JP6494985B2 - Bioplastic manufacturing method and bioplastic molded body - Google Patents

Bioplastic manufacturing method and bioplastic molded body Download PDF

Info

Publication number
JP6494985B2
JP6494985B2 JP2014242910A JP2014242910A JP6494985B2 JP 6494985 B2 JP6494985 B2 JP 6494985B2 JP 2014242910 A JP2014242910 A JP 2014242910A JP 2014242910 A JP2014242910 A JP 2014242910A JP 6494985 B2 JP6494985 B2 JP 6494985B2
Authority
JP
Japan
Prior art keywords
powder
bioplastic
fiber length
molded body
wool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014242910A
Other languages
Japanese (ja)
Other versions
JP2016104827A (en
Inventor
伸治 平井
伸治 平井
純一 田川
純一 田川
翔太 秋岡
翔太 秋岡
横山 裕一
裕一 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NATIONAL UNIVERSITY CORPORATION MURORAN INSTITUTE OF TECHNOLOGY
Original Assignee
NATIONAL UNIVERSITY CORPORATION MURORAN INSTITUTE OF TECHNOLOGY
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NATIONAL UNIVERSITY CORPORATION MURORAN INSTITUTE OF TECHNOLOGY filed Critical NATIONAL UNIVERSITY CORPORATION MURORAN INSTITUTE OF TECHNOLOGY
Priority to JP2014242910A priority Critical patent/JP6494985B2/en
Publication of JP2016104827A publication Critical patent/JP2016104827A/en
Application granted granted Critical
Publication of JP6494985B2 publication Critical patent/JP6494985B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Biological Depolymerization Polymers (AREA)

Description

本発明は、バイオプラスチックを製造する方法及び当該方法によって製造されたバイオプラスチック成形体に関する。   The present invention relates to a method for producing bioplastic and a bioplastic molded body produced by the method.

高分子樹脂材料は、加工が容易である等の利点から、多くの製品に用いられている材料である。近年では、環境保護の観点から、いわゆるバイオプラスチックに代表されるような、有機物を原料とした再生可能な、又は生分解性を持つ高分子樹脂材料が注目されている。   The polymer resin material is a material used in many products because of its advantages such as easy processing. In recent years, from the viewpoint of environmental protection, recyclable or biodegradable polymer resin materials using organic materials as a raw material, as represented by so-called bioplastics, have attracted attention.

特許文献1及び2は、フィブロインのような絹タンパク質を熱圧成形した熱伝導体及び誘導体を製造する方法に関する。絹タンパク質を熱圧成形することで、生分解性を持つ高分子樹脂材料が作製可能となる。特許文献1は、その中でも熱伝導性に優れたものを製造することを目的とし、特許文献2は、その中でも誘電特性に優れたものを製造することを目的としている。   Patent Documents 1 and 2 relate to a method for producing a heat conductor and a derivative obtained by hot pressing a silk protein such as fibroin. By hot-pressing silk protein, a polymer resin material having biodegradability can be produced. Patent Document 1 aims to produce a material having excellent thermal conductivity among them, and Patent Document 2 aims to produce a material having excellent dielectric properties.

特許第4783956号Japanese Patent No. 4783756 特許第5084027号Japanese Patent No. 5084027

高分子樹脂材料は、通常、熱膨張率が金属等と比べて大きい。半導体デバイスや精密機器の分野では、材料の熱膨張が製造品質や機器の機能に大きく影響を与えることがある。このため、例えば加工機器、半導体製造装置、光学機器、計測機器、電子デバイス等、多くの産業分野において、熱膨張率の低い樹脂材料が要請されている。他方で、環境適応性の向上のため、これらの機器にバイオプラスチックを用いる要望も強い。   A polymer resin material usually has a larger coefficient of thermal expansion than a metal or the like. In the field of semiconductor devices and precision equipment, thermal expansion of materials can have a significant impact on manufacturing quality and equipment functionality. For this reason, resin materials having a low coefficient of thermal expansion are required in many industrial fields such as processing equipment, semiconductor manufacturing equipment, optical equipment, measuring equipment, and electronic devices. On the other hand, there is a strong demand for using bioplastics in these devices in order to improve environmental adaptability.

そこで、本発明の目的は、熱膨張率が比較的小さいバイオプラスチックの製造方法及び当該方法によって製造されたバイオプラスチック成形体を提供することにある。   Then, the objective of this invention is providing the manufacturing method of the bioplastic with a comparatively small coefficient of thermal expansion, and the bioplastic molded object manufactured by the said method.

本発明に係る製造方法は、バイオプラスチックの製造方法であって、ケラチンを主成分とする毛をその繊維長が繊維径相当の53μmになるまで粉砕して粉末にする粒度調整工程と、繊維長が繊維径相当のものを含む前記粉末に水を添加して混合する混合工程と、前記粉末と水の混合物に熱圧成形を施す成形工程とを備えている。また、本発明に係るバイオプラスチック成形体は、本発明の製造方法に基づいて成形されている。 Manufacturing method according to the present invention is a method for producing a bio-plastics, and particle size adjustment step of the sheep wool mainly composed of keratin and ground to the fiber length is the fiber diameter equivalent 53μm into a powder, fiber A mixing step in which water is added to and mixed with the powder having a length corresponding to the fiber diameter, and a forming step in which hot-pressure forming is performed on the mixture of the powder and water. Moreover, the bioplastic molded body according to the present invention is molded based on the production method of the present invention.

本発明に係るバイオプラスチックの製造方法は、ケラチンを主成分とする毛を繊維長が繊維径相当になるまで粉砕した粉末を用い、水を混合して熱圧成形することでバイオプラスチックを得るものとした。   The method for producing a bioplastic according to the present invention uses a powder obtained by pulverizing hair containing keratin as a main component until the fiber length is equivalent to the fiber diameter, and is mixed with water to perform hot-pressure molding to obtain bioplastic It was.

繊維長が比較的大きいと、粉末を構成する構成物が繊維状を呈する。このような場合、バイオプラスチック成形体内の微視的構造においても繊維状の構成物が残るため、構成物の集合体に方向性が生じたり、構成物同士の間に空隙が生じたりすることで、成形体が均質にならないおそれがある。   When the fiber length is relatively large, the constituents constituting the powder are fibrous. In such a case, since the fibrous structure remains in the microscopic structure in the bioplastic molded body, the direction of the assembly of the structure is generated, or a gap is generated between the structures. There is a risk that the molded body will not be homogeneous.

これに対し、本発明では、ケラチンを主成分とする毛を繊維長が繊維径相当になるまで粉砕することで、粉末の構成物が粒子状となる。このため、バイオプラスチック成形体が均質になりやすい。これによって、バイオプラスチック成形体の物理的特性が向上し、熱膨張率が小さくなる。   On the other hand, in the present invention, the constituents of the powder become particles by pulverizing hair containing keratin as a main component until the fiber length is equivalent to the fiber diameter. For this reason, the bioplastic molded body tends to be homogeneous. This improves the physical properties of the bioplastic molded body and reduces the coefficient of thermal expansion.

また、本発明においては、前記混合工程において、前記熱圧成形の事前処理として、前記混合物を密閉した容器に収容すると共に加熱することで、前記密閉した容器内で水を蒸発させて前記粉末に混合させてもよい。これによると、蒸発した水が粉末と均一になじみやすくなる。よって、水が粉末中に偏在してしまうことでバイオプラスチック成形体が不均質になるのを抑制することができる。 In the present invention, in the mixing step, as a pretreatment of the hot pressing, the mixture is stored in a sealed container and heated to evaporate water in the sealed container to form the powder. You may mix. According to this, the evaporated water becomes easy to blend with the powder uniformly. Therefore, it can suppress that the bioplastic molded object becomes heterogeneous because water is unevenly distributed in the powder.

お、本発明において「繊維長がXμm以下のもの」とは、例えば篩を用いた場合に、目開きがXμmの篩を用いて篩い、篩下として回収したものに対応する。同様に、本発明において「繊維長がXμm以上のもの」とは、例えば篩を用いた場合に、目開きがXμmの篩を用いて篩い、篩上として回収したものに対応する。 Contact name and "shall fiber length is less Xmyuemu" In the present invention, for example, when using a sieve, mesh opening sieve with sieve Xmyuemu, corresponding to those recovered as undersize fraction. Similarly, in the present invention, “the fiber length is X μm or more” corresponds to, for example, when a sieve is used, sieved using a sieve having an opening of X μm and collected as a sieve.

また、本発明においては、記粒度調整工程において、前記毛をさらに粉砕して繊維長が32μm以下のものとしてもよい。また、繊維長32μm以下のものを分別してもよい。これによると、繊維長が繊維径相当である羊毛粉末を原料とすることで、均質なバイオプラスチック成形体を得られた。バイオプラスチック成形体が均質になることによって、熱膨張率が小さくなり、曲げ強度も大きくなった。また、本発明の別の観点に係るバイオプラスチック成形体は、32〜53μmの繊維長を有する羊毛粉末の熱圧成形体であって、熱膨張率が29×10 -6 /K以下である。また、本発明のさらに別の観点に係るバイオプラスチック成形体は、32μm以下の繊維長を有する羊毛粉末の熱圧成形体であって、熱膨張率が17×10 -6 /K以下である。 In the present invention, before Symbol granularity adjustment process, the fiber length was further pulverized the sheep wool may be as follows 32 [mu] m. Further, fibers having a fiber length of 32 μm or less may be separated. According to this, a homogeneous bioplastic molding was obtained by using wool powder having a fiber length equivalent to the fiber diameter as a raw material. As the bioplastic molded body became homogeneous, the coefficient of thermal expansion decreased and the bending strength also increased. Moreover, the bioplastic molded object which concerns on another viewpoint of this invention is a hot-pressure molded object of the wool powder which has a fiber length of 32-53 micrometers, Comprising: A thermal expansion coefficient is 29x10 < -6 > / K or less. A bioplastic molded product according to still another aspect of the present invention is a hot-pressed product of wool powder having a fiber length of 32 μm or less, and has a coefficient of thermal expansion of 17 × 10 −6 / K or less.

図1は、バイオプラスチック成形体の製造方法に関するフロー図である。FIG. 1 is a flow chart relating to a method for producing a bioplastic molded body. 図2(a)は粉砕前の羊毛のSEM写真であり、図2(b)は粉砕後の羊毛粉末のSEM写真である。FIG. 2 (a) is an SEM photograph of wool before pulverization, and FIG. 2 (b) is an SEM photograph of wool powder after pulverization. 図3は、熱圧成形を施す成形工程で使用するパルス通電焼結装置の図である。FIG. 3 is a diagram of a pulse current sintering apparatus used in a molding process for performing hot-pressure molding. 図4は、バイオプラスチック成形体のSEM写真である。FIG. 4 is an SEM photograph of the bioplastic molded body.

以下に、本発明の一実施形態に係るバイオプラスチックの製造方法について図1を参照しつつ説明する。   Below, the manufacturing method of the bioplastic which concerns on one Embodiment of this invention is demonstrated, referring FIG.

まず、粒度調整工程S1において以下のように原材料となる毛を粉砕する。本実施形態においては、ケラチンを主成分とする毛を用いる。ケラチンを主成分とする毛としては、羊毛、羽毛、毛髪等が対象となる。羊毛等の原毛を洗濯後、乾燥させて裁断する。その後、裁断した毛をボールミル、ジェットミル等の粉砕方法で、繊維長が繊維径相当の粉末が生じるまで粉砕する。毛を粉砕する際、凍結粉砕を用いてもよい。また、蒸煮後の毛を粉砕してもよい。凍結や蒸煮は、毛をもろくして粉砕しやすくするために行う。繊維径相当とは、繊維径から繊維径の1.5倍程度までの大きさを含む。例えば、毛が羊毛である場合には、繊維長が53μm以下の粉末が生じるまで毛を粉砕する。好ましくは、繊維長が32μm以下の粉末が生じるまで毛を粉砕する。例えば、ボールミルで粉砕する場合には、粉砕対象等により、ボールのサイズ、ボールの素材、粉砕時間、回転数、放置時間(粉砕を一時止めて冷やす時間)等は、適宜調整されることが望ましい。粉砕は複数回に分けて行われてもよい。例えば、粉砕後、篩上に残った粉末を再度粉砕してもよい。図2(a)は粉砕前の羊毛のSEM(Scanning Electron Microscope、走査型電子顕微鏡)写真であり、図2(b)は粉砕後の羊毛粉末のSEM写真である。   First, in the particle size adjustment step S1, hairs that are raw materials are pulverized as follows. In this embodiment, hair whose main component is keratin is used. As the hair having keratin as a main component, wool, feathers, hair and the like are targeted. After washing raw wool such as wool, it is dried and cut. Thereafter, the cut hair is pulverized by a pulverization method such as a ball mill or a jet mill until a powder having a fiber length equivalent to the fiber diameter is produced. Freeze grinding may be used when grinding the hair. Moreover, you may grind | pulverize the hair after cooking. Freezing and steaming are done to make the hair brittle and easy to grind. The fiber diameter equivalent includes a size from the fiber diameter to about 1.5 times the fiber diameter. For example, when the hair is wool, the hair is pulverized until a powder having a fiber length of 53 μm or less is produced. Preferably, the hair is pulverized until a powder having a fiber length of 32 μm or less is produced. For example, when pulverizing with a ball mill, the size of the ball, the material of the ball, the pulverizing time, the number of rotations, the standing time (the time for temporarily stopping the pulverization and cooling), etc. are preferably adjusted appropriately depending on the object to be pulverized. . The pulverization may be performed in a plurality of times. For example, after pulverization, the powder remaining on the sieve may be pulverized again. FIG. 2 (a) is a SEM (Scanning Electron Microscope) photograph of the wool before pulverization, and FIG. 2 (b) is an SEM photograph of the wool powder after pulverization.

粉砕後、毛の粉末を篩にかける。篩は、目開きが53μmのものと目開きが32μmのもののいずれかを用いる。これにより、繊維長が53μm以下の粉末、又は繊維長が32μm以下の粉末を得ることができる。また、上記の篩を組み合わせて用いてもよい。例えば、53μmの篩を用いた後、篩を通った粉末にさらに32μmの篩を用いると、繊維長が32〜53μmの粉末を得ることができる。粉砕条件の最適化を勘案することが重要であり、例えば、過粉砕とならないよう適宜篩にかけ、篩上のみさらに粉砕する。これによりコストが過剰になるのを抑制することができる。なお、目開きの大きさが32μm未満の篩を用いてもよい。この場合、繊維長の上限や下限が32μm未満に調整された粉末を得ることができる。以上のように、篩によって粒度を調整してもよいし、篩を用いずに粒度を調整してもよい。例えば、目的の粒度になるまで毛を粉砕し、粉砕後の毛を篩にかけず、そのまま次の工程で用いてもよい。   After grinding, the hair powder is sieved. As the sieve, one having an aperture of 53 μm or an aperture of 32 μm is used. Thereby, the powder whose fiber length is 53 micrometers or less, or the powder whose fiber length is 32 micrometers or less can be obtained. Moreover, you may use combining said sieve. For example, when a 53 μm sieve is used and then a 32 μm sieve is used for the powder that has passed through the sieve, a powder having a fiber length of 32 to 53 μm can be obtained. It is important to consider the optimization of the pulverization conditions. For example, it is appropriately sieved so as not to overgrind, and only the sieve is further crushed. Thereby, it can suppress that cost becomes excessive. A sieve having a mesh size of less than 32 μm may be used. In this case, a powder in which the upper limit and the lower limit of the fiber length are adjusted to less than 32 μm can be obtained. As described above, the particle size may be adjusted with a sieve, or the particle size may be adjusted without using a sieve. For example, the hair may be pulverized until the desired particle size is obtained, and the pulverized hair may be used as it is in the next step without being sieved.

次に、混合工程S2において、水とS1の工程で取得した毛の粉末を混合させる。まず、毛の粉末と、混合物100質量%に対し10〜40質量%の水を乳鉢等に入れて混合させる。その後、水と毛の粉末の混合物を容器に入れて加熱し、常温より高い温度で一定時間保温する。これにより、容器内で水を蒸発させ、毛の粉末に水をなじませる。水の添加量、温度、時間は適宜調整されることが望ましい。また、容器は密閉できるものを用いると共に、水と粉末を入れた後、容器を密閉した状態で加熱することが好ましい。以上のように水と毛の粉末をなじませると、毛の粉末中に水が均一にいきわたる。毛の粉末中の水に偏りがあると最終的に取得したバイオプラスチック成形体が均質にならないおそれがある。これに対し、上記のとおり、密閉容器内で水を蒸発させ、粉末になじませることで、最終的に得たバイオプラスチック成形体が均質になりやすい。   Next, in the mixing step S2, water and the hair powder obtained in the step S1 are mixed. First, the hair powder and 10 to 40% by mass of water with respect to 100% by mass of the mixture are put in a mortar or the like and mixed. Thereafter, a mixture of water and hair powder is put into a container and heated, and kept at a temperature higher than normal temperature for a certain period of time. This evaporates the water in the container and allows the hair powder to conform to the water. It is desirable that the amount of water added, temperature, and time are appropriately adjusted. In addition, it is preferable to use a container that can be sealed, and after heating water and powder, the container is heated in a sealed state. As described above, when water and hair powder are blended, water is uniformly distributed in the hair powder. If the water in the hair powder is uneven, the finally obtained bioplastic molded product may not be homogeneous. In contrast, as described above, water is evaporated in a sealed container and blended into a powder, so that the finally obtained bioplastic molded body tends to be homogeneous.

次に、成形工程S3において、S2の工程で取得した混合物からバイオプラスチック成形体を作製する。例えば、図3に示すような、パルス通電焼結装置1を用いる。パルス通電焼結装置1は、電極10及び20、電源30、真空チャンバー40及び円筒状のダイ50を備えている。電極10の下端には、真空チャンバー40内で下方へと突出する黒鉛性のパンチ12が固定されている。パンチ12は上方からダイ50に挿入されている。電極20の上端には、真空チャンバー40内で上方へと突出する黒鉛性のパンチ22が固定されている。パンチ22は下方からダイ50に挿入されている。ダイ50内において、パンチ12及び22に挟まれた空間には、S2の工程で取得した混合物が配置される。電極10及び20は、電源30に接続されている。   Next, in the molding step S3, a bioplastic molded body is produced from the mixture obtained in the step S2. For example, a pulse current sintering apparatus 1 as shown in FIG. 3 is used. The pulse current sintering apparatus 1 includes electrodes 10 and 20, a power source 30, a vacuum chamber 40, and a cylindrical die 50. A graphite punch 12 protruding downward in the vacuum chamber 40 is fixed to the lower end of the electrode 10. The punch 12 is inserted into the die 50 from above. A graphite punch 22 protruding upward in the vacuum chamber 40 is fixed to the upper end of the electrode 20. The punch 22 is inserted into the die 50 from below. In the die 50, in the space between the punches 12 and 22, the mixture obtained in the step S2 is arranged. The electrodes 10 and 20 are connected to a power source 30.

以上の構成を有するパルス通電焼結装置1を以下のように使用し、混合物に熱圧成形を施す。真空チャンバー40内は6.0Pa以下に減圧する。電極10に上方から荷重することにより、20〜40MPaの圧力で混合物を加圧する。そして、混合物を加圧しながら電源30を作動させることで、電極10及び20並びにパンチ12及び22を介して混合物にパルス状の大電流を流し、ジュール熱による発熱を混合物に生じさせる。これによって混合物を5〜50℃/分の速度で昇温させ、75〜150℃まで加熱させた後、自然冷却させてバイオプラスチック成形体を得る。なお、パルス通電焼結装置1の代わりにホットプレスや加熱延伸機等で熱圧成形を行ってもよい。   The pulse current sintering apparatus 1 having the above configuration is used as follows, and the mixture is subjected to hot pressing. The inside of the vacuum chamber 40 is depressurized to 6.0 Pa or less. By loading the electrode 10 from above, the mixture is pressurized at a pressure of 20 to 40 MPa. Then, by operating the power supply 30 while pressurizing the mixture, a large pulsed current is passed through the mixture via the electrodes 10 and 20 and the punches 12 and 22, and heat generation due to Joule heat is generated in the mixture. Thus, the mixture is heated at a rate of 5 to 50 ° C./min, heated to 75 to 150 ° C., and then naturally cooled to obtain a bioplastic molded body. In addition, you may perform hot-pressure shaping | molding with a hot press, a heat drawing machine, etc. instead of the pulse electric current sintering apparatus 1. FIG.

次に、乾燥工程S4にて、S3工程で取得したバイオプラスチック成形体を、乾燥する。例えば100℃程度に保温しつつ21日間以上乾燥することが好ましい。乾燥温度、乾燥時間は乾燥状態に応じて適宜調整されることが望ましい。   Next, in the drying step S4, the bioplastic molded body obtained in the step S3 is dried. For example, it is preferable to dry for 21 days or more while keeping the temperature at about 100 ° C. It is desirable that the drying temperature and the drying time are appropriately adjusted according to the dry state.

以上説明した本実施形態のバイオプラスチックの製造方法によると、繊維長が繊維径相当である、ケラチンを主成分とする毛の粉末からバイオプラスチック成形体が成形される。粉末を構成する構成物の繊維長が比較的大きいと、バイオプラスチック成形体内の微視的構造において繊維状の構成物が残る。このため、構成物の集合体に方向性が生じたり、構成物同士の間に空隙が生じたりすることで、成形体が均質にならないおそれがある。これに対し、本実施形態では、繊維長が繊維径相当である粉末からバイオプラスチックを成形するため、成形体が均質になりやすい。これによって、熱膨張率が小さくなる、又は曲げ強度が大きくなる等、物理的特性が向上する。   According to the bioplastic manufacturing method of the present embodiment described above, a bioplastic molded body is formed from a hair powder whose main component is keratin, the fiber length of which corresponds to the fiber diameter. When the fiber length of the constituent constituting the powder is relatively large, the fibrous constituent remains in the microscopic structure in the bioplastic molded body. For this reason, there exists a possibility that a molded object may not become uniform because directionality arises in the aggregate | assembly of a structure or a space | gap arises between structures. On the other hand, in this embodiment, since the bioplastic is molded from powder whose fiber length is equivalent to the fiber diameter, the molded body tends to be homogeneous. As a result, physical properties such as a low coefficient of thermal expansion or an increased bending strength are improved.

[実施例1]
以下に本発明に係る実施例を比較例とともに詳しく説明する。洗濯、乾燥後、汚れを取り除いた羊毛の原毛を約10mmの長さに裁断する。裁断した羊毛を遊星ボールミル装置(FRITSCH社製、P-6)にて、15mm及び20mmのアルミナ製のボールを用いて、300rpmの回転数で1分間の粉砕を行い、その後、5分間放置する操作を繰り返した(S1)。粉砕された羊毛粉末を、32μm、53μm、74μm、105μm及び250μmの目開きの各篩にかけ、繊維長が105〜250μmのもの、74〜105μmのもの、53〜74μmのもの、32〜53μmのもの、及び32μm以下のものに分別した(S1)。
[Example 1]
Examples according to the present invention will be described below in detail together with comparative examples. After washing and drying, the raw wool from which dirt has been removed is cut into a length of about 10 mm. Grinding the cut wool with a planetary ball mill (FRITSCH, P-6) using 15 mm and 20 mm alumina balls at a rotation speed of 300 rpm for 1 minute, and then leaving it for 5 minutes Was repeated (S1). The pulverized wool powder is passed through sieves having openings of 32 μm, 53 μm, 74 μm, 105 μm and 250 μm, and fiber lengths of 105 to 250 μm, 74 to 105 μm, 53 to 74 μm, and 32 to 53 μm And were separated into those of 32 μm or less (S1).

次に、各繊維長の羊毛粉末と、混合物100質量%に対し20質量%の水を乳鉢に入れて、混合させた。その後、水と各繊維長の羊毛粉末の混合物を密閉可能なプラスチック袋に入れて密閉し、電気炉(ASONE社製、VACUUM OVEN AVO−250N)で60℃に24時間保持した(S2)。   Next, wool powder of each fiber length and 20% by mass of water with respect to 100% by mass of the mixture were put in a mortar and mixed. Thereafter, the mixture of water and wool powder of each fiber length was put in a sealable plastic bag, sealed, and kept at 60 ° C. for 24 hours in an electric furnace (manufactured by ASONE, VACUUM OVEN AVO-250N) (S2).

次に、水と羊毛粉末の混合物を、パルス通電焼結装置1を用いて焼結させた(S3)後、乾燥させてバイオプラスチック成形体を得た(S4)。真空チャンバー40の真空度は6.0MPa、加圧圧力は20MPa、昇温速度は20℃/分、焼結温度は150℃であった。乾燥は、電気炉(ASONE製、VACUUM OVEN AVO−250N)内で21日間、100℃程度に保温することで行った。これにより厚さ4mm、直径15mmの円盤状のバイオプラスチック成形体を得た。   Next, the mixture of water and wool powder was sintered using the pulse current sintering apparatus 1 (S3) and then dried to obtain a bioplastic molded body (S4). The vacuum degree of the vacuum chamber 40 was 6.0 MPa, the pressurizing pressure was 20 MPa, the heating rate was 20 ° C./min, and the sintering temperature was 150 ° C. Drying was performed by keeping the temperature at about 100 ° C. for 21 days in an electric furnace (manufactured by ASONE, VACUUM OVEN AVO-250N). As a result, a disk-shaped bioplastic molded body having a thickness of 4 mm and a diameter of 15 mm was obtained.

図4に、各繊維長に調整された羊毛粉末から作製したバイオプラスチック成形体の「断面」と「垂直面」のSEM写真を示す。「垂直面」写真は、「断面」写真の断面方向に対して直交する方向に沿った面の写真を示す。繊維長が105〜250μm、74〜105μm、53〜74μmのバイオプラスチック成形体の300倍と1000倍の断面写真を見ると、繊維の断面が現れていた。同様に、繊維長が105〜250μm、74〜105μm、53〜74μmのバイオプラスチック成形体の300倍と1000倍の垂直面写真を見ると、長い繊維の形状が現れていた。つまり、繊維長が105〜250μm、74〜105μm、53〜74μmの羊毛粉末から作製したバイオプラスチック成形体には、完全に溶融しなかった繊維が存在していた。このことで、完全に溶融しなかった繊維によって成形体内に方向性が生じたり、完全に溶融しなかった繊維の領域と溶融した領域との間に空隙が生じたりして、不均質なバイオプラスチック成形体となっていた。   FIG. 4 shows SEM photographs of “cross section” and “vertical surface” of a bioplastic molded body prepared from wool powder adjusted to each fiber length. The “vertical plane” photograph shows a photograph of a plane along a direction perpendicular to the cross-sectional direction of the “cross-section” photograph. When the cross-sectional photographs of 300 times and 1000 times of the bioplastic molded body having fiber lengths of 105 to 250 μm, 74 to 105 μm, and 53 to 74 μm were seen, the cross section of the fiber appeared. Similarly, when the vertical plane photographs of 300 times and 1000 times of bioplastic molded bodies having fiber lengths of 105 to 250 μm, 74 to 105 μm, and 53 to 74 μm were seen, long fiber shapes appeared. That is, there was a fiber that was not completely melted in a bioplastic molded body produced from wool powder having a fiber length of 105 to 250 μm, 74 to 105 μm, and 53 to 74 μm. As a result, non-homogeneous bioplastics may be formed due to the direction in the molded body caused by fibers that have not been completely melted or voids between the areas of the fibers that have not been completely melted and the melted areas. It was a molded body.

一方で、繊維長が32〜53μm、32μm以下のSEM写真には、繊維の断面や長い繊維の形状が現れておらず、均質なバイオプラスチック成形体が得られていた。図2の羊毛繊維のSEM写真で分かるように、羊毛繊維の径は約30μmである。つまり、繊維長が繊維径相当(繊維径から繊維径の1.5倍程度までの大きさを含む)の羊毛粉末で、均質なバイオプラスチック成形体が得られた。   On the other hand, the cross section of the fiber and the shape of the long fiber did not appear in the SEM photograph having a fiber length of 32 to 53 μm and 32 μm or less, and a homogeneous bioplastic molded body was obtained. As can be seen from the SEM photograph of the wool fiber in FIG. 2, the diameter of the wool fiber is about 30 μm. That is, a homogeneous bioplastic molded body was obtained from wool powder having a fiber length equivalent to the fiber diameter (including a size from the fiber diameter to about 1.5 times the fiber diameter).

[実施例2]
実施例1と同様の方法で、105〜250μm、74〜105μm、53〜74μm、32〜53μm、32μm以下の繊維長の羊毛から厚さ4mm、直径15mmの円盤状のバイオプラスチック成形体を作製した。各繊維長のバイオプラスチック成形体の熱膨張率を、熱膨張測定装置(SII社製、TMA/SS6300)を用いて測定した。
[Example 2]
A disc-shaped bioplastic molded body having a thickness of 4 mm and a diameter of 15 mm was produced from wool having a fiber length of 105 to 250 μm, 74 to 105 μm, 53 to 74 μm, 32 to 53 μm, and 32 μm or less in the same manner as in Example 1. . The thermal expansion coefficient of the bioplastic molded body of each fiber length was measured using a thermal expansion measuring device (manufactured by SII, TMA / SS6300).

繊維長が74μm以上の範囲では、熱膨張率が約40×10-6/Kと大きい。一方、53〜74μmにおいては34×10-6/K、32〜53μmにおいては29×10-6/K、32μm以下においては17×10-6/Kと、繊維長が53μmとなる前後から、繊維長が短くなるにつれて、バイオプラスチック成形体の熱膨張率の値が小さくなっている。つまり、繊維長が繊維径相当となるあたりから熱膨張率が小さくなっている。したがって、バイオプラスチックが均質になることによって物理的特性が向上していることが分かった。 When the fiber length is in the range of 74 μm or more, the coefficient of thermal expansion is as large as about 40 × 10 −6 / K. On the other hand, 34 × 10 −6 / K at 53 to 74 μm, 29 × 10 −6 / K at 32 to 53 μm, 17 × 10 −6 / K at 32 μm or less, and before and after the fiber length becomes 53 μm, As the fiber length becomes shorter, the value of the coefficient of thermal expansion of the bioplastic molded body becomes smaller. That is, the coefficient of thermal expansion decreases from the point when the fiber length is equivalent to the fiber diameter. Therefore, it was found that the physical characteristics are improved by the homogeneity of the bioplastic.

[実施例3]
実施例1と同様の方法で、74〜105μm、32μm以下の繊維長の羊毛粉末から厚さ4mm、直径15mmの円盤状のバイオプラスチック成形体を作製した。各繊維長のバイオプラスチック成形体の最大曲げ応力を曲げ試験機(島津製作所社製、AGS−X 10N−10kN)を用いた3点曲げ強度試験によって測定した。
[Example 3]
A disc-shaped bioplastic molded body having a thickness of 4 mm and a diameter of 15 mm was prepared from wool powder having a fiber length of 74 to 105 μm and a length of 32 μm or less in the same manner as in Example 1. The maximum bending stress of the bioplastic molded body of each fiber length was measured by a three-point bending strength test using a bending tester (manufactured by Shimadzu Corporation, AGS-X 10N-10kN).

32μm以下の繊維長の羊毛から作製したバイオプラスチック成形体の最大曲げ応力が、103MPaであった。これに対し、74〜105μmの繊維長のバイオプラスチック成形体の曲げ応力が、74MPaであった。この実験結果からも、均質なバイオプラスチック成形体となる繊維長の羊毛粉末からは、最大曲げ応力の様な物理的特性に優れた素材が得られることが分かった。   The maximum bending stress of the bioplastic molded body produced from wool having a fiber length of 32 μm or less was 103 MPa. On the other hand, the bending stress of the bioplastic molded body having a fiber length of 74 to 105 μm was 74 MPa. From this experimental result, it was also found that a material having excellent physical properties such as maximum bending stress can be obtained from the wool powder having a fiber length that becomes a homogeneous bioplastic molding.

1 パルス通電焼結装置
10、20 電極
12、22 パンチ
30 電源
40 真空チャンバー
50 ダイ
1 Pulse Current Sintering Apparatus 10, 20 Electrode 12, 22 Punch 30 Power Supply 40 Vacuum Chamber 50 Die

Claims (5)

ケラチンを主成分とする毛をその繊維長が繊維径相当の53μmになるまで粉砕して粉末にする粒度調整工程と、
繊維長が繊維径相当のものを含む前記粉末に水を添加して混合する混合工程と、
前記粉末と水の混合物に熱圧成形を施す成形工程とを備えているバイオプラスチックの製造方法。
And particle size adjustment step of the powder that fiber length sheep wool mainly composed of keratin and ground to a fiber diameter equivalent 53 .mu.m,
A mixing step in which water is added to and mixed with the powder containing fiber length equivalent to the fiber diameter;
A method for producing a bioplastic comprising a molding step of subjecting the powder and water mixture to hot-pressure molding.
前記混合工程において、前記熱圧成形の事前処理として、前記混合物を密閉した容器に収容すると共に加熱することで、前記密閉した容器内で水を蒸発させて前記粉末に混合させることを特徴とする請求項1に記載の製造方法。 In the mixing step, as a pretreatment of the hot pressing, the mixture is accommodated in a sealed container and heated to evaporate water in the sealed container and mix with the powder. The manufacturing method according to claim 1. 記粒度調整工程において、前記毛をさらに粉砕して繊維長が32μm以下のものとすることを特徴とする請求項1又は2に記載の製造方法。 Prior Symbol granularity adjustment process method according to claim 1 or 2 fiber length was further pulverized the sheep hair, characterized in that with: 32 [mu] m. 32〜53μmの繊維長を有する羊毛粉末の熱圧成形体であって、熱膨張率が29×10A hot-pressed body of wool powder having a fiber length of 32 to 53 μm, having a thermal expansion coefficient of 29 × 10 -6-6 /K以下であることを特徴とするバイオプラスチック成形体。/ K or less bioplastic molded body, 32μm以下の繊維長を有する羊毛粉末の熱圧成形体であって、熱膨張率が17×10A hot-pressed body of wool powder having a fiber length of 32 μm or less, having a thermal expansion coefficient of 17 × 10 -6-6 /K以下であることを特徴とするバイオプラスチック成形体。/ K or less bioplastic molded body,
JP2014242910A 2014-12-01 2014-12-01 Bioplastic manufacturing method and bioplastic molded body Active JP6494985B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014242910A JP6494985B2 (en) 2014-12-01 2014-12-01 Bioplastic manufacturing method and bioplastic molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014242910A JP6494985B2 (en) 2014-12-01 2014-12-01 Bioplastic manufacturing method and bioplastic molded body

Publications (2)

Publication Number Publication Date
JP2016104827A JP2016104827A (en) 2016-06-09
JP6494985B2 true JP6494985B2 (en) 2019-04-03

Family

ID=56102315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014242910A Active JP6494985B2 (en) 2014-12-01 2014-12-01 Bioplastic manufacturing method and bioplastic molded body

Country Status (1)

Country Link
JP (1) JP6494985B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7325873B1 (en) * 2022-12-27 2023-08-15 株式会社リファインバースグループ Production method and production system using keratin-containing powder, method for producing keratin-containing powder, and thermosetting compact

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6551789B2 (en) * 2015-12-17 2019-07-31 国立大学法人室蘭工業大学 Animal fiber molding and method for producing the same
CN111558093B (en) * 2020-05-19 2022-09-13 温州医科大学附属眼视光医院 Lacrimal passage suppository capable of being degraded in medium and long periods and preparation method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2844431B2 (en) * 1995-03-10 1999-01-06 工業技術院長 Feather molded body and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7325873B1 (en) * 2022-12-27 2023-08-15 株式会社リファインバースグループ Production method and production system using keratin-containing powder, method for producing keratin-containing powder, and thermosetting compact

Also Published As

Publication number Publication date
JP2016104827A (en) 2016-06-09

Similar Documents

Publication Publication Date Title
JP6494985B2 (en) Bioplastic manufacturing method and bioplastic molded body
CN106915961B (en) Graphene-zirconia composite material and preparation method thereof
JP6344844B2 (en) Boron carbide / titanium boride composite ceramics and method for producing the same
JP6936442B2 (en) Method for manufacturing thermally conductive filler, thermally conductive composite material, and thermally conductive filler
CN103641482A (en) Preparation method for self-lubricating silicon carbide ceramic sealing material
CN106007727A (en) Method for preparing LaB6/ZrB2 eutectic composites in rapid sintering mode
JP6436905B2 (en) Boron carbide ceramics and manufacturing method thereof
KR101865617B1 (en) Carbon fiber electrode using Carbon fiber and manufacturing method thereof
JP4550994B2 (en) Bearing rolling element material
JP2013127031A (en) Antistatic agent for polymeric composite, polymeric composite, and method of producing polymeric composite
KR101391989B1 (en) Manufacturing method of basalt-whisker for reinforcement using electro spinning
Raunija et al. Morphological optimization of process parameters of randomly oriented carbon/carbon composite
CN104529456A (en) Preparation method for B4C-HfB2 high-temperature eutectic in-situ composite ceramic
Tang et al. Microstructural differences and formation mechanisms of spark plasma sintered ceramics with or without boron nitride wrapping
KR101897110B1 (en) Method of manufacturing paste composition for radiating heat by using carbon fiber waste, method of manufacturing thin film for radiating heat by using the same and thin film for radiating heat comprising the same
KR101814105B1 (en) Method for manufacturing highly oriented thermoelectric materials
JP6252944B2 (en) Method for producing keratin-derived bioplastic molded body
JP2011093758A (en) Carbonaceous material
JP7390684B2 (en) Manufacturing method for graphite material molded products
KR102176471B1 (en) Thermoelectric material for thermoelectric device
KR101469759B1 (en) Manufacturing method for Fe-Sb thermoelectric material doped with Yb
JP6476375B2 (en) Method for producing thermoelectric polymer composite
CN104446493A (en) Two-step pressure-free solid-phase method for sintering silicon carbide ceramics
Sivkov et al. Spark plasma sintering of ceramics based on silicon nitride and titanium nitride
KR102611785B1 (en) METHOD FOR MANUFACTURING MICROWAVE AMORPHOUS SiC HEATER WITH ANISOTROPIC SHAPE

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180925

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190306

R150 Certificate of patent or registration of utility model

Ref document number: 6494985

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250