JP6492023B2 - Organic nonlinear optical dye, nonlinear optical material, nonlinear optical film and optical element - Google Patents

Organic nonlinear optical dye, nonlinear optical material, nonlinear optical film and optical element Download PDF

Info

Publication number
JP6492023B2
JP6492023B2 JP2016068656A JP2016068656A JP6492023B2 JP 6492023 B2 JP6492023 B2 JP 6492023B2 JP 2016068656 A JP2016068656 A JP 2016068656A JP 2016068656 A JP2016068656 A JP 2016068656A JP 6492023 B2 JP6492023 B2 JP 6492023B2
Authority
JP
Japan
Prior art keywords
nonlinear optical
dye
organic
film
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016068656A
Other languages
Japanese (ja)
Other versions
JP2017181775A (en
Inventor
昭子 服部
昭子 服部
佐藤 真隆
真隆 佐藤
加藤 隆志
隆志 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2016068656A priority Critical patent/JP6492023B2/en
Publication of JP2017181775A publication Critical patent/JP2017181775A/en
Application granted granted Critical
Publication of JP6492023B2 publication Critical patent/JP6492023B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、有機非線形光学色素に関する。また、本発明は有機非線形光学色素を用いた非線形光学材料に関する。また、本発明は非線形光学材料を用いた非線形光学膜及び光学素子に関する。   The present invention relates to an organic nonlinear optical dye. The present invention also relates to a nonlinear optical material using an organic nonlinear optical dye. The present invention also relates to a nonlinear optical film and an optical element using a nonlinear optical material.

光情報処理、光通信等の分野においては、情報の大容量化や通信のさらなる高速化が求められている。この状況下において近年、非線形光学活性を有する化合物(非線形光学応答を示す化合物)の電気光学効果(非線形光学効果)を利用した光学素子の利用が注目されている。非線形光学活性を有する化合物は、強い光電場を与えたときに、分極応答が電場の強さに比例せず、光の電界の2乗、3乗あるいはそれ以上の高次の項に比例した分極応答を示す。非線形光学活性を有する化合物として、例えば、第2高調波を発生する化合物や、1次の電気光学効果であるポッケルス効果を示す化合物が知られている。   In the fields of optical information processing, optical communication, etc., it is required to increase the capacity of information and further increase the speed of communication. In recent years, attention has been paid to the use of optical elements utilizing the electro-optic effect (non-linear optical effect) of a compound having nonlinear optical activity (compound exhibiting nonlinear optical response). When a compound having nonlinear optical activity is applied with a strong photoelectric field, the polarization response is not proportional to the strength of the electric field, and the polarization is proportional to the square of the electric field of the light, the third power, or more. Indicates a response. As compounds having nonlinear optical activity, for example, compounds that generate second harmonics and compounds that exhibit the Pockels effect, which is the first-order electro-optic effect, are known.

非線形光学活性を有する化合物は、反転対称心を欠いた状態に配置することで非線形光学効果を発現する。したがって、非線形光学活性を有する化合物を光学素子に用いる場合、この化合物を一定の配向状態にして用いられる。この配向状態を作り出すために、非線形光学活性を有する化合物を高分子バインダーと混合し、この混合物をそのガラス転移温度付近の温度に加熱して高電圧を印加し、これにより非線形光学活性を有する化合物の双極子を配向させ、その後冷却して高分子バインダーを固めて上記配向状態を固定化する(いわゆるポーリング(poling)処理)ことが行われる。   A compound having non-linear optical activity exhibits a non-linear optical effect by being arranged in a state lacking an inversion symmetry center. Therefore, when a compound having nonlinear optical activity is used for an optical element, this compound is used in a certain orientation state. In order to create this orientation state, a compound having nonlinear optical activity is mixed with a polymer binder, the mixture is heated to a temperature near its glass transition temperature, and a high voltage is applied, whereby the compound having nonlinear optical activity The dipoles are oriented, and then cooled to solidify the polymer binder to fix the orientation state (so-called poling treatment).

非線形光学活性を有する化合物としては、従来からニオブ酸リチウム、リン酸水素カリウム等の無機化合物が広く利用され、実用化されている。しかし近年では、無機化合物に比べて非線形光学効果が高く、応答速度、光損傷しきい値、分子設計の自由度、量産性等においても優位性のある有機非線形光学色素が着目され、研究成果も多数報告されている。
例えば特許文献1には、シアノ基とジシアノメチリデン基とがピロリン環の環構成炭素原子に結合してなる特定構造のトリシアノピロリン系電子アクセプターユニットと、この電子アクセプターユニットと結合する特定構造の電子ドナーユニットとを有する有機非線形光学色素が、電気光学性能に優れ、熱安定性も有していたことが記載されている。
また特許文献2には、シアノ基とジシアノメチリデン基とがピロリン環の環構成炭素原子に結合してなる特定構造のトリシアノピロリン系電子アクセプターユニットと、この電子アクセプターユニットに対してアゾ基を含む特定構造の共役鎖で結合する特定構造の電子ドナーユニットとを有する有機非線形光学色素が、電気光学性能に優れ、耐熱性及び耐光性にも優れていたことが記載されている。
Conventionally, inorganic compounds such as lithium niobate and potassium hydrogen phosphate have been widely used and put into practical use as compounds having nonlinear optical activity. However, in recent years, organic nonlinear optical dyes that have higher nonlinear optical effects than inorganic compounds and have advantages in response speed, photodamage threshold, molecular design freedom, mass productivity, etc. Many reports have been made.
For example, Patent Document 1 discloses a tricyanopyrroline-based electron acceptor unit having a specific structure in which a cyano group and a dicyanomethylidene group are bonded to a ring-constituting carbon atom of a pyrroline ring, and a specific bonded to this electron acceptor unit. It is described that an organic nonlinear optical dye having an electron donor unit having a structure has excellent electro-optical performance and thermal stability.
Patent Document 2 discloses a tricyanopyrroline electron acceptor unit having a specific structure in which a cyano group and a dicyanomethylidene group are bonded to a ring-constituting carbon atom of a pyrroline ring, and an azo group for the electron acceptor unit. It is described that an organic nonlinear optical dye having an electron donor unit having a specific structure bonded with a conjugated chain having a specific structure containing a group is excellent in electro-optical performance, heat resistance and light resistance.

米国特許第7307173号明細書US Pat. No. 7,307,173 特許第5826206号公報Japanese Patent No. 5826206

実用的な有機非線形光学色素であるためには、優れた非線形光学活性に加え、色素自体の安定性も重要な要素となる。すなわち有機非線形光学色素を用いた光学素子(光変調素子等)の実用化においては素子の長期信頼性を確保する必要がある。
本発明者らは、光学素子の使用環境の多様化(汎用性)を考慮した場合に、光学素子の長期信頼性を実用上十分なレベルにまで高めるには、素子に用いる有機非線形光学色素には上記特許文献に記載されるような耐熱性及び耐光性だけでなく、高温高湿の過酷環境下においても長期に亘り色素が分解等されず、所望の非線形光学活性を持続的に発現できる高度な湿熱耐性が求められるとの考えに至った。この着想の下、本発明者らが既存の有機非線形光学色素等について検討を進めた結果、上記各特許文献記載の有機非線形光学色素をはじめ従来の有機非線形光学色素は湿熱耐性が十分でないものが多く、また、湿熱耐性と耐光性の両立を実用上要求されるレベルにまで十分に高いレベルで実現できるものではないことが明らかとなってきた。
In order to be a practical organic nonlinear optical dye, in addition to excellent nonlinear optical activity, the stability of the dye itself is an important factor. That is, in practical use of an optical element (such as a light modulation element) using an organic nonlinear optical dye, it is necessary to ensure long-term reliability of the element.
In order to increase the long-term reliability of an optical element to a practically sufficient level in consideration of diversification of the use environment of the optical element (general versatility), the present inventors have proposed an organic nonlinear optical dye used in the element. Is not only heat resistance and light resistance as described in the above-mentioned patent document, but also has a high degree of ability to continuously express desired nonlinear optical activity without being decomposed for a long time even in a severe environment of high temperature and high humidity. It came to the idea that a high heat resistance was required. Based on this idea, as a result of investigations on the existing organic nonlinear optical dyes and the like by the present inventors, conventional organic nonlinear optical dyes including the organic nonlinear optical dyes described in the respective patent documents described above are not sufficiently heat-resistant. In addition, it has been clarified that it is not possible to realize both the wet heat resistance and the light resistance at a sufficiently high level to a level required for practical use.

そこで本発明は、非線形光学活性に優れ、また、耐光性と湿熱耐性の両立をより高いレベルで実現した有機非線形光学色素、この色素を用いた非線形光学材料、非線形光学膜及び光学素子を提供することを課題とする。   Accordingly, the present invention provides an organic nonlinear optical dye that is excellent in nonlinear optical activity and realizes both light resistance and wet heat resistance at a higher level, a nonlinear optical material using this dye, a nonlinear optical film, and an optical element. This is the issue.

本発明者らは上記課題に鑑み鋭意検討を重ねた結果、分子内に、ピロリン環の環構成窒素原子に無置換の分岐アルキル基を導入した特定構造のトリシアノピロリン系電子アクセプターユニットと、この電子アクセプターユニットに対して特定構造の共役鎖で結合する、末端に無置換のジ分岐アルキルアミノ基を有する電子ドナーユニットとを有する有機非線形光学色素が、非線形光学活性に優れること、高温高湿環境に長期間曝しても、また紫外線照射によっても分解等が生じにくく、所望の光学特性を長期に亘り安定的に発現できることを見い出した。
本発明はこれらの知見に基づきさらに検討を重ね、完成されるに至ったものである。
As a result of intensive studies in view of the above problems, the present inventors have obtained a tricyanopyrroline-based electron acceptor unit having a specific structure in which an unsubstituted branched alkyl group is introduced into the ring nitrogen atom of the pyrroline ring in the molecule, An organic nonlinear optical dye having an electron donor unit having an unsubstituted di-branched alkylamino group at the terminal bonded to the electron acceptor unit with a conjugated chain having a specific structure is excellent in nonlinear optical activity, high temperature and high It has been found that, even when exposed to a humid environment for a long period of time, decomposition or the like hardly occurs even when irradiated with ultraviolet rays, and desired optical characteristics can be stably expressed over a long period of time.
The present invention has been further studied based on these findings and has been completed.

本発明の上記課題は下記の手段により解決された。
〔1〕
下記一般式(II)で表される有機非線形光学色素。

Figure 0006492023

一般式(II)中、R及びRは無置換の分岐アルキル基を示し、Rは無置換の分岐アルキル基を有する基を示す。 〜R は水素原子又はアルキル基を示す。

上記R〜Rが水素原子である、〔〕に記載の有機非線形光学色素。

〔1〕または〔2〕に記載の有機非線形光学色素と、ガラス転移温度が100℃以上のポリマーとを含む非線形光学材料。

上記非線形光学材料中において、上記有機非線形光学色素と上記のガラス転移温度が100℃以上のポリマーの含有量の合計に占める上記有機非線形光学色素の含有量の割合が10〜50質量%である、〔〕に記載の非線形光学材料。

〕又は〔〕に記載の非線形光学材料を用いた非線形光学膜。

〕又は〔〕に記載の非線形光学材料を用いた光学素子。

上記光学素子が光変調素子である、〔〕に記載の光学素子。 The above-described problems of the present invention have been solved by the following means.
[1]
An organic nonlinear optical dye represented by the following general formula (II) .
Figure 0006492023

In the general formula (II) , R 1 and R 2 represent an unsubstituted branched alkyl group, and R 3 represents a group having an unsubstituted branched alkyl group. R 4 to R 7 represent a hydrogen atom or an alkyl group.
[ 2 ]
The organic nonlinear optical dye according to [ 1 ], wherein R 4 to R 7 are hydrogen atoms.
[ 3 ]
A nonlinear optical material comprising the organic nonlinear optical dye according to [1] or [2] and a polymer having a glass transition temperature of 100 ° C. or higher.
[ 4 ]
In the nonlinear optical material, the content ratio of the organic nonlinear optical dye in the total content of the organic nonlinear optical dye and the polymer having a glass transition temperature of 100 ° C. or higher is 10 to 50% by mass. [ 3 ] The nonlinear optical material according to [ 3 ].
[ 5 ]
The nonlinear optical film using the nonlinear optical material as described in [ 3 ] or [ 4 ].
[ 6 ]
The optical element using the nonlinear optical material as described in [ 3 ] or [ 4 ].
[ 7 ]
The optical element according to [ 6 ], wherein the optical element is a light modulation element.

本明細書において、特定の符号で表示された置換基や連結基等(以下、置換基等という)が複数あるとき、あるいは複数の置換基等を同時もしくは択一的に規定するときには、それぞれの置換基等は互いに同一でも異なっていてもよいことを意味する。このことは、置換基等の数の規定についても同様である。また、式中に同一の表示で表された複数の部分構造の繰り返しがある場合は、各部分構造ないし繰り返し単位は同一でも異なっていてもよい。また、特に断らない限り、複数の置換基等が近接(特に隣接)するときにはそれらが互いに連結したり縮環したりして環を形成していてもよい意味である。   In the present specification, when there are a plurality of substituents, linking groups, and the like (hereinafter referred to as substituents) indicated by specific symbols, or when a plurality of substituents are specified simultaneously or alternatively, It means that a substituent etc. may mutually be same or different. The same applies to the definition of the number of substituents and the like. Further, when there are repetitions of a plurality of partial structures represented by the same indication in the formula, each partial structure or repeating unit may be the same or different. Further, unless otherwise specified, when a plurality of substituents and the like are adjacent (particularly adjacent), they may be connected to each other or condensed to form a ring.

本明細書において化合物の表示については、化合物そのもののほか、その塩、そのイオンを含む意味に用いる。また、目的の効果を奏する範囲で、構造の一部を変化させたものを含む意味である。   In this specification, about the display of a compound, it uses in the meaning containing its salt and its ion besides the compound itself. In addition, it means that a part of the structure is changed as long as the desired effect is achieved.

本明細書において置換、無置換を明記していない置換基(連結基についても同様)については、目的の効果を損なわない範囲で、その基にさらに置換基を有していてもよい意味である。これは置換・無置換を明記していない化合物についても同義である。   In the present specification, a substituent that does not clearly indicate substitution or non-substitution (the same applies to a linking group) means that the group may further have a substituent as long as the intended effect is not impaired. . This is also synonymous for compounds that do not specify substitution / non-substitution.

本明細書において「〜」を用いて表される数値範囲は、「〜」の前後に記載される数値を下限値および上限値として含む範囲を意味する。   In the present specification, a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.

本発明の有機非線形光学色素、非線形光学材料及び非線形光学膜は、非線形光学活性に優れ、また、耐光性と湿熱耐性の両特性の両立を高いレベルで実現することができる。また本発明の光学素子は本発明の有機非線形光学色素ないし非線形光学材料を用いてなり、長期信頼性に優れる。   The organic nonlinear optical dye, nonlinear optical material, and nonlinear optical film of the present invention are excellent in nonlinear optical activity, and can achieve both of light resistance and wet heat resistance at a high level. The optical element of the present invention uses the organic nonlinear optical dye or nonlinear optical material of the present invention, and is excellent in long-term reliability.

本発明の有機非線形光学色素、非線形光学材料、非線形光学膜及び光学素子について、これらの好ましい実施形態について順に説明する。   The preferred embodiments of the organic nonlinear optical dye, nonlinear optical material, nonlinear optical film and optical element of the present invention will be described in order.

[有機非線形光学色素]
本発明の有機非線形光学色素は下記一般式(I)で表される。
[Organic nonlinear optical dye]
The organic nonlinear optical dye of the present invention is represented by the following general formula (I).

Figure 0006492023
Figure 0006492023

一般式(I)中、R及びRは無置換の分岐アルキル基を示す。R及びRとして採り得る無置換の分岐アルキル基は、分岐鎖構造を含めた分岐アルキル基全体の炭素数が3〜25が好ましく、4〜20がより好ましく、5〜15がさらに好ましく、6〜10が特に好ましい。R及びRとして採り得る無置換の分岐アルキル基において、分岐の数(枝分かれ部位の数)は1〜3つが好ましく、1つ又は2つがより好ましく、1つであることがさらに好ましい。
及びRとして採り得る無置換の分岐アルキル基において、分岐の数が1つの場合、好ましくは下記一般式(I−1)で表される。
In general formula (I), R 1 and R 2 represent an unsubstituted branched alkyl group. The unsubstituted branched alkyl group that can be adopted as R 1 and R 2 has preferably 3 to 25 carbon atoms, more preferably 4 to 20 carbon atoms, and still more preferably 5 to 15 carbon atoms, including the branched chain structure. 6-10 are particularly preferred. In the unsubstituted branched alkyl group that can be adopted as R 1 and R 2 , the number of branches (the number of branching sites) is preferably 1 to 3, more preferably 1 or 2, and even more preferably 1.
In the unsubstituted branched alkyl group that can be adopted as R 1 and R 2 , when the number of branches is 1, it is preferably represented by the following general formula (I-1).

Figure 0006492023
Figure 0006492023

上記一般式(I−1)中、*は結合部位を示す。
k、m及びnは0〜10の整数が好ましく、0〜6の整数がより好ましく、0〜3の整数がさらに好ましい。
k、m及びnの合計は1〜20の整数が好ましく、2〜15の整数がより好ましく、2〜10の整数がさらに好ましく、3〜7の整数がさらに好ましい。
k、m及びnの好ましい組合せの例を下記表1に示す。下記表1記載の組合せ例のうち、組合せ例1、組合せ例3、又は組合せ例4が好ましく、なかでも組合せ例1が特に好ましい。
In the above general formula (I-1), * represents a binding site.
k, m and n are preferably integers of 0 to 10, more preferably 0 to 6, and even more preferably 0 to 3.
The total of k, m, and n is preferably an integer of 1 to 20, more preferably an integer of 2 to 15, more preferably an integer of 2 to 10, and further preferably an integer of 3 to 7.
Examples of preferred combinations of k, m and n are shown in Table 1 below. Of the combination examples shown in Table 1 below, combination example 1, combination example 3 or combination example 4 is preferable, and combination example 1 is particularly preferable.

Figure 0006492023
Figure 0006492023

上記一般式(I)において、R及びRは互いに同一でも異なってもよく、配向性の観点からは同一であることが好ましい。 In the general formula (I), R 1 and R 2 may be the same or different from each other, and are preferably the same from the viewpoint of orientation.

は無置換の分岐アルキル基を有する基を示す。すなわちRは無置換の分岐アルキル基であってもよく、置換基として無置換の分岐アルキル基を有する基であってもよい。
が有する無置換の分岐アルキル基の好ましい形態は、R及びRとして採り得る無置換の分岐アルキル基の好ましい形態と同じである。
R 3 represents a group having an unsubstituted branched alkyl group. That is, R 3 may be an unsubstituted branched alkyl group or a group having an unsubstituted branched alkyl group as a substituent.
The preferred form of the unsubstituted branched alkyl group that R 3 has is the same as the preferred form of the unsubstituted branched alkyl group that can be employed as R 1 and R 2 .

が無置換の分岐アルキル基を置換基として有する基である場合、Rの分子量は100〜800が好ましく、120〜500がより好ましい。
が無置換の分岐アルキル基を置換基として有する基である場合、下記一般式(I−2)で表されることが好ましい。
When R 3 is a group having an unsubstituted branched alkyl group as a substituent, the molecular weight of R 3 is preferably from 100 to 800, more preferably from 120 to 500.
When R 3 is a group having an unsubstituted branched alkyl group as a substituent, it is preferably represented by the following general formula (I-2).

Figure 0006492023
Figure 0006492023

上記一般式(I−2)中、pは1〜10の整数が好ましく、1〜8の整数がより好ましく、1〜5の整数がさらに好ましい。
は−O−C(=O)−、−C(=O)−O−、―O−Si(CH−、−Si(CH―O−、―NH−C(=O)−又は−C(=O)―NH−を示す。
In the general formula (I-2), p is preferably an integer of 1 to 10, more preferably an integer of 1 to 8, and still more preferably an integer of 1 to 5.
L 1 represents —O—C (═O) —, —C (═O) —O—, —O—Si (CH 3 ) 2 —, —Si (CH 3 ) 2 —O—, —NH—C ( = O)-or -C (= O) -NH-.

上記一般式(I)において、Lは鎖中に−N=N−(アゾ基)を含む共役鎖からなる2価の連結基を示す。Lは−N=N−、−CH=CH−、−C≡C−、アリーレン基、ヘテロアリーレン基から選ばれる2価の基を組合せてなる2価の連結基であることが好ましく(但し−N=N−を少なくとも1つ含む)、−N=N−、−CH=CH−、アリーレン基、ヘテロアリーレン基から選ばれる2価の基を組合せてなる2価の連結基であることがより好ましい(但し−N=N−を少なくとも1つ含む)。Lを構成しうるアリーレン基はフェニレン基が好ましい。また、Lを構成しうるヘテロアリーレン基は5員環又は6員環の単環構造の基が好ましい。
Lは分子量が200〜1000であることが好ましく、300〜600であることがより好ましい。
In the general formula (I), L represents a divalent linking group composed of a conjugated chain containing -N = N- (azo group) in the chain. L is preferably a divalent linking group formed by combining divalent groups selected from -N = N-, -CH = CH-, -C≡C-, an arylene group, and a heteroarylene group (provided that- N = N-), -N = N-, -CH = CH-, an arylene group, and a divalent linking group formed by combining divalent groups selected from a heteroarylene group. Preferred (provided that at least one -N = N- is included). The arylene group that can constitute L is preferably a phenylene group. The heteroarylene group that can constitute L is preferably a 5-membered or 6-membered monocyclic group.
L preferably has a molecular weight of 200 to 1,000, and more preferably 300 to 600.

上記一般式(I)で表される有機非線形光学色素は、より好ましくは下記一般式(II)で表される。   The organic nonlinear optical dye represented by the general formula (I) is more preferably represented by the following general formula (II).

Figure 0006492023
Figure 0006492023

一般式(II)中、R〜Rは、それぞれ上記一般式(I)中のR〜Rと同義であり、好ましい形態も同じである。 In the general formula (II), R 1 ~R 3 are each the same meaning as R 1 to R 3 in the general formula (I), and preferred forms are also the same.

〜Rは水素原子又はアルキル基が好ましい。このアルキル基は上記一般式(I−1)又は(I−2)で表される基であることが好ましく、上記一般式(I−1)又は(I−2)で表される基において説明した好ましい形態を、R〜Rのアルキル基として好ましく採用することができる。
〜Rはすべて水素原子であるか、又は、R〜Rのうち3つが水素原子であり残り1つが上記アルキル基であることが好ましい。より好ましくはR〜Rのすべてが水素原子である。
R 4 to R 7 are preferably a hydrogen atom or an alkyl group. This alkyl group is preferably a group represented by the above general formula (I-1) or (I-2), and is described in the group represented by the above general formula (I-1) or (I-2). The preferred form can be preferably employed as the alkyl group of R 4 to R 7 .
R 4 to R 7 are preferably all hydrogen atoms, or three of R 4 to R 7 are preferably hydrogen atoms and the remaining one is preferably the above alkyl group. More preferably, all of R 4 to R 7 are hydrogen atoms.

本発明の有機非線形光学色素は、分子量が500〜2000であることが好ましく、600〜1000であることがより好ましい。   The organic nonlinear optical dye of the present invention preferably has a molecular weight of 500 to 2000, more preferably 600 to 1000.

本発明の有機非線形光学色素の好ましい具体例を以下に示すが、本発明はこれらの色素に限定されるものではない。   Specific preferred examples of the organic nonlinear optical dye of the present invention are shown below, but the present invention is not limited to these dyes.

Figure 0006492023
Figure 0006492023

Figure 0006492023
Figure 0006492023

[非線形光学材料]
本発明の非線形光学材料は、上述した本発明の有機非線形光学色素と、ガラス転移温度(Tg)が100℃以上のポリマー(以下、単に「高Tgポリマー」という。)とを含有してなる。高Tgポリマーはバインダーとして機能する。本発明の非線形光学材料は本発明の有機非線形光学色素を1種又は2種以上含有することができる。また、本発明の非線形光学材料は高Tgポリマーを1種又は2種以上含有することができる。
本発明の非線形光学材料は組成物の形態であることが好ましい。すなわち、本発明の非線形光学材料は各成分が均質に混合された形態であることが好ましい。本発明の非線形光学材料は後述する有機溶媒中に各成分を溶解してなる液状組成物であっても良く、溶媒を含有せず、特定の形状を有する形態でも良い。本発明の非線形光学材料は、液状組成物の状態のものを基板等に塗布し、その後乾燥により溶媒を除去して目的の用途に使用するのが一般的である。後述するように、本発明の非線形光学材料を用いることで、後述する非線形光学膜ないしは光学素子を製造することができる。
本発明の非線形光学材料中、有機非線形光学色素と高Tgポリマーの含有量の合計に占める有機非線形光学色素の含有量の割合は5〜50質量%が好ましく、6〜30質量%がより好ましい。
[Nonlinear optical materials]
The nonlinear optical material of the present invention contains the above-described organic nonlinear optical dye of the present invention and a polymer having a glass transition temperature (Tg) of 100 ° C. or higher (hereinafter simply referred to as “high Tg polymer”). The high Tg polymer functions as a binder. The nonlinear optical material of the present invention can contain one or more organic nonlinear optical dyes of the present invention. The nonlinear optical material of the present invention can contain one or more high Tg polymers.
The nonlinear optical material of the present invention is preferably in the form of a composition. That is, the nonlinear optical material of the present invention is preferably in a form in which each component is mixed homogeneously. The nonlinear optical material of the present invention may be a liquid composition obtained by dissolving each component in an organic solvent described later, or may have a specific shape without containing a solvent. In general, the nonlinear optical material of the present invention is applied to a substrate or the like in the form of a liquid composition, and then the solvent is removed by drying to be used for the intended use. As described later, by using the nonlinear optical material of the present invention, a nonlinear optical film or an optical element described later can be manufactured.
In the nonlinear optical material of the present invention, the content of the organic nonlinear optical dye in the total content of the organic nonlinear optical dye and the high Tg polymer is preferably 5 to 50% by mass, and more preferably 6 to 30% by mass.

<ガラス転移温度が100℃以上のポリマー>
本発明の非線形光学材料中に含有される高Tgポリマーは、Tgが100℃以上であれば特に制限はなく、例えば、ポリカーボネート、ポリ(メタ)アクリル酸エステル(好ましくはポリ(メタ)アクリル酸メチル)、アモルファスフロロポリマー、ポリイミド等を広く用いることができる。また、本発明の非線形光学材料は2種以上のポリマーを含有してもよい。
本明細書において、Tgは、示差走査熱量計(DSC)を用いて測定される。より詳細には、示差走査熱量計(DSC)を用いて、室温から毎分10℃の昇温速度で測定したときの、ガラス転移に伴う吸熱過程の立ち上がり部分の勾配とベースラインとの交点に相当する温度をTgとする。
上記高Tgポリマーの重量平均分子量は5000〜100000であることが好ましく、10000〜50000であることがより好ましい。重量平均分子量は、例えば、高速GPC装置(東洋曹達株式会社製、HLC−802A)を使用して、0.5質量%のTHF溶液を試料溶液とし、カラムはTSKgel HZM−M 1本を使用し、200μLの試料を注入し、上記THF溶液で溶離して、25℃で屈折率検出器又はUV検出器(検出波長254nm)により測定することができる。測定結果はポリエチレングリコール換算の分子量とする。
上記高TgポリマーのTgは110℃以上が好ましく、120℃以上がさらに好ましい。また、高TgポリマーのTgが高すぎると、ポリマーの配合量にもよるが材料全体のTgが高くなりすぎる場合があり、後述のポーリング処理の温度を低く抑えることができなくなるおそれがある。したがって高TgポリマーのTgは通常は250℃以下であり、200℃以下であることが好ましい。
<Polymer with glass transition temperature of 100 ° C. or higher>
The high Tg polymer contained in the nonlinear optical material of the present invention is not particularly limited as long as Tg is 100 ° C. or higher. For example, polycarbonate, poly (meth) acrylate (preferably poly (meth) methyl acrylate) ), Amorphous fluoropolymer, polyimide and the like can be widely used. The nonlinear optical material of the present invention may contain two or more kinds of polymers.
In this specification, Tg is measured using a differential scanning calorimeter (DSC). More specifically, at the intersection of the slope of the rising end of the endothermic process accompanying the glass transition and the baseline when measured at a rate of 10 ° C./min from room temperature using a differential scanning calorimeter (DSC). Let the corresponding temperature be Tg.
The high Tg polymer preferably has a weight average molecular weight of 5,000 to 100,000, more preferably 10,000 to 50,000. The weight average molecular weight is, for example, using a high-speed GPC apparatus (manufactured by Toyo Soda Co., Ltd., HLC-802A), using a 0.5% by mass THF solution as a sample solution, and using one TSKgel HZM-M column. 200 μL of sample can be injected, eluted with the above THF solution, and measured at 25 ° C. with a refractive index detector or a UV detector (detection wavelength 254 nm). The measurement result is a molecular weight in terms of polyethylene glycol.
The Tg of the high Tg polymer is preferably 110 ° C. or higher, more preferably 120 ° C. or higher. If the Tg of the high Tg polymer is too high, the Tg of the whole material may be too high depending on the blending amount of the polymer, and the temperature of the poling treatment described later may not be kept low. Therefore, the Tg of the high Tg polymer is usually 250 ° C. or lower, and preferably 200 ° C. or lower.

本発明の非線形光学材料中、有機非線形光学色素と高Tgポリマーの含有量の合計に占める高Tgポリマーの含有量の割合は50〜95質量%であることが好ましく、70〜94質量%であることがより好ましい。
本発明の非線形光学材料は上記高Tgポリマーを含有することにより、高Tgポリマーを含まない場合に比べてポーリング処理後における有機非線形光学色素の配向状態が安定に保たれる。
In the nonlinear optical material of the present invention, the ratio of the content of the high Tg polymer to the total content of the organic nonlinear optical dye and the high Tg polymer is preferably 50 to 95% by mass, and preferably 70 to 94% by mass. It is more preferable.
When the nonlinear optical material of the present invention contains the above-described high Tg polymer, the orientation state of the organic nonlinear optical dye after the poling treatment can be kept stable as compared with the case where no high Tg polymer is contained.

<その他の成分>
本発明の非線形光学材料は、有機非線形光学色素以外で且つ上記高Tgポリマー以外の成分を含有していてもよい。例えば、本発明の非線形光学材料は硬化剤、硬化促進剤、重合開始剤、酸化防止剤、紫外線吸収剤、有機溶媒等を含有してもよい。
<Other ingredients>
The nonlinear optical material of the present invention may contain components other than the organic nonlinear optical dye and other than the high Tg polymer. For example, the nonlinear optical material of the present invention may contain a curing agent, a curing accelerator, a polymerization initiator, an antioxidant, an ultraviolet absorber, an organic solvent, and the like.

本発明の非線形光学材料は材料全体としてTgが100℃以上であることが好ましく、130℃以上であることがより好ましい。非線形光学材料のTgが高いほど、後述するポーリング処理後の配向固定性をより高めることができる。本発明の非線形光学材料のTgは、通常は200℃以下とする。   The nonlinear optical material of the present invention preferably has a Tg of 100 ° C. or higher, more preferably 130 ° C. or higher, as a whole. The higher the Tg of the nonlinear optical material, the higher the alignment fixability after the poling process described later. The Tg of the nonlinear optical material of the present invention is usually 200 ° C. or lower.

[非線形光学膜]
本発明の非線形光学膜は、本発明の非線形光学材料を用いて形成される。より詳細には、本発明の非線形光学材料を用いて成膜し、後述のポーリング処理に付して本発明の非線形光学色素を配向させることにより形成される膜である。成膜方法に特に制限はなく、通常の方法を採用することができる。例えば、本発明の非線形光学色素と、高Tgポリマーと、必要によりその他の成分とを有機溶媒中に溶解してなる本発明の非線形光学材料(組成物)を、スピンコート法、ブレードコート法、浸漬塗布法、インクジェット法、スプレー法等の方法を用いて基板上に塗布し、乾燥することにより成膜する湿式塗布法を採用することができる。
[Nonlinear optical film]
The nonlinear optical film of the present invention is formed using the nonlinear optical material of the present invention. More specifically, it is a film formed by forming a film using the nonlinear optical material of the present invention and orienting the nonlinear optical dye of the present invention by subjecting it to a poling process described later. There is no restriction | limiting in particular in the film-forming method, A normal method can be employ | adopted. For example, the nonlinear optical material (composition) of the present invention obtained by dissolving the nonlinear optical dye of the present invention, a high Tg polymer, and, if necessary, other components in an organic solvent, spin coating, blade coating, A wet coating method in which a film is formed by coating on a substrate using a dip coating method, an ink jet method, a spray method, or the like, and drying can be employed.

上記有機溶媒は、本発明の非線形光学材料の成分を溶解し得るものであれば制限はなく、その沸点が80〜200℃の範囲にあるものが好ましい。沸点が80℃未満の有機溶媒を用いると、塗布溶液の保管時に溶媒揮発が生じて塗布溶液の粘度が上昇したり、塗布時に溶媒の揮発速度が早過ぎて結露が生じたりするおそれがある。一方、沸点が200℃を超える有機溶媒を用いると、塗布後の溶媒除去が難しくなり、残留した有機溶媒が高Tgポリマーの可塑剤として働き、膜の非線形光学性能が低下しやすくなる。   The organic solvent is not limited as long as it can dissolve the components of the nonlinear optical material of the present invention, and preferably has a boiling point in the range of 80 to 200 ° C. If an organic solvent having a boiling point of less than 80 ° C. is used, solvent volatilization may occur during storage of the coating solution, and the viscosity of the coating solution may increase, or condensation may occur due to the solvent's volatilization rate being too fast during coating. On the other hand, when an organic solvent having a boiling point exceeding 200 ° C. is used, it is difficult to remove the solvent after coating, and the remaining organic solvent acts as a plasticizer for the high Tg polymer, so that the nonlinear optical performance of the film tends to deteriorate.

好ましい有機溶媒の例としては、ジエチレングリコールジメチルエーテル、シクロペンタノン、シクロヘキサノン、シクロヘキサノール、トルエン、クロロベンゼン、キシレン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、ジメチルスルホキシド、2,2,3,3−テトラフルオロ−1−プロパノール、1,2−ジクロロエタン、1,2−ジクロロプロパン、1,3−ジクロロプロパン、1,2,3−トリクロロプロパン等が挙げられる。なお、これらの有機溶媒は単独で用いても、複数を混合して用いてもよい。また、これらの好ましい有機溶媒に沸点が80℃未満のテトラヒドロフラン、メチルエチルケトン、イソプロパノール,クロロホルム等の有機溶媒を添加した混合溶媒を用いてもよい。   Examples of preferred organic solvents include diethylene glycol dimethyl ether, cyclopentanone, cyclohexanone, cyclohexanol, toluene, chlorobenzene, xylene, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, 2,2,3,3 -Tetrafluoro-1-propanol, 1,2-dichloroethane, 1,2-dichloropropane, 1,3-dichloropropane, 1,2,3-trichloropropane and the like. These organic solvents may be used alone or in combination. In addition, a mixed solvent obtained by adding an organic solvent such as tetrahydrofuran, methyl ethyl ketone, isopropanol, or chloroform having a boiling point of less than 80 ° C. to these preferable organic solvents may be used.

<ポーリング処理>
本発明の非線形光学膜は、膜中に有機非線形光学色素が配向しており、これにより非線形光学活性を示す。有機非線形光学色素の配向は、光ポーリング法、光アシスト電界ポーリング法、電界ポーリング法等の公知のポーリング処理により行うことができる。なかでも電界ポーリング法は、装置の簡便性、得られる配向度合いの高さ等の点で特に好ましい。
<Polling processing>
In the nonlinear optical film of the present invention, an organic nonlinear optical dye is oriented in the film, thereby exhibiting nonlinear optical activity. The alignment of the organic nonlinear optical dye can be performed by a known poling process such as an optical poling method, an optically assisted electric field poling method, and an electric field poling method. Of these, the electric field poling method is particularly preferable in terms of the simplicity of the apparatus and the high degree of orientation obtained.

上記電界ポーリング法は、非線形光学材料を一対の電極で挟み電界を印加するコンタクトポーリング法と、基板電極上の非線形光学材料の表面にコロナ放電を施し、帯電電界を印加するコロナポーリング法とに大別される。電界ポーリング法は、有機非線形光学色素の双極子モーメントと印加電界とのクーロン力によって、有機非線形光学色素を印加電界方向に配向(ポーリング)させる配向法である。   The electric field poling method is largely classified into a contact poling method in which a nonlinear optical material is sandwiched between a pair of electrodes and an electric field is applied, and a corona poling method in which a corona discharge is applied to the surface of the nonlinear optical material on the substrate electrode and a charging electric field is applied. Separated. The electric field poling method is an alignment method in which the organic nonlinear optical dye is aligned (polled) in the direction of the applied electric field by the Coulomb force between the dipole moment of the organic nonlinear optical dye and the applied electric field.

電界ポーリング法においては、一般的に、電界を印加した状態で高Tgポリマー付近の温度に加熱して有機非線形光学色素の電界方向への配向移動を促進させる。十分な配向が誘起された後、電界を印加した状態のまま室温まで冷却し、配向状態を凍結した上で、印加電界を除去する。   In the electric field poling method, in general, the organic nonlinear optical dye is promoted to move in the electric field direction by heating to a temperature in the vicinity of the high Tg polymer while an electric field is applied. After sufficient alignment is induced, the applied electric field is removed after cooling to room temperature with the electric field applied and freezing the alignment.

ポーリング処理の温度は、高Tgポリマーの種類等に応じて適宜に選択される。有機非線形光学色素の熱分解や熱変性をより抑える観点からは190℃以下とすることが好ましい。また、ポーリング処理の温度は通常は70℃以上であり、100℃以上がより好ましい。
ポーリング処理の処理時間に特に制限はないが、1〜60分が好ましく、1〜20分がより好ましい。
The temperature of the poling treatment is appropriately selected according to the type of the high Tg polymer. From the viewpoint of further suppressing thermal decomposition and thermal denaturation of the organic nonlinear optical dye, it is preferably set to 190 ° C. or lower. Further, the temperature of the poling treatment is usually 70 ° C. or higher, and more preferably 100 ° C. or higher.
Although there is no restriction | limiting in particular in the processing time of a polling process, 1 to 60 minutes are preferable and 1 to 20 minutes are more preferable.

有機非線形光学色素の配向状態を確認する指標として、どれだけの有機非線形光学色素が電界方向に配向したかを表す数値(オーダーパラメータ:φ)がある。オーダーパラメータは、有機非線形光学色素の分子の向きがランダムの時の吸光度をA、電界方向(膜厚方向)に配向しているときの吸光度をAとした場合、φ=1−(A/A)となる。
上記オーダーパラメータは、全ての分子が完全に配向した理想的な状態では1、完全にランダムなときは0となる数値であり、値が大きいほど全体としての分子の配向度が高いことを表わす。この値を測定することにより、どれだけ効率よくポーリングできたかが判断でき、また、その安定性なども評価できる。
As an index for confirming the alignment state of the organic nonlinear optical dye, there is a numerical value (order parameter: φ) indicating how many organic nonlinear optical dyes are aligned in the electric field direction. Order parameter, when the absorbance when the orientation of the molecules of the organic nonlinear optical dyes are oriented the absorbance when the random A 0, in the direction of the electric field (the thickness direction) was set to A t, φ = 1- (A t / A 0 ).
The order parameter is a numerical value that is 1 in an ideal state in which all molecules are perfectly oriented, and 0 when completely random, and indicates that the larger the value, the higher the degree of molecular orientation as a whole. By measuring this value, it can be determined how efficiently polling has been performed, and its stability can be evaluated.

本発明の非線形光学膜の膜厚は、その用途によって適宜の調整されるものであり、何ら限定されるものではない。この膜厚は100〜5000nmとするのが実際的であり、通常は500〜3000nmである。   The film thickness of the nonlinear optical film of the present invention is appropriately adjusted depending on the application, and is not limited at all. The film thickness is practically 100 to 5000 nm, and usually 500 to 3000 nm.

[光学素子]
本発明の光学素子は、本発明の非線形光学材料を用いてなり、非線形光学効果に基づき動作する素子である。本発明の光学素子は、より好ましくは本発明の非線形光学膜を有してなる。本発明の光学素子の具体例としては、例えば、波長変換素子、フォトリフラクティブ素子、電気光学素子、等が挙げられる。特に好ましくは、電気光学効果に基づき動作する光スイッチ、光変調器(光変調素子)、位相シフト器等の電気光学素子である。
[Optical element]
The optical element of the present invention is an element that uses the nonlinear optical material of the present invention and operates based on the nonlinear optical effect. The optical element of the present invention preferably has the nonlinear optical film of the present invention. Specific examples of the optical element of the present invention include a wavelength conversion element, a photorefractive element, an electro-optical element, and the like. Particularly preferred are electro-optical elements such as optical switches, optical modulators (optical modulation elements), phase shifters and the like that operate based on the electro-optical effect.

上記電気光学素子としては、本発明の非線形光学膜を基板上に形成し、入力電気シグナル用の電極対で挟み込む構造を有する素子として利用することが好ましい。
このような基板を構成する材料としては、アルミニウム、金、鉄、ニッケル、クロム、チタン等の金属;シリコン、酸化チタン、酸化亜鉛、ガリウム−ヒ素などの半導体;ガラス;ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリカーボネート、ポリスルフォン、ポリエーテルケトン、ポリイミド等のプラスティック;等を用いることができる。
The electro-optical element is preferably used as an element having a structure in which the nonlinear optical film of the present invention is formed on a substrate and sandwiched between electrode pairs for input electric signals.
As a material constituting such a substrate, metals such as aluminum, gold, iron, nickel, chromium, and titanium; semiconductors such as silicon, titanium oxide, zinc oxide, and gallium-arsenic; glass; polyethylene terephthalate, polyethylene naphthalate, Plastics such as polycarbonate, polysulfone, polyetherketone, polyimide, etc. can be used.

これらの基板材料の表面には、導電性膜が形成されていてもよく、導電性膜の材料としては、アルミニウム、金、ニッケル、クロム、チタン等の金属;酸化スズ、酸化インジウム、ITO(酸化スズ−酸化インジウム複合酸化物)、IZO(酸化インジウム−酸化亜鉛複合酸化物)等の導電性酸化物;ポリチオフェン、ポリアニリン、ポリパラフェニレンビニレン、ポリアセチレン等の導電性高分子等が用いられる。これらの導電性膜は、蒸着、スパッタリング等の公知の乾式成膜法や、浸漬塗布や電解析出等の公知の湿式成膜法を利用して形成され、必要に応じてパターンが形成されていてもよい。なお、導電性基板、あるいは、上記したように基板上に形成された導電性膜は、ポーリング時や素子としての動作時の電極(以下、「下部電極」と略す)として利用される。   A conductive film may be formed on the surface of these substrate materials, and examples of the conductive film material include metals such as aluminum, gold, nickel, chromium, and titanium; tin oxide, indium oxide, ITO (oxidized Conductive oxides such as tin-indium oxide composite oxide) and IZO (indium oxide-zinc oxide composite oxide); conductive polymers such as polythiophene, polyaniline, polyparaphenylene vinylene, and polyacetylene are used. These conductive films are formed by using a known dry film forming method such as vapor deposition or sputtering, or a known wet film forming method such as dip coating or electrolytic deposition, and a pattern is formed as necessary. May be. Note that the conductive substrate or the conductive film formed on the substrate as described above is used as an electrode at the time of polling or operation as an element (hereinafter abbreviated as “lower electrode”).

基板表面にはさらに、必要に応じて、その上に形成される膜と基板との接着性を向上させるための接着層、基板表面の凹凸を平滑化するためのレベリング層、あるいはこれらの機能を一括して提供する何らかの中間層が形成されていてもよい。このような膜を形成する材料としては、特に限定されないが、例えば、アクリル樹脂、メタクリル樹脂、アミド樹脂、塩化ビニル樹脂、酢酸ビニル樹脂、フェノール樹脂、ウレタン樹脂、ビニルアルコール樹脂、アセタール樹脂等およびそれらの共重合物;ジルコニウムキレート化合物、チタンキレート化合物、シランカップリング剤等の架橋物およびそれらの共架橋物;等の公知のものを用いることができる。   The substrate surface is further provided with an adhesive layer for improving the adhesion between the film formed on the substrate and the substrate, a leveling layer for smoothing irregularities on the substrate surface, or these functions, if necessary. Some intermediate layer provided in a lump may be formed. The material for forming such a film is not particularly limited, and examples thereof include acrylic resins, methacrylic resins, amide resins, vinyl chloride resins, vinyl acetate resins, phenol resins, urethane resins, vinyl alcohol resins, acetal resins, and the like. Known products such as a crosslinked product of zirconium chelate compound, titanium chelate compound, silane coupling agent and the like, and a co-crosslinked product thereof can be used.

上記電気光学素子は、導波路構造を含むものとして形成することが好ましく、本発明の非線形光学膜を、導波路のコア層に含有させることが特に好ましい。   The electro-optical element is preferably formed to include a waveguide structure, and the nonlinear optical film of the present invention is particularly preferably included in the core layer of the waveguide.

本発明の非線形光学膜を含有するコア層と基板との間には、クラッド層(以下、「下部クラッド層」と略す)が形成されていてもよい。この下部クラッド層としては、コア層よりも屈折率が低く、コア層形成の際に侵されないものであれば如何なるものでもよい。このようなものとして、アクリル系、エポキシ系、オキセタン系、チイラン系、シリコーン系等のUV硬化性あるいは熱硬化性の樹脂;ポリイミド;ガラス等が好ましく使用される。   A clad layer (hereinafter abbreviated as “lower clad layer”) may be formed between the core layer containing the nonlinear optical film of the present invention and the substrate. The lower cladding layer may be any layer as long as it has a lower refractive index than the core layer and is not affected by the formation of the core layer. As such materials, UV curable or thermosetting resins such as acrylic, epoxy, oxetane, thiirane, and silicone; polyimide; glass and the like are preferably used.

本発明の非線形光学膜によるコア層を形成した後、さらにその上部にクラッド層(以下、「上部クラッド層」と略す)を下部クラッド層と同様にして形成してもよい。これにより、基板/下部クラッド層/コア層/上部クラッド層、という構成のスラブ型導波路が形成される。   After forming the core layer by the nonlinear optical film of the present invention, a clad layer (hereinafter, abbreviated as “upper clad layer”) may be further formed in the same manner as the lower clad layer. As a result, a slab waveguide having a structure of substrate / lower cladding layer / core layer / upper cladding layer is formed.

コア層を形成した後、反応性イオンエッチング(RIE)、フォトリソグラフィー、電子線リソグラフィー等の半導体プロセス技術を用いた公知の方法によりコア層をパターニングし、チャネル型導波路あるいはリッジ型導波路を形成することもできる。あるいは、コア層の一部にUV光、電子線等をパターニングして照射することにより、照射部分の屈折率を変化させてチャネル型導波路を形成することもできる。   After forming the core layer, the core layer is patterned by a known method using a semiconductor process technology such as reactive ion etching (RIE), photolithography, electron beam lithography, etc. to form a channel type waveguide or a ridge type waveguide You can also Alternatively, a channel-type waveguide can be formed by changing the refractive index of the irradiated portion by patterning and irradiating a part of the core layer with UV light, an electron beam or the like.

上記上部クラッド層の表面に入力電気シグナルを印加するための電極(以下、「上部電極」と略す)を、上記上部クラッド層の所望の領域に形成することで基本的な電気光学素子を形成することができる。   A basic electro-optic element is formed by forming an electrode (hereinafter referred to as “upper electrode”) for applying an input electric signal to the surface of the upper clad layer in a desired region of the upper clad layer. be able to.

上記のようにしてチャネル型導波路やリッジ型導波路を形成する際、コア層のパターンとしては、直線型、Y分岐型、方向性結合器型、Mach−Zehnder型等の公知のデバイス構造を構成することができ、光スイッチ、光変調器、位相シフト器等の公知の光情報通信用デバイスへの適用が可能である。   When forming a channel-type waveguide or a ridge-type waveguide as described above, the core layer pattern may be a known device structure such as a linear type, a Y-branch type, a directional coupler type, or a Mach-Zehnder type. It can be configured, and can be applied to known optical information communication devices such as an optical switch, an optical modulator, and a phase shifter.

以下に実施例に基づき本発明を更に詳細に説明するが、本発明はこれらの実施例により限定されるものではない。   The present invention will be described below in more detail based on examples, but the present invention is not limited to these examples.

[合成例1] 有機非線形光学色素−1の合成
<有機非線形光学色素−c4の合成>
特許第5826206の実施例を参照し、下記構造の有機非線形光学色素−c4を合成した。
Synthesis Example 1 Synthesis of Organic Nonlinear Optical Dye-1 <Synthesis of Organic Nonlinear Optical Dye-c4>
With reference to the example of Japanese Patent No. 5826206, an organic nonlinear optical dye-c4 having the following structure was synthesized.

Figure 0006492023
Figure 0006492023

<化合物M−1の合成>
下記スキームに従い、化合物M−1を合成した。
<Synthesis of Compound M-1>
Compound M-1 was synthesized according to the following scheme.

Figure 0006492023
Figure 0006492023

ブタンジオール10g(東京化成製)と2−エチルヘキサノイルクロリド10ml(東京化成製)をトルエン60mL中に添加し、次いで氷水下にて炭酸水素ナトリウム11.2gを添加して2時間撹拌した。その後、水を添加し、酢酸エチルエステルにて有機物を抽出した。硫酸マグネシウムで乾燥後、有機溶媒を減圧下留去して化合物M−1を得た。   10 g of butanediol (manufactured by Tokyo Chemical Industry) and 10 ml of 2-ethylhexanoyl chloride (manufactured by Tokyo Chemical Industry) were added to 60 mL of toluene, and then 11.2 g of sodium hydrogen carbonate was added under ice water, followed by stirring for 2 hours. Thereafter, water was added, and organic substances were extracted with ethyl acetate. After drying with magnesium sulfate, the organic solvent was distilled off under reduced pressure to obtain Compound M-1.

<有機非線形光学色素−1の合成>
上記で得た有機非線形光学色素−c4の0.7gと、上記で得た化合物M−1の0.7gとをTHF10ml中に溶解させた後、トリフェニルフォスフィン0.4g(東京化成製)を添加した。その後、室温下で、アゾジカルボン酸ジエチル(DEAD)30%トルエン溶液(東京化成製)を0.7ml添加し、室温で3時間撹拌した。その後、水を添加し、得られた残渣をろ別し、シリカゲルクロマトグラフィーカラム(溶離液、クロロホルム)を用いて精製することにより有機非線形光学色素−1(緑色個体)を0.34g得た。
有機非線形光学色素−1が下記構造式に示す構造であることをNMR分析により確認した。
<Synthesis of Organic Nonlinear Optical Dye-1>
After 0.7 g of the organic nonlinear optical dye-c4 obtained above and 0.7 g of the compound M-1 obtained above were dissolved in 10 ml of THF, 0.4 g of triphenylphosphine (manufactured by Tokyo Chemical Industry Co., Ltd.) Was added. Thereafter, 0.7 ml of diethyl azodicarboxylate (DEAD) 30% toluene solution (manufactured by Tokyo Chemical Industry) was added at room temperature, and the mixture was stirred at room temperature for 3 hours. Thereafter, water was added, and the resulting residue was filtered off and purified using a silica gel chromatography column (eluent, chloroform) to obtain 0.34 g of organic nonlinear optical dye-1 (green solid).
It was confirmed by NMR analysis that the organic nonlinear optical dye-1 had a structure represented by the following structural formula.

Figure 0006492023
H NMR(CDCl)δ8.82(d,1H)、7.95(d,2H)、7.80 (d,2H)、7.69(m,3H)、7.03(d,1H)、6.80(d,2H)、 4.30(t,4H)、4.20(t、2H)、3.47(t,2H)、2.27(m, 1H)、1.90(m、2H)、1.70(m、2H)、1.2〜1.6(m,26H)、0.80−1.05(m,18H)ppm
Figure 0006492023
1 H NMR (CDCl 3 ) δ 8.82 (d, 1H), 7.95 (d, 2H), 7.80 (d, 2H), 7.69 (m, 3H), 7.03 (d, 1H) ), 6.80 (d, 2H), 4.30 (t, 4H), 4.20 (t, 2H), 3.47 (t, 2H), 2.27 (m, 1H), 1.90. (M, 2H), 1.70 (m, 2H), 1.2-1.6 (m, 26H), 0.80-1.05 (m, 18H) ppm

[合成例2] 有機非線形光学色素−2の合成
上記合成例1において、化合物M−1に代えて下記化合物M−2を用いたこと以外は、合成例1と同様にして有機非線形光学色素−2を得た。
得られた有機非線形光学色素−2が下記構造式に示す構造であることをNMR分析により確認した。
[Synthesis Example 2] Synthesis of Organic Nonlinear Optical Dye-2 Organic Nonlinear Optical Dye-in the same manner as in Synthesis Example 1 except that the following compound M-2 was used in place of compound M-1 in the above synthesis example 1. 2 was obtained.
It was confirmed by NMR analysis that the obtained organic nonlinear optical dye-2 had a structure represented by the following structural formula.

Figure 0006492023
Figure 0006492023

Figure 0006492023
Figure 0006492023

[合成例3] 有機非線形光学色素−3の合成
上記合成例1において、化合物M−1に代えて2−エチル−1−ヘキサノールを用いたこと以外は、合成例1と同様にして有機非線形光学色素−3を得た。
得られた有機非線形光学色素−3が下記構造式に示す構造であることをNMR分析により確認した。
[Synthesis Example 3] Synthesis of Organic Nonlinear Optical Dye-3 In the above Synthesis Example 1, organic nonlinear optics was obtained in the same manner as Synthesis Example 1 except that 2-ethyl-1-hexanol was used instead of Compound M-1. Dye-3 was obtained.
It was confirmed by NMR analysis that the obtained organic nonlinear optical dye-3 had a structure represented by the following structural formula.

Figure 0006492023
Figure 0006492023

[比較合成例1〜8] 有機非線形光学色素−c1〜c3及びc5〜c9の合成
上記合成例1に準じ、下記に示す有機非線形光学色素−c1〜c3及びc5〜c9を合成した。有機非線形光学色素−c1〜c9の構造を以下に示す。
[Comparative Synthesis Examples 1 to 8] Synthesis of Organic Nonlinear Optical Dyes-c1 to c3 and c5 to c9 According to Synthesis Example 1, organic nonlinear optical dyes -c1 to c3 and c5 to c9 shown below were synthesized. The structures of organic nonlinear optical dyes-c1 to c9 are shown below.

Figure 0006492023
Figure 0006492023

Figure 0006492023
Figure 0006492023

Figure 0006492023
Figure 0006492023

[実施例1] 非線形光学膜−1Aの作製
上記有機非線形光学色素−1とポリメタクリル酸メチル(PMMA、重量平均分子量:120000、Tg:120℃)とを、固形分濃度が14質量%(色素とPMMAの含有質量比を、色素/PMMA=15/85)となるようにシクロペンタノンに溶解し、非線形光学材料−1Aの溶液を得た。
表面にITO層が備えられたガラス基板(5cm×5cm)上に、上記で非線形光学材料−1をスピンコートにより塗布し、120℃で1時間乾燥し、膜厚2μmの非線形光学膜−1Aを得た。
Example 1 Production of Nonlinear Optical Film-1A The organic nonlinear optical dye-1 and polymethyl methacrylate (PMMA, weight average molecular weight: 120,000, Tg: 120 ° C.) having a solid content concentration of 14% by mass (dye And PMMA were dissolved in cyclopentanone so that the mass ratio of pigment and PMMA was 15/85) to obtain a solution of nonlinear optical material-1A.
On the glass substrate (5 cm × 5 cm) provided with an ITO layer on the surface, the nonlinear optical material-1 is applied by spin coating as described above, and dried at 120 ° C. for 1 hour to form a nonlinear optical film-1A having a thickness of 2 μm. Obtained.

[実施例2] 非線形光学膜−2の作製
上記実施例1において、有機非線形光学色素−1に代えて有機非線形光学色素−2を用いたこと以外は、上記実施例1と同様にして非線形光学膜−2を得た。
Example 2 Production of Nonlinear Optical Film-2
In Example 1, nonlinear optical film-2 was obtained in the same manner as in Example 1 except that organic nonlinear optical dye-2 was used instead of organic nonlinear optical dye-1.

[実施例3] 非線形光学膜−3の作製
上記実施例1において、有機非線形光学色素−1に代えて有機非線形光学色素−3を用いたこと以外は、上記実施例1と同様にして非線形光学膜−3を得た。
Example 3 Preparation of Nonlinear Optical Film-3 In Example 1 above, nonlinear optics was used in the same manner as Example 1 except that organic nonlinear optical dye-3 was used instead of organic nonlinear optical dye-1. Membrane-3 was obtained.

[実施例4] 非線形光学膜−1Bの作製
上記実施例1において、PMMAに代えてポリカーボネート(商品名:ユピゼータPCZ−300、三菱ガス化学社製、重量平均分子量:30000、Tg:185℃)を用い、また、シクロペンタノン中の固形分濃度を10質量%(色素とポリカーボネートの含有質量比を、色素/ポリカーボネート=7/93)としたこと以外は、上記実施例1と同様にして非線形光学膜−1Bを得た。
Example 4 Production of Nonlinear Optical Film-1B In Example 1 above, instead of PMMA, polycarbonate (trade name: Iupizeta PCZ-300, manufactured by Mitsubishi Gas Chemical Company, weight average molecular weight: 30000, Tg: 185 ° C.) The non-linear optics was used in the same manner as in Example 1 except that the solid content concentration in cyclopentanone was 10% by mass (the content ratio of the dye and the polycarbonate was dye / polycarbonate = 7/93). Membrane-1B was obtained.

[比較例1] 非線形光学膜−c1の作製
上記実施例1において、有機非線形光学色素−1に代えて有機非線形光学色素−c1を用いたこと以外は、上記実施例1と同様にして非線形光学膜−c1を得た。
[Comparative Example 1] Production of Nonlinear Optical Film-c1 Nonlinear optics was obtained in the same manner as in Example 1 except that organic nonlinear optical dye-c1 was used in place of organic nonlinear optical dye-1. Membrane-c1 was obtained.

[比較例2] 非線形光学膜−c2の作製
上記実施例1において、有機非線形光学色素−1に代えて有機非線形光学色素−c2を用いたこと以外は、上記実施例1と同様にして非線形光学膜−c2を得た。
Comparative Example 2 Production of Nonlinear Optical Film-c2 Nonlinear optics in the same manner as in Example 1 above, except that organic nonlinear optical dye-c2 was used in place of organic nonlinear optical dye-1. Membrane-c2 was obtained.

[比較例3] 非線形光学膜−c3の作製
上記実施例1において、有機非線形光学色素−1に代えて有機非線形光学色素−c3を用いたこと以外は、上記実施例1と同様にして非線形光学膜−c3を得た。
Comparative Example 3 Production of Nonlinear Optical Film-c3 Nonlinear optics in the same manner as in Example 1 above, except that organic nonlinear optical dye-c3 was used in place of organic nonlinear optical dye-1. Membrane-c3 was obtained.

[比較例4] 非線形光学膜−c4の作製
上記実施例1において、有機非線形光学色素−1に代えて有機非線形光学色素−c4を用いたこと以外は、上記実施例1と同様にして非線形光学膜−c4を得た。
Comparative Example 4 Production of Nonlinear Optical Film-c4 Nonlinear optics in the same manner as in Example 1 except that organic nonlinear optical dye-c4 was used in place of organic nonlinear optical dye-1. Membrane-c4 was obtained.

[比較例5] 非線形光学膜−c5の作製
上記実施例1において、有機非線形光学色素−1に代えて有機非線形光学色素−c5を用いたこと以外は、上記実施例1と同様にして非線形光学膜−c5を得た。
Comparative Example 5 Production of Nonlinear Optical Film-c5 Nonlinear optics in the same manner as in Example 1 except that organic nonlinear optical dye-c5 was used in place of organic nonlinear optical dye-1. Membrane-c5 was obtained.

[比較例6] 非線形光学膜−c6の作製
上記実施例1において、有機非線形光学色素−1に代えて有機非線形光学色素−c6を用いたこと以外は、上記実施例1と同様にして非線形光学膜−c6を得た。
Comparative Example 6 Production of Nonlinear Optical Film-c6 Nonlinear optics in the same manner as in Example 1 except that organic nonlinear optical dye-c6 was used in place of organic nonlinear optical dye-1. Membrane-c6 was obtained.

[比較例7] 非線形光学膜−c7の作製
上記実施例1において、有機非線形光学色素−1に代えて有機非線形光学色素−c7を用いたこと以外は、上記実施例1と同様にして非線形光学膜−c7を得た。
[Comparative Example 7] Production of nonlinear optical film-c7 In Example 1 above, nonlinear optics was used in the same manner as Example 1 except that organic nonlinear optical dye-c7 was used instead of organic nonlinear optical dye-1. Membrane-c7 was obtained.

[比較例8] 非線形光学膜−c8の作製
上記実施例1において、有機非線形光学色素−1に代えて有機非線形光学色素−c8を用いたこと以外は、上記実施例1と同様にして非線形光学膜−c8を得た。
Comparative Example 8 Production of Nonlinear Optical Film-c8 Nonlinear optics in the same manner as in Example 1 except that organic nonlinear optical dye-c8 was used in place of organic nonlinear optical dye-1. Membrane-c8 was obtained.

[比較例9] 非線形光学膜−c9の作製
上記実施例1において、有機非線形光学色素−1に代えて有機非線形光学色素−c9を用いたこと以外は、上記実施例1と同様にして非線形光学膜−c9を得た。
[Comparative Example 9] Production of Nonlinear Optical Film-c9 In Example 1, nonlinear optics was used in the same manner as Example 1 except that organic nonlinear optical dye-c9 was used instead of organic nonlinear optical dye-1. Membrane-c9 was obtained.

[試験例1] 非線形光学性能の評価
上記各合成例及び各比較合成例で得られた各有機非線形光学色素について、量子化学計算プログラム(商品名:SCIGRESS、富士通社製)により、AM1法を用いて超分極率βを算出し、下記評価基準に基づき非線形光学性能を評価した。結果を下表に示す。超分極率βが高い程、非線形光学活性が高いといえる。
<非線形光学性能の評価基準>
A:超分極率βの値が150以上
B:超分極率βの値が140以上150未満
C:超分極率βの値が130以上140未満
D:超分極率βの値が130未満
実用上、有機非線形光学色素の非線形光学性能は評価Aであることが好ましい。
[Test Example 1] Evaluation of nonlinear optical performance For each organic nonlinear optical dye obtained in each of the above synthesis examples and comparative synthesis examples, the AM1 method was used by a quantum chemistry calculation program (trade name: SCIGRESS, manufactured by Fujitsu Limited). Thus, the hyperpolarizability β was calculated, and the nonlinear optical performance was evaluated based on the following evaluation criteria. The results are shown in the table below. It can be said that the higher the hyperpolarizability β, the higher the nonlinear optical activity.
<Evaluation criteria for nonlinear optical performance>
A: The value of hyperpolarizability β is 150 or more B: The value of hyperpolarizability β is 140 or more and less than 150 C: The value of hyperpolarizability β is 130 or more and less than 140 D: The value of hyperpolarizability β is less than 130 The nonlinear optical performance of the organic nonlinear optical dye is preferably an evaluation A.

[試験例2] 湿熱耐性の評価
上記各実施例及び各比較例の非線形光学膜の可視域における吸収スペクトルを、可視赤外偏光分光光度計(商品名:V−670ST、日本分光社製)を用いて測定した。
次いで、各非線形光学膜を高温高湿条件下(85℃、相対湿度85%)で2000時間保管した。この保管後、各非線形光学膜の可視域における吸収スペクトルを上記と同様にして測定した。得られた吸収スペクトルに基づき、保管後の色素保持率(X%)を下記式により算出し、下記評価基準により湿熱耐性を評価した。結果を下表に示す。
[Test Example 2] Evaluation of wet heat resistance The absorption spectrum in the visible region of the nonlinear optical films of the above Examples and Comparative Examples was measured using a visible infrared polarization spectrophotometer (trade name: V-670ST, manufactured by JASCO Corporation). And measured.
Next, each nonlinear optical film was stored for 2000 hours under high temperature and high humidity conditions (85 ° C., relative humidity 85%). After this storage, the absorption spectrum in the visible region of each nonlinear optical film was measured in the same manner as described above. Based on the obtained absorption spectrum, the dye retention (X%) after storage was calculated by the following formula, and the wet heat resistance was evaluated according to the following evaluation criteria. The results are shown in the table below.

X(%)=100×D/A
:上記の高温高湿条件下の保管後における非線形光学膜の、波長λmaxにおける吸光度
:上記の高温高湿条件下の保管前における非線形光学膜の、波長λmaxにおける吸光度
X (%) = 100 × D t / A 0
D t : Absorbance at a wavelength λmax of the nonlinear optical film after storage under the above-mentioned high-temperature and high-humidity conditions A 0 : Absorbance at a wavelength λmax of the nonlinear optical film before storage under the above-mentioned high-temperature and high-humidity conditions

<湿熱耐性の評価基準>
A:Xが95%以上
B:Xが90%以上95%未満
C:Xが85%以上90%未満
D:Xが85%未満
実用上、湿熱耐性は評価Aであることが好ましい。
<Evaluation criteria for wet heat resistance>
A: X is 95% or more B: X is 90% or more and less than 95% C: X is 85% or more and less than 90% D: X is less than 85% Practically, the wet heat resistance is preferably evaluation A.

[試験例3] 耐光性の評価
上記各実施例及び各比較例の非線形光学膜の可視域における吸収スペクトルを、可視赤外偏光分光光度計(商品名:V−670ST、日本分光社製)を用いて測定した。
次いで、高出力紫外線UV−LED卓上スポットライト(商品名:LED365−SPT、オプトコード社製)を用いて、365nmの紫外線(UV)を10分間照射した。その際、スポットライトのUV照射面を非線形光学膜に密着させた状態でUVを照射した(照射量:187mW)。このUV照射後、各非線形光学膜の可視域における吸収スペクトルを上記と同様にして測定した。得られた吸収スペクトルに基づき、UV照射後の色素保持率(Y%)を下記式により算出し、下記評価基準により湿熱耐性を評価した。結果を下表に示す。
[Test Example 3] Evaluation of light resistance The absorption spectrum in the visible region of the nonlinear optical film of each of the above Examples and Comparative Examples was measured using a visible infrared polarization spectrophotometer (trade name: V-670ST, manufactured by JASCO Corporation). And measured.
Subsequently, 365 nm ultraviolet rays (UV) were irradiated for 10 minutes using a high-output ultraviolet UV-LED tabletop spotlight (trade name: LED365-SPT, manufactured by Optcord). At that time, UV irradiation was performed with the UV irradiation surface of the spotlight in close contact with the nonlinear optical film (irradiation amount: 187 mW). After this UV irradiation, the absorption spectrum in the visible region of each nonlinear optical film was measured in the same manner as described above. Based on the obtained absorption spectrum, the dye retention (Y%) after UV irradiation was calculated by the following formula, and the wet heat resistance was evaluated according to the following evaluation criteria. The results are shown in the table below.

Y(%)=100×E/A
:上記のUV照射後における非線形光学膜の、波長λmaxにおける吸光度
:上記のUV照射前における非線形光学膜の、波長λmaxにおける吸光度
Y (%) = 100 × E t / A 0
E t : Absorbance at a wavelength λmax of the nonlinear optical film after UV irradiation A 0 : Absorbance at a wavelength λmax of the nonlinear optical film before UV irradiation

<耐光性の評価基準>
A:Yが99%以上
B:Yが95%以上99%未満
C:Yが90%以上95%未満
D:Yが90%未満
実用上、耐光性は評価Aであることが好ましい。
<Evaluation criteria for light resistance>
A: Y is 99% or more B: Y is 95% or more and less than 99% C: Y is 90% or more and less than 95% D: Y is less than 90% In practice, the light resistance is preferably evaluation A.

Figure 0006492023
Figure 0006492023

上記表2に示されるとおり、一般式(1)においてRが置換基である色素であっても、このRが無置換の分岐アルキル基を有する形態でない場合、この色素は非線形光学性能には優れる一方、湿熱耐性と耐光性のいずれにも劣る結果となった(比較例1及び9)。
また、一般式(1)においてRが置換基ではなく水素原子である色素は、湿熱耐性と耐光性の両特性を良好に両立することができず(比較例4〜7)、また、一般式(1)においてR及びRが無置換の分岐アルキル基ではなく直鎖アルキル基や直鎖置換アルキル基である場合も同様に、湿熱耐性と耐光性の両特性を良好に両立できなかった(比較例2)。
さらに、一般式(1)におけるR〜Rがいずれも一般式(1)で規定する基でない色素の場合、Lの形態によらず非線形光学性能に劣り、また湿熱耐性と耐光性を良好に両立することもできなかった(比較例3及び8)。
As shown in Table 2, also R 3 in the general formula (1) is a dye which is a substituted group, if the R 3 is not in the form of an unsubstituted branched alkyl group, the dye is in non-linear optical properties Was superior to both wet heat resistance and light resistance (Comparative Examples 1 and 9).
Moreover, the pigment | dye whose R < 3 > is not a substituent but a hydrogen atom in General formula (1) cannot satisfy | fill both wet-heat-resistance and light resistance property favorably (Comparative Examples 4-7). Similarly, in the case where R 1 and R 2 in formula (1) are not an unsubstituted branched alkyl group but a linear alkyl group or a linear substituted alkyl group, it is not possible to satisfactorily achieve both wet heat resistance and light resistance. (Comparative Example 2).
Furthermore, when R 1 to R 3 in the general formula (1) are not a group defined by the general formula (1), the nonlinear optical performance is inferior regardless of the form of L, and the wet heat resistance and light resistance are good. (Comparative Examples 3 and 8).

これに対し本発明の有機非線形光学色素である一般式(1)の色素は、いずれも非線形光学性能に優れ、さらに湿熱耐性と耐光性の両立を高いレベルで実現できることがわかった(実施例1〜4)また、HANSEN溶解度パラメータ計算ソフトを用いて、非線形光学色素とバインダー(前述のPMMAおよびポリカーボネート)との相溶性を見積もった結果、本発明の有機非線形光学色素はいずれもマトリクスとの相溶性が非常に良好であることがわかった。   On the other hand, it was found that all of the dyes of the general formula (1) which are the organic nonlinear optical dyes of the present invention are excellent in nonlinear optical performance and can realize both high heat resistance and light resistance at a high level (Example 1). -4) Moreover, as a result of estimating the compatibility between the nonlinear optical dye and the binder (the above-mentioned PMMA and polycarbonate) using the HANSEN solubility parameter calculation software, all of the organic nonlinear optical dyes of the present invention are compatible with the matrix. Was found to be very good.

Claims (7)

下記一般式(II)で表される有機非線形光学色素。
Figure 0006492023

一般式(II)中、R及びRは無置換の分岐アルキル基を示し、Rは無置換の分岐アルキル基を有する基を示す。 〜R は水素原子又はアルキル基を示す。
An organic nonlinear optical dye represented by the following general formula (II) .
Figure 0006492023

In the general formula (II) , R 1 and R 2 represent an unsubstituted branched alkyl group, and R 3 represents a group having an unsubstituted branched alkyl group. R 4 to R 7 represent a hydrogen atom or an alkyl group.
前記R〜Rが水素原子である、請求項に記載の有機非線形光学色素。 The organic nonlinear optical dye according to claim 1 , wherein R 4 to R 7 are hydrogen atoms. 請求項1又は2に記載の有機非線形光学色素と、ガラス転移温度が100℃以上のポリマーとを含む非線形光学材料。 A nonlinear optical material comprising the organic nonlinear optical dye according to claim 1 or 2 and a polymer having a glass transition temperature of 100 ° C. or higher. 前記非線形光学材料中において、前記有機非線形光学色素と前記のガラス転移温度が100℃以上のポリマーの含有量の合計に占める前記有機非線形光学色素の含有量の割合が10〜50質量%である、請求項に記載の非線形光学材料。 In the nonlinear optical material, the ratio of the content of the organic nonlinear optical dye in the total content of the organic nonlinear optical dye and the polymer having a glass transition temperature of 100 ° C. or higher is 10 to 50% by mass. The nonlinear optical material according to claim 3 . 請求項又はに記載の非線形光学材料を用いた非線形光学膜。 Nonlinear optical film using a nonlinear optical material according to claim 3 or 4. 請求項又はに記載の非線形光学材料を用いた光学素子。 Optical element using a nonlinear optical material according to claim 3 or 4. 前記光学素子が光変調素子である、請求項に記載の光学素子。 The optical element according to claim 6 , wherein the optical element is a light modulation element.
JP2016068656A 2016-03-30 2016-03-30 Organic nonlinear optical dye, nonlinear optical material, nonlinear optical film and optical element Expired - Fee Related JP6492023B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016068656A JP6492023B2 (en) 2016-03-30 2016-03-30 Organic nonlinear optical dye, nonlinear optical material, nonlinear optical film and optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016068656A JP6492023B2 (en) 2016-03-30 2016-03-30 Organic nonlinear optical dye, nonlinear optical material, nonlinear optical film and optical element

Publications (2)

Publication Number Publication Date
JP2017181775A JP2017181775A (en) 2017-10-05
JP6492023B2 true JP6492023B2 (en) 2019-03-27

Family

ID=60006935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016068656A Expired - Fee Related JP6492023B2 (en) 2016-03-30 2016-03-30 Organic nonlinear optical dye, nonlinear optical material, nonlinear optical film and optical element

Country Status (1)

Country Link
JP (1) JP6492023B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7307173B1 (en) * 2004-02-19 2007-12-11 University Of Washington Pyrroline chromophores
JP5826206B2 (en) * 2012-03-29 2015-12-02 富士フイルム株式会社 Nonlinear optical material and nonlinear optical element using the same
JP6222637B2 (en) * 2014-03-19 2017-11-01 富士フイルム株式会社 Polymerizable nonlinear optical material, nonlinear optical film, optical element, light modulation element, and method of manufacturing nonlinear optical film

Also Published As

Publication number Publication date
JP2017181775A (en) 2017-10-05

Similar Documents

Publication Publication Date Title
Luo et al. Nanoscale architectural control and macromolecular engineering of nonlinear optical dendrimers and polymers for electro-optics
Bai et al. A new approach to highly electrooptically active materials using cross-linkable, hyperbranched chromophore-containing oligomers as a macromolecular dopant
Zhang et al. Synthesis and characterization of polymers containing in the chain backbone carbazoles substituted with two acceptor groups as nonlinear optical chromophores
JP5826206B2 (en) Nonlinear optical material and nonlinear optical element using the same
Piao et al. Nonlinear optical side‐chain polymers post‐functionalized with high‐β chromophores exhibiting large electro‐optic property
Saadeh et al. Polyimides with a diazo chromophore exhibiting high thermal stability and large electrooptic coefficients
Xu et al. Molecular engineering of structurally diverse dendrimers with large electro-optic activities
JP6103574B2 (en) Optical waveguide and method for manufacturing the same
JP6222637B2 (en) Polymerizable nonlinear optical material, nonlinear optical film, optical element, light modulation element, and method of manufacturing nonlinear optical film
Ouyang et al. Preparation of main-chain polymers based on novel monomers with d− π–a structure for application in organic second-order nonlinear optical materials with good long-term stability
Li et al. Nonlinear optical properties and memory effects of the azo polymers carrying different substituents
Liu et al. Synthesis and nonlinear optical properties of branched pyrroline chromophores
EP0729056A1 (en) Polyquinoline-based nonlinear optical materials
Moon et al. % Synthesis and Properties of Photorefractive Polymers Containing Indole-Based Multifunctional Chromophore as a Pendant Group
Liu et al. Enhanced poling efficiency in rigid-flexible dendritic nonlinear optical chromophores
Polishak et al. A Triptycene-Containing Chromophore for Improved Temporal Stability of Highly Efficient Guest− Host Electrooptic Polymers
Ruslim et al. Comparative Studies on Isomerization Behavior and Photocontrol of Nematic Liquid Crystals Using Polymethacrylates with 3, 3 ‘-and 4, 4 ‘-Dihexyloxyazobenzenes in Side Chains
Chen et al. Synthesis and optical properties of thermotropic polythiophene and poly (p-phenylene) derivatives
Liu et al. Copper-catalyzed Huisgen cycloaddition reactions used to incorporate NLO chromophores into high Tg side-chain polymers for electro-optics
Song et al. Cross-linkable zwitterionic polyimides with high electrooptic coefficients at telecommunication wavelengths
Hayasaka et al. Dynamic switching of linearly polarized emission in liquid-crystallinity-embedded photoresponsive conjugated polymers
Kiebooms et al. Synthesis of a new class of low-band-gap polymers with liquid crystalline substituents
Lin et al. Preparation of polymer films containing multi-branched chromophores for enhanced nonlinear optical activity
Liu et al. Construction of a simple crosslinking system and its influence on the poling efficiency and oriental stability of organic electro-optic materials
JP6492023B2 (en) Organic nonlinear optical dye, nonlinear optical material, nonlinear optical film and optical element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180222

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20180222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190304

R150 Certificate of patent or registration of utility model

Ref document number: 6492023

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees