JP6490419B2 - Regulatory T cell differentiation inducer - Google Patents

Regulatory T cell differentiation inducer Download PDF

Info

Publication number
JP6490419B2
JP6490419B2 JP2014259820A JP2014259820A JP6490419B2 JP 6490419 B2 JP6490419 B2 JP 6490419B2 JP 2014259820 A JP2014259820 A JP 2014259820A JP 2014259820 A JP2014259820 A JP 2014259820A JP 6490419 B2 JP6490419 B2 JP 6490419B2
Authority
JP
Japan
Prior art keywords
csf
regulatory
cells
antibody
differentiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014259820A
Other languages
Japanese (ja)
Other versions
JP2016117700A (en
Inventor
敦志 佐竹
敦志 佐竹
堀田 雅章
雅章 堀田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KANSAI MEDICAL UNIVERSITY EDUCATIONAL CORPORATION
Original Assignee
KANSAI MEDICAL UNIVERSITY EDUCATIONAL CORPORATION
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KANSAI MEDICAL UNIVERSITY EDUCATIONAL CORPORATION filed Critical KANSAI MEDICAL UNIVERSITY EDUCATIONAL CORPORATION
Priority to JP2014259820A priority Critical patent/JP6490419B2/en
Publication of JP2016117700A publication Critical patent/JP2016117700A/en
Application granted granted Critical
Publication of JP6490419B2 publication Critical patent/JP6490419B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、制御性T細胞分化誘導剤、及びこれを免疫抑制用、GVHD、自己免疫疾患、移植片拒絶反応の予防及び/又は治療用に用いることに関する。   The present invention relates to a regulatory T cell differentiation inducer and its use for immunosuppression, GVHD, autoimmune diseases, and prevention and / or treatment of graft rejection.

移植片対宿主病(GVHD)は、骨髄移植や輸血等の後に、ドナー由来の白血球がレシピエントの体組織を「他者」と識別し、免疫応答により攻撃することによって引き起こされる。GVHDは比較的高頻度で起こる疾患であり、例えば慢性GVHDは、骨髄移植を受けた約40〜50%程の患者において発症すると言われている。一方、自己免疫疾患は、免疫系が自己組織に対して過剰に反応して攻撃することによって引き起こされる。これらの疾患は、免疫応答により体組織が攻撃されることに起因する点で共通しており、その治療には、通常、免疫抑制剤やステロイド等が用いられる。しかしながら、従来の治療方法は、効果の観点及び副作用の観点から、依然として改善の余地がある。   Graft-versus-host disease (GVHD) is caused by, after bone marrow transplantation, blood transfusion, etc., leukocytes from the donor identify the recipient's body tissue as “others” and attack by the immune response. GVHD is a disease that occurs at a relatively high frequency. For example, chronic GVHD is said to develop in about 40 to 50% of patients who have undergone bone marrow transplantation. Autoimmune diseases, on the other hand, are caused by the immune system reacting excessively against and attacking self tissue. These diseases are common in that the body tissues are attacked by the immune response, and immunosuppressants and steroids are usually used for the treatment. However, the conventional treatment methods still have room for improvement from the viewpoints of effects and side effects.

制御性T細胞は、免疫応答の抑制を司っているT細胞であり、GVHDや自己免疫疾患の発症に関与することが知られている(非特許文献1〜8)。さらに、この制御性T細胞を増加させることによって、これらの疾患を治療できることが各種報告されている(非特許文献5〜8)。   Regulatory T cells are T cells that are responsible for suppression of immune responses, and are known to be involved in the development of GVHD and autoimmune diseases (Non-Patent Documents 1 to 8). Furthermore, it has been reported variously that these diseases can be treated by increasing the regulatory T cells (Non-Patent Documents 5 to 8).

GM−CSFは、マクロファージ、好中球、顆粒球、好酸球等の分化誘導を司ることが知られている。また、抗原提示樹状細胞の分化誘導も促進することから、免疫賦活を目的として使用することも報告されている。   GM-CSF is known to control differentiation induction of macrophages, neutrophils, granulocytes, eosinophils and the like. Moreover, since it also promotes differentiation induction of antigen-presenting dendritic cells, it has been reported to be used for immunostimulation.

Ann N Y Acad Sci. 2008 December ; 1150: 300-310. doi:10.1196/annals.1447.046.Ann N Y Acad Sci. 2008 December; 1150: 300-310.doi: 10.1196 / annals.1447.046. Immunological Reviews 2006 Vol. 212: 256-271.Immunological Reviews 2006 Vol. 212: 256-271. J Neuroimmunol. 2007 November ; 191(1-2): 51-60.J Neuroimmunol. 2007 November; 191 (1-2): 51-60. The Journal of Experimental Medicine Vol. 201, No. 5, March 7, 2005 723-735.The Journal of Experimental Medicine Vol. 201, No. 5, March 7, 2005 723-735. BLOOD, 18 JUNE 2009, VOLUME 113, NUMBER 25, 6277-6287.BLOOD, 18 JUNE 2009, VOLUME 113, NUMBER 25, 6277-6287. Journal of Autoimmunity 44 (2013) 13-20.Journal of Autoimmunity 44 (2013) 13-20. The Journal of Experimental Medicine Vol. 206 No. 4, 2009, 751-760.The Journal of Experimental Medicine Vol. 206 No. 4, 2009, 751-760. BLOOD, 1 SEPTEMBER 2008 _ VOLUME 112, NUMBER 5, 2129-2138.BLOOD, 1 SEPTEMBER 2008 _ VOLUME 112, NUMBER 5, 2129-2138.

本発明は、制御性T細胞分化誘導剤を提供することを課題とする。さらには、制御性T細胞を特異的に分化誘導できる分化誘導剤を提供することをも課題とする。   An object of the present invention is to provide a regulatory T cell differentiation inducer. Furthermore, another object is to provide a differentiation inducer capable of specifically inducing differentiation of regulatory T cells.

本発明者は、上記課題を解決すべく鋭意研究を重ねた結果、GM−CSFとGM−CSF抗体との複合体が制御性T細胞を特異的に分化誘導できることを見出した。即ち、本発明は、以下の態様を包含する。   As a result of intensive studies to solve the above problems, the present inventors have found that a complex of GM-CSF and a GM-CSF antibody can specifically induce regulatory T cells. That is, this invention includes the following aspects.

項1.GM−CSF及びGM−CSF抗体を含有する、制御性T細胞分化誘導剤。   Item 1. Regulatory T cell differentiation inducer containing GM-CSF and GM-CSF antibody.

項2.GM−CSFとGM−CSF抗体との複合体を含有する、項1に記載の分化誘導剤。   Item 2. Item 2. The differentiation inducer according to Item 1, comprising a complex of GM-CSF and a GM-CSF antibody.

項3.制御性T細胞がFOXP3である、項1又は2に記載の分化誘導剤。 Item 3. Item 3. The differentiation inducing agent according to Item 1 or 2, wherein the regulatory T cell is FOXP3 + .

項4.GM−CSF抗体がモノクローナル抗体である、項1〜3のいずれかに記載の分化誘導剤。   Item 4. Item 4. The differentiation inducer according to any one of Items 1 to 3, wherein the GM-CSF antibody is a monoclonal antibody.

項5.免疫抑制用である、項1〜4のいずれかに記載の分化誘導剤。   Item 5. Item 5. The differentiation inducer according to any one of Items 1 to 4, which is used for immunosuppression.

項6.自己免疫疾患並びに移植片対宿主病(GVHD)からなる群より選択される少なくとも1種の疾患の予防及び/又は治療用である、項1〜4のいずれかに記載の分化誘導剤。   Item 6. Item 5. The differentiation inducer according to any one of Items 1 to 4, which is used for prevention and / or treatment of at least one disease selected from the group consisting of autoimmune diseases and graft-versus-host disease (GVHD).

本発明によれば、制御性T細胞分化誘導剤を提供することができる。この制御性T細胞分化誘導剤によれば、免疫活性化に働くコンベンショナルT細胞を分化誘導することなく、制御性T細胞を特異的に分化誘導することが可能となる。制御性T細胞は免疫抑制に働くことから、上記分化誘導剤によって、自己免疫疾患、GVHD、移植片拒絶反応等を予防及び/又は治療することができる。   According to the present invention, a regulatory T cell differentiation inducer can be provided. According to this regulatory T cell differentiation inducer, it is possible to specifically induce regulatory T cells without inducing differentiation of conventional T cells that act on immune activation. Since regulatory T cells act on immunosuppression, autoimmune diseases, GVHD, graft rejection, and the like can be prevented and / or treated with the differentiation inducer.

試験例1の結果(制御性T細胞の割合及び数)を示す。The result (the ratio and number of regulatory T cells) of Test Example 1 is shown. 試験例1の結果(コンベンショナルT細胞の割合及び数)を示す。The result (the ratio and number of conventional T cells) of Test Example 1 is shown. 試験例1の結果(樹状細胞の割合及び数)を示す。The result (ratio and number of dendritic cells) of Test Example 1 is shown. 試験例1の結果(免疫抑制樹状細胞の割合及び数)を示す。The result (The ratio and number of an immunosuppression dendritic cell) of the test example 1 is shown. 試験例1の結果(免疫活性化樹状細胞の割合及び数)を示す。The result of Experiment 1 (ratio and number of immune activated dendritic cells) is shown. 試験例2の結果(骨髄移植後のGVHDスコア)Results of Test Example 2 (GVHD score after bone marrow transplantation)

本発明は、GM−CSF及びGM−CSF抗体を含有する制御性T細胞分化誘導剤(以下、「本発明の分化誘導剤」と示すこともある)に関する。以下、これについて説明する。   The present invention relates to a regulatory T cell differentiation inducer (hereinafter also referred to as “differentiation inducer of the present invention”) containing GM-CSF and a GM-CSF antibody. This will be described below.

1.GM−CSF
GM−CSFは、顆粒球単球コロニー刺激因子(Granulocyte Macrophage Colony-Stimulating Factor)の略称であり、サイトカインの一種である。GM−CSFとしては、ヒト、サル、マウス、ラット、イヌ、ネコ、ウサギ等の種々の哺乳類由来のGM−CSFを採用することができる。制御性T細胞分化誘導剤を生体に投与する場合、GM−CSFは、投与対象の生物種由来のものが好ましい。
1. GM-CSF
GM-CSF is an abbreviation of granulocyte monocyte colony stimulating factor (G ranulocyte M acrophage C olony- S timulating F actor), is a type of cytokine. As GM-CSF, GM-CSF derived from various mammals such as humans, monkeys, mice, rats, dogs, cats and rabbits can be employed. When a regulatory T cell differentiation inducer is administered to a living body, GM-CSF is preferably derived from the species to be administered.

具体的には、例えば、ヒトGM−CSFとしては配列番号1に示されるアミノ酸配列からなるタンパク質(NCBI Reference Sequence: NP_000749.2)が挙げられ、マウスGM−CSFとしては配列番号2に示されるアミノ酸配列からなるタンパク質(NCBI Reference Sequence: NP_034099.2)が挙げられる。   Specifically, for example, human GM-CSF includes a protein consisting of the amino acid sequence represented by SEQ ID NO: 1 (NCBI Reference Sequence: NP_000749.2), and mouse GM-CSF includes the amino acid represented by SEQ ID NO: 2. A protein consisting of a sequence (NCBI Reference Sequence: NP_034099.2) is mentioned.

また、GM−CSFは、N末端側のシグナルペプチドが欠失したものであることが好ましい。シグナルペプチドは、例えばヒトGM−CSFの場合は配列番号1の1〜17番目のアミノ酸からなるペプチドであり、マウスGM−CSFの場合は配列番号2の1〜17番目のアミノ酸からなるペプチドである。シグナルペプチドが欠失したGM−CSFとしては、例えばヒトGM−CSFとしては配列番号3に示されるアミノ酸配列からなるタンパク質が挙げられ、マウスGM−CSFとしては配列番号4に示されるアミノ酸配列からなるタンパク質が挙げられる。   Moreover, it is preferable that GM-CSF lacks the signal peptide of the N terminal side. For example, in the case of human GM-CSF, the signal peptide is a peptide consisting of amino acids 1 to 17 of SEQ ID NO: 1, and in the case of mouse GM-CSF, it is a peptide consisting of amino acids 1 to 17 of SEQ ID NO: 2. . Examples of GM-CSF from which the signal peptide is deleted include human GM-CSF having a protein consisting of the amino acid sequence shown in SEQ ID NO: 3, and mouse GM-CSF consisting of the amino acid sequence shown in SEQ ID NO: 4. Examples include proteins.

GM−CSFとして、
好ましくは、下記(a)に記載するタンパク質及び下記(b)に記載するタンパク質:
(a)配列番号1〜4のいずれかに示されるアミノ酸配列からなるタンパク質、
(b)配列番号1〜4のいずれかに示されるアミノ酸配列と85%以上の同一性を有するアミノ酸配列からなり、且つ制御性T細胞分化誘導活性を有するタンパク質
からなる群より選択される少なくとも1種が挙げられる。
As GM-CSF,
Preferably, the protein described in (a) below and the protein described in (b) below:
(A) a protein comprising the amino acid sequence represented by any one of SEQ ID NOs: 1 to 4,
(B) at least one selected from the group consisting of an amino acid sequence having 85% or more identity with the amino acid sequence shown in any of SEQ ID NOs: 1 to 4 and having a regulatory T cell differentiation-inducing activity Species are mentioned.

アミノ酸配列の『同一性』とは、2以上の対比可能なアミノ酸配列の、お互いに対する同一のアミノ酸配列の程度をいう。従って、ある2つのアミノ酸配列の同一性が高いほど、それらの配列の同一性または類似性は高い。アミノ酸配列の同一性のレベルは、例えば、配列分析用ツールであるFASTAを用い、デフォルトパラメータを用いて決定される。若しくは、KarlinおよびAltschulによるアルゴリズムBLAST(KarlinS, Altschul SF.“Methods for assessing the statisticalsignificance of molecular sequence features by using general scoringschemes”Proc.Natl Acad Sci USA.87:2264−2268(1990)、KarlinS,Altschul SF.”Applications and statisticsfor multiple high−scoringsegments in molecular sequences.”NatlAcad Sci USA.90:5873−7(1993))を用いて決定できる。このようなBLASTのアルゴリズムに基づいたBLASTXと呼ばれるプログラムが開発されている。これらの解析方法の具体的な手法は公知であり、NationalCenter of BiotechnologyInformation(NCBI)のウエブサイト(http://www.ncbi.nlm.nih.gov/)を参照すればよい。   “Identity” of amino acid sequences refers to the degree of amino acid sequences of two or more comparable amino acid sequences with respect to each other. Therefore, the higher the identity of two amino acid sequences, the higher the identity or similarity of those sequences. The level of amino acid sequence identity is determined, for example, using FASTA, a sequence analysis tool, using default parameters. Or, Karlin and Altschul by the algorithm BLAST (KarlinS, Altschul SF "Methods for assessing the statisticalsignificance of molecular sequence features by using general scoringschemes" Proc.Natl Acad Sci USA.87:. 2264-2268 (1990), KarlinS, Altschul SF. “Applications and statics for multiple high-scoring segments in molecular sequences.” Natl Acad Sci USA. 90: 5873-7 (1993). )). A program called BLASTX based on such a BLAST algorithm has been developed. Specific methods of these analysis methods are known, and the website of the National Center of Biotechnology Information (NCBI) (http://www.ncbi.nlm.nih.gov/) may be referred to.

上記(b)において、同一性は、好ましくは90%以上であり、より好ましくは95%以上であり、よりさらに好ましくは98%以上である。   In the above (b), the identity is preferably 90% or more, more preferably 95% or more, and still more preferably 98% or more.

制御性T細胞分化誘導活性の有無は、後述の試験例1に記載の方法に従って判定することができる。   The presence or absence of regulatory T cell differentiation-inducing activity can be determined according to the method described in Test Example 1 described later.

上記(b)に記載するタンパク質の一例としては、例えば
(b’)配列番号1〜4のいずれかに示されるアミノ酸配列に対して1若しくは複数個のアミノ酸が置換、欠失、付加、又は挿入されたアミノ酸配列からなり、且つ制御性T細胞分化誘導活性を有するタンパク質が挙げられ、
上記(b’)において、複数個とは、例えば2〜20個であり、好ましくは2〜10個であり、より好ましくは2〜5個であり、よりさらに好ましくは2〜3個である。
As an example of the protein described in the above (b), for example, (b ′) one or more amino acids are substituted, deleted, added, or inserted into the amino acid sequence shown in any one of SEQ ID NOs: 1 to 4. And a protein having a regulatory T cell differentiation-inducing activity.
In said (b '), a plurality is 2-20 pieces, for example, Preferably it is 2-10 pieces, More preferably, it is 2-5 pieces, More preferably, it is 2-3 pieces.

上記(b)及び(b’)に記載されるタンパク質において、変異は、保存的置換であることが好ましい。保存的置換とは、アミノ酸残基が類似の側鎖を有するアミノ酸残基に置換されることを意味する。   In the proteins described in (b) and (b ′) above, the mutation is preferably a conservative substitution. A conservative substitution means that an amino acid residue is replaced with an amino acid residue having a similar side chain.

例えば、リジン、アルギニン、ヒスチジンといった塩基性側鎖を有するアミノ酸残基同士で置換されることが、保存的な置換技術にあたる。その他、アスパラギン酸、グルタミン酸といった酸性側鎖を有するアミノ酸残基;グリシン、アスパラギン、グルタミン、セリン、スレオニン、チロシン、システインといった非帯電性極性側鎖を有するアミノ酸残基;アラニン、バリン、ロイシン、イソロイシン、プロリン、フェニルアラニン、メチオニン、トリプトファンといった非極性側鎖を有するアミノ酸残基;スレオニン、バリン、イソロイシンといったβ−分枝側鎖を有するアミノ酸残基、チロシン、フェニルアラニン、トリプトファン、ヒスチジンといった芳香族側鎖を有するアミノ酸残基同士での置換も同様に、保存的な置換にあたる。   For example, substitution with amino acid residues having basic side chains such as lysine, arginine, and histidine is a conservative substitution technique. In addition, amino acid residues having acidic side chains such as aspartic acid and glutamic acid; amino acid residues having non-charged polar side chains such as glycine, asparagine, glutamine, serine, threonine, tyrosine, and cysteine; alanine, valine, leucine, isoleucine, Amino acid residues with non-polar side chains such as proline, phenylalanine, methionine, and tryptophan; amino acid residues with β-branched side chains such as threonine, valine, and isoleucine, and aromatic side chains such as tyrosine, phenylalanine, tryptophan, and histidine Similarly, substitutions between amino acid residues are conservative substitutions.

GM−CSFの入手方法は特に限定はされず、公知の方法を採用すればよい。例えば、上述の配列を基にリコンビナントタンパクを作成してもよいし、市販されているものを用いてもよい。   The method for obtaining GM-CSF is not particularly limited, and a known method may be adopted. For example, a recombinant protein may be prepared based on the above sequence, or a commercially available product may be used.

2.GM−CSF抗体
GM−CSF抗体は、上記「1.GM−CSF」で説明したGM−CSFを認識する抗体である。斯かる抗体は、ポリクローナル抗体であっても、モノクローナル抗体であってもよく、これらの抗体を含む抗血清も本発明の抗体に含まれるが、好ましくはモノクローナル抗体であることができる。
2. GM-CSF antibody The GM-CSF antibody is an antibody that recognizes GM-CSF described in the above "1. GM-CSF". Such an antibody may be a polyclonal antibody or a monoclonal antibody, and an antiserum containing these antibodies is also included in the antibody of the present invention, and can preferably be a monoclonal antibody.

GM−CSF抗体の入手方法は特に限定はされず、上述のGM−CSFを基に、公知の方法を採用すれば、当業者であれば容易に本発明の抗体を入手することができる。または、市販されているものを用いてもよい。   The method for obtaining the GM-CSF antibody is not particularly limited, and those skilled in the art can easily obtain the antibody of the present invention by adopting a known method based on the above-mentioned GM-CSF. Or what is marketed may be used.

3.有効成分
本発明の分化誘導剤は、有効成分として、上述のGM−CSF及びGM−CSF抗体を含有する。
3. Active ingredient The differentiation-inducing agent of the present invention contains the above-mentioned GM-CSF and GM-CSF antibodies as active ingredients.

本発明の分化誘導剤は、制御性T細胞分化誘導能の観点から、GM−CSFとGM−CSF抗体との複合体を含んでいることが好ましい。この複合体を形成させる方法は特に限定されず、例えば通常の抗原抗体反応が起こる条件下でGM−CSFとGM−CSF抗体とを混合することにより、容易に複合体を形成させることができる。また、製剤時に複合体を形成していなくとも(例えばGM−CSF乾燥粉末とGM−CSF抗体乾燥粉末とが混合されている状態)、投与時に、溶媒と混合することにより、容易に複合体を形成させることができる。   The differentiation inducer of the present invention preferably contains a complex of GM-CSF and GM-CSF antibody from the viewpoint of regulatory T cell differentiation inducing ability. The method for forming this complex is not particularly limited. For example, the complex can be easily formed by mixing GM-CSF and GM-CSF antibody under conditions where a normal antigen-antibody reaction occurs. In addition, even if a complex is not formed at the time of formulation (for example, a state where GM-CSF dry powder and GM-CSF antibody dry powder are mixed), the complex can be easily formed by mixing with a solvent at the time of administration. Can be formed.

本発明の分化誘導剤中のGM−CSFの含有量としては、制御性T細胞の分化誘導が可能である限りにおいて特に限定されない。本発明の分化誘導剤中のGM−CSFの含有量は、例えば0.000001重量%以上、好ましくは0.00001〜10重量%、より好ましく0.0001〜1重量%であることができる。   The content of GM-CSF in the differentiation inducer of the present invention is not particularly limited as long as differentiation induction of regulatory T cells is possible. The content of GM-CSF in the differentiation inducer of the present invention can be, for example, 0.000001% by weight or more, preferably 0.00001 to 10% by weight, more preferably 0.0001 to 1% by weight.

本発明の分化誘導剤中のGM−CSF抗体の含有量としては、制御性T細胞の分化誘導が可能である限りにおいて特に限定されない。本発明の分化誘導剤中のGM−CSFの含有量は、例えば0.000005重量%以上、好ましくは0.00005〜20重量%、より好ましく0.0005〜5量%であることができる。   The content of the GM-CSF antibody in the differentiation inducer of the present invention is not particularly limited as long as differentiation of regulatory T cells can be induced. The content of GM-CSF in the differentiation inducer of the present invention can be, for example, 0.000005% by weight or more, preferably 0.00005 to 20% by weight, more preferably 0.0005 to 5% by weight.

本発明の分化誘導剤における、GM−CSF及びGM−CSF抗体の含有比は、制御性T細胞の分化誘導が可能である限りにおいて特に限定されない。例えば、GM−CSF1モルに対して、GM−CSF抗体が例えば0.01〜10モル、好ましくは0.1〜5モル、より好ましくは0.3〜2モル、よりさらに好ましくは0.3〜1モルであることができる。   The content ratio of the GM-CSF and GM-CSF antibody in the differentiation inducer of the present invention is not particularly limited as long as differentiation induction of regulatory T cells is possible. For example, with respect to 1 mol of GM-CSF, GM-CSF antibody is, for example, 0.01 to 10 mol, preferably 0.1 to 5 mol, more preferably 0.3 to 2 mol, and still more preferably 0.3 to It can be 1 mole.

4.他の成分、剤形、投与方法
本発明の分化誘導剤は、GM−CSF及びGM−CSF抗体のみからなるものであってもよいし、必要に応じて薬学的に許容される添加剤(以下、単に「添加剤」と表記することもある)を含む組成物であることもできる。
4). Other components, dosage form, administration method The differentiation-inducing agent of the present invention may consist only of GM-CSF and GM-CSF antibody, or a pharmaceutically acceptable additive (hereinafter referred to as “a pharmaceutically acceptable additive”). , Or simply “additive”).

添加剤としては、例えば基剤、担体、溶剤、分散剤、乳化剤、緩衝剤、安定剤、賦形剤、結合剤、崩壊剤、滑沢剤、増粘剤、保湿剤、着色料、香料、及びキレート剤等が挙げられる。本発明の開口剤が添加剤を含む場合は、剤形に応じた慣用の方法に従って添加剤を用いることにより、本発明の分化誘導剤を製造することができる。   Examples of the additive include a base, a carrier, a solvent, a dispersant, an emulsifier, a buffer, a stabilizer, an excipient, a binder, a disintegrant, a lubricant, a thickener, a moisturizer, a colorant, a fragrance, And chelating agents. When the opening agent of the present invention contains an additive, the differentiation inducer of the present invention can be produced by using the additive according to a conventional method according to the dosage form.

本発明の分化誘導剤は、任意の剤形、例えば錠剤、丸剤、散剤、液剤、注射剤、懸濁剤、乳剤、粉末剤、顆粒剤、カプセル剤等であることができる。   The differentiation-inducing agent of the present invention can be in any dosage form such as tablets, pills, powders, solutions, injections, suspensions, emulsions, powders, granules, capsules and the like.

本発明の分化誘導剤を生体に投与する場合、その投与経路は、特に限定されない。例えば、経口投与、経管栄養、注腸投与等の経腸投与; 経静脈投与、経動脈投与、筋肉内投与、心臓内投与、皮下投与、皮内投与、腹腔内投与等の非経口投与を採用することができる。これらの中でも、本発明の効果をより確実に発揮できるという観点からは、好ましくは非経口投与が挙げられる。   When the differentiation-inducing agent of the present invention is administered to a living body, the administration route is not particularly limited. For example, enteral administration such as oral administration, tube feeding, enema administration; parenteral administration such as intravenous administration, transarterial administration, intramuscular administration, intracardiac administration, subcutaneous administration, intradermal administration, intraperitoneal administration, etc. Can be adopted. Among these, parenteral administration is preferable from the viewpoint that the effects of the present invention can be more reliably exhibited.

本発明の分化誘導剤を生体に投与する場合、1日当りの投与量は、患者の状態及び医師の判断等に従って決定されるものであり、特に限定されないが、例えば体重60kgの成人に対して、有効成分(GM−CSF及びGM−CSF抗体)に換算して、1〜100mgを投与することができる。投与は、1日に、複数回(例えば2〜5回)に分けて行ってもよい。複数回投与する場合は、1日当りの投与量が上記量となるように、1回当たりの投与量を定めることができる。   When administering the differentiation-inducing agent of the present invention to a living body, the daily dose is determined according to the patient's condition and doctor's judgment, etc., and is not particularly limited. For example, for an adult weighing 60 kg, In terms of the active ingredient (GM-CSF and GM-CSF antibody), 1 to 100 mg can be administered. Administration may be divided into a plurality of times (for example, 2 to 5 times) per day. When administered multiple times, the dose per time can be determined so that the dose per day is the above amount.

5.用途
本発明の有効成分(GM−CSF及びGM−CSF抗体)は、免疫活性化に関与するT細胞を分化誘導及び/又は増殖させることなく、制御性T細胞を特異的に分化誘導及び/又は増殖させることができる。
5. Use The active ingredient of the present invention (GM-CSF and GM-CSF antibody) specifically induces differentiation and / or differentiation of regulatory T cells without inducing and / or proliferating T cells involved in immune activation. Can be propagated.

制御性T細胞は、免疫応答の抑制を司る細胞であることから、これを分化誘導及び/又は増殖できる本発明の分化誘導剤は、免疫抑制剤や、自己免疫疾患、GVHD、移植片拒絶反応等の予防及び/又は治療剤として用いることができる。また、制御性T細胞を分化誘導及び/又は増殖させることが、各種自己免疫疾患、GVHD等の予防や治療に有用であることは、各種報告されている(非特許文献5〜8)。   Since regulatory T cells are cells that control immune responses, the differentiation-inducing agents of the present invention that can induce and / or proliferate them are immunosuppressants, autoimmune diseases, GVHD, graft rejection It can be used as a preventive and / or therapeutic agent. In addition, various reports have been reported that the induction and / or proliferation of regulatory T cells is useful for the prevention and treatment of various autoimmune diseases, GVHD, and the like (Non-Patent Documents 5 to 8).

予防及び/又は治療対象の自己免疫疾患としては、特に限定されないが、例えば全身性エリテマトーデス、強皮症、多発動脈炎、重症筋無力症、多発性硬化症、自己免疫性甲状腺炎、1型糖尿病、関節リウマチ、シェーグレン症候群、皮膚筋炎、多発性筋炎、ANCA関連血管炎、高安病、ベーチェット病、成人still病、再発性多発性軟骨炎、IgA血管炎、IgG4関連疾患、混合性結合組織病、リウマチ性多発性筋痛症、抗リン脂質抗体症候群、強直性脊椎炎、川崎病、クローン病、潰瘍性大腸炎、尋常性乾癬、類天疱瘡、アトピー性皮膚炎、気管支喘息、原発性胆汁性肝硬変、原発性硬化性胆管炎、特発性間質性肺炎等が挙げられる。   The autoimmune disease to be prevented and / or treated is not particularly limited. For example, systemic lupus erythematosus, scleroderma, polyarteritis, myasthenia gravis, multiple sclerosis, autoimmune thyroiditis, type 1 diabetes Rheumatoid arthritis, Sjogren's syndrome, dermatomyositis, polymyositis, ANCA-related vasculitis, Takayasu disease, Behcet's disease, adult still disease, relapsing polychondritis, IgA vasculitis, IgG4-related disease, mixed connective tissue disease, Rheumatoid polymyalgia, antiphospholipid antibody syndrome, ankylosing spondylitis, Kawasaki disease, Crohn's disease, ulcerative colitis, psoriasis vulgaris, pemphigoid, atopic dermatitis, bronchial asthma, primary bile Examples include cirrhosis, primary sclerosing cholangitis, idiopathic interstitial pneumonia.

以下に、実施例に基づいて本発明を詳細に説明するが、本発明はこれらの実施例によって限定されるものではない。   EXAMPLES The present invention will be described in detail below based on examples, but the present invention is not limited to these examples.

試験例1.制御性T細胞数に与える影響の解析
表1に従い、各試験液(比較例1〜2及び実施例1〜3)を調製した。なお、実施例1〜3の試験液中では、GM−CSFとGM−CSF抗体とが複合体を形成していると予想される。各試験液200μLをマウス(C57BL/6 8〜12週齢)に腹腔内投与した。この投与は3日間連続で行った。投与されたマウスの数(n数)は、比較例1及び2並びに実施例1が「4」、実施例2及び3が「6」であった。
Test Example 1 Analysis of the effect on the number of regulatory T cells According to Table 1, each test solution (Comparative Examples 1-2 and Examples 1-3) was prepared. In the test solutions of Examples 1 to 3, GM-CSF and GM-CSF antibody are expected to form a complex. 200 μL of each test solution was intraperitoneally administered to mice (C57BL / 6 8-12 weeks old). This administration was performed for 3 consecutive days. The number of mice administered (n number) was “4” in Comparative Examples 1 and 2 and Example 1, and “6” in Examples 2 and 3.

Figure 0006490419
Figure 0006490419

初回投与日から4日後に、各マウスから脾臓を採取した。脾臓から、定法に従って細胞を抽出した。得られた細胞を標識された抗体(CD4抗体、CD8抗体、CD11b抗体、CD11c抗体、CD25抗体、FOXP3抗体、及びMHCclass II Iab抗体)を用いて、定法に従って免疫染色した。得られた脾臓細胞中の各細胞(表2)の割合、及び脾臓一個当たりの数を、FACS(BD FACSCantoII)解析により求めた。得られた割合より、細胞4及び5については、細胞3に占める割合も求めた。   Four days after the first administration day, spleens were collected from each mouse. Cells were extracted from the spleen according to a conventional method. The obtained cells were immunostained according to a conventional method using labeled antibodies (CD4 antibody, CD8 antibody, CD11b antibody, CD11c antibody, CD25 antibody, FOXP3 antibody, and MHCclass II Iab antibody). The ratio of each cell (Table 2) in the obtained spleen cells and the number per spleen were determined by FACS (BD FACSCantoII) analysis. From the obtained ratio, the ratio of the cells 4 and 5 to the cells 3 was also determined.

Figure 0006490419
Figure 0006490419

結果を箱髭図で表わしたものを図1〜5に示す。各図中、カラムから上方に伸びた髭の先端は100パーセンタイル値を示し、カラムの上端は75パーセンタイル値を示し、カラム中の横線は50パーセンタイル値(中央値)を示し、カラムの下端は25パーセンタイル値を示し、カラムから下方に伸びた髭の先端は0パーセンタイル値を示す。また、各図中、*は比較例2に対して有意差があった(両側スチューデントt検定により得られたP値が0.05未満であった)ことを示し、NSは有意差が無かったことを示す。図1は細胞1の結果を、図2は細胞2の結果を、図3は細胞3の結果を、図4は細胞4の結果を、図5は細胞5の結果を示す。各図において、左側は脾臓細胞中の割合(図4及び5は樹状細胞中の割合)を示し、右側は脾臓一個当たりの数を示す。   The results are shown in FIGS. In each figure, the tip of the ridge extending upward from the column indicates the 100th percentile value, the top of the column indicates the 75th percentile, the horizontal line in the column indicates the 50th percentile (median), and the bottom of the column indicates 25 This indicates the percentile value, and the tip of the ridge extending downward from the column indicates the 0th percentile value. In each figure, * indicates that there was a significant difference from Comparative Example 2 (P value obtained by two-sided student t-test was less than 0.05), and NS was not significant. It shows that. 1 shows the result of cell 1, FIG. 2 shows the result of cell 2, FIG. 3 shows the result of cell 3, FIG. 4 shows the result of cell 4, and FIG. In each figure, the left side shows the ratio in spleen cells (FIGS. 4 and 5 show the ratio in dendritic cells), and the right side shows the number per spleen.

図1に示されるように、実施例1〜3の試験液を投与した場合、制御性T細胞の割合及び数が有意に増加していた。一方で、図2に示されるように、実施例1〜3の試験液を投与しても、コンベンショナルT細胞、すなわち免疫活性化に働くと考えられるT細胞の割合及び数は増加していなかった。これらのことから、GM−CSFとGM−CSF抗体との複合体を投与することにより、制御性T細胞の分化誘導を特異的に引き起こせることが示唆された。   As shown in FIG. 1, when the test solutions of Examples 1 to 3 were administered, the ratio and number of regulatory T cells were significantly increased. On the other hand, as shown in FIG. 2, even when the test solutions of Examples 1 to 3 were administered, the ratio and number of conventional T cells, that is, T cells thought to act on immune activation, did not increase. . These results suggest that administration of a complex of GM-CSF and GM-CSF antibody can specifically induce differentiation of regulatory T cells.

また、図3及び4に示されるように、実施例1〜3の試験液を投与した場合、樹状細胞全体、及び制御性T細胞の分化誘導に関わっていると考えられる免疫抑制樹状細胞の割合及び数は優位に増加していた。一方で、実施例1〜3の試験液を投与しても、免疫活性化T細胞の割合及び数は増加していなかった。免疫活性化T細胞の割合については、寧ろ減少する傾向にあった。これらのことから、GM−CSFとGM−CSF抗体との複合体を投与することにより、まず免疫抑制樹状細胞が特異的に分化誘導され、続いてこの樹状細胞により制御性T細胞が分化誘導されていることが示唆された。   In addition, as shown in FIGS. 3 and 4, when the test solutions of Examples 1 to 3 are administered, the entire dendritic cells and immunosuppressed dendritic cells considered to be involved in induction of differentiation of regulatory T cells. The proportion and number of the increase increased. On the other hand, even when the test solutions of Examples 1 to 3 were administered, the ratio and number of immune activated T cells did not increase. The proportion of immune activated T cells tended to decrease rather. From these facts, administration of a complex of GM-CSF and a GM-CSF antibody first induces specific differentiation of immunosuppressed dendritic cells, and then differentiates regulatory T cells by the dendritic cells. It was suggested that it was induced.

試験例2.GVHDに与える影響の解析
マウス(BALB/c 8〜10週齢)に骨髄移植(同種異系移植、又は同種同系移植)を行った。同種異系移植したマウスについては、移植後14日目、15日目、及び16日目のそれぞれの日において、試験例1で調製した各試験液(比較例1〜2及び実施例1μLを腹腔内投与した。骨髄移植した各マウスについて、移植日から移植後50日目まで、脱毛を伴う皮膚損傷の有無及びその面積、並びに耳、尾、及び手における皮膚疾患(皮膚損傷又は皮膚落屑)の有無を評価し、評価結果に基づいてGVHDスコアを算出した。GVHDスコアは、脱毛を伴う皮膚損傷が無い場合を「0」、1cm未満の該皮膚損傷が有る場合を「1」、1〜2cmの該皮膚損傷が有る場合を「2」、2cmを超える該皮膚損傷が有る場合を「3」と評価し、さらに耳、尾、又は手における皮膚疾患がある場合は、各部位に皮膚疾患がある毎に「0.3」を追加して算出した(最低値=0、最高値=3.9)。
Test Example 2 Analysis of effects on GVHD Bone marrow transplantation (allogeneic or allogeneic transplantation) was performed on mice (BALB / c 8-10 weeks old). For allogeneic transplanted mice, each test solution prepared in Test Example 1 (Comparative Examples 1-2 and 1 μL of Example 1) was injected into the peritoneal cavity on the 14th, 15th, and 16th days after transplantation. For each bone marrow transplanted mouse, from the date of transplantation to the 50th day after transplantation, the presence or absence of skin damage with hair loss and its area, and skin diseases (skin damage or skin desquamation) in the ears, tail, and hands The presence or absence was evaluated, and a GVHD score was calculated based on the evaluation result, and the GVHD score was “0” when there was no skin damage accompanied with hair loss, “1” when there was less than 1 cm 2 , "2" if the skin injury 2 cm 2 is present, the case where the skin damage is there more than 2 cm 2 was evaluated as "3", further ear, tail, or when there is a skin disease in hand, to each part Every time there is a skin disease, .3 "was calculated by adding (minimum = 0, maximum value = 3.9).

GVHDスコアの平均値を図6に示す。図6中、横軸は骨髄移植(BMT)後の日数を示し、「GM-CSF IC」は実施例1の試験液を投与した群を示し、「GM-CSF」は比較例2の試験液を投与した群を示し、「PBS」は比較例1の試験液を投与した群を示し、「Syngeneic」は同種同系移植した群を示す。   The average value of the GVHD score is shown in FIG. In FIG. 6, the horizontal axis indicates the number of days after bone marrow transplantation (BMT), “GM-CSF IC” indicates the group administered with the test solution of Example 1, and “GM-CSF” indicates the test solution of Comparative Example 2. “PBS” indicates the group to which the test solution of Comparative Example 1 was administered, and “Syngeneic” indicates the allograft group.

図6に示されるように、実施例1の試験液を投与した場合は、コントロール(比較例1及び2)の試験液を投与した場合に比べて、GVHDスコアが低く抑えられていた。このことから、GM−CSFとGM−CSF抗体との複合体の投与がGVHDの予防及び/又は治療に有用であることが示唆された。   As shown in FIG. 6, when the test solution of Example 1 was administered, the GVHD score was suppressed lower than when the test solution of Control (Comparative Examples 1 and 2) was administered. This suggested that administration of a complex of GM-CSF and a GM-CSF antibody is useful for the prevention and / or treatment of GVHD.

Claims (6)

GM−CSF及びGM−CSF抗体を含有する、制御性T細胞分化誘導剤。 Regulatory T cell differentiation inducer containing GM-CSF and GM-CSF antibody. GM−CSFとGM−CSF抗体との複合体を含有する、請求項1に記載の分化誘導剤。 The differentiation inducer according to claim 1, comprising a complex of GM-CSF and a GM-CSF antibody. 制御性T細胞がFOXP3である、請求項1又は2に記載の分化誘導剤。 The differentiation inducer according to claim 1 or 2, wherein the regulatory T cells are FOXP3 + . GM−CSF抗体がモノクローナル抗体である、請求項1〜3のいずれかに記載の分化誘導剤。 The differentiation inducer according to any one of claims 1 to 3, wherein the GM-CSF antibody is a monoclonal antibody. 免疫抑制用である、請求項1〜4のいずれかに記載の分化誘導剤。 The differentiation inducer according to any one of claims 1 to 4, which is used for immunosuppression. 自己免疫疾患、移植片対宿主病(GVHD)、並びに移植片拒絶反応からなる群より選択される少なくとも1種の疾患の予防及び/又は治療用である、請求項1〜4のいずれかに記載の分化誘導剤。 It is for prevention and / or treatment of at least one disease selected from the group consisting of autoimmune disease, graft-versus-host disease (GVHD), and graft rejection. Differentiation inducer.
JP2014259820A 2014-12-24 2014-12-24 Regulatory T cell differentiation inducer Active JP6490419B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014259820A JP6490419B2 (en) 2014-12-24 2014-12-24 Regulatory T cell differentiation inducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014259820A JP6490419B2 (en) 2014-12-24 2014-12-24 Regulatory T cell differentiation inducer

Publications (2)

Publication Number Publication Date
JP2016117700A JP2016117700A (en) 2016-06-30
JP6490419B2 true JP6490419B2 (en) 2019-03-27

Family

ID=56242426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014259820A Active JP6490419B2 (en) 2014-12-24 2014-12-24 Regulatory T cell differentiation inducer

Country Status (1)

Country Link
JP (1) JP6490419B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11655293B2 (en) 2018-02-22 2023-05-23 Universitat Zurich Ligands to GM-CSF or GM-CSF-receptor for use in leukemia in a patient having undergone allo-HCT

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LT3620171T (en) * 2005-05-18 2022-06-10 Morphosys Ag Anti-gm-csf antibodies and uses therefor
JP4736037B2 (en) * 2005-10-26 2011-07-27 株式会社イーベック Human monoclonal antibody binding to human GM-CSF and antigen-binding portion thereof
EP2160407A4 (en) * 2007-05-23 2011-07-27 Crc For Asthma And Airways Ltd Neutralizing antibodies
RU2014136332A (en) * 2012-02-06 2016-03-27 Дженентек, Инк. COMPOSITIONS AND METHODS OF APPLICATION OF CSF1R INHIBITORS

Also Published As

Publication number Publication date
JP2016117700A (en) 2016-06-30

Similar Documents

Publication Publication Date Title
Gottschalk et al. TCR ligand density and affinity determine peripheral induction of Foxp3 in vivo
Price et al. The role of dendritic cell subsets and innate immunity in the pathogenesis of type 1 diabetes and other autoimmune diseases
Kang et al. Low-dose peptide tolerance therapy of lupus generates plasmacytoid dendritic cells that cause expansion of autoantigen-specific regulatory T cells and contraction of inflammatory Th17 cells
Phan et al. Immunization of patients with metastatic melanoma using both class I-and class II-restricted peptides from melanoma-associated antigens
Spiering et al. DEC205+ dendritic cell–targeted tolerogenic vaccination promotes immune tolerance in experimental autoimmune arthritis
Horst et al. Antigen presentation, autoantibody production, and therapeutic targets in autoimmune liver disease
Li et al. Nanoemulsions target to ectopic lymphoids in inflamed joints to restore immune tolerance in rheumatoid arthritis
Liu et al. The effect of the cholinergic anti-inflammatory pathway on collagen-induced arthritis involves the modulation of dendritic cell differentiation
Kitagawa et al. Preclinical development of a WT1 oral cancer vaccine using a bacterial vector to treat castration-resistant prostate cancer
JP2014516914A (en) Immunomodulatory compositions, methods and systems comprising immunogenic fragments of APOB100
Schifferli et al. Immunomodulation in primary immune thrombocytopenia: a possible role of the Fc fragment of romiplostim?
van Rhee et al. Donor leukocyte transfusions for leukemic relapse
Khalil et al. T cell studies in a peptide-induced model of systemic lupus erythematosus
Datta Harnessing tolerogenic histone peptide epitopes from nucleosomes for selective down-regulation of pathogenic autoimmune response in lupus (past, present, and future)
JP6490419B2 (en) Regulatory T cell differentiation inducer
Lykhopiy et al. IL-2 immunotherapy for targeting regulatory T cells in autoimmunity
US20230295265A1 (en) Pocket Engineering of HLA Alleles for Treating Autoimmunity
Consonni et al. a novel approach to reinstating Tolerance in experimental autoimmune Myasthenia gravis Using a Targeted Fusion Protein, mcTa1–T146
Wu et al. Protosappanin A protects against experimental autoimmune myocarditis, and induces metabolically reprogrammed tolerogenic DCs
Puentes et al. Immune modulation and prevention of autoimmune disease by repeated sequences from parasites linked to self antigens
McGrath Diverse roles of TIM4 in immune activation: Implications for alloimmunity
Kristiansen et al. Eltrombopag in good’s syndrome
Holmes et al. Multiple sclerosis: MHC associations and therapeutic implications
WO2015100150A1 (en) Oral administration of tocilizumab treatment of autoimmune disease
Lown et al. Acquired amegakaryocytic thrombocytopenia: potential role of thrombopoietin receptor agonists

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190227

R150 Certificate of patent or registration of utility model

Ref document number: 6490419

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250