JP6492716B2 - Amino acid aqueous solution concentration method and amino acid separation method - Google Patents

Amino acid aqueous solution concentration method and amino acid separation method Download PDF

Info

Publication number
JP6492716B2
JP6492716B2 JP2015021811A JP2015021811A JP6492716B2 JP 6492716 B2 JP6492716 B2 JP 6492716B2 JP 2015021811 A JP2015021811 A JP 2015021811A JP 2015021811 A JP2015021811 A JP 2015021811A JP 6492716 B2 JP6492716 B2 JP 6492716B2
Authority
JP
Japan
Prior art keywords
amino acid
dimethyl ether
aqueous solution
aqueous
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015021811A
Other languages
Japanese (ja)
Other versions
JP2016145158A (en
Inventor
英輝 神田
英輝 神田
光広 岸野
光広 岸野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ajinomoto Co Inc
Original Assignee
Ajinomoto Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co Inc filed Critical Ajinomoto Co Inc
Priority to JP2015021811A priority Critical patent/JP6492716B2/en
Publication of JP2016145158A publication Critical patent/JP2016145158A/en
Application granted granted Critical
Publication of JP6492716B2 publication Critical patent/JP6492716B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

本発明は、ジメチルエーテル(DME)を用いて、発酵法、合成法などで生産されている各種アミノ酸の水溶液を濃縮し、あるいはそこからアミノ酸を析出させて分離する方法に関するものである。   The present invention relates to a method of using dimethyl ether (DME) to concentrate an aqueous solution of various amino acids produced by a fermentation method, a synthesis method or the like, or to precipitate and separate an amino acid therefrom.

アミノ酸は生体成分として重要なものであり、現在では多種多様のアミノ酸が発酵法や合成法で生産されている。そして、アミノ酸は一般的に水溶液の形で生成され、この水溶液を濃縮してアミノ酸結晶を析出させ、これを分離することにより生産されている。この濃縮は、一般に蒸気による加熱が利用されている。   Amino acids are important as biological components, and now a wide variety of amino acids are produced by fermentation and synthesis methods. Amino acids are generally produced in the form of an aqueous solution, which is produced by concentrating the aqueous solution to precipitate amino acid crystals and separating them. This concentration is generally performed by heating with steam.

アミノ酸の生産コストに占めるエネルギーの割合はかなり高く、その低減が求められている。   The proportion of energy in the production cost of amino acids is quite high, and there is a demand for reduction thereof.

本発明の目的は、アミノ酸水溶液の濃縮コストを下げることにある。   An object of the present invention is to reduce the concentration cost of an aqueous amino acid solution.

ところで、含水溶媒または含水溶質溶液である液体に乾燥不活性気体を吹き込んで両者を接触させることにより、液体中の水分を蒸発・除去することによる液体の脱水方法は公知であり(特開平10−338653号公報)、この乾燥不活性気体には、窒素、空気、水素、二酸化炭素、ヘリウム、ネオン、アルゴン、クリプトン、メタン、エタン、プロパン、ブタン、フロン、ジメチルエーテル、ジエチルエーテル、モノクロロメタン、ジクロロメタンが例示されている(同公報請求項13)。   By the way, a method of dehydrating a liquid by evaporating and removing moisture in the liquid by blowing dry inert gas into the liquid which is a water-containing solvent or a water-containing solution and bringing them into contact with each other is known (Japanese Patent Laid-Open No. Hei 10-2010). 338653), and this dry inert gas includes nitrogen, air, hydrogen, carbon dioxide, helium, neon, argon, krypton, methane, ethane, propane, butane, freon, dimethyl ether, diethyl ether, monochloromethane, and dichloromethane. This is exemplified (claim 13).

本発明者は、アミノ酸水溶液の濃縮方法として、ジメチルエーテルを液状で接触させることによりアミノ酸水溶液中の水分の一部をジメチルエーテル相へ移動させることを検討した。その結果、アミノ酸水溶液中の水分をジメチルエーテル相に移動させることができること、その移動量はアミノ酸の濃度が高いことを見出した。そして、驚くべきことに、アミノ酸の溶解度が低下して、高い収率でアミノ酸を析出させることも見出した。これは、ジメチルエーテルの一部がアミノ酸水溶液相へ移行したことによる貧溶媒効果であると考えられる。   As a method for concentrating an amino acid aqueous solution, the present inventor has studied that a part of water in the amino acid aqueous solution is transferred to the dimethyl ether phase by bringing dimethyl ether into contact with the liquid. As a result, it was found that the water in the amino acid aqueous solution can be transferred to the dimethyl ether phase, and the transfer amount has a high amino acid concentration. Surprisingly, it has also been found that the solubility of amino acids is lowered and the amino acids are precipitated in a high yield. This is considered to be a poor solvent effect due to the transfer of a part of dimethyl ether to the amino acid aqueous solution phase.

これまで沸点が−25℃のジメチルエーテルを高圧液化して対象物質に接触させた例はなく、溶剤を水相側へ高圧にして強制的に移行させ、貧溶媒効果を促進させる晶析系は他にはない。また、ジエチルエーテルほど沸点が低い有機物質を晶析の貧溶媒効果に用いた例はない。   There is no example of dimethyl ether having a boiling point of −25 ° C. that has been liquefied at high pressure and brought into contact with the target substance. There are other crystallization systems that promote the poor solvent effect by forcibly transferring the solvent to the aqueous phase and increasing the pressure. Not. There is no example of using an organic substance having a lower boiling point than diethyl ether for the poor solvent effect of crystallization.

本発明では、この沸点温度が低いジメチルエーテルを高圧化で液化して用いることにより、アミノ酸水溶液の濃縮コストを低下させ、また、アミノ酸を効率よく析出させて、アミノ酸の製造コストの低減に成功したものである。   In the present invention, the dimethyl ether having a low boiling point temperature is liquefied and used at a high pressure, thereby reducing the concentration cost of the amino acid aqueous solution and efficiently depositing the amino acid to successfully reduce the production cost of the amino acid. It is.

すなわち、本発明は、アミノ酸水溶液に液体のジメチルエーテルを接触させてアミノ酸水溶液中の水分の一部をジメチルエーテル相に移行させ、その後アミノ酸水溶液相とジメチルエーテル相を分離することを特徴とするアミノ酸水溶液の濃縮方法と、アミノ酸水溶液に液体のジメチルエーテルを接触させてアミノ酸水溶液中の水分の一部をジメチルエーテル相に移行させるとともにジメチルエーテルの一部をアミノ酸水溶液相に移行させてアミノ酸水溶液からアミノ酸結晶を析出させてこれを分離することを特徴とするアミノ酸水溶液からのアミノ酸の分離方法を提供するものである。   That is, the present invention is a method of concentrating an aqueous amino acid solution characterized by bringing liquid dimethyl ether into contact with an aqueous amino acid solution to transfer a part of water in the aqueous amino acid solution to the dimethyl ether phase, and then separating the aqueous amino acid phase and the dimethyl ether phase And a method in which liquid dimethyl ether is brought into contact with an aqueous amino acid solution to transfer a part of water in the aqueous amino acid solution to the dimethyl ether phase, and a part of the dimethyl ether is transferred to the amino acid aqueous solution phase to precipitate amino acid crystals from the aqueous amino acid solution. The present invention provides a method for separating an amino acid from an aqueous amino acid solution, characterized in that

本発明では、水の沸点よりも著しく低い沸点をもつジメチルエーテルを高圧化で液化状態にしてアミノ酸水溶液に接触させると、ジメチルエーテル相と水相に分層し、ジメチルエーテルの一部に水相に移行する。このとき高圧にすることでジメチルエーテルを積極的に水相へ移行させる。その結果、貧溶媒効果により、アミノ酸結晶が析出し回収される。   In the present invention, when dimethyl ether having a boiling point significantly lower than the boiling point of water is brought into a liquefied state at high pressure and brought into contact with an amino acid aqueous solution, it is separated into a dimethyl ether phase and an aqueous phase, and part of the dimethyl ether is transferred to the aqueous phase. . At this time, dimethyl ether is actively transferred to the aqueous phase by increasing the pressure. As a result, amino acid crystals are precipitated and recovered due to the poor solvent effect.

本発明により、アミノ酸水溶液中の水分の一部をジメチルエーテル相に移動させて、これを分離することによって、アミノ酸水溶液を効率よく濃縮することができる。また、それによって、ジメチルエーテルの一部がアミノ酸水溶液中に移動してアミノ酸の溶解度を下げるので、アミノ酸の析出率を高め、効率よく分離することができる。本発明では、沸点温度が低いジメチルエーテルを高圧化で用いることにより、蒸発・回収に従来廃棄されていた低い温度の熱源を用いることが可能になり、低コスト化が可能になった。   According to the present invention, the aqueous amino acid solution can be efficiently concentrated by transferring a part of the water in the aqueous amino acid solution to the dimethyl ether phase and separating it. Moreover, since a part of dimethyl ether moves into the amino acid aqueous solution thereby lowering the solubility of amino acids, the precipitation rate of amino acids can be increased and separation can be performed efficiently. In the present invention, by using dimethyl ether having a low boiling point temperature at a high pressure, it becomes possible to use a low-temperature heat source that has been conventionally discarded for evaporation and recovery, thereby reducing the cost.

本発明の方法の一態様を示す工程図である。It is process drawing which shows the one aspect | mode of the method of this invention. 初期アミノ酸水溶液/DMEの比率と水分脱水率の関係を測定した結果を示すグラフである。It is a graph which shows the result of having measured the relationship between the ratio of initial stage amino acid aqueous solution / DME, and a water dehydration rate. 本発明の方法をバリン発酵液に適用して物質収支を求めた工程図である。It is the process figure which applied the method of this invention to the valine fermentation liquid, and calculated | required the material balance. DMEと水のそれぞれの圧力と沸点の関係を示すグラフである。It is a graph which shows the relationship between each pressure and boiling point of DME and water.

本発明が適用されるアミノ酸水溶液のアミノ酸は、グリシン、アラニン、バリン、ロイシン、イソロイシン、フェニルアラニン、チロシン、プロリン、セリン、スレオニン、トリプトファン、シスチン、システイン、メチオニン、アスパラギン、グルタミン等の中性アミノ酸、アスパラギン酸、グルタミン酸等の酸性アミノ酸、リジン、ヒスチジン、アルギニン、オルニチン等の塩基性アミノ酸等である。これらは、発酵法、合成法、蛋白質の加水分解などで得られ、L−体、D−体、ラセミ体等があるが、そのいずれであってもよい。   The amino acid of the amino acid aqueous solution to which the present invention is applied is glycine, alanine, valine, leucine, isoleucine, phenylalanine, tyrosine, proline, serine, threonine, tryptophan, cystine, cysteine, methionine, asparagine, glutamine and other neutral amino acids, asparagine Acidic amino acids such as acid and glutamic acid, and basic amino acids such as lysine, histidine, arginine and ornithine. These can be obtained by fermentation, synthesis, protein hydrolysis, etc., and there are L-form, D-form, racemic form, etc., any of which may be used.

発酵液の場合は、発酵液、それから菌体を除去した除菌発酵液、それからアミノ酸結晶を分離するに至る各種中間工程液があるが、本発明は、それらを濃縮するいずれの工程にも適用できる。特に、最近のアミノ酸発酵液はアミノ酸が飽和溶解度近くまで蓄積されているので、本発明の方法でアミノ酸結晶を大量に析出させることができ、特に好ましい。合成法の場合にも合成した液からアミノ酸結晶を分離するに至るいずれの工程液にも適用できる。   In the case of a fermentation broth, there are a fermentation broth, a sterilized fermentation broth from which bacterial cells have been removed, and various intermediate process liquids from which the amino acid crystals are separated, but the present invention is applicable to any process of concentrating them. it can. In particular, recent amino acid fermentation broths are particularly preferred because amino acids are accumulated up to near saturation solubility, so that a large amount of amino acid crystals can be precipitated by the method of the present invention. In the case of the synthesis method, the present invention can be applied to any process liquid that leads to separation of amino acid crystals from the synthesized liquid.

水溶液中のアミノ酸の濃度は限定されないが、濃度が高い方が水分除去率が高くなるので好ましい。好ましい濃度は、30〜60質量%程度、より好ましくは50〜60質量%であり、飽和度では0〜110%程度、より好ましくは70〜100程度である。尚、アミノ酸水溶液は、アミノ酸結晶が既に析出しているものでもよく、その場合、アミノ酸結晶は上記濃度に算入されない。   The concentration of the amino acid in the aqueous solution is not limited, but a higher concentration is preferable because the water removal rate becomes higher. The preferred concentration is about 30 to 60% by mass, more preferably 50 to 60% by mass, and the degree of saturation is about 0 to 110%, more preferably about 70 to 100%. The aqueous amino acid solution may be one in which amino acid crystals are already precipitated, and in that case, the amino acid crystals are not counted in the above concentration.

ジメチルエーテルの添加量は、アミノ酸水溶液中の水含量に対する質量比で1:1〜1:5程度、好ましくは1:3〜1:5程度が適当である。アミノ酸水溶液との液量比では、1:1〜1:5程度得、好ましくは1:3〜1:5程度にするのがよい。   The addition amount of dimethyl ether is about 1: 1 to 1: 5, preferably about 1: 3 to 1: 5 in terms of mass ratio to the water content in the aqueous amino acid solution. In the liquid volume ratio with the amino acid aqueous solution, about 1: 1 to 1: 5 is obtained, preferably about 1: 3 to 1: 5.

ジメチルエーテルは沸点が−25℃であるので、高圧で添加される必要がある。圧力は、ジエチルエーテルが液化する圧力以上にすればよく、これは温度によって異なるが、例えば、20℃では0.5MPa以上である。この液化圧力は文献があり、(神谷信行 『環境に優しい21世紀の新エネルギー:ジメチルエーテル』 水素エネルギーシステム Vol.30,
No.2 (2005)103頁)実用上は、10〜40℃で圧力を0.4MPa〜0.9MPaにすればよい。ジメチルエーテルと水について、圧力と沸点の関係を図4に示す。図中の枠は、そのなかで脱水・凝縮をスイングさせる範囲の例を示している。圧力の上限は特に限定されないが、実用的観点から1.0MPa程度まで、好ましくは0.7MPa程度までである。従って、アミノ酸水溶液とジメチルエーテルを接触させる容器は、密閉形でこの圧力に耐える圧力容器が用いられる。容器はプロセス処理前にDME蒸気で置換しておくのがよい。
Since dimethyl ether has a boiling point of −25 ° C., it needs to be added at a high pressure. The pressure only needs to be equal to or higher than the pressure at which diethyl ether liquefies, and this varies depending on the temperature, but is, for example, 0.5 MPa or higher at 20 ° C. This liquefaction pressure is documented (Nobuyuki Kamiya “Environmentally Friendly New Energy in the 21st Century: Dimethyl Ether” Hydrogen Energy System Vol.30,
No. 2 (2005) p. 103) Practically, the pressure may be set to 0.4 MPa to 0.9 MPa at 10 to 40 ° C. FIG. 4 shows the relationship between pressure and boiling point for dimethyl ether and water. The frame in the figure shows an example of a range in which dehydration / condensation swings. The upper limit of the pressure is not particularly limited, but is about 1.0 MPa, preferably about 0.7 MPa from a practical viewpoint. Accordingly, a pressure vessel that can withstand this pressure in a sealed form is used as the container in which the aqueous amino acid solution and dimethyl ether are brought into contact. The vessel should be replaced with DME vapor prior to processing.

アミノ酸水溶液とジメチルエーテルの接触を効率よく行わせるために、容器内に撹拌機を設け、あるいは、アミノ酸水溶液へジメチルエーテルを吹き込んだり、あるいは、逆にジメチルエーテル液中にアミノ酸水溶液を吹き込んだりするのがよい。接触時間は、アミノ酸水溶液相とジメチルエーテル相の間の水分およびジメチルエーテルの移動がほぼ平衡に達するまでが好ましいが、実用的には1分〜5分程度でよい。   In order to efficiently contact the amino acid aqueous solution and dimethyl ether, it is preferable to provide a stirrer in the container, or to blow dimethyl ether into the amino acid aqueous solution, or to blow the amino acid aqueous solution into the dimethyl ether solution. The contact time is preferably until the movement of water and dimethyl ether between the aqueous amino acid phase and the dimethyl ether phase almost reaches equilibrium, but may be about 1 to 5 minutes in practice.

アミノ酸水溶液とジメチルエーテルの接触が終わったら両相の分離を行う。ジメチルエーテル相はアミノ酸水溶液相よりかなり比重が軽いので分離は静置で比重分離することができる。その外、フィルター分離もできる。アミノ酸水溶液にアミノ酸結晶が存在している場合には、アミノ酸結晶は、先に分離してもよく、あるいはジメチルエーテルを分離してからアミノ酸水溶液からアミノ酸結晶を分離してもよい。   When the contact between the aqueous amino acid solution and dimethyl ether is completed, the two phases are separated. Since the specific gravity of the dimethyl ether phase is considerably lighter than that of the amino acid aqueous solution phase, the separation can be performed by standing. In addition, filter separation is also possible. In the case where amino acid crystals are present in the aqueous amino acid solution, the amino acid crystals may be separated first, or the dimethyl ether may be separated and then the amino acid crystals may be separated from the aqueous amino acid solution.

分離したアミノ酸結晶は、そのまま、あるいは残存しているジメチルエーテルを気化させる等で除去してから精製工程に送ればよい。   The separated amino acid crystals may be sent to the purification step as they are or after removing the remaining dimethyl ether by vaporization or the like.

分離したアミノ酸水溶液には、ジメチルエーテルが相当量含まれているのでまずジエチルエーテルの分離を行う。この分離は、圧力を低下させてジメチルエーテルを蒸留することで行うことができる。蒸留する温度は40〜50℃程度が工場から排出さえる低温の排熱や地下水などを利用できる点で好ましい。例えば、系の圧力を5気圧に設定すれば沸点20℃を境にジメチルエーテルを蒸発・凝縮させて分離することができる。   Since the separated amino acid aqueous solution contains a considerable amount of dimethyl ether, the diethyl ether is first separated. This separation can be carried out by distilling dimethyl ether under reduced pressure. The distillation temperature is preferably about 40 to 50 ° C. from the viewpoint that low-temperature exhaust heat discharged from the factory or groundwater can be used. For example, if the system pressure is set to 5 atm, dimethyl ether can be separated by evaporation and condensation at a boiling point of 20 ° C.

分離したジメチルエーテルはアミノ酸水溶液の濃縮に再利用することができる。一方、ジメチルエーテルを除去したアミノ酸水溶液からは常法によりアミノ酸を分離する。   The separated dimethyl ether can be reused for concentration of the aqueous amino acid solution. On the other hand, amino acids are separated from the aqueous amino acid solution from which dimethyl ether has been removed by a conventional method.

一方、アミノ酸水溶液相を分離したジメチルエーテル相は、水分が含まれているので、これを蒸留法等で分離する。蒸留条件は前述の分離したアミノ酸水溶液と同様でよく、蒸留温度は40〜50℃程度とするのがよい。分離したジメチルエーテルはアミノ酸水溶液の濃縮に再利用することができる。一方、水分は、そのままあるいはさらに処理して放流しあるいは工場内で再利用することができる。   On the other hand, since the dimethyl ether phase from which the amino acid aqueous phase has been separated contains water, it is separated by a distillation method or the like. The distillation conditions may be the same as those for the separated aqueous amino acid solution, and the distillation temperature is preferably about 40 to 50 ° C. The separated dimethyl ether can be reused for concentration of the aqueous amino acid solution. On the other hand, the moisture can be discharged as it is or further processed or reused in the factory.

本発明の一実施態様を図1に示す。同図に示すように、アミノ酸水溶液に液化ジメチルエーテルを20℃5気圧で添加し混合し、これを静置して分層させる。アミノ酸相である水相とジメチルエーテル相を分離し、水相は40℃に加熱してジメチルエーテルを蒸発させてアミノ酸濃縮液を得る。アミノ酸濃縮液は、必要によりさらに濃縮して、析出したアミノ酸結晶を分離する。ジメチルエーテル相も40℃に加熱してジメチルエーテルを蒸発させ、これを10℃に冷却して凝縮させる。水相から蒸発させたジメチルエーテルも含めてここで冷却凝縮させることができる。得られた液化ジメチルエーテルは濃縮するアミノ酸水溶液へ循環して再利用する。   One embodiment of the present invention is shown in FIG. As shown in the figure, liquefied dimethyl ether is added to an amino acid aqueous solution at 20 ° C. and 5 atm, and the mixture is allowed to stand to separate the layers. The aqueous phase, which is an amino acid phase, and the dimethyl ether phase are separated, and the aqueous phase is heated to 40 ° C. to evaporate dimethyl ether to obtain an amino acid concentrate. The amino acid concentrate is further concentrated as necessary to separate the precipitated amino acid crystals. The dimethyl ether phase is also heated to 40 ° C. to evaporate dimethyl ether, which is cooled to 10 ° C. and condensed. Dimethyl ether evaporated from the aqueous phase can also be cooled and condensed here. The obtained liquefied dimethyl ether is recycled to the aqueous amino acid solution to be concentrated.

L−ロイシン、L−フェニルアラニンおよびL−リジン(遊離型)の純系の水溶液並びにL−バリンの除菌発酵液を表1の濃度で作製した。   A pure aqueous solution of L-leucine, L-phenylalanine and L-lysine (free form) and a sterilized fermentation liquid of L-valine were prepared at the concentrations shown in Table 1.

Figure 0006492716
上記の各アミノ酸水溶液の表1に示す液量をそれぞれ圧力容器に入れて、これに表1に示す液量のジメチルエーテルを加えて20℃5気圧で1分間混合後、3分間静置して分層させた。純系アミノ酸水溶液(Exp.1〜5)について、分層した水相のアミノ酸濃度を測定した結果を表2に示す。
Figure 0006492716
Put each of the above-mentioned aqueous solutions of amino acids shown in Table 1 into a pressure vessel, add the dimethyl ether of the amount shown in Table 1 to this, mix at 20 ° C. and 5 atm for 1 minute, and then let stand for 3 minutes to separate. Layered. Table 2 shows the results of measuring the amino acid concentration of the separated aqueous phase for pure amino acid aqueous solutions (Exp. 1 to 5).

Figure 0006492716
上記の水分除去率は、除去水分量/初期アミノ酸水溶液中水分量w/w%である。
Figure 0006492716
The water removal rate is the amount of water removed / the amount of water in the initial amino acid aqueous solution w / w%.

また、水相とジメチルエーテル相それぞれの水分、ジメチルエーテルおよびアミノ酸の量を測定した結果を表3に示す。   Table 3 shows the results of measuring the amounts of water, dimethyl ether and amino acids in the aqueous phase and the dimethyl ether phase.

Figure 0006492716
得られた、初期アミノ酸水溶液中の水分とジメチルエーテルの比率と水分の脱水率の関係を図2に示す。同図に示すようにアミノ酸の濃度が高い程高い脱水率になる。また、アミノ酸がジメチルエーテル相に移行しないことも明らかになり、ジメチルエーテルによってアミノ酸水溶液を脱水濃縮できることを確認した。
Figure 0006492716
FIG. 2 shows the relationship between the ratio of water and dimethyl ether in the initial aqueous amino acid solution and the water dehydration rate. As shown in the figure, the higher the amino acid concentration, the higher the dehydration rate. Moreover, it became clear that an amino acid did not transfer to a dimethyl ether phase, and it was confirmed that an aqueous amino acid solution could be dehydrated and concentrated with dimethyl ether.

また、バリンの除菌発酵液について測定した結果を表4に示す。   Table 4 shows the measurement results of the sterilized fermented liquid of valine.

Figure 0006492716
この結果をバリン発酵液の処理に適用すると、例えば、図3に示す物質収支が得られる。
Figure 0006492716
When this result is applied to the treatment of valine fermentation broth, for example, the mass balance shown in FIG. 3 is obtained.

すなわち、バリン0.86gと水14gを含むバリン除菌発酵液15ml(バリン濃度5.7w/w%)に液体ジメチルエーテル65.0ml(46g)を加えて混合し、静置して分層させる。そして、そこからバリン結晶、水相15ml、ジメチルエーテル相65ml(45.5g)を分取する。バリン結晶はフィルター濾過で分離する。バリン結晶には、バリン0.51gが、水相には、バリン0.35g、水11g、ジメチルエーテル3gが、そして、ジメチルエーテル相には、ジメチルエーテル43g、水3.0g、バリン0.000gがそれぞれ含まれている。水相からはジメチルエーテルを除去し、水11g、バリン0.35gを含む12gのバリン濃度溶液(バリン濃度3.1w/w%)を得る。ジメチルエーテル相から採取した12gの試料(水含有量0.8g、6.5w/w%)からジメチルエーテルを分離して、水0.78gを得る。   That is, 65.0 ml (46 g) of liquid dimethyl ether is added to and mixed with 15 ml of valine sterilized fermentation liquid (valine concentration 5.7 w / w%) containing 0.86 g of valine and 14 g of water, and the mixture is allowed to stand to separate the layers. Then, valine crystals, an aqueous phase of 15 ml, and a dimethyl ether phase of 65 ml (45.5 g) are separated therefrom. Valine crystals are separated by filtration. The valine crystals contain 0.51 g valine, the aqueous phase contains 0.35 g valine, 11 g water, 3 g dimethyl ether, and the dimethyl ether phase contains 43 g dimethyl ether, 3.0 g water, and 0.000 g valine. It is. Dimethyl ether is removed from the aqueous phase to obtain 12 g of a valine concentration solution (valine concentration: 3.1 w / w%) containing 11 g of water and 0.35 g of valine. Separation of dimethyl ether from a 12 g sample (water content 0.8 g, 6.5 w / w%) taken from the dimethyl ether phase gives 0.78 g of water.

本発明は、アミノ酸水溶液を効率よく濃縮し、そこからアミノ酸結晶を高い晶析率で晶析してこれを分離できるので、各種アミノ酸の製造工程に適用できる。   INDUSTRIAL APPLICABILITY The present invention can be applied to the production process of various amino acids because an aqueous amino acid solution can be efficiently concentrated, from which amino acid crystals can be crystallized at a high crystallization rate and separated.

Claims (2)

アミノ酸水溶液に液体のジメチルエーテルを接触させてアミノ酸水溶液中の水分の一部をジメチルエーテル相に移行させ、その後アミノ酸水溶液相とジメチルエーテル相を分離することを特徴とするアミノ酸水溶液の濃縮方法   A method for concentrating an amino acid aqueous solution, comprising bringing a liquid dimethyl ether into contact with an amino acid aqueous solution to transfer a part of water in the amino acid aqueous solution to the dimethyl ether phase, and then separating the amino acid aqueous phase and the dimethyl ether phase. アミノ酸水溶液に液体のジメチルエーテルを接触させてアミノ酸水溶液中の水分の一部をジメチルエーテル相に移行させるとともにジメチルエーテルの一部をアミノ酸水溶液相に移行させてアミノ酸水溶液からアミノ酸結晶を析出させてこれを分離することを特徴とするアミノ酸水溶液からのアミノ酸の分離方法   Liquid dimethyl ether is brought into contact with the amino acid aqueous solution to transfer a part of the water in the amino acid aqueous solution to the dimethyl ether phase, and a part of the dimethyl ether is transferred to the amino acid aqueous solution phase to precipitate amino acid crystals from the amino acid aqueous solution to separate them. For separating amino acids from aqueous amino acid solutions
JP2015021811A 2015-02-06 2015-02-06 Amino acid aqueous solution concentration method and amino acid separation method Active JP6492716B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015021811A JP6492716B2 (en) 2015-02-06 2015-02-06 Amino acid aqueous solution concentration method and amino acid separation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015021811A JP6492716B2 (en) 2015-02-06 2015-02-06 Amino acid aqueous solution concentration method and amino acid separation method

Publications (2)

Publication Number Publication Date
JP2016145158A JP2016145158A (en) 2016-08-12
JP6492716B2 true JP6492716B2 (en) 2019-04-03

Family

ID=56685918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015021811A Active JP6492716B2 (en) 2015-02-06 2015-02-06 Amino acid aqueous solution concentration method and amino acid separation method

Country Status (1)

Country Link
JP (1) JP6492716B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53123377A (en) * 1977-04-04 1978-10-27 Kuraray Co Ltd Treating method for aqueous solution of acid
US4661606A (en) * 1984-06-06 1987-04-28 Henkel Corporation Extraction of amino acids from aqueous mixtures and quaternary ammonium salt intermediates produced therein
JP2007083122A (en) * 2005-09-20 2007-04-05 Central Res Inst Of Electric Power Ind Method for dehydrating water-containing material using liquefied substance
JP2014113578A (en) * 2012-12-12 2014-06-26 Mitsubishi Heavy Ind Ltd Apparatus and method for dehydrating treatment of water-containing oil and wind power generator

Also Published As

Publication number Publication date
JP2016145158A (en) 2016-08-12

Similar Documents

Publication Publication Date Title
Zeng et al. Deep eutectic solvents as novel extraction media for protein partitioning
JP6158428B2 (en) Method for purifying 1,5-diaminopentane
US7572353B1 (en) Ethanol distillation process
ES2757521T3 (en) Carboxylic acid manufacturing process
JP5754785B2 (en) Production of monoammonium succinate from a fermentation medium containing diammonium succinate, monoammonium succinate and / or succinic acid, and conversion method from monoammonium succinate to succinic acid
BE1028096B1 (en) Process for extracting antimicrobial peptides and albumin from pea processing waste water
RU2011104127A (en) METHOD FOR PRODUCING HIGH CHEMICAL PURITY OF ESO ESOMEPRAZOLE SALT AND NEW FORMS OF ESOMEPRAZOL SODIUM SALT
JPWO2007114017A1 (en) Method and apparatus for separating lactic acid components from lactic acid fermentation broth
JP6492716B2 (en) Amino acid aqueous solution concentration method and amino acid separation method
US20180140993A1 (en) Combined system based on mixtures of ionic liquids and amino acids to absorb carbon dioxide
JPS61109750A (en) Dehydrative distillation of aqueous solution of carboxylic acid
JP5501243B2 (en) Process for the preparation of trifluoromethanesulfinate
King et al. The chemistry of tyrocidine. IV. Purification and characterization of tyrocidine B
NO169885B (en) PROCEDURE FOR THE PREPARATION OF MONOCALIUM PHOSPHATE
US7919657B2 (en) Process for dehydration of hexafluoroacetone hydrate
WO2016083455A1 (en) Process for the precipitation of amino and/or organic acids from a complex feed and amino and/or organic acid particles obtainable thereby
JP2010037286A (en) Method for producing n-propyl acetate
CN113074519B (en) Method for efficiently removing residual organic solvent in insulin aspart
Guan et al. Separating isopropanol from its diluted solutions via a process of integrating gas stripping and vapor permeation
JP2008266181A (en) Method for recovering hydrophobic organic solvent and method for producing polyarylene sulfide
US2071282A (en) Method of separating amino-acids readily soluble in water and ammonium sulphate
CN205500785U (en) Retrieve device of spent acid in mixing acidizing fluid
CN117964681B (en) Desalination method of full R series polypeptide trifluoroacetate by solid phase synthesis
JPS58190820A (en) Manufacture of anhydrous lithium borofluoride
JPH05168865A (en) Method for dehydrating water solution of organic matter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190218

R150 Certificate of patent or registration of utility model

Ref document number: 6492716

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250