JP6491054B2 - Apparatus and method for evaluating deformation amount of structural material - Google Patents

Apparatus and method for evaluating deformation amount of structural material Download PDF

Info

Publication number
JP6491054B2
JP6491054B2 JP2015129400A JP2015129400A JP6491054B2 JP 6491054 B2 JP6491054 B2 JP 6491054B2 JP 2015129400 A JP2015129400 A JP 2015129400A JP 2015129400 A JP2015129400 A JP 2015129400A JP 6491054 B2 JP6491054 B2 JP 6491054B2
Authority
JP
Japan
Prior art keywords
light
structural material
deformation
uneven
reflected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015129400A
Other languages
Japanese (ja)
Other versions
JP2017015417A5 (en
JP2017015417A (en
Inventor
長谷川 満
長谷川  満
昌樹 鶴来
昌樹 鶴来
公一 石田
公一 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi GE Nuclear Energy Ltd
Original Assignee
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi GE Nuclear Energy Ltd filed Critical Hitachi GE Nuclear Energy Ltd
Priority to JP2015129400A priority Critical patent/JP6491054B2/en
Publication of JP2017015417A publication Critical patent/JP2017015417A/en
Publication of JP2017015417A5 publication Critical patent/JP2017015417A5/ja
Application granted granted Critical
Publication of JP6491054B2 publication Critical patent/JP6491054B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Description

本発明は、高温、高放射線量のような過酷環境下など、高精度な測定機器の設置が難しい箇所で使用される構造材の変形量評価装置および方法に係り、特に、構造材の変形量を簡便な方法で評価することが可能な構造材の変形量評価装置および方法に関する。   The present invention relates to a deformation evaluation apparatus and method for a structural material used in a place where it is difficult to install a high-precision measuring instrument such as a severe environment such as high temperature and high radiation dose, and in particular, the deformation amount of the structural material. The present invention relates to an apparatus and a method for evaluating a deformation amount of a structural material that can be evaluated by a simple method.

発電プラントや化学プラントなど運転中に高温環境で使用する機器では定常運転時や、起動停止や負荷変動などの非定常運転による繰り返し負荷が加わることで、機器を構成する金属部材に対してクリープやクリープ疲労などの高温で特徴的な損傷が生じることが想定される。このような損傷が蓄積すると金属部材の組織内部では微視的なき裂が成長して部材の強度を低下させ、最終的に部材の変形や破損などの破壊的現象を引き起こす。そこで通常は、機器の負荷条件に応じたマスターカーブを作成し、そこから予測した寿命を基にして機器の構造設計がなされる。この寿命管理などのためには、最初の段階として、構造材におけるひずみなどの変化を検知する必要がある。   Equipment that is used in a high-temperature environment during operation, such as a power plant or chemical plant, is subject to creep or damage to the metal members that make up the equipment by applying repeated loads during steady-state operation or unsteady operation such as start / stop or load fluctuations. It is assumed that characteristic damage occurs at high temperatures such as creep fatigue. When such damage accumulates, a microscopic crack grows inside the structure of the metal member, lowering the strength of the member, and finally causing destructive phenomena such as deformation and breakage of the member. Therefore, usually, a master curve corresponding to the load condition of the device is created, and the structural design of the device is made based on the predicted life from the master curve. In order to manage this life, it is necessary to detect changes such as strain in the structural material as the first step.

ひずみなどの変化を検知するにあたり、以下のことを考慮すべきである。長期間に渡って運転する高温機器の損傷状態は、逐次変化する運転条件や負荷条件による損傷の累積に依存する。このため、損傷の程度をあらかじめ精度良く予測することは容易ではない。そのため、運用中の機器の部材を逐次評価することで、損傷状態を精度良く把握するための技術が求められている。   In detecting changes such as strain, the following should be considered. The damage state of high-temperature equipment that operates over a long period of time depends on the accumulation of damage due to operating conditions and load conditions that change sequentially. For this reason, it is not easy to accurately predict the degree of damage in advance. Therefore, there is a demand for a technique for accurately grasping the damaged state by sequentially evaluating the members of the equipment in operation.

また機器の運用を阻害することなく損傷状態を評価するには、非破壊的な計測手法を用いることが望ましい。例えば部材表面に接触させた探触子から超音波を発信し、部材内部を通過した超音波の変調を計測して損傷状態を評価することが考えられる。また、ひずみゲージや変位計などで部材表面の変形量、変位量を継続的に計測し続けることで、部材に生じる応力分布などの推定のほか、損傷の進行に伴う部材の異常な変形を検知することもできると考えられる。   In addition, it is desirable to use a non-destructive measurement method to evaluate the damage state without hindering the operation of the device. For example, it is conceivable to evaluate the damage state by transmitting ultrasonic waves from a probe brought into contact with the member surface and measuring the modulation of the ultrasonic waves that have passed through the inside of the member. In addition, by continuously measuring the amount of deformation and displacement on the surface of the member with a strain gauge or displacement meter, it is possible to detect abnormal deformation of the member as the damage progresses, in addition to estimating the stress distribution generated in the member. It is thought that it can also be done.

ただし、初めに述べたように機器の利用環境が高温下であったり、原子力発電プラントのように高放射線に晒されたりする苛酷環境においては、計測のために要員が立ち入ることは容易でない。また、計測装置の耐久性の点などからこれを設置できる場所や条件も限られてしまう。   However, as described at the beginning, it is not easy for personnel to enter for measurement in a harsh environment where the use environment of equipment is at a high temperature or exposed to high radiation such as a nuclear power plant. Moreover, the place and conditions where this can be installed are limited from the point of durability of the measuring device.

このような状況を鑑み、高温、高線量などの苛酷環境下でも、評価対象機器の変形や変位を比較的簡便に測定可能な計測手法が望まれている。   In view of such a situation, a measurement technique capable of measuring deformation and displacement of an evaluation target device relatively easily even under a severe environment such as a high temperature and a high dose is desired.

構造材における変化を検出する技術として、被測定物である構造材に光を照射しその反射散乱光を計測することで検出することが知られている。例えば特許文献1は、再帰反射性ビーズを有効に活用して、木材、金属材、樹脂材などのひずみ(変形)を簡便に測定できる方法を提供するものであり、「物体のひずみを測定するに当り、被測定物体の測定面に再帰反射性ビーズを均一に付着させ、当該付着面に光を照射して、その反射量をひずみの発生前と発生後とで対比することにより、ひずみを測定する。」としている。   As a technique for detecting a change in a structural material, it is known to detect by irradiating a structural material, which is an object to be measured, with light and measuring the reflected scattered light. For example, Patent Document 1 provides a method for easily measuring strain (deformation) of wood, metal material, resin material, etc. by effectively using retroreflective beads. In this case, retroreflective beads are uniformly attached to the measurement surface of the object to be measured, light is applied to the attachment surface, and the amount of reflection is compared before and after the occurrence of the distortion. Measure. ”

また特許文献2によれば、「所定間隔置きで黒色の棒線が複数本形成された反射板が設けられた反射体を被計測物の表面に貼り付け、この反射体上に投光用光ファイバーにより光を照射し、この反射体上で反射した光を受光用光ファイバーで受光し、そしてこの受光した光量またはこの光量に対応する歪量を表示装置にて表示する」ようにした歪計測方法である。   According to Patent Document 2, “a reflector provided with a plurality of black bars formed at predetermined intervals is attached to the surface of an object to be measured, and a light projecting optical fiber is formed on the reflector. In this method, the light reflected by the reflector is received by the optical fiber for receiving light, and the received light amount or the distortion amount corresponding to the received light amount is displayed on the display device. is there.

特開2008−139273号公報JP 2008-139273 A 特開平8−101022号公報JP-A-8-101022

特許文献1において、再帰反射性ビーズは入射した光を同じ方向に反射させる機能を有しており、ここではビーズを付着させた被測定物体が変形した時に、単位面積当たりに占めるビーズ面積が変化して、反射光量が変わることを利用したものである。また特許文献2は、反射板を貼り付けた被測定物が変形した時に、測定エリアに含まれる黒色線の割合によって反射光量が変わることを利用したものである。   In Patent Document 1, a retroreflective bead has a function of reflecting incident light in the same direction. Here, when the measured object to which the bead is attached is deformed, the bead area occupied per unit area changes. Thus, the change in the amount of reflected light is utilized. Further, Patent Document 2 utilizes the fact that the amount of reflected light changes depending on the proportion of black lines included in the measurement area when the object to be measured with the reflector attached thereto is deformed.

特許文献1、特許文献2はいずれも、光が照射された領域中の反射体(特許文献1のビーズ)または非反射体(特許文献2の黒色線)の占める割合が変わることに伴う光量の変化を評価対象としている。しかしながらこれらの方法では、評価対象領域における変化が周辺の環境全体の明るさの変動などと相殺されて、精度良く測定するのが困難である。   In both Patent Documents 1 and 2, the amount of light accompanying the change in the proportion of the reflector (beads in Patent Document 1) or non-reflectors (black lines in Patent Document 2) in the region irradiated with light. Changes are the subject of evaluation. However, with these methods, changes in the evaluation target area are offset by fluctuations in the brightness of the entire surrounding environment, and it is difficult to measure accurately.

以上のことから本発明においては、苛酷環境下で稼動する機器や構造材の変形、変位を適正に計測、評価するに有効な構造材の変形量評価装置および方法を提供することを目的としている。   In view of the above, it is an object of the present invention to provide a structural material deformation amount evaluation apparatus and method that are effective in appropriately measuring and evaluating the deformation and displacement of equipment and structural materials that operate in harsh environments. .

上記課題を解決するために、例えば特許請求の範囲に記載の構成を採用する。本発明は、上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、凹凸領域が表面に形成された構造材を被測定物として、構造材における変形を検知するための構造材の変形量評価装置であって、構造材表面の凹凸領域に光を照射するための光照射部と、凹凸領域で反射、散乱した光の波長を測定する光観察部と、前後する複数の光観察結果から得られた反射散乱光の波長差を用いて構造材における変形を検知する判断部を備えたことを特徴とする。   In order to solve the above problems, for example, the configuration described in the claims is adopted. The present invention includes a plurality of means for solving the above problems. To give an example, a structure for detecting deformation in a structural material using a structural material having an uneven region formed on the surface as a measurement object. An apparatus for evaluating a deformation amount of a material, a light irradiation unit for irradiating light on an uneven region on a surface of a structural material, a light observation unit for measuring the wavelength of light reflected and scattered in the uneven region, and a plurality of front and back It is characterized by comprising a determination unit for detecting deformation in the structural material using the wavelength difference of the reflected and scattered light obtained from the light observation result.

また、凹凸領域が表面に形成された構造材を被測定物として、構造材における変形を検知するための構造材の変形量評価方法であって、構造材表面の凹凸領域に光を照射し、凹凸領域で反射、散乱した光の波長を測定し、前後する複数の光観察結果から得られた反射散乱光の波長差を用いて構造材における変形を検知することを特徴とする。   In addition, a structural material with an uneven area formed on the surface is a measurement object, and a structural material deformation amount evaluation method for detecting deformation in the structural material. The uneven surface area of the structural material is irradiated with light, The wavelength of the light reflected and scattered by the uneven region is measured, and the deformation in the structural material is detected using the wavelength difference of the reflected and scattered light obtained from a plurality of light observation results.

本発明によれば、被測定物に連動して凹凸領域が変形することで生じる反射、散乱光を観察することで被測定物の変形、変位を評価することができる。特に、被測定物の変形量、変位量と光学特性との相関を予め把握しておけば、高精度な計測機器を用いなくても変形量を精度良く評価することが可能である。   According to the present invention, the deformation and displacement of the measurement object can be evaluated by observing the reflection and scattered light generated by the deformation of the uneven area in conjunction with the measurement object. In particular, if the amount of deformation of the object to be measured, and the correlation between the amount of displacement and the optical characteristics are known in advance, the amount of deformation can be accurately evaluated without using a highly accurate measuring device.

本発明の実施例1に係る構造材の変形量評価装置を示す模式図であり構造材設置時などの初期状態を示す図。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic diagram which shows the deformation amount evaluation apparatus of the structural material which concerns on Example 1 of this invention, and is a figure which shows the initial state at the time of structural material installation. 本発明の実施例1に係る構造材の変形量評価装置を示す模式図であり観測時状態を示す図。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic diagram which shows the deformation evaluation apparatus of the structural material which concerns on Example 1 of this invention, and is a figure which shows the state at the time of observation. 本発明の変形量評価方法における光観察部の角度と観察される光の主な波長との相関を示す模式図。The schematic diagram which shows the correlation with the angle of the light observation part in the deformation amount evaluation method of this invention, and the main wavelengths of the observed light. 本発明の実施例2に係る構造材の変形量評価装置を示す模式図であり構造材設置時などの初期状態を示す図。It is a schematic diagram which shows the deformation amount evaluation apparatus of the structural material which concerns on Example 2 of this invention, and is a figure which shows the initial state at the time of structural material installation. 本発明の実施例2に係る構造材の変形量評価装置を示す模式図であり観測時状態を示す図。It is a schematic diagram which shows the deformation evaluation apparatus of the structural material which concerns on Example 2 of this invention, and is a figure which shows the state at the time of observation. 本発明の変形量評価方法における光観察部の角度と観察される光の主な波長との相関を示す模式図。The schematic diagram which shows the correlation with the angle of the light observation part in the deformation amount evaluation method of this invention, and the main wavelengths of the observed light.

以下、本発明に係る構造材の変形量評価方法および変形量評価装置の実施形態を、図面を用いて説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of a structural material deformation amount evaluation method and a deformation amount evaluation apparatus according to the present invention will be described with reference to the drawings.

本発明の実施例1に係る構造材の変形量評価方法および変形量評価装置について、図1から図3を用いて説明する。   A structural material deformation amount evaluation method and a deformation amount evaluation apparatus according to Embodiment 1 of the present invention will be described with reference to FIGS.

図1は、本発明の実施例に係る構造材の変形量評価装置20を示している。変形量評価装置20は、被測定物10の表面に設けられ、被測定物10の変形に追従して変形可能な凹凸領域1を監視している。変形量評価装置20は、この凹凸領域1の表面の法線方向から光を照射するための光照射部2と、凹凸表域1に照射されて散乱、反射した光を観察するために凹凸領域1の法線に対して角度θをなす位置に設置した光観察部3、光観察部が検知した波長を用いて波長の変化量を求める判断部4等により概略構成されている。   FIG. 1 shows a structural material deformation amount evaluation apparatus 20 according to an embodiment of the present invention. The deformation amount evaluation apparatus 20 is provided on the surface of the device under test 10 and monitors the uneven region 1 that can be deformed following the deformation of the device under test 10. The deformation amount evaluation apparatus 20 includes a light irradiating unit 2 for irradiating light from the normal direction of the surface of the concavo-convex region 1 and a concavo-convex region for observing light scattered and reflected on the concavo-convex surface region 1. The light observation unit 3 is installed at a position that forms an angle θ with respect to the normal line 1, the determination unit 4 obtains the amount of change in wavelength using the wavelength detected by the light observation unit, and the like.

ここで凹凸領域1の表面に設けられた凹凸形状は、光照射部2から照射される光が可視光線(波長380〜780ナノメートル)であるならば、照射された光の回折、干渉を生じさせるため光の波長と同等かそれより小さい寸法の凹凸形状を付与しておくが、この凹凸形状は評価方法に応じて適宜に設定することができる。例えば柱状、穴状、ラメラ状(襞状)等があげられるが、本発明では凹凸領域1に照射した光の回折や干渉を利用するため、凹凸形状はランダム配置ではなく、所望の機能に応じた規則的配置にすることが望ましい。   Here, the uneven shape provided on the surface of the uneven region 1 causes diffraction and interference of the irradiated light if the light irradiated from the light irradiation unit 2 is visible light (wavelength 380 to 780 nanometers). Therefore, an uneven shape having a size equal to or smaller than the wavelength of light is provided, and this uneven shape can be appropriately set according to the evaluation method. For example, a columnar shape, a hole shape, a lamellar shape (a bowl shape), and the like can be mentioned. In the present invention, since the diffraction and interference of light irradiated to the uneven region 1 is used, the uneven shape is not randomly arranged, but according to a desired function. It is desirable to have a regular arrangement.

光照射部2は、例えば可視域の連続的な波長分布を含む白色光を照射するランプを用いることができる。また、光観察部3としては、例えば凹凸領域1表面で反射、散乱した光の色をカラー画像で判別できるカメラを用いることができる。   As the light irradiation unit 2, for example, a lamp that irradiates white light including a continuous wavelength distribution in the visible range can be used. Moreover, as the light observation part 3, the camera which can discriminate | determine the color of the light reflected and scattered on the uneven | corrugated area | region 1 surface with a color image, for example can be used.

次に、構造材の変形量評価方法について説明する。図1において光照射部2から凹凸領域1に照射された白色光は、凹凸領域1の表面に付与された凹凸形状の作用で回折、干渉を受けて散乱し、凹凸領域1の法線と角度θをなす位置に設けた光観察部3で波長λ1の散乱光として観察され、判断部4には最初の波長として波長λ1が記憶される。ここで図1の状態を被測定物10である構造材設置時などの初期状態とする。初期状態では被測定物10の高さ方向長さがH1であり、被測定物10の高さ方向に設置された凹凸領域1の高さ方向長さがX1であったとする。   Next, a method for evaluating the deformation amount of the structural material will be described. In FIG. 1, the white light emitted from the light irradiator 2 to the uneven region 1 is scattered by diffraction and interference due to the effect of the uneven shape applied to the surface of the uneven region 1, and the normal line and angle of the uneven region 1. The light is observed as scattered light having the wavelength λ1 by the light observation unit 3 provided at the position forming θ, and the wavelength λ1 is stored in the determination unit 4 as the first wavelength. Here, the state of FIG. 1 is assumed to be an initial state when a structural material as the DUT 10 is installed. In the initial state, it is assumed that the length in the height direction of the DUT 10 is H1, and the length in the height direction of the uneven region 1 installed in the height direction of the DUT 10 is X1.

これに対し、図2は初期状態から時間経過後の観測時状態を示している。この間に、被測定物10は何らかの理由で高さ方向長さがH2に変位し、これに伴い被測定物10の高さ方向に設置された凹凸領域1の高さ方向長さもX2に変位しているものとする。この場合に光照射部2と光観察部3の間の配置関係に変化がないものとする。この場合には、凹凸領域1の凹凸形状が高さ方向変位の影響により変化していることを受けて、光観察部3では波長λ2の散乱光として観察され、判断部4には観察時の波長として波長λ2が記憶され、以後の比較処理に用いられることになる。このケースでの凹凸領域1の凹凸形状は、例えば1ナノメートルピッチの凹凸が1.2ナノメートルピッチの凹凸に変形したことを想定している。   On the other hand, FIG. 2 shows an observation state after a lapse of time from the initial state. During this time, the length 10 of the object to be measured is displaced to H2 for some reason, and accordingly, the length in the height direction of the uneven area 1 installed in the height direction of the object 10 to be measured is also displaced to X2. It shall be. In this case, it is assumed that there is no change in the arrangement relationship between the light irradiation unit 2 and the light observation unit 3. In this case, in response to the fact that the uneven shape of the uneven region 1 is changed due to the influence of the displacement in the height direction, the light observation unit 3 observes the scattered light having the wavelength λ2, and the determination unit 4 displays The wavelength λ2 is stored as the wavelength and is used for the subsequent comparison processing. The concavo-convex shape of the concavo-convex region 1 in this case assumes that, for example, the concavo-convex of 1 nanometer pitch is transformed into the concavo-convex of 1.2 nanometer pitch.

図3は、本発明者らが検証した、凹凸領域1の法線となす角度θと、その際に光観察部3で観察された光の色を波長λに置き換えて表した相関を示している。横軸が角度θ、縦軸が波長λであり、角度θが大きいほど散乱光の波長が長くなり赤に近づく傾向を示している。またこの特性では飽和の傾向を示し、かつ凹凸領域1の形状によって異なる飽和傾向の特性を示している。ここで形状Aおよび形状Bはそれぞれ類似の形状であって寸法が異なるサンプルの結果であるが、この結果から角度θが同じであっても凹凸形状が変わると観察される光の主な波長λが変化し、光の色が変化するということを表している。   FIG. 3 shows the angle θ formed by the normal line of the uneven region 1 verified by the present inventors and the correlation expressed by replacing the color of the light observed by the light observation unit 3 at that time with the wavelength λ. Yes. The horizontal axis is the angle θ, and the vertical axis is the wavelength λ. The larger the angle θ, the longer the wavelength of the scattered light and the closer to red. In addition, this characteristic shows a tendency of saturation, and also shows a characteristic of saturation tendency that varies depending on the shape of the uneven region 1. Here, shape A and shape B are the results of samples having similar shapes and different dimensions, but from this result, even when the angle θ is the same, the main wavelength λ of light observed when the uneven shape changes Indicates that the color of light changes.

つまり、図1において光観察部3で観察された形状Aについての散乱光の主な波長がλ1であった場合に、図2のように被測定物10の縦方向の寸法がH1からH2まで伸びるのに伴って凹凸領域1の寸法がX1からX2まで伸びたことで凹凸形状が変化し、その後に光観察部3によって観察された形状Bの散乱光の主な波長はλ2に変化し、この間で波長Δλ12の変化分を生じるということを本発明では捕えている。判断部4では、図1の初期状態の波長λ1と図2の観察時の波長λ2を比較しており、この差分の値に応じて位置などの変化を検知し、さらには変位の方向や大きさを演算により求める。   That is, when the main wavelength of the scattered light for the shape A observed by the light observation unit 3 in FIG. 1 is λ1, the vertical dimension of the DUT 10 is from H1 to H2 as shown in FIG. As the dimension of the concavo-convex region 1 extends from X1 to X2 as it extends, the concavo-convex shape changes, and then the main wavelength of the scattered light of the shape B observed by the light observation unit 3 changes to λ2. The present invention captures that a change in wavelength Δλ12 occurs during this time. The determination unit 4 compares the wavelength λ1 in the initial state of FIG. 1 with the wavelength λ2 at the time of observation in FIG. 2, detects a change in position or the like according to the value of the difference, and further determines the direction and magnitude of the displacement. Is obtained by calculation.

ここまで述べてきたように、本発明の構成によって凹凸領域1の変形を散乱光の波長λの変化によって評価できる。特に図3で示したようにパターン形状の違いと散乱光の波長λとの相関を予め調査しておき、光観察部3で実際に観察された光の波長と比較すれば、被測定物10に生じている変形量を定量的に評価することも可能であり、被測定物10の変形量を散乱光の色の違いで判定できることになる。   As described above, the deformation of the uneven region 1 can be evaluated by the change of the wavelength λ of the scattered light by the configuration of the present invention. In particular, as shown in FIG. 3, the correlation between the difference in pattern shape and the wavelength λ of scattered light is investigated in advance, and compared with the wavelength of light actually observed by the light observation unit 3, the DUT 10 It is also possible to quantitatively evaluate the amount of deformation occurring in the measurement object, and the amount of deformation of the DUT 10 can be determined by the difference in the color of the scattered light.

このために判断部4には、図3の特性を記憶しておき、波長差から変形の発生を検知し、かつ予め定めておいた波長差と変形量の関係から、構造材における変形の大きさを推定、出力することが可能となる。   Therefore, the determination unit 4 stores the characteristics of FIG. 3, detects the occurrence of deformation from the wavelength difference, and determines the magnitude of deformation in the structural material from the predetermined relationship between the wavelength difference and the deformation amount. It is possible to estimate and output the length.

このことは、実際のプラント機器において本発明を適用することで、被測定物表面に設けた凹凸領域のほか、例えばランプ2と監視カメラ3という比較的簡便な装置によって、被測定物の変形量を評価できることを意味している。   This is because, by applying the present invention to actual plant equipment, in addition to the uneven area provided on the surface of the object to be measured, the deformation amount of the object to be measured by a relatively simple device such as the lamp 2 and the monitoring camera 3, for example. It means that can be evaluated.

本発明の実施例2に係る構造材の変形量評価方法について、図4から図6を用いて説明する。   A structural material deformation amount evaluation method according to Embodiment 2 of the present invention will be described with reference to FIGS.

図4、図5の変形量評価装置は、基本的に実施例1で説明した変形量評価装置と同じ構成のものである。図1、図2では、高さ方向変位Hを検知することについて述べたが、図4、図5では、横方向の幅Wが変化したことを検知している。被測定物表面に設けた凹凸領域1の位置が変化する場合においても、本発明の変形量評価装置を用いて、構造材の変形量を評価する方法について説明する。   The deformation amount evaluation apparatus shown in FIGS. 4 and 5 basically has the same configuration as the deformation amount evaluation apparatus described in the first embodiment. In FIGS. 1 and 2, the detection of the height direction displacement H is described, but in FIGS. 4 and 5, it is detected that the lateral width W has changed. A method for evaluating the deformation amount of the structural material using the deformation amount evaluation apparatus of the present invention even when the position of the uneven region 1 provided on the surface of the object to be measured changes will be described.

図4において、実施例2の変形量評価装置は前述の実施例1の変形量評価装置と同様に、被測定物10表面に設けた凹凸領域1と、凹凸領域1に光を照射する光照射部2と、凹凸表域1から散乱、反射した光を観察する光観察部3、光観察部3が検知した波長を用いて波長の変化量を求める判断部4等により概略構成されている。実施例2では実施例1とは異なり、被測定物10が当初図4のように幅W1であったものが、図5のように水平方向に伸びて幅W2となり、凹凸領域1が元の位置からΔだけ光照射部3に近付く法線方向に変位したことを示している。   In FIG. 4, the deformation amount evaluation apparatus according to the second embodiment is similar to the deformation amount evaluation apparatus according to the first embodiment described above. A light observation unit 3 for observing light scattered and reflected from the uneven surface area 1, a determination unit 4 for obtaining a change in wavelength using the wavelength detected by the light observation unit 3, and the like. In the second embodiment, unlike the first embodiment, the device under test 10 originally has the width W1 as shown in FIG. 4, but extends in the horizontal direction as shown in FIG. This shows that the position is displaced in the normal direction approaching the light irradiation unit 3 by Δ from the position.

このように凹凸領域1が法線方向にΔだけ変位する前後において、凹凸領域1が光観察部3の視野内に収まっている場合には、図に示すように凹凸領域1の法線方向と光観察部3の設置方向の角度がθaであるのに対して、凹凸領域1が変位した後の光観察部3の設置方向の角度は図5に示すようにθbに変化する。ここで図6は、図3と同じ角度θと波長の相関を示す図であるが、上記の現象は図6において、同じパターン形状(たとえば形状A)であっても、角度θがθaからθbに変わると波長λがλaからλbに変わり、Δλabの変化を生じることを示している。   Thus, before and after the uneven region 1 is displaced by Δ in the normal direction, when the uneven region 1 is within the field of view of the light observation unit 3, the normal direction of the uneven region 1 is Whereas the angle in the installation direction of the light observation unit 3 is θa, the angle in the installation direction of the light observation unit 3 after the uneven region 1 is displaced changes to θb as shown in FIG. Here, FIG. 6 is a diagram showing the same correlation between the angle θ and the wavelength as in FIG. 3, but the above phenomenon in FIG. 6 is the same pattern shape (for example, shape A). It is shown that the wavelength λ changes from λa to λb and changes in Δλab.

つまり、図4において光観察部3で観察された散乱光の主な波長がλaであった場合に、図5のように凹凸領域1の位置が変化して光観察部3の設置方向の角度θがθaからθbに変化することで、光観察部3によって観察された散乱光の主な波長はλbに変化し、この間で波長Δλabの変化分を生じる。よって、前述した実施例1と同様に、被測定物10の変位量を評価できるといえる。   That is, when the main wavelength of the scattered light observed by the light observation unit 3 in FIG. 4 is λa, the position of the uneven region 1 changes as shown in FIG. As θ changes from θa to θb, the main wavelength of the scattered light observed by the light observation unit 3 changes to λb, and a change in the wavelength Δλab occurs between them. Therefore, it can be said that the displacement amount of the DUT 10 can be evaluated in the same manner as in the first embodiment.

ここまで、被測定物の変形量や変位量を、被測定物表面に設けた凹凸領域1と光照射部2、光観察部3、判断部4によって評価できることを述べた。ただし、実際のプラントにおいては凹凸領域1の変形と変位の両者が重畳する場合もあり得る。そのような場合には、例えば本発明の評価装置20を被測定物の複数の位置に配置し、それぞれの測定結果を組み合わせて互いに補正してもよいし、本発明の評価装置20以外で得られた情報を用いて補正してもよい。   So far, it has been described that the deformation amount and displacement amount of the object to be measured can be evaluated by the uneven area 1 provided on the surface of the object to be measured, the light irradiation unit 2, the light observation unit 3, and the determination unit 4. However, in an actual plant, both deformation and displacement of the uneven region 1 may overlap. In such a case, for example, the evaluation device 20 of the present invention may be arranged at a plurality of positions of the object to be measured, and the respective measurement results may be combined to correct each other, or obtained by other than the evaluation device 20 of the present invention. Correction may be performed using the obtained information.

ところで、実施例2では被測定物の変形に伴う凹凸領域1の変位について説明したが、被測定物の設置位置のずれによって凹凸領域が変位する場合もある。この場合、被測定物の変形量を評価していることにはならないが、一方で、被測定物10が設置された位置の評価に用いることができる。例えばプラント機器の構造物や、各種配管とこれをサポートする部材などが本来の正しい位置に設置されているかどうかを評価、判定することができ、本発明の変形量評価装置および評価方法がプラント全体の健全性を維持するうえで有効な技術であるといえる。   In the second embodiment, the displacement of the uneven area 1 due to the deformation of the object to be measured has been described. However, the uneven area may be displaced due to a deviation in the installation position of the object to be measured. In this case, the deformation amount of the device under test is not evaluated, but can be used for evaluating the position where the device under test 10 is installed. For example, it is possible to evaluate and determine whether plant equipment structures, various pipes and supporting members are installed at their original correct positions, and the deformation amount evaluation apparatus and evaluation method of the present invention can be applied to the entire plant. It can be said that this is an effective technique for maintaining the soundness of the company.

実施例1、実施例2では図3、図6の特性を説明した。この特性を利用すると、単なる変形の検出ではなく、一歩進めて変形量の情報に換算して得ることが可能となる。   In Example 1 and Example 2, the characteristics of FIGS. 3 and 6 have been described. If this characteristic is used, it is possible to obtain one step forward and convert it into information on the amount of deformation rather than simply detecting deformation.

例えば図3において、角度θが同じ状態のまま波長のみがΔλ12だけ変化したとする。また前提として初期の形状がAであり、複数形状の特性を保有しているものとすると、その中から変化量Δλ12を参考にして形状Bの特性を特定することができる。この場合に形状A,Bは長さの概念を有する情報であるので、長さの差として変形量を推定することができる。   For example, in FIG. 3, it is assumed that only the wavelength changes by Δλ12 while the angle θ remains the same. Further, assuming that the initial shape is A and possesses characteristics of a plurality of shapes, it is possible to specify the characteristics of the shape B with reference to the variation Δλ12. In this case, since the shapes A and B are information having the concept of length, the deformation amount can be estimated as a difference in length.

また図6において、角度θが変化して、かつ波長がΔλabだけ変化したとする。この前提としては角度の変化を検知していることであり、角度の変化と波長の変化が形状Aの特性上で合致するのであれば、角度の情報から、変形量を推定することができる。なお、角度の変化と波長の変化が形状Aの特性上で合致しない場合には、さらに他の形状の情報も含めた判断により複合的な形状の変位を推定することが可能である。   In FIG. 6, it is assumed that the angle θ changes and the wavelength changes by Δλab. The premise is that a change in angle is detected. If the change in angle and the change in wavelength match on the characteristics of the shape A, the deformation amount can be estimated from the angle information. When the change in the angle and the change in the wavelength do not coincide with each other in the characteristics of the shape A, it is possible to estimate the displacement of the complex shape by judgment including information on other shapes.

以上、本発明の変形量評価装置および方法に関する実施形態について説明したが、本発明はこれらの構成に限定されるものではない。   As mentioned above, although embodiment regarding the deformation evaluation apparatus and method of this invention was described, this invention is not limited to these structures.

例えば、図1および図2で光照射部2を凹凸領域1の法線方向に対してある角度をなす位置に設置しても、光観察部3に対して散乱光が到達すれば評価可能である。また、光照射部2と光観察部3を逆の位置に入れ替えても光学的に等価であって問題は無く、光照射部2から凹凸領域1に照射して生じた散乱光が光観察部3に到達する限り、設置場所の状態に応じて凹凸領域1、光照射部2、光観察部3の相対的な位置を変更して構わない。   For example, even if the light irradiation unit 2 is installed at a position that forms an angle with respect to the normal direction of the concavo-convex region 1 in FIGS. 1 and 2, evaluation is possible if scattered light reaches the light observation unit 3. is there. Further, even if the light irradiation unit 2 and the light observation unit 3 are switched to the opposite positions, they are optically equivalent and there is no problem, and scattered light generated by irradiating the uneven region 1 from the light irradiation unit 2 is the light observation unit. As long as it reaches 3, the relative positions of the uneven region 1, the light irradiation unit 2, and the light observation unit 3 may be changed according to the state of the installation location.

また、前述の実施例は凹凸領域1、光照射部2、光観察部3の各位置を固定することを想定しているが、例えば光観察部3が凹凸領域1の法線となす角度θを連続的に変化できるようにして、角度θと観察した波長λとの分布を測定すれば、より多くのデータを得ることができる。また、図1において変形が生じる上下方向だけでなく、図示しない紙面垂直方向にも光観察部3を設置すれば、各方向への変形量を同時に評価することができる。あるいは一台の光観察部3が凹凸領域1を中心として回転できるようにすれば各方向からのデータを連続的に入手することも可能になる。   Moreover, although the above-mentioned Example assumes fixing each position of the uneven | corrugated area | region 1, the light irradiation part 2, and the light observation part 3, For example, angle (theta) which the light observation part 3 makes with the normal line of the uneven | corrugated area | region 1 Can be continuously changed, and more data can be obtained by measuring the distribution of the angle θ and the observed wavelength λ. Further, if the light observation unit 3 is installed not only in the vertical direction in which deformation occurs in FIG. 1 but also in the direction perpendicular to the paper surface (not shown), the amount of deformation in each direction can be evaluated simultaneously. Alternatively, if one light observation unit 3 can be rotated around the uneven region 1, data from each direction can be obtained continuously.

次に、被測定物10表面に凹凸領域1を設ける方法であるが、被測定物表面に凹凸形状を直接に付与してもよい。ただし、本発明は光の回折や干渉を利用するために概ね1マイクロメートル以下の微細な凹凸形状が必要であり、これを機械加工で形成することは難しい。そこで例えば、半導体やMEMSなどの加工技術で微細な凹凸パターンを形成した金型を予め作製し、これを被測定物10表面に押圧もしくは打刻して微細凹凸形状を転写し、凹凸領域1を形成してもよい。被測定物10がステンレスなど硬質で打刻が難しい材料である場合には、被測定物10の表面にアルミニウムなど相対的に軟質な材料の層を蒸着やスパッタで形成し、この層に微細凹凸形状を転写して凹凸領域1を形成しても良い。   Next, although it is the method of providing the uneven | corrugated area | region 1 in the to-be-measured object 10 surface, you may provide an uneven | corrugated shape directly to the to-be-measured object surface. However, the present invention requires a fine uneven shape of approximately 1 micrometer or less in order to use light diffraction and interference, and it is difficult to form this by machining. Therefore, for example, a mold having a fine concavo-convex pattern formed in advance using a processing technique such as semiconductor or MEMS, is pressed or stamped on the surface of the object to be measured 10 to transfer the fine concavo-convex shape, and the concavo-convex region 1 is formed. It may be formed. When the object to be measured 10 is a hard material such as stainless steel that is difficult to engrave, a layer of a relatively soft material such as aluminum is formed on the surface of the object to be measured 10 by vapor deposition or sputtering. The uneven region 1 may be formed by transferring the shape.

また、被測定物10の表面に直接に凹凸領域1を形成するのではなく、予め微細凹凸形状を付与したシート状部材を被測定物10の表面に貼り付けて使用しても良い。このシート状部材は、例えば半導体プロセスで凹凸形状を形成したシリコンウエハ原版の表面にニッケルめっきを施した後、シリコンウエハ原版を除いて得られるニッケルめっきレプリカを用いることができる。また、使用環境によってはニッケルめっきの代わりに、ポリイミドなど比較的耐熱性の良好な樹脂材料性レプリカを用いることもできる。   Further, instead of directly forming the uneven region 1 on the surface of the device under test 10, a sheet-like member provided with a fine uneven shape in advance may be attached to the surface of the device under test 10. As this sheet-like member, for example, a nickel plating replica obtained by removing the silicon wafer original plate after nickel plating is applied to the surface of the silicon wafer original plate on which the concavo-convex shape is formed by a semiconductor process. Further, depending on the use environment, a resin material replica having relatively good heat resistance such as polyimide can be used instead of nickel plating.

さらに、ここまでは連続的な波長分布を有する白色光を用いる場合について述べたが、白色光の代わりに概ね単一の波長を有するレーザ光のような光を用いることも考えられる。レーザ光の場合、凹凸領域1に照射されると凹凸形状に応じた特定の角度に反射することになる。そこで、光観察部3の位置を調整してレーザ光を観察できたときの角度θから、被測定物の変形量や変位量を評価することが可能になる。あるいは、被測定物10が正常な形状もしくは位置にある場合に凹凸領域1から反射した光が観察できる位置に光観察部3を固定しておき、被測定物10の形状もしくは位置に異常を生じた場合には凹凸領域1から反射した光の光量が減少するか観察できなくなるようにして、異常の有無を検知することもできる。   Furthermore, although the case where white light having a continuous wavelength distribution is used has been described so far, it is also conceivable to use light such as laser light having a substantially single wavelength instead of white light. In the case of laser light, when the uneven region 1 is irradiated, it is reflected at a specific angle corresponding to the uneven shape. Therefore, it becomes possible to evaluate the deformation amount and the displacement amount of the object to be measured from the angle θ when the position of the light observation unit 3 is adjusted and the laser beam can be observed. Alternatively, when the object to be measured 10 is in a normal shape or position, the light observation unit 3 is fixed at a position where the light reflected from the uneven region 1 can be observed, and an abnormality occurs in the shape or position of the object to be measured 10. In such a case, the presence or absence of an abnormality can be detected by reducing the amount of light reflected from the uneven region 1 or observing it.

また本発明においては、波長の変化、つまり色の変化を利用しているが具体的に波長(=色)の変化を把握する手法は既に知られた多くの手法を採用可能であるので、ここでの詳細説明は割愛する。なお本明細書において単に波長という場合には、波長の変化により変化する色などの情報を含む総合的な概念として説明している。   In the present invention, a change in wavelength, that is, a change in color is used. However, since a method for specifically grasping a change in wavelength (= color) can employ many already known methods, The detailed explanation in is omitted. In this specification, the term “wavelength” is used as a comprehensive concept including information such as a color that changes due to a change in wavelength.

先に述べた特許文献の技術と本発明とでは、大きく以下の2点で相違している。相違の第1点は、被測定物に凹凸領域を設けてここを監視対象部位とした点である。第2点は、凹凸領域の変形や変位量で定まる反射光の色、波長に着目した点である。この点について、特許文献では、光が照射された領域中の反射体(特許文献1のビーズ)または非反射体(特許文献2の黒色線)の占める割合が変わることに伴う光量の変化を評価対象としている。   The technique of the patent document described above and the present invention are largely different in the following two points. The first difference is that an uneven area is provided on the object to be measured and this is used as a monitoring target part. The second point is a point paying attention to the color and wavelength of reflected light determined by the deformation and displacement amount of the uneven region. Regarding this point, in the patent document, the change in the amount of light accompanying the change in the proportion of the reflector (the bead in Patent Document 1) or the non-reflector (the black line in Patent Document 2) in the region irradiated with light is evaluated. It is targeted.

これにより、被測定物に連動して凹凸領域が変形することで生じる反射、散乱光を観察することで被測定物の変形、変位を評価することができる。特に、被測定物の変形量、変位量と光学特性との相関を予め把握しておけば、高精度な計測機器を用いなくても変形量を精度良く評価することが可能である。特に周辺環境の明るさなどの影響を受けにくいものとすることができる。   Thereby, the deformation | transformation and displacement of a to-be-measured object can be evaluated by observing the reflection and the scattered light which arise when an uneven | corrugated area | region deform | transforms in connection with a to-be-measured object. In particular, if the amount of deformation of the object to be measured, and the correlation between the amount of displacement and the optical characteristics are known in advance, the amount of deformation can be accurately evaluated without using a highly accurate measuring device. In particular, it can be made less susceptible to the brightness of the surrounding environment.

1:凹凸領域
2:光照射部
3:光観察部
4:判断部
10:被測定物
20:変形量評価装置
1: Uneven region 2: Light irradiation unit 3: Light observation unit 4: Determination unit 10: Object to be measured 20: Deformation amount evaluation device

Claims (7)

凹凸領域が表面に形成された構造材を被測定物として、該構造材における変形を検知するための構造材の変形量評価装置であって、
前記構造材の表面の前記凹凸領域に光を照射するための光照射部と、前記凹凸領域で反射、散乱した反射散乱光の波長を測定する光観察部と、前後する複数の光観察結果から得られた前記反射散乱光の波長差を用いて前記構造材における変形を検知する判断部を備え、
前記判断部は、前記光照射部から照射された光が前記凹凸領域で反射、散乱して前記光観察部に至る反射散乱光の角度と、前記光観察部で検知する反射散乱光の波長の間の相関特性を、複数の形状の前記凹凸領域について保持しており、変形量を推定することを特徴とする構造材の変形量評価装置。
A structural material deformation amount evaluation device for detecting deformation in the structural material, with the structural material having an uneven area formed on the surface as a measurement object,
From the light irradiation part for irradiating the uneven | corrugated area | region of the surface of the said structural material with light, the light observation part which measures the wavelength of the reflected scattered light reflected and scattered in the said uneven | corrugated area | region, and several light observation results before and behind A determination unit that detects deformation in the structural material using a wavelength difference of the obtained reflected scattered light,
The determination unit is configured to determine an angle of reflected / scattered light that is reflected and scattered by the light irradiation unit to the light observation unit and reflected by the uneven region, and a wavelength of the reflected / scattered light detected by the light observation unit. A structural material deformation amount evaluation apparatus characterized in that a correlation characteristic is held for the uneven regions having a plurality of shapes, and the deformation amount is estimated .
請求項1に記載の構造材の変形量評価装置であって、
前記光照射部から照射される光が所定の波長分布を有する光であることを特徴とする構造材の変形量評価装置。
The deformation evaluation apparatus for a structural material according to claim 1,
The apparatus for evaluating a deformation amount of a structural material, wherein the light emitted from the light irradiation unit is light having a predetermined wavelength distribution.
請求項1または請求項2に記載の構造材の変形量評価装置であって、
前記凹凸領域が前記被測定物を構成する材料の表面に凹凸形状を直接形成していることを特徴とする構造材の変形量評価装置。
The deformation evaluation apparatus for a structural material according to claim 1 or 2 ,
An apparatus for evaluating the amount of deformation of a structural material, characterized in that the uneven region directly forms an uneven shape on the surface of the material constituting the object to be measured.
請求項1または請求項2に記載の構造材の変形量評価装置であって、
前記被測定物を構成する材料よりも加工し易い材料層を前記被測定物の表面に設け、この材料層に凹凸形状を形成して前記凹凸領域を形成していることを特徴とする構造材の変形量評価装置。
The deformation evaluation apparatus for a structural material according to claim 1 or 2 ,
A structural material characterized in that a material layer that is easier to process than the material constituting the object to be measured is provided on the surface of the object to be measured, and the uneven region is formed by forming an uneven shape on the material layer. Deformation amount evaluation apparatus.
請求項1または請求項2に記載の構造材の変形量評価装置であって、
予め凹凸形状を付与して形成した部材を前記被測定物の表面に装着して前記凹凸領域を形成していることを特徴とする構造材の変形量評価装置。
The deformation evaluation apparatus for a structural material according to claim 1 or 2 ,
An apparatus for evaluating a deformation amount of a structural material, wherein the uneven region is formed by attaching a member formed with an uneven shape in advance to the surface of the object to be measured.
請求項1乃至請求項5のいずれか1項に記載の構造材の変形量評価装置であって、
前記光観察部は前記凹凸領域で反射、散乱した光の輝度、色、および波長分布のうち少なくともひとつ以上を観察することを特徴とする構造材の変形量評価装置。
The deformation evaluation apparatus for a structural material according to any one of claims 1 to 5 ,
The apparatus for evaluating deformation amount of a structural material, wherein the light observation unit observes at least one of luminance, color, and wavelength distribution of light reflected and scattered by the uneven region.
凹凸領域が表面に形成された構造材を被測定物として、該構造材における変形を検知するための構造材の変形量評価方法であって、
前記構造材の表面の前記凹凸領域に光を照射し、前記凹凸領域で反射、散乱した反射散乱光の波長を測定し、前後する複数の光観察結果から得られた前記反射散乱光の波長差を用いて前記構造材における変形を検知するとともに、
照射された光が前記凹凸領域で反射、散乱するときの反射散乱光の角度と、反射散乱光の波長の間の相関特性を、複数の形状の前記凹凸領域について保持しており、変形量を推定することを特徴とする構造材の変形量評価方法。
A method for evaluating the amount of deformation of a structural material for detecting deformation in the structural material, with a structural material having an uneven area formed on the surface as a measurement object,
Irradiating light to the concavo-convex region on the surface of the structural material, measuring the wavelength of the reflected scattered light reflected and scattered by the concavo-convex region, and the wavelength difference of the reflected scattered light obtained from a plurality of light observation results before and after thereby detecting the deformation of the structural member using,
Correlation characteristics between the angle of the reflected scattered light when the irradiated light is reflected and scattered by the uneven area and the wavelength of the reflected scattered light are held for the uneven area of a plurality of shapes, and the amount of deformation is A method for evaluating a deformation amount of a structural material, characterized by estimating .
JP2015129400A 2015-06-29 2015-06-29 Apparatus and method for evaluating deformation amount of structural material Active JP6491054B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015129400A JP6491054B2 (en) 2015-06-29 2015-06-29 Apparatus and method for evaluating deformation amount of structural material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015129400A JP6491054B2 (en) 2015-06-29 2015-06-29 Apparatus and method for evaluating deformation amount of structural material

Publications (3)

Publication Number Publication Date
JP2017015417A JP2017015417A (en) 2017-01-19
JP2017015417A5 JP2017015417A5 (en) 2018-03-08
JP6491054B2 true JP6491054B2 (en) 2019-03-27

Family

ID=57827822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015129400A Active JP6491054B2 (en) 2015-06-29 2015-06-29 Apparatus and method for evaluating deformation amount of structural material

Country Status (1)

Country Link
JP (1) JP6491054B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112010004023B4 (en) * 2009-10-13 2021-10-28 Hamamatsu Photonics K.K. Film thickness measuring device and film thickness measuring method
JP5701837B2 (en) * 2012-10-12 2015-04-15 横河電機株式会社 Displacement sensor, displacement measurement method

Also Published As

Publication number Publication date
JP2017015417A (en) 2017-01-19

Similar Documents

Publication Publication Date Title
US10295456B2 (en) Remaining life estimation method for estimating remaining life of high-chromium steel pipe
Shrestha et al. Application of thermal wave imaging and phase shifting method for defect detection in Stainless steel
Qiu et al. Remote inspection of surface cracks in metallic structures with fiber-guided laser array spots thermography
WO2014115315A1 (en) Distance measurement system and distance measurement method
Wieghold et al. Detection of sub-500-μm cracks in multicrystalline silicon wafer using edge-illuminated dark-field imaging to enable thin solar cell manufacturing
JP5531257B2 (en) Turbine blade flaw detection method
JP2012145538A (en) Service life evaluation method of metal material
JP6491054B2 (en) Apparatus and method for evaluating deformation amount of structural material
JP6324058B2 (en) Strain measuring method and strain measuring apparatus
Poozesh et al. A multiple stereo-vision approach using three dimensional digital image correlation for utility-scale wind turbine blades
Conrad et al. GPU-based digital image correlation system for uniaxial and biaxial crack growth investigations
Takahashi et al. Super resolution optical measurements of nanodefects on Si wafer surface using infrared standing evanescent wave
JP2021071369A (en) Optical fiber sensing system, damage monitoring method, and damaged place imaging method
Bassil et al. Quantification of cracks in reinforced concrete structures using distributed fiber optic sensors
Zhou et al. Diffraction phase microscopy for wafer inspection
Johnson et al. Complexities of Capturing Large Plastic Deformations Using Digital Image Correlation: A Test Case on Full-Scale Pipe Specimens
JP6984562B2 (en) Soundness evaluation method
JP6973324B2 (en) Anomaly detection method
KR101140337B1 (en) Life Assessment Method
JP2010112942A (en) Method for monitoring of steel structure
JP2020526743A (en) Smart coating device for monitoring and calibration of storage tanks
CN204903422U (en) Optical element beauty defects detection device based on transmission type number word holography
Niezrecki et al. Inspection and Monitoring of Wind Turbine Blade Embedded Defects During Fatigue Testing.
CN204855407U (en) Optical element beauty defects detection device based on reflection -type digit holography
Habel et al. KALFOS-a validation facility for strain transfer characterization of surface-applied strain sensors

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180125

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190228

R150 Certificate of patent or registration of utility model

Ref document number: 6491054

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150