JP6492616B2 - Cement reinforcing fiber - Google Patents
Cement reinforcing fiber Download PDFInfo
- Publication number
- JP6492616B2 JP6492616B2 JP2014256010A JP2014256010A JP6492616B2 JP 6492616 B2 JP6492616 B2 JP 6492616B2 JP 2014256010 A JP2014256010 A JP 2014256010A JP 2014256010 A JP2014256010 A JP 2014256010A JP 6492616 B2 JP6492616 B2 JP 6492616B2
- Authority
- JP
- Japan
- Prior art keywords
- twist
- fiber
- cement
- multifilament
- dtex
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Curing Cements, Concrete, And Artificial Stone (AREA)
- Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
Description
本発明は、セメント補強用繊維に関するものであり、更に詳しくは曲げ強度、靱性に優れたセメント成型体を得るためのセメント中に配合する補強繊維に関するものである。 The present invention relates to a fiber for cement reinforcement, and more particularly to a reinforcing fiber blended in cement for obtaining a cement molded body having excellent bending strength and toughness.
従来から、セメント成型品の補強材としてポリアミド、オレフィンなどの短繊維を配合することが試みられてきた。しかし、これらの繊維はセメントとの接着力が不十分であり、セメントから容易に引き抜けることから、補強効果は充分満足できるものではなかった。 Conventionally, attempts have been made to blend short fibers such as polyamide and olefin as a reinforcing material for a cement molded product. However, since these fibers have insufficient adhesive strength with the cement and are easily pulled out from the cement, the reinforcing effect is not sufficiently satisfactory.
繊維とセメントの接着力を増すために、繊維形状を延伸方向に不規則に変化させて繊維の引き抜けを防止する方法が試みられている(特許文献1〜3)。しかし、この技術は充分なものではなく、糸の断面積を不規則に変化させる方法は製造工程において巻き取りが困難で、生産性が劣るなどの欠点を有していた。 In order to increase the adhesive strength between the fiber and the cement, a method of preventing the fiber from being pulled out by changing the fiber shape irregularly in the drawing direction has been attempted (Patent Documents 1 to 3). However, this technique is not sufficient, and the method of irregularly changing the cross-sectional area of the yarn has drawbacks such as difficulty in winding in the manufacturing process and poor productivity.
また、表面に凹凸をつけるために撚りを加えて繊維状に凹凸を付与する方法が試みられている(特許文献4)。特許文献4では、ナイロン6マルチフィラメントに所定の撚り係数の下撚りをかけ、その後同繊度のマルチフィラメントを2本合わせて、下撚りと反対方向に下撚りと同程度の撚り係数の上撚りを掛けたセメント補強用繊維が開示されている。しかし、この技術においても、補強用繊維の表面に十分な大きさの凹凸を形成させることが難しく、十分な接着力を有することができなかった。 In addition, a method of imparting irregularities in a fibrous form by twisting in order to impart irregularities to the surface has been attempted (Patent Document 4). In Patent Document 4, a nylon 6 multifilament is pre-twisted with a predetermined twist coefficient, then two multifilaments of the same fineness are combined, and an upper twist of the same degree as that of the base twist is applied in the opposite direction to the base twist. A hung cement reinforcing fiber is disclosed. However, even in this technique, it is difficult to form a sufficiently large unevenness on the surface of the reinforcing fiber, and it has not been possible to have sufficient adhesion.
本発明の目的は、曲げ強度、靱性に優れたセメント成型体を得るためのセメント中に配合する補強用繊維を提供することであって、セメントとの接着力が高い繊維を提供することである。 An object of the present invention is to provide a reinforcing fiber to be blended in a cement for obtaining a cement molded body excellent in bending strength and toughness, and to provide a fiber having high adhesive strength with cement. .
本発明らは、上記課題を解決するため、繊度の異なる2本以上のマルチフィラメントを合わせて所定の撚りを施すことにより、繊維の表面により大きな凹凸が形成され、セメントとの高い接着力が得られることを見出し、本発明を完成させた。 In order to solve the above-described problems, the present inventors have formed two or more multifilaments having different finenesses and applied a predetermined twist, whereby large irregularities are formed on the surface of the fiber, and high adhesive strength with cement is obtained. The present invention has been completed.
本発明のセメント補強用繊維は、次のような構成からなる。
[1] 繊度が異なる少なくとも2本の合成繊維マルチフィラメント糸が撚り合わされており、繊維の全幅長さ(R)に対する、撚り合わせによって生じる凹凸の長さ(x)の比x/Rが0.10以上であることを特徴とするセメント補強用繊維。
[2] 下記(1)の撚り係数の計算式により計算される、各マルチフィラメントの撚り係数(A)が0.1〜4であり、2本以上の前記マルチフィラメントを撚り合わせた撚り係数(B)が0.5〜7であることを特徴とする、[1]に記載のセメント補強用繊維。
撚り係数K=T/3025×(D/d)1/2 ・・・(1)
T: 撚り数(T/m)、D:総繊度(dtex)、d:密度(g/cm3)
[3] 少なくとも2本の異なる繊度の合成繊維マルチフィラメントの繊度が1:1.5以上1:15以下であることを特徴とする、[1]又は[2]に記載のセメント補強用繊維。
[4] 各マルチフィラメントの撚りの方向と、2本以上の前記マルチフィラメントを合わせた撚りの方向がそれぞれ異なることを特徴とする、[1]〜[3]のいずれかに記載のセメント補強用繊維。
[5] さらに表面処理剤が付与された、[1]〜[4]のいずれかに記載のセメント補強用繊維。
[6] 繊維長が5〜50mmに切断されていることを特徴とする、[1]〜[5]のいずれかに記載のセメント補強用繊維。
[7] 前記合成繊維マルチフィラメントが高分子量ポリエチレン繊維であることを特徴とする[1]〜[6]のいずれかに記載のセメント補強用繊維。
[8] [1]〜[7]のいずれかに記載のセメント補強用繊維、セメント及び水を少なくとも含む、セメント組成物。
[9] (i)少なくとも2本の異なる繊度の合成繊維マルチフィラメントのそれぞれに、下記(1)の撚り係数の計算式で計算される撚り係数0.1〜4の下撚りを施す工程、(ii)少なくとも2本の前記合成繊維マルチフィラメントを合わせて、下撚りと反対方向に撚り係数0.5〜7の上撚りを施す工程、(iii)上撚りを施したマルチフィラメントに表面処理剤を付与し、熱処理を施す工程、及び(iv)上撚りを施したマルチフィラメントを繊維長5〜50mmに切断する工程を含むことを特徴とする、セメント補強用繊維の製造方法。
撚り係数K=T/3025×(D/d)1/2 ・・・(1)
T: 撚り数(T/m)、D:総繊度(dtex)、d:密度(g/cm3)
The cement reinforcing fiber of the present invention has the following configuration.
[1] At least two synthetic fiber multifilament yarns having different fineness are twisted together, and the ratio x / R of the length (x) of the unevenness caused by twisting to the full width (R) of the fiber is 0. A fiber for cement reinforcement characterized by being 10 or more.
[2] The twist coefficient (A) of each multifilament calculated from the following formula (1) of the twist coefficient is 0.1 to 4, and a twist coefficient (twisted two or more of the multifilaments ( The fiber for cement reinforcement according to [1], wherein B) is 0.5 to 7.
Twist factor K = T / 3025 × (D / d) 1/2 (1)
T: Number of twists (T / m), D: Total fineness (dtex), d: Density (g / cm 3 )
[3] The cement reinforcing fiber according to [1] or [2], wherein the fineness of the synthetic multifilament having at least two different finenesses is 1: 1.5 or more and 1:15 or less.
[4] For reinforcing cement according to any one of [1] to [3], wherein the twist direction of each multifilament is different from the twist direction of the two or more multifilaments. fiber.
[5] The fiber for cement reinforcement according to any one of [1] to [4], further provided with a surface treatment agent.
[6] The cement reinforcing fiber according to any one of [1] to [5], wherein the fiber length is cut to 5 to 50 mm.
[7] The cement reinforcing fiber according to any one of [1] to [6], wherein the synthetic fiber multifilament is a high molecular weight polyethylene fiber.
[8] A cement composition comprising at least the cement reinforcing fiber according to any one of [1] to [7], cement, and water.
[9] (i) A step of subjecting at least two synthetic fiber multifilaments having different finenesses to under-twisting with a twist coefficient of 0.1 to 4 calculated by the following formula of twist coefficient (1): ii) a step of combining at least two synthetic fiber multifilaments and applying an upper twist of 0.5 to 7 in the opposite direction to the lower twist; (iii) applying a surface treatment agent to the multifilament subjected to the upper twist. A method for producing a fiber for cement reinforcement, comprising a step of applying and heat-treating, and (iv) a step of cutting the multifilament subjected to over twisting into a fiber length of 5 to 50 mm.
Twist factor K = T / 3025 × (D / d) 1/2 (1)
T: Number of twists (T / m), D: Total fineness (dtex), d: Density (g / cm 3 )
本発明により得られるセメント補強用繊維は、撚りにより繊維表面に凹凸を形成、表面処理剤を付与し熱処理を施して硬化させたもので、セメントへの分散性が良好であり、またセメント組成物から繊維が抜けにくい。本発明のセメント補強用繊維を含むことにより、流動性(フロー値)、機械的強度(圧縮強度、曲げ強度、破壊エネルギー等)等に優れたセメント組成物(水硬性組成物)を得ることができる。 The fiber for cement reinforcement obtained by the present invention is formed by forming irregularities on the fiber surface by twisting, imparting a surface treatment agent and curing by heat treatment, has good dispersibility in cement, and has a cement composition. Fiber is difficult to come off. By including the fiber for cement reinforcement of the present invention, a cement composition (hydraulic composition) excellent in fluidity (flow value), mechanical strength (compressive strength, bending strength, fracture energy, etc.) and the like can be obtained. it can.
本発明のセメント補強用繊維として用いられる合成繊維からなるマルチフィラメントとしては、ポリアミド、ポリオレフィン、ポリエステル等が挙げられるが、本発明のセメント補強用繊維においては、耐アルカリ性、高タフネス性の点からポリオレフィン繊維が好ましい。ポリオレフィン繊維としては、ポリエチレン繊維が好ましく、高分子量ポリエチレン繊維がより好ましい。高分子量ポリエチレンとして、重量平均分子量が490,000〜6,200,000であることが好ましく、引張強度が18cN/dtex以上、好ましくは20cN/dtex以上、更に好ましくは21cN/dtex以上である。 Examples of the multifilament made of synthetic fiber used as the cement reinforcing fiber of the present invention include polyamide, polyolefin, polyester, etc., but the cement reinforcing fiber of the present invention is polyolefin from the viewpoint of alkali resistance and high toughness. Fiber is preferred. As the polyolefin fiber, polyethylene fiber is preferable, and high molecular weight polyethylene fiber is more preferable. The high molecular weight polyethylene preferably has a weight average molecular weight of 490,000 to 6,200,000, and a tensile strength of 18 cN / dtex or more, preferably 20 cN / dtex or more, more preferably 21 cN / dtex or more.
合成繊維マルチフィラメントの繊度は、100〜5000dtexであることが好ましく、より好ましくは150〜3000dtexであり、更に好ましくは200〜2800dtexである。繊度が100dtex未満では、セメント組成物の補強効果が低下する。繊度が5000dtexを超えると、セメント組成物の機械的強度が低下する。合成繊維マルチフィラメントの単糸繊度は、0.1dtex以上、40dtex以下であることが好ましく、より好ましくは0.5dtex以上、20dtex以下である。単糸繊度が40dtexより大きいと繊維の製造過程において所望の力学物性まで高めることが困難なり、一方0.1dtexより小さいと繊維の毛羽が立ち易くなり、取扱いが難しくなる。 The fineness of the synthetic fiber multifilament is preferably 100 to 5000 dtex, more preferably 150 to 3000 dtex, and still more preferably 200 to 2800 dtex. When the fineness is less than 100 dtex, the reinforcing effect of the cement composition is lowered. When the fineness exceeds 5000 dtex, the mechanical strength of the cement composition decreases. The single yarn fineness of the synthetic fiber multifilament is preferably 0.1 dtex or more and 40 dtex or less, more preferably 0.5 dtex or more and 20 dtex or less. If the single yarn fineness is larger than 40 dtex, it is difficult to increase the desired mechanical properties in the fiber production process, whereas if it is smaller than 0.1 dtex, the fluff of the fiber is liable to be raised and handling becomes difficult.
引張強度は、セメント組成物における機械的強度の観点から、10cN/dtex以上であることが好ましく、より好ましくは15cN/dtex以上であり、更に好ましくは20cN/dtex以上である。 From the viewpoint of mechanical strength in the cement composition, the tensile strength is preferably 10 cN / dtex or more, more preferably 15 cN / dtex or more, and further preferably 20 cN / dtex or more.
本発明の合成繊維マルチフィラメントは下撚りが施されていることを特徴とし、撚り係数が0.1〜4であることが好ましい。ここで、撚り係数は下記の計算式により計算される。
撚り係数K=T/3025×(D/d)1/2
T: 撚り数(T/m)、D:総繊度(dtex)、d:密度(g/cm3)
The synthetic fiber multifilament of the present invention is characterized in that a lower twist is applied, and the twist coefficient is preferably 0.1 to 4. Here, the twist coefficient is calculated by the following formula.
Twist factor K = T / 3025 × (D / d) 1/2
T: Number of twists (T / m), D: Total fineness (dtex), d: Density (g / cm 3 )
下撚りの撚り係数が4より大きい場合、スナールが生じ加工が難しくなる。また、下撚りの撚り係数が0.1より小さい場合、撚りが不足して繊維がばらけ易くなり、後述する複数のマルチフィラメントの上撚りによって生じる凹凸が生じにくくなる。下撚りの撚り係数は、より好ましくは1.0〜3.0である。 When the twist coefficient of the lower twist is larger than 4, snare is generated and processing becomes difficult. Moreover, when the twist coefficient of the lower twist is smaller than 0.1, the twist is insufficient and the fibers are easily separated, and unevenness caused by the upper twist of a plurality of multifilaments described later is less likely to occur. The twist coefficient of the lower twist is more preferably 1.0 to 3.0.
本発明はさらに、少なくとも2本以上の下撚りが施された合繊繊維マルチフィラメントを撚り合わせ、上撚りを施すことを特徴とする。上撚りの撚り係数は、0.5〜7であることが好ましい。より好ましくは1.5〜5.0である。ここで、撚り係数は下記の計算式により計算される。
撚り係数K=T/3025×(D/d)1/2
T: 撚り数(T/m)、D:総繊度(dtex)、d:密度(g/cm3)
The present invention is further characterized in that at least two or more synthetic fiber multifilaments having a lower twist are twisted together and subjected to an upper twist. The twist coefficient of the upper twist is preferably 0.5 to 7. More preferably, it is 1.5-5.0. Here, the twist coefficient is calculated by the following formula.
Twist factor K = T / 3025 × (D / d) 1/2
T: Number of twists (T / m), D: Total fineness (dtex), d: Density (g / cm 3 )
撚り係数が7より大きい場合は2本以上のマルチフィラメントを撚り合わせたコードの凹凸が小さく、セメントの接着力が低くなり、セメント組成物からセメント補強用繊維が抜けやすくなる。一方、撚り係数が0.5より小さい場合も、同様にコードの凹凸が小さくなり、結果としてセメントとの接着力が低下し、セメント組成物からセメント補強用繊維が抜けやすくなる。 When the twisting coefficient is larger than 7, the unevenness of the cord formed by twisting two or more multifilaments is small, the adhesive strength of the cement is reduced, and the cement reinforcing fiber is easily removed from the cement composition. On the other hand, when the twist coefficient is smaller than 0.5, the unevenness of the cord is similarly reduced. As a result, the adhesive strength with the cement is lowered, and the cement reinforcing fiber is easily removed from the cement composition.
繊度が異なる2本以上のマルチフィラメントを用いて本セメント補強用繊維を作製する場合、下撚りと上撚りの撚り係数は同一でも異なっていても良く、異なる撚り係数にすることがより好ましい。 When the present cement reinforcing fiber is produced using two or more multifilaments having different finenesses, the twist coefficients of the lower twist and the upper twist may be the same or different, and more preferably different twist coefficients.
マルチフィラメントの繊度は、合繊繊維マルチフィラメントの繊度比が1:1.5以上1:15以下になるのが好ましい。繊度比が1:1.5より小さい場合また1:15より大きい場合はコードの凹凸が小さくなる。 The fineness of the multifilament is preferably such that the fineness ratio of the synthetic fiber multifilament is 1: 1.5 or more and 1:15 or less. When the fineness ratio is smaller than 1: 1.5 or larger than 1:15, the unevenness of the cord becomes small.
上撚りは下撚りとは反対方向に施すことが必要である。すなわち、下撚りがZ撚りであれば上撚りはS撚りとし、下撚りがS撚りであれば上撚りはZ撚りとする。 The upper twist must be applied in the opposite direction to the lower twist. That is, if the lower twist is Z twist, the upper twist is S twist, and if the lower twist is S twist, the upper twist is Z twist.
本発明のセメント補強用繊維は少なくとも2本のマルチフィラメント糸が撚り合わされており、繊維の全幅長(R)に対する、撚り合わせによって生じる凹凸の深さ(x)の比 x/R が0.10以上であり、好ましくは0.13以上である。繊維の全幅長(R)は、2本以上のマルチフィラメントが撚り合わされたコードを拡大して写真撮影し、コード長1cm内において、コードの1辺の凸部から他辺の凸部までの鉛直方向に最大となる距離を測定することにより求める。撚り合わせによって生じる凹凸の深さ(x)は、同じくコードを拡大して写真撮影し、コード長1cm内の任意の5箇所において、コードの凸部と隣り合う凹部の間の距離を測定することにより求める。繊維の全幅長(R)に対する、撚り合わせによって生じる凹凸の深さ(x)の比 x/Rは、同じ単位で測定した凹凸の深さ(x)を全幅長(R)で除することに求める。x/Rが0.10より小さい場合はセメント補強用繊維として補強効果が十分に発現されない。上限は特に定めないが、凹凸の大きさの限度があることから、好ましくは0.5以下である。 The cement reinforcing fiber of the present invention has at least two multifilament yarns twisted together, and the ratio x / R of the depth (x) of the unevenness caused by twisting to the total width (R) of the fiber is 0.10. It is above, Preferably it is 0.13 or more. The total width (R) of the fiber is taken by enlarging a photograph of a cord in which two or more multifilaments are twisted together, and the vertical length from the convex portion on one side of the cord to the convex portion on the other side within the cord length of 1 cm. It is obtained by measuring the maximum distance in the direction. For the depth (x) of the unevenness caused by twisting, the cord is also enlarged and photographed, and the distance between the convex portion of the cord and the adjacent concave portion is measured at any five locations within the cord length of 1 cm. Ask for. The ratio x / R of the depth (x) of the unevenness caused by twisting to the total width (R) of the fiber is obtained by dividing the depth (x) of the unevenness measured in the same unit by the total width (R). Ask. When x / R is smaller than 0.10, the reinforcing effect as a cement reinforcing fiber is not sufficiently exhibited. The upper limit is not particularly defined, but is preferably 0.5 or less because there is a limit on the size of the unevenness.
本発明に用いる合成繊維マルチフィラメントには剛性を持たせるために表面処理剤を付与することが好ましい。表面処理剤がない場合には繊維の剛性が劣り、セメント中で繊維が絡み合ってダマを形成し易く、分散性が劣ることになる。表面処理剤としては、オレフィン系、ウレタン系、アクリル系、エポキシ系の処理剤を一種以上選択して用いることができる。具体的に、オレフィン系の表面処理剤としては、ポリエチレン骨格、ポリプロピレン骨格樹脂を用いることができる。ウレタン系の表面処理剤としては、エーテル骨格、エステル骨格樹脂、アクリル系の表面処理剤としてはメタクリル酸骨格樹脂、エポキシ系の表面処理剤としては、エーテル骨格、エステル骨格、アミン骨格を用いることができる。マルチフィラメントとしてオレフィン系の合成繊維を用いる場合には、オレフィン系の表面処理剤を用いることが好ましく、高分子量ポリエチレン繊維のマルチフィラメントを用いる場合には、ポリエチレン骨格樹脂を用いることがより好ましい。 In order to give rigidity to the synthetic fiber multifilament used in the present invention, it is preferable to apply a surface treatment agent. When there is no surface treatment agent, the rigidity of the fiber is inferior, the fiber is entangled in the cement and easily forms lumps, and the dispersibility is inferior. As the surface treatment agent, one or more olefin, urethane, acrylic, and epoxy treatment agents can be selected and used. Specifically, a polyethylene skeleton or a polypropylene skeleton resin can be used as the olefin-based surface treatment agent. As the urethane-based surface treatment agent, an ether skeleton, an ester skeleton resin, as an acrylic surface treatment agent, as a methacrylic acid skeleton resin, and as an epoxy-based surface treatment agent, an ether skeleton, an ester skeleton, or an amine skeleton may be used. it can. When using olefin-based synthetic fibers as multifilaments, it is preferable to use olefin-based surface treatment agents, and when using high-molecular-weight polyethylene fiber multifilaments, it is more preferable to use polyethylene skeleton resins.
表面処理剤を付与する方法は特に限定されず、スプレー法やディップ法等を用いることができる。作業性や均一な表面処理剤付与の観点から、ディップ法が好ましく用いられる。表面処理剤を付与する工程は、少なくとも2本の合成繊維マルチフィラメントに上撚りを施した後、得られたコードに対して行うことが望ましい。このようにすることにより、繊維の集束性が得られ、コードの表面の凹凸を固定できる効果が期待できるからである。ディッピング工程を通過したコードは表面処理剤液を乾燥させるために、90〜160℃の乾燥ゾーンを30秒〜4分程度通過させることが好ましい。本コードに付与する表面処理剤の量は上撚りが施されたコードに対して1〜25重量%が好ましく、より好ましくは2〜20重量%である。 The method for applying the surface treatment agent is not particularly limited, and a spray method, a dip method, or the like can be used. From the viewpoint of workability and the application of a uniform surface treatment agent, the dip method is preferably used. The step of applying the surface treatment agent is desirably performed on the obtained cord after first twisting at least two synthetic fiber multifilaments. This is because the fiber converging property can be obtained and the effect of fixing the irregularities on the surface of the cord can be expected. The cord that has passed through the dipping step is preferably passed through a drying zone at 90 to 160 ° C. for about 30 seconds to 4 minutes in order to dry the surface treatment solution. The amount of the surface treatment agent applied to the cord is preferably 1 to 25% by weight, more preferably 2 to 20% by weight, based on the cord subjected to the upper twist.
本発明のセメント補強用繊維の繊維長は5〜50mmとすることが好ましい。より好ましくは7〜40mm、さらに好ましくは10〜30mmである。繊維長が5mm未満ではセメントに配合された際にセメントからの抜けが生じやすく、50mmを超えると分散性が不良となり好ましくない。前記のようにして得られたディップコードをカッティング機で繊維長を規定の長さにカットすることでこのような繊維長にすることができる。 The fiber length of the cement reinforcing fiber of the present invention is preferably 5 to 50 mm. More preferably, it is 7-40 mm, More preferably, it is 10-30 mm. If the fiber length is less than 5 mm, it is likely to come off from the cement when blended into the cement, and if it exceeds 50 mm, the dispersibility becomes poor. The dip cord obtained as described above can be made to have such a fiber length by cutting the fiber length to a specified length with a cutting machine.
こうして作製される本発明のセメント補強用繊維は、アクリル樹脂を用いた引抜き試験において引抜き荷重が好ましくは10.0kgf以上を示し、より好ましくは12.0kgf以上を示す。引抜き荷重が10.0kgf以上であれば、セメント組成物中においても高い接着力を示し、セメント組成物中から補強用繊維が容易に引き抜けることを防止できる。 The fiber for cement reinforcement of the present invention thus produced has a pulling load of preferably 10.0 kgf or more, more preferably 12.0 kgf or more in a pulling test using an acrylic resin. If the drawing load is 10.0 kgf or more, high adhesive strength is exhibited even in the cement composition, and the reinforcing fibers can be prevented from being easily pulled out from the cement composition.
本発明のセメント補強用繊維は適量をセメントに配合することで優れたセメント成形品とすることができる。セメント組成物中の補強用繊維の割合は、好ましくは0.5〜3.0体積%、より好ましくは0.7〜2.5体積%である。セメント組成物には(a)セメント、(b)微粉末、(c)細骨材、(d)減水剤、及び(f)水が含まれており、ここに本発明のセメント補強用繊維を加えることができる。本発明はあらゆるセメントに対して適用可能であり、普通ポルトランドセメント、早強ポルトランドセメント、中庸熱ポルトランドセメント、低熱ポルトランドセメント等の各種ポルトランドセメントや、シリカセメント、高炉セメント等の混合セメントや、エコセメント等に対して用いることができる。 The cement reinforcing fiber of the present invention can be made into an excellent cement molded product by blending an appropriate amount into the cement. The proportion of reinforcing fibers in the cement composition is preferably 0.5 to 3.0% by volume, more preferably 0.7 to 2.5% by volume. The cement composition contains (a) cement, (b) fine powder, (c) fine aggregate, (d) water reducing agent, and (f) water, and the cement reinforcing fiber of the present invention is contained therein. Can be added. The present invention can be applied to any cement, and various portland cements such as ordinary portland cement, early-strength portland cement, medium heat portland cement and low heat portland cement, mixed cement such as silica cement and blast furnace cement, and ecocement. Etc. can be used.
本発明のセメント補強用繊維を適量配合したセメント混合物は、常温で数十日間大気中または水中に放置する自然養生法、あるいは加熱養生法により養生硬化してセメント成型品とすることができる。補強繊維を用いて製造されるセメント成型品の用途としては、あらゆるセメント製品にわたるものであるが、例えば建造物の壁材、床材コンクリート、仕上げモルタル、防水コンクリート、屋根材等、あるいは土木関係部材としては道路、滑走路等の舗装、道路標識、側溝等の道路部材、下水管、ケーブルダクト等のパイプ類、魚礁、護岸ブロック、テトラポット等、その他各種構造物として枕木、ベンチ、フラワーポット等に使用できる。 A cement mixture containing an appropriate amount of the fiber for cement reinforcement of the present invention can be cured and cured by a natural curing method in which it is left in the atmosphere or water for several tens of days at room temperature, or by a heat curing method to obtain a cement molded product. Cement molded products manufactured using reinforcing fibers cover a wide range of cement products. For example, building wall materials, flooring concrete, finished mortar, waterproof concrete, roofing materials, etc., or civil engineering-related members As roads, pavements such as runways, road signs, road members such as gutters, sewage pipes, pipes such as cable ducts, fish reefs, revetment blocks, tetrapots, and other various structures such as sleepers, benches, flower pots, etc. Can be used for
本発明におけるコンクリート補強効果の確認試験の引抜き試験方法は次の通りである。本実施例では、セメント成型品の代わりとしてアクリル樹脂を用い、セメント補強用繊維のセメント成型品からの引抜き試験の代替試験を行った。 The pull-out test method of the confirmation test of the concrete reinforcing effect in the present invention is as follows. In this example, an acrylic resin was used in place of the cement molded product, and an alternative test for the pull-out test of the cement reinforcing fiber from the cement molded product was performed.
[試験用サンプルの作製方法]
・ 長さ30mm、幅15mm、厚さ15mmの型枠を2個作製した。
・ 2個の型枠を20mmの間隔を空けて直列に並べ、各種作製したセメント補強用繊維(コード)を型枠の中心に配置し、型枠への埋め込み長さを30mm、型枠間の繊維長を20mmとして、型枠にマトリックスを流し込み固化させた。
・ マトリックスにはアクリル樹脂アクリセーブR(電気化学(株))を用いた。
[Test Sample Preparation Method]
-Two molds having a length of 30 mm, a width of 15 mm, and a thickness of 15 mm were produced.
・ Two molds are arranged in series with an interval of 20 mm, and various types of cement reinforcing fibers (cords) are arranged at the center of the mold, the embedding length in the mold is 30 mm, and between the molds The fiber length was set to 20 mm, and the matrix was poured into a mold and solidified.
Acrylic resin Acry Save R (Electrochemical Co., Ltd.) was used for the matrix.
[引抜き試験方法]
前記作製した試験用サンプルについて、テンシロンを用いて(東洋ボールドウィン社製テンシロンTMI RTM−500)引張速度1mm/minで引き抜き試験を行い、最大荷重を引き抜き荷重とした。合計3回の測定を行い、平均値を求めた。
[Pullout test method]
About the produced sample for a test, using Tensilon (Tensilon TMI RTM-500 made by Toyo Baldwin Co., Ltd.), a pulling test was performed at a pulling speed of 1 mm / min, and the maximum load was set as the pulling load. A total of three measurements were taken to determine the average value.
[実施例1]
繊度440dtex及び1760dtexの2本の超高分子量ポリエチレン繊維(30cN/dtex)にそれぞれ撚り係数2.5の撚り(下撚り)を加えた後、それぞれ2本を合わせて下撚りと反対方向に撚り係数1.6の撚り(上撚り)を施し、生コードを得た。生コードを表面処理剤(オレフィン系樹脂:NC20AS(太田化研(株))で付着量10重量%付与し、110℃で3分間熱処理を施し、コードを得た。
[Example 1]
Two ultra high molecular weight polyethylene fibers (30 cN / dtex) with fineness of 440 dtex and 1760 dtex were each added with a twist of 2.5 (twisting factor) and then twisted in the opposite direction to the lower twisting. A twist of 1.6 (top twist) was applied to obtain a raw cord. The raw cord was applied with a surface treatment agent (olefin resin: NC20AS (Ota Chemical Laboratories)) with an adhesion amount of 10% by weight, and heat treated at 110 ° C. for 3 minutes to obtain a cord.
得られたコードを用いて試験用サンプルを作製し、コードの引抜き試験を行った。評価結果を表1に示した。 A test sample was prepared using the obtained cord, and a cord pull-out test was performed. The evaluation results are shown in Table 1.
[実施例2]
上撚りの撚り係数を3.1にしたほかは実施例1で採用したのと同様にし、コードを得た。評価結果を表1に併せて示した。
[Example 2]
A cord was obtained in the same manner as in Example 1 except that the twist coefficient of the upper twist was 3.1. The evaluation results are also shown in Table 1.
[実施例3]
上撚りの撚り係数を4.7にしたほかは実施例1で採用したのと同様にし、コードを得た。評価結果を表1に併せて示した。
[Example 3]
A cord was obtained in the same manner as in Example 1 except that the twist coefficient of the upper twist was 4.7. The evaluation results are also shown in Table 1.
[実施例4]
繊度220dtex及び1760dtexの2本の超高分子量ポリエチレンにそれぞれ撚り係数2.5の撚り(下撚り)を加えた後、それぞれ2本を合わせて下撚りと反対方向に撚り係数1.6の撚り(上撚り)を施したほかは実施例1で採用したのと同様にし、コードを得た。評価結果を表1に併せて示した。
[Example 4]
After adding two strands of ultrahigh molecular weight polyethylene having a fineness of 220 dtex and 1760 dtex (twist twist) to each of the two ultrahigh molecular weight polyethylenes, the two are combined together and twisted with a twist factor of 1.6 in the opposite direction to the bottom twist ( A cord was obtained in the same manner as that employed in Example 1 except that the upper twist was applied. The evaluation results are also shown in Table 1.
[実施例5]
上撚りの撚り係数を3.1にしたほかは実施例4で採用したのと同様にし、コードを得た。評価結果を表1に併せて示した。
[Example 5]
A cord was obtained in the same manner as in Example 4 except that the twist coefficient of the upper twist was 3.1. The evaluation results are also shown in Table 1.
[実施例6]
上撚りの撚り係数を4.6にしたほかは実施例4で採用したのと同様にし、コードを得た。評価結果を表1に併せて示した。
[Example 6]
A cord was obtained in the same manner as that employed in Example 4 except that the twist coefficient of the upper twist was 4.6. The evaluation results are also shown in Table 1.
[実施例7]
繊度220dtex及び2640dtexの2本の超高分子量ポリエチレンにそれぞれ撚り係数2.5の撚り(下撚り)を加えた後、それぞれ2本を合わせて下撚りと反対方向に撚り係数1.6の撚り(上撚り)を施したほかは実施例1で採用したのと同様にし、コードを得た。評価結果を表1に併せて示した。
[Example 7]
After adding two twists of 2.5 (twisting factor) to two ultrahigh molecular weight polyethylenes having fineness of 220 dtex and 2640 dtex (twisting), the two are combined together and twisted with a twisting factor of 1.6 in the opposite direction to the lower twisting ( A cord was obtained in the same manner as that employed in Example 1 except that the upper twist was applied. The evaluation results are also shown in Table 1.
[実施例8]
上撚りの撚り係数を3.1にしたほかは実施例7で採用したのと同様にし、コードを得た。評価結果を表1に併せて示した。
[Example 8]
A cord was obtained in the same manner as in Example 7 except that the twist coefficient of the upper twist was 3.1. The evaluation results are also shown in Table 1.
[実施例9]
上撚りの撚り係数を4.6にしたほかは実施例7で採用したのと同様にし、コードを得た。評価結果を表1に併せて示した。
[Example 9]
A cord was obtained in the same manner as that employed in Example 7 except that the twist coefficient of the upper twist was 4.6. The evaluation results are also shown in Table 1.
[実施例10]
繊度880dtex及び1320dtexの2本の超高分子量ポリエチレンにそれぞれ撚り係数2.5の撚り(下撚り)を加えた後、それぞれ2本を合わせて下撚りと反対方向に撚り係数1.6の撚り(上撚り)を施したほかは実施例1で採用したのと同様にし、コードを得た。評価結果を表1に併せて示した。
[Example 10]
After adding two twists of 2.5 (twisting factor) to two ultrahigh molecular weight polyethylenes having fineness of 880 dtex and 1320 dtex (twisting), respectively, the two are combined and twisted with a twisting factor of 1.6 in the opposite direction to the lower twist ( A cord was obtained in the same manner as that employed in Example 1 except that the upper twist was applied. The evaluation results are also shown in Table 1.
[実施例11]
上撚りの撚り係数を3.1にしたほかは実施例10で採用したのと同様にし、コードを得た。評価結果を表1に併せて示した。
[Example 11]
A cord was obtained in the same manner as that employed in Example 10 except that the twist coefficient of the upper twist was 3.1. The evaluation results are also shown in Table 1.
[実施例12]
上撚りの撚り係数を4.7にしたほかは実施例10で採用したのと同様にし、コードを得た。評価結果を表1に併せて示した。
[Example 12]
A cord was obtained in the same manner as in Example 10 except that the twist coefficient of the upper twist was set to 4.7. The evaluation results are also shown in Table 1.
[比較例1]
繊度440dtex及び440dtexの2本の超高分子量ポリエチレンにそれぞれ撚り係数2.5の撚り(下撚り)を加えた後、それぞれ2本を合わせて下撚りと反対方向に撚り係数1.6の撚り(上撚り)を施し、生コードを得た。生コードを表面処理剤(オレフィン系樹脂:NC20AS(太田化研(株))で付着量10重量%付与し、110℃で3分間熱処理を施し、コードを得た。評価結果を表1に併せて示した。
[Comparative Example 1]
After adding two twists of 2.5 (twisting factor) to two ultrahigh molecular weight polyethylenes having finenesses of 440 dtex and 440 dtex (twisting), the two are combined and twisted with a twisting factor of 1.6 in the opposite direction to the lower twist ( A raw cord was obtained. The raw cord was applied with a surface treatment agent (olefin resin: NC20AS (Ota Chemical Research Co., Ltd.)) with an adhesion amount of 10% by weight, and heat treated at 110 ° C. for 3 minutes to obtain a cord. Showed.
[比較例2]
上撚りの撚り係数を3.1にしたほかは比較例1で採用したのと同様にし、コードを得た。評価結果を表1に併せて示した。
[Comparative Example 2]
A cord was obtained in the same manner as that employed in Comparative Example 1 except that the twist coefficient of the upper twist was 3.1. The evaluation results are also shown in Table 1.
[比較例3]
上撚りの撚り係数を4.7にしたほかは比較例1で採用したのと同様にし、コードを得た。評価結果を表1に併せて示した。
[Comparative Example 3]
A cord was obtained in the same manner as employed in Comparative Example 1 except that the twist coefficient of the upper twist was set to 4.7. The evaluation results are also shown in Table 1.
[比較例4]
繊度880dtexの超高分子量ポリエチレン繊維に撚り係数2.5の撚りを加え生コードを得た。生コードを表面処理剤(オレフィン系樹脂)で付着量10重量%付与し、110℃で3分間熱処理を施し、コードを得た。評価結果を表1に併せて示した。
[Comparative Example 4]
A raw cord was obtained by adding a twist of a twist coefficient of 2.5 to an ultrahigh molecular weight polyethylene fiber having a fineness of 880 dtex. The raw cord was applied with a surface treatment agent (olefin resin) in an adhesion amount of 10% by weight, and heat treated at 110 ° C. for 3 minutes to obtain a cord. The evaluation results are also shown in Table 1.
[比較例5]
繊度2200dtexの超高分子量ポリエチレン繊維に撚り係数2.5の撚りを加え生コードを得た。生コードを表面処理剤(オレフィン系樹脂)で付着量10重量%付与し、110℃で3分間熱処理を施し、コードを得た。評価結果を表1に併せて示した。
[Comparative Example 5]
A raw cord was obtained by adding a twist of a twist coefficient of 2.5 to an ultrahigh molecular weight polyethylene fiber having a fineness of 2200 dtex. The raw cord was applied with a surface treatment agent (olefin resin) in an adhesion amount of 10% by weight, and heat treated at 110 ° C. for 3 minutes to obtain a cord. The evaluation results are also shown in Table 1.
[比較例6]
繊度1980dtexの超高分子量ポリエチレン繊維に撚り係数2.5の撚りを加え生コードを得た。生コードを表面処理剤(オレフィン系樹脂)で付着量10重量%付与し、110℃で3分間熱処理を施し、コードを得た。評価結果を表1に併せて示した。
[Comparative Example 6]
A raw cord was obtained by adding a twist of a twist coefficient of 2.5 to an ultrahigh molecular weight polyethylene fiber having a fineness of 1980 dtex. The raw cord was applied with a surface treatment agent (olefin resin) in an adhesion amount of 10% by weight, and heat treated at 110 ° C. for 3 minutes to obtain a cord. The evaluation results are also shown in Table 1.
[比較例7]
繊度2860dtexの超高分子量ポリエチレン繊維に撚り係数2.5の撚りを加え生コードを得た。生コードを表面処理剤(オレフィン系樹脂)で付着量10重量%付与し、110℃で3分間熱処理を施し、コードを得た。評価結果を表1に併せて示した。
[Comparative Example 7]
A raw cord was obtained by adding a twist of a twist coefficient of 2.5 to an ultrahigh molecular weight polyethylene fiber having a fineness of 2860 dtex. The raw cord was applied with a surface treatment agent (olefin resin) in an adhesion amount of 10% by weight, and heat treated at 110 ° C. for 3 minutes to obtain a cord. The evaluation results are also shown in Table 1.
本発明のセメントとの接着力が高い補強用繊維により、曲げ強度、靱性に優れたセメント成型体を得ることができ、建造物の構造材、壁材、床材や道路等土木関係部材、その他各種構造物に使用されるあらゆるセメント製品に応用することができる。 With the reinforcing fiber having high adhesive strength with the cement of the present invention, it is possible to obtain a cement molded body excellent in bending strength and toughness, such as a structural material of a building, a wall material, a flooring material, a civil engineering-related member such as a road, etc. It can be applied to all cement products used in various structures.
Claims (6)
下記(1)の撚り係数の計算式により計算される、各マルチフィラメントの撚り係数(A)が0.1〜4であり、2本以上の前記マルチフィラメントを撚り合わせた撚り係数(B)が0.5〜7であり、
少なくとも2本の異なる繊度の合成繊維マルチフィラメントの繊度が1:1.5以上1:15以下であり、
各マルチフィラメントの撚りの方向と、2本以上の前記マルチフィラメントを合わせた撚りの方向がそれぞれ異なる、ことを特徴とするセメント補強用繊維。
撚り係数K=T/3025×(D/d) 1/2 ・・・(1)
T: 撚り数(T/m)、D:総繊度(dtex)、d:密度(g/cm 3 ) At least two synthetic fiber multifilament yarns having different fineness are twisted together, and the ratio x / R of the unevenness length (x) generated by twisting to the full width (R) of the fiber is 0.10 or more. Oh it is,
The twist coefficient (A) of each multifilament calculated from the formula for calculating the twist coefficient of (1) below is 0.1 to 4, and the twist coefficient (B) obtained by twisting two or more multifilaments is 0.5-7,
The fineness of the synthetic fiber multifilament of at least two different finenesses is from 1: 1.5 to 1:15,
A cement reinforcing fiber , wherein the twist direction of each multifilament is different from the twist direction of two or more multifilaments .
Twist coefficient K = T / 3025 × (D / d) 1/2 (1)
T: Number of twists (T / m), D: Total fineness (dtex), d: Density (g / cm 3 )
撚り係数K=T/3025×(D/d)1/2 ・・・(1)
T: 撚り数(T/m)、D:総繊度(dtex)、d:密度(g/cm3) (I) denier 1: in each of at least two different pieces of synthetic fibers multifilament at least 1.5 1:15 or less, twist factor 0.1 is calculated by equation twist coefficient below (1) (Ii) a step of applying an initial twist of 0.5 to 7 in a direction opposite to the initial twist, and (iii) an upper twist. A step of applying a surface treatment agent to the multifilament subjected to the heat treatment and heat-treating, and (iv) cutting the multifilament subjected to the upper twist into a fiber length of 5 to 50 mm. A method for producing fibers.
Twist coefficient K = T / 3025 × (D / d) 1/2 (1)
T: Number of twists (T / m), D: Total fineness (dtex), d: Density (g / cm 3 )
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014256010A JP6492616B2 (en) | 2014-12-18 | 2014-12-18 | Cement reinforcing fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014256010A JP6492616B2 (en) | 2014-12-18 | 2014-12-18 | Cement reinforcing fiber |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016113351A JP2016113351A (en) | 2016-06-23 |
JP6492616B2 true JP6492616B2 (en) | 2019-04-03 |
Family
ID=56139674
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014256010A Active JP6492616B2 (en) | 2014-12-18 | 2014-12-18 | Cement reinforcing fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6492616B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018111631A (en) * | 2017-01-11 | 2018-07-19 | 帝人株式会社 | Fiber material for cement reinforcement |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002275739A (en) * | 2001-03-19 | 2002-09-25 | Toray Ind Inc | Method for producing cement-reinforcing fiber |
JP5054906B2 (en) * | 2005-09-09 | 2012-10-24 | 東レ株式会社 | Carbon fiber composite resin wire for reinforcing concrete or mortar, method for producing the same, and concrete or mortar structure |
JP2007084363A (en) * | 2005-09-20 | 2007-04-05 | Kajima Corp | Composite fiber reinforced cement base material |
JP2012056780A (en) * | 2010-09-06 | 2012-03-22 | Toda Constr Co Ltd | Short fiber for reinforcing cementitious formed product, and cementitious formed product added with the same |
-
2014
- 2014-12-18 JP JP2014256010A patent/JP6492616B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2016113351A (en) | 2016-06-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2224044B1 (en) | Man-made fibre for three-dimensional reinforcement of a cement product | |
KR20100014244A (en) | Method for premixing and addition of fibers in the dry state | |
US6844065B2 (en) | Plastic fibers for improved concrete | |
Dopko | Fiber reinforced concrete: Tailoring composite properties with discrete fibers | |
CN106674822A (en) | Wood-plastic flooring and manufacturing method thereof | |
JPS5874563A (en) | Congealable mineral material and formed body comprising reinforcing fiber buried therein | |
JP6492616B2 (en) | Cement reinforcing fiber | |
WO2007075500A3 (en) | Concrete fiber material, castable constructs including same, and methods | |
JPS6126510B2 (en) | ||
KR101569273B1 (en) | Reinforcing concrete composition comprising fiber using by waste fish net for and method for producing the same | |
KR101150458B1 (en) | Environmental friendly fiber-reinforced concrete | |
JPH11246254A (en) | Mixture for production of glass fiber reinforced concrete molding, production of molding and apparatus therefor | |
KR100983104B1 (en) | Porous soil block | |
CN1119143A (en) | Production of composites | |
CN103880314B (en) | A kind of forming method of fibre reinforced concrete | |
JP2003293216A (en) | High-strength polyolefin fiber and concrete molded form using the same | |
JPH0143704B2 (en) | ||
JP2006151792A (en) | Polypropylene fiber for reinforcing cement and cement formed body obtained by using the same | |
JP3517330B2 (en) | Polypropylene fiber for cement reinforcement | |
KR101850704B1 (en) | Cementitious composite with structural synthetic fiber and method for making the same | |
CA2536780A1 (en) | System for delivery of fibers into concrete | |
KR20170035308A (en) | Concrete pipe having reinforcing fiber manufactured by centrifugal force and, manufacturing methods for the same | |
Abu et al. | The use of raffia palm (Raffia Hookeri) piassava fibres as reinforcement of concrete | |
JP3996158B2 (en) | Polypropylene short fiber for concrete reinforcement | |
JP3569460B2 (en) | Cement reinforcing fiber |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20171113 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20180813 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180905 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20181023 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190205 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190218 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6492616 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |