shown in FIG. 2, the same cross-sectional area (the maximum cross-sectional area is maintained) from the maximum hole diameter portion 11 to the wall surface position 13 below the same, and thereafter, the cross-sectional area continuously increases as it approaches the other surface S2. It is gradually made smaller.

最大のポイントは、貫通孔4の形状が、多孔板1の板厚t方向の断面視において、最大孔径部11と最小孔径部12とを結ぶ直線Lよりも外側へ膨らんだ形状となっていることである。この構成によると、孔の中ほど部分における同じ孔径となる際の板厚について符号ta1、ta2を付すと、図2に示すように板厚ta2<板厚ta1となる。このように、多孔板1の貫通孔4各部分の板厚方向の厚さは、直線Lで示す外側へ膨らませていない孔の場合よりも、両貫通孔を同じ孔径のところで比較した場合に小さくなる。換言すれば、板厚t方向における孔の両端部を除く部分において、同じ孔径になる板厚t方向の位置がより最小径側となる。   The maximum point is that the shape of the through-hole 4 swells outward from a straight line L connecting the maximum hole diameter portion 11 and the minimum hole diameter portion 12 in a cross-sectional view of the porous plate 1 in the thickness t direction. That is. According to this configuration, when the thicknesses ta1 and ta2 are given to the plate thicknesses at the same hole diameter in the middle of the hole, the plate thickness ta2 <the plate thickness ta1 as shown in FIG. Thus, the thickness in the plate thickness direction of each portion of the through hole 4 of the perforated plate 1 is smaller when the through holes are compared at the same hole diameter than in the case of the holes not expanded outward shown by the straight line L. Become. In other words, in the portion excluding both ends of the hole in the plate thickness t direction, the position in the plate thickness t direction having the same hole diameter is on the minimum diameter side.

なお、多孔板1の板厚t方向の断面視において、貫通孔4の多くの部分は、曲線で孔の壁面が形成されているが、上下方向や斜め方向や横方向の直線の組合せで孔の壁面が形成されていてもよい(面S1から面S2へ向かうにつれて断面積が不連続に小さくなるようにされていてもよい)。すなわち、貫通孔4は、面S1から面S2へ向かうにつれて断面積が同じかまたは小さくなればよく、多孔板1の板厚t方向の断面視において、貫通孔4の壁面は、直線と曲線の組合せであってもよいし、全て曲線(曲率の異なる曲線の組合せを含む)であってもよいし、全て直線の組合せであってもよい。   In addition, in the cross-sectional view of the plate thickness t direction of the perforated plate 1, many portions of the through hole 4 are curved and the wall surface of the hole is formed, but the hole is formed by a combination of straight lines in the vertical direction, diagonal direction, and horizontal direction. May be formed (the cross-sectional area may be reduced discontinuously from the surface S1 toward the surface S2). That is, the through-hole 4 only needs to have the same or smaller cross-sectional area as it goes from the surface S1 to the surface S2, and the wall surface of the through-hole 4 has a straight line and a curved line in the cross-sectional view in the plate thickness t direction of the porous plate 1. Combinations may be used, all may be curves (including combinations of curves having different curvatures), or all may be combinations of straight lines.

また、図1に示したように、貫通孔4のうちの孔径(断面積)が大きい方を騒音源5側にしてもよいし、これとは反対に、貫通孔4のうちの孔径(断面積)が小さい方を騒音源5側にしてもよい。この理由は、以下の通りである。吸音効果は、音波が孔を通過する祭の圧力損失により決定される。圧力損失は、孔の一番小さな部位により決定されるため、騒音源5側を孔径が小さい方にしても大きい方にしても、同様の吸音効果を発揮させることができるからである。   Further, as shown in FIG. 1, the through hole 4 having a larger hole diameter (cross-sectional area) may be the noise source 5 side. The smaller area may be on the noise source 5 side. The reason for this is as follows. The sound absorption effect is determined by the pressure drop of the festival where sound waves pass through the hole. This is because the pressure loss is determined by the smallest part of the hole, so that the same sound absorption effect can be exhibited regardless of whether the noise source 5 side is smaller or larger.

(貫通孔4各部分の板厚方向の厚さを、孔断面形状が一直線で形成されている場合に比べて、両貫通孔部を同じ孔径のところで比較した場合に小さくしている理由)
板材の表面から裏面まで断面積が同じ円柱形状の多数の貫通孔を板材に開けてなる多孔板の流れ抵抗(表裏の圧力損失/通過流速)の式は、下記の式(1)となる。
(Reason for reducing the thickness of each part of the through-hole 4 in the plate thickness direction when comparing the through-hole portions at the same hole diameter as compared with the case where the hole cross-sectional shape is formed in a straight line)
The expression of the flow resistance (pressure loss / passing flow velocity on the front and back sides) of the perforated plate formed by opening a large number of cylindrical through holes having the same cross-sectional area from the front surface to the back surface of the plate material is the following equation (1).

式(1)
t:流れ抵抗
η0:空気の粘性抵抗
β:多孔板の開口率
d:孔径
t:多孔板の板厚
ρ0:空気の密度
ω:音波の角速度(=周波数)
Formula (1)
R t : Flow resistance η 0 : Viscous resistance of air β: Opening ratio of porous plate d: Hole diameter t: Plate thickness of porous plate ρ 0 : Air density ω: Angular velocity (= frequency) of sound wave

上記流れ抵抗と周波数との関係を示すのが図3である。図3に示すように板厚が大きい場合には、板厚が小さい場合に比べて流れ抵抗Rtが大きくなる。抵抗Rtが大きいと、最適な減衰を得るための多孔板の開口率β(孔の数)を大きくして減衰を小さくする必要がある。そのため、板厚が大きいと開口率βを大にする必要がある。 FIG. 3 shows the relationship between the flow resistance and the frequency. If a large thickness as shown in FIG. 3, the flow resistance R t is larger than the plate thickness is small. When the resistance R t is large, it is necessary to increase the aperture ratio β (number of holes) of the perforated plate to obtain optimum attenuation, thereby reducing the attenuation. Therefore, when the plate thickness is large, it is necessary to increase the aperture ratio β.

ここで、前記したように、貫通孔4の形状を最大孔径部11と最小孔径部12とを結ぶ直線Lよりも外側へ膨らませた孔形状とすると、貫通孔4各部分の板厚方向の厚さが、孔断面形状が一直線で形成されている場合に比べて、両貫通孔部を同じ孔径のところで比較した場合に小さくなり、多孔板の板厚を小さくしたのと同じ効果が得られる。その結果、同じ吸音率を達成する貫通孔4の数を少なくすることができる。これにより、少ない数の貫通孔でも高い吸音率を得ることが可能となる。これに付随する効果として、孔加工コストの低減、隣り合う貫通孔の干渉回避、多孔板の強度向上という効果がある。   Here, as described above, when the shape of the through hole 4 is a hole shape bulging outward from the straight line L connecting the maximum hole diameter portion 11 and the minimum hole diameter portion 12, the thickness of each portion of the through hole 4 in the plate thickness direction. However, compared with the case where the hole cross-sectional shape is formed in a straight line, it is smaller when both through-hole portions are compared at the same hole diameter, and the same effect as that obtained by reducing the plate thickness of the porous plate can be obtained. As a result, the number of through holes 4 that achieve the same sound absorption rate can be reduced. This makes it possible to obtain a high sound absorption coefficient with a small number of through holes. As the effects accompanying this, there are the effects of reducing the hole machining cost, avoiding interference between adjacent through holes, and improving the strength of the porous plate.

なお、多孔板の板厚を小さくしたのと同じ効果が得られることに大きく寄与する部分は、貫通孔4の最小孔径部12の周辺部分である、貫通孔4の孔下部Bである。この孔下部Bにおいて、直線Lよりも外側に孔が膨らんでいると(孔が凹状に湾曲していると(直線でもよいが))、面S1から面S2までの貫通孔4の各部における板厚が小さくなりやすいからである。   A portion that greatly contributes to obtaining the same effect as that obtained by reducing the thickness of the perforated plate is a hole lower portion B of the through hole 4 that is a peripheral portion of the minimum hole diameter portion 12 of the through hole 4. When the hole bulges outside the straight line L in the hole lower part B (when the hole is curved in a concave shape (or may be a straight line)), the plate in each part of the through hole 4 from the surface S1 to the surface S2 This is because the thickness tends to be small.

(他の実施形態)
図4には貫通孔の2つの実施形態が示されている。多孔板1の板厚t方向の断面視において、貫通孔の最大孔径部11と最小孔径部12とを結ぶ直線Lよりも外側へ膨らんでいる部分のうちの最大膨らみ位置が、多孔板1の板厚t方向の中央位置、または当該中央位置よりも最小孔径部12側の位置であることが好ましい。
(Other embodiments)
FIG. 4 shows two embodiments of through holes. In a cross-sectional view of the perforated plate 1 in the thickness t direction, the maximum bulge position of the portion that bulges outward from the straight line L connecting the maximum hole diameter portion 11 and the minimum hole diameter portion 12 of the through hole is the perforated plate 1. The center position in the thickness t direction or the position closer to the minimum hole diameter portion 12 than the center position is preferable.

図4に示す2つの貫通孔6,7のうちの貫通孔6に関しては、その最大膨らみ位置14が多孔板1の板厚t方向の中央位置とされている。もう一方の貫通孔7に関しては、その最大膨らみ位置15が、板厚t方向の中央位置よりも最小孔径部12側であって、最小孔径部12側の面S2から1/4・tの位置とされている。   With respect to the through-hole 6 of the two through-holes 6 and 7 shown in FIG. 4, the maximum bulge position 14 is the center position in the plate thickness t direction of the porous plate 1. With respect to the other through-hole 7, the maximum bulge position 15 is closer to the minimum hole diameter part 12 than the center position in the thickness t direction, and is a position of 1/4 · t from the surface S2 on the minimum hole diameter part 12 side. It is said that.

また、図5に示すように、最小孔径部12付近の十分な強度を確保するために、最小孔径部12が厚みをもった構造とすることが好ましい。なお、最小孔径部12の厚みが当該最小孔径部の孔径Dminよりも大きくなると、貫通孔の形状を最大孔径部と最小孔径部とを結ぶ直線よりも外側へ膨らませた孔形状とすることによる吸音性能向上効果が小さくなるので、最小孔径部12の厚みtdは、当該最小孔径部12の孔径Dmin以下の所定の厚みとする。   Further, as shown in FIG. 5, in order to ensure sufficient strength in the vicinity of the minimum hole diameter portion 12, it is preferable that the minimum hole diameter portion 12 has a thickness. When the thickness of the minimum hole diameter portion 12 is larger than the hole diameter Dmin of the minimum hole diameter portion, the sound absorption by making the shape of the through hole bulge outward from the straight line connecting the maximum hole diameter portion and the minimum hole diameter portion. Since the performance improvement effect becomes small, the thickness td of the minimum hole diameter portion 12 is set to a predetermined thickness equal to or smaller than the hole diameter Dmin of the minimum hole diameter portion 12.

この構造によると、前記したように最小孔径部12付近の十分な強度を確保することができる。また、最小孔径部12を鋭利な構造とするよりも孔加工が行い易いという効果もある。   According to this structure, sufficient strength in the vicinity of the minimum hole diameter portion 12 can be ensured as described above. Further, there is an effect that the hole processing is easier than the minimum hole diameter portion 12 having a sharp structure.

(検証結果)
図6は、図4に示した貫通孔7と、比較例に係る膨らみのない貫通孔(断面視において最大孔径部11と最小孔径部12とが直線Lでつながっている円錐状の貫通孔)との吸音率比較結果を示すグラフである。図6において、「本発明」と記載しているのが、図4に示した貫通孔7(実施形態の一例)である。それぞれの貫通孔を有する多孔板の開口率は、同じ0.5%とした。図6からわかるように、本発明に係る貫通孔7(多数の貫通孔7を有する多孔板1)のほうが、比較例に係る膨らみのない貫通孔(膨らみのない貫通孔を有する多孔板)よりも、吸音率を大幅に向上させることができる。
(inspection result)
FIG. 6 shows the through hole 7 shown in FIG. 4 and a through hole without a bulge according to a comparative example (a conical through hole in which the maximum hole diameter portion 11 and the minimum hole diameter portion 12 are connected by a straight line L in a cross-sectional view). It is a graph which shows a sound absorption coefficient comparison result with. In FIG. 6, what is described as “the present invention” is the through hole 7 (an example of the embodiment) shown in FIG. The aperture ratio of the perforated plate having each through hole was set to the same 0.5%. As can be seen from FIG. 6, the through-hole 7 according to the present invention (the porous plate 1 having a large number of through-holes 7) is more than the through-hole without a bulge according to the comparative example (the porous plate having the through-hole without bulge). However, the sound absorption rate can be greatly improved.

図7は、図4に示した貫通孔6,7と、比較例に係る膨らみのない貫通孔(断面視において最大孔径部11と最小孔径部12とが直線Lでつながっている円錐状の貫通孔)とが同じ吸音率になる孔の数の比較結果を示すグラフである。   FIG. 7 shows a through-hole 6, 7 shown in FIG. 4 and a non-bulging through-hole according to a comparative example (a conical through-hole in which the maximum hole diameter portion 11 and the minimum hole diameter portion 12 are connected by a straight line L in a sectional view). It is a graph which shows the comparison result of the number of the holes in which the sound absorption coefficient is the same as the (hole).

図7に示すグラフの縦軸は、比較例に係る膨らみのない貫通孔(膨らみのない貫通孔を有する多孔板)の場合の孔の数を100%としたときの本発明に係る貫通孔6,7(多数の貫通孔6または7を有する多孔板1)の場合の孔の数の割合である。グラフの横軸は、貫通孔6,7のそれぞれの最大膨らみ位置14,15における膨らみ量である。   The vertical axis of the graph shown in FIG. 7 indicates the through-hole 6 according to the present invention when the number of holes in the case of a through-hole without a bulge according to the comparative example (a porous plate having a through-hole without a bulge) is 100%. , 7 (perforated plate 1 having a large number of through-holes 6 or 7). The horizontal axis of the graph represents the bulge amount at the maximum bulge positions 14 and 15 of the through holes 6 and 7, respectively.

図7からわかるように、本発明に係る貫通孔6,7(多数の貫通孔6または7を有する多孔板1)のほうが、比較例に係る膨らみのない貫通孔(膨らみのない貫通孔を有する多孔板)よりも、同じ吸音率を達成する場合に孔の数が少なくて済む。   As can be seen from FIG. 7, the through-holes 6 and 7 (the porous plate 1 having a large number of through-holes 6 or 7) according to the present invention have a through-hole without a bulge according to the comparative example (a through-hole without a bulge). The number of holes is smaller when achieving the same sound absorption rate than the perforated plate).

貫通孔6の場合(最大膨らみ位置:面S2から1/2・t)と、貫通孔7の場合(最大膨らみ位置:面S2から1/4・t)との比較においては、貫通孔7の場合のほうが同じ吸音率を達成する場合に孔の数が少なくて済む。すなわち、最大膨らみ位置をより最小孔径部12に近づけたほうが、孔の数はより少なくて済む。   In comparison between the case of the through hole 6 (maximum bulge position: 1/2 · t from the surface S2) and the case of the through hole 7 (maximum bulge position: 1/4 · t from the surface S2), the through hole 7 If the case achieves the same sound absorption rate, the number of holes is smaller. That is, the number of holes can be smaller as the maximum bulge position is closer to the minimum hole diameter portion 12.

(作用・効果)
本発明に係る多孔版の有する各貫通孔は、当該多孔板の一方の面に形成される最大孔径部と、当該多孔板の他方の面に形成される最小孔径部と、を有し、当該多孔板の板厚方向の断面視において、前記最大孔径部と前記最小孔径部とを結ぶ直線よりも外側へ膨らんでいる。
(Action / Effect)
Each through hole of the porous plate according to the present invention has a maximum hole diameter portion formed on one surface of the porous plate and a minimum hole diameter portion formed on the other surface of the porous plate, In a cross-sectional view in the plate thickness direction of the perforated plate, the perforated plate swells outward from a straight line connecting the maximum hole diameter portion and the minimum hole diameter portion.

この構成によると、多孔板の貫通孔各部の板厚方向の厚さは、孔断面形状が一直線で形成されている場合に比べて、両貫通孔部を同じ孔径のところで比較した場合に小さくなる。これにより、多孔板の板厚を小さくしたのと同じ効果が得られるので少ない数の貫通孔でも高い吸音率を得ることができる。   According to this configuration, the thickness in the plate thickness direction of each part of the through hole of the perforated plate is smaller when the through hole parts are compared at the same hole diameter than when the hole cross-sectional shape is formed in a straight line. . As a result, the same effect as that obtained by reducing the thickness of the porous plate can be obtained, so that a high sound absorption coefficient can be obtained even with a small number of through holes.

また本発明において、当該多孔板の板厚方向の断面視において、前記貫通孔の、最大孔径部と最小孔径部とを結ぶ直線よりも外側へ膨らんでいる部分のうちの最大膨らみ位置が、当該多孔板の板厚方向の中央位置、または当該中央位置よりも最小孔径部側の位置であることが好ましい。この構成によると、より少ない数の貫通孔で高い吸音率を得ることができる。   In the present invention, in the cross-sectional view of the perforated plate in the thickness direction, the maximum bulge position of the portion of the through hole that bulges outward from the straight line connecting the maximum hole diameter portion and the minimum hole diameter portion is The center position in the thickness direction of the perforated plate or a position closer to the minimum pore diameter side than the center position is preferable. According to this configuration, a high sound absorption coefficient can be obtained with a smaller number of through holes.

また本発明において、最小孔径部が、当該最小孔径部の孔径以下の所定の厚みを有することが好ましい。この構成によると、最小孔径部付近の十分な強度を確保することができる。また、最小孔径部を鋭利な構造とするよりも孔加工が行い易いという効果も得られる。   In the present invention, it is preferable that the minimum hole diameter portion has a predetermined thickness equal to or smaller than the hole diameter of the minimum hole diameter portion. According to this configuration, sufficient strength in the vicinity of the minimum hole diameter portion can be ensured. Moreover, the effect that the hole processing is easier to perform than the sharp structure of the minimum hole diameter portion is also obtained.

1:多孔板
2:閉塞部材
3:空気層
4:貫通孔
11:最大孔径部
12:最小孔径部
L:最大孔径部11と最小孔径部12とを結ぶ直線
S1:一方の面
S2:他方の面
t:板厚
1: perforated plate 2: blocking member 3: air layer 4: through-hole 11: maximum hole diameter part 12: minimum hole diameter part L: straight line connecting the maximum hole diameter part 11 and minimum hole diameter part 12 1: one surface S2: the other Surface t: thickness

Claims (3)

板形状または壁形状の閉塞部材との間に空気層が形成されるように配置される、多数の貫通孔を有する多孔板であって、
前記貫通孔は、
当該多孔板の一方の面に形成される最大孔径部と、
当該多孔板の他方の面に形成される最小孔径部と、を有し、
当該多孔板の板厚方向の断面視において、前記最大孔径部と前記最小孔径部とを結ぶ直線よりも外側へ膨らんでおり、
前記最大孔径部の孔径が、孔ピッチの1/2未満の径とされていることを特徴とする、多孔板。
A perforated plate having a large number of through-holes disposed so that an air layer is formed between a plate-shaped or wall-shaped blocking member,
The through hole is
A maximum pore diameter portion formed on one surface of the perforated plate;
A minimum pore diameter portion formed on the other surface of the perforated plate,
In a cross-sectional view of the perforated plate in the thickness direction, the perforated plate swells outward from a straight line connecting the maximum hole diameter portion and the minimum hole diameter portion ,
The perforated plate, wherein a hole diameter of the maximum hole diameter portion is less than ½ of a hole pitch .
請求項1に記載の多孔板において、
当該多孔板の板厚方向の断面視において、前記貫通孔の前記直線よりも外側へ膨らんでいる部分のうちの最大膨らみ位置が、当該多孔板の板厚方向の中央位置よりも前記最小孔径部側の位置であることを特徴とする、多孔板。
The perforated plate according to claim 1,
In the thickness direction of the cross section of the perforated plate, the maximum bulging position, the central position location by remote the minimum plate thickness direction of the perforated plate of said portion of bulging outwardly to the straight line of the through hole A perforated plate characterized by being located on the pore diameter side.
請求項1または2に記載の多孔板において、
前記最小孔径部が、当該最小孔径部の孔径以下の所定の厚みを有することを特徴とする、多孔板。
In the perforated plate according to claim 1 or 2,
The perforated plate, wherein the minimum hole diameter portion has a predetermined thickness equal to or smaller than the hole diameter of the minimum hole diameter portion.
JP2015101502A 2015-05-19 2015-05-19 Perforated plate Active JP6495094B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015101502A JP6495094B2 (en) 2015-05-19 2015-05-19 Perforated plate
PCT/JP2016/063587 WO2016185907A1 (en) 2015-05-19 2016-05-02 Perforated plate
CN201680028712.1A CN107615375B (en) 2015-05-19 2016-05-02 Perforated plate
EP16796301.6A EP3300073A4 (en) 2015-05-19 2016-05-02 Perforated plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015101502A JP6495094B2 (en) 2015-05-19 2015-05-19 Perforated plate

Publications (2)

Publication Number Publication Date
JP2016218197A JP2016218197A (en) 2016-12-22
JP6495094B2 true JP6495094B2 (en) 2019-04-03

Family

ID=57320264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015101502A Active JP6495094B2 (en) 2015-05-19 2015-05-19 Perforated plate

Country Status (4)

Country Link
EP (1) EP3300073A4 (en)
JP (1) JP6495094B2 (en)
CN (1) CN107615375B (en)
WO (1) WO2016185907A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020517573A (en) * 2017-04-26 2020-06-18 コーニング インコーポレイテッド Micro-perforated glass laminate and method for producing the same
EP3690874A4 (en) * 2017-09-25 2020-11-04 FUJIFILM Corporation Soundproofing structure
JP2021018357A (en) * 2019-07-22 2021-02-15 株式会社デンソー Sound absorption device
GB2605371A (en) * 2021-03-29 2022-10-05 Bae Systems Plc Acoustic absorbing structures
AT526400A1 (en) * 2022-07-29 2024-02-15 Admonter Holzindustrie Ag Building plate

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5288301A (en) * 1976-01-19 1977-07-23 Hiroshi Kofujita Surge direction transmissive device
JPH0823753B2 (en) * 1986-04-24 1996-03-06 松下電工株式会社 Silencer
US5504281A (en) * 1994-01-21 1996-04-02 Minnesota Mining And Manufacturing Company Perforated acoustical attenuators
JP3149366B2 (en) * 1996-10-14 2001-03-26 ユニプレス株式会社 Ventilated sound insulation wall structure
US7434660B2 (en) * 2001-06-21 2008-10-14 Kabushiki Kaisha Kobe Seiko Sho Perforated soundproof structure and method of manufacturing the same
US6629929B1 (en) * 2002-11-08 2003-10-07 Koninklijke Philips Electronics N.V. Method and apparatus for automatically setting the transmit aperture and apodization of an ultrasound transducer array
AT413406B (en) * 2003-08-18 2006-02-15 Holzindustrie Leitinger Ges M SOUND ABSORBING ELEMENT
CN1947170B (en) * 2004-04-30 2010-12-08 株式会社神户制钢所 Porous sound absorbing structure
KR100645824B1 (en) * 2005-06-14 2006-11-14 김영옥 The sound-absorbing panel
JP2007291834A (en) * 2006-03-31 2007-11-08 Yamaha Corp Sound absorbing panel and method of manufacturing sound absorbing panel
CN2896509Y (en) * 2006-05-16 2007-05-02 启碁科技股份有限公司 Ion gun silencing device
KR100790221B1 (en) * 2007-04-17 2008-01-02 임기태 Resonance sound absorption structure molding and sound absorption structure
CN102057421B (en) * 2008-04-14 2014-12-10 3M创新有限公司 Multilayer sound absorbing sheet
JP6190291B2 (en) * 2014-03-06 2017-08-30 株式会社神戸製鋼所 Sound absorption panel

Also Published As

Publication number Publication date
EP3300073A1 (en) 2018-03-28
CN107615375B (en) 2020-09-22
WO2016185907A1 (en) 2016-11-24
CN107615375A (en) 2018-01-19
JP2016218197A (en) 2016-12-22
EP3300073A4 (en) 2019-01-09

Similar Documents

Publication Publication Date Title
JP6495094B2 (en) Perforated plate
JP6512795B2 (en) Mute structure of natural ventilation opening
JP6857264B2 (en) Silencer
JP6602915B2 (en) Porous sound absorbing plate
JP6165466B2 (en) Soundproof structure
US11027817B2 (en) Acoustic treatment panel comprising a porous acoustically resistive structure comprising connecting canals
CN101675226A (en) The acoustical panel that the noise reduction characteristic is variable
US10229665B2 (en) Porous sound absorbing structure
US10277979B2 (en) Reduced-damping acoustic holes
US9241211B2 (en) Tubular body, bass reflex port, and acoustic apparatus
JP6602655B2 (en) Railway vehicle and railway vehicle processing method
WO2017090538A1 (en) Porous sound-absorbing board
JPH11280471A (en) Pipe part continued along curve
JP2008514883A5 (en)
KR101719060B1 (en) Noise reduction type duct
US20160375849A1 (en) Weight-Reducing Surface Structuring on Components Produced by a Casting Method
JP2017122559A (en) Corner vane and silencer using corner vane
JP4567372B2 (en) Silencer
CN112672250B (en) Phase inversion tube and phase inversion type sound box using same
JP6089749B2 (en) gasket
KR101845785B1 (en) Baffle for muffler and manufacturing method thereof
DE102016221542A1 (en) Membrane pot for an ultrasonic transducer and ultrasonic transducer
JP5215708B2 (en) Soundproof side wall for current collector and railcar equipped with the same
CN106131743A (en) A kind of two grades of noise reduction phase-reversing tubes
JP6233280B2 (en) Muffler

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190306

R150 Certificate of patent or registration of utility model

Ref document number: 6495094

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150