JP6489315B2 - Method for producing cobalt powder - Google Patents

Method for producing cobalt powder Download PDF

Info

Publication number
JP6489315B2
JP6489315B2 JP2015134743A JP2015134743A JP6489315B2 JP 6489315 B2 JP6489315 B2 JP 6489315B2 JP 2015134743 A JP2015134743 A JP 2015134743A JP 2015134743 A JP2015134743 A JP 2015134743A JP 6489315 B2 JP6489315 B2 JP 6489315B2
Authority
JP
Japan
Prior art keywords
cobalt
powder
cobalt powder
seed crystal
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015134743A
Other languages
Japanese (ja)
Other versions
JP2017014593A (en
Inventor
龍馬 山隈
龍馬 山隈
佳智 尾崎
佳智 尾崎
高石 和幸
和幸 高石
伸一 平郡
伸一 平郡
修 池田
修 池田
陽平 工藤
陽平 工藤
安夫 土居
安夫 土居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2015134743A priority Critical patent/JP6489315B2/en
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to AU2016291485A priority patent/AU2016291485A1/en
Priority to PCT/JP2016/069030 priority patent/WO2017006795A1/en
Priority to CN201680039447.7A priority patent/CN107735199A/en
Priority to CA2990568A priority patent/CA2990568A1/en
Priority to EP16821264.5A priority patent/EP3321015A4/en
Priority to US15/738,244 priority patent/US20180169764A1/en
Publication of JP2017014593A publication Critical patent/JP2017014593A/en
Priority to PH12018500025A priority patent/PH12018500025A1/en
Application granted granted Critical
Publication of JP6489315B2 publication Critical patent/JP6489315B2/en
Priority to AU2019275612A priority patent/AU2019275612A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • B22F9/26Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions using gaseous reductors
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0407Leaching processes
    • C22B23/0415Leaching processes with acids or salt solutions except ammonium salts solutions
    • C22B23/043Sulfurated acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0407Leaching processes
    • C22B23/0446Leaching processes with an ammoniacal liquor or with a hydroxide of an alkali or alkaline-earth metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/15Nickel or cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Description

本発明は、硫酸コバルトアンミン錯体を含有する溶液から、コバルト粉を製造する際に高い反応効率を有するコバルト粉製造方法に関するもので、特に湿式コバルト製錬プロセスから発生する工程内の中間生成溶液の処理に適用できる。   The present invention relates to a method for producing cobalt powder having a high reaction efficiency when producing cobalt powder from a solution containing a cobalt sulfate ammine complex. Applicable to processing.

微小なコバルト粉を製造する方法として、溶融させたコバルトをガスまたは水中に分散させ微細粉を得るアトマイズ法や、特許文献1に開示されるコバルトを揮発させ、気相中で還元することでコバルト粉を得るCVD法などの乾式法が知られている。
また、湿式プロセスによりコバルト粉を製造する方法としては、特許文献2に開示される還元剤を用いて生成する方法や、特許文献3に開示される高温で還元雰囲気中にコバルト溶液を噴霧することにより、熱分解反応によりコバルト粉を得る噴霧熱分解法などがある。
As a method for producing a fine cobalt powder, an atomizing method in which molten cobalt is dispersed in gas or water to obtain a fine powder, or cobalt disclosed in Patent Document 1 is volatilized and reduced in a gas phase to thereby reduce cobalt. A dry method such as a CVD method for obtaining powder is known.
Moreover, as a method of producing cobalt powder by a wet process, a method of producing using a reducing agent disclosed in Patent Document 2 or a spraying of a cobalt solution in a reducing atmosphere at a high temperature disclosed in Patent Document 3 Thus, there is a spray pyrolysis method for obtaining cobalt powder by a pyrolysis reaction.

しかし、これらの方法は高価な試薬類や多量のエネルギーを必要とするため、経済的な方法とは言えない。   However, these methods are expensive because they require expensive reagents and a large amount of energy.

一方、非特許文献1に示されるような、硫酸コバルトアンミン錯体溶液に水素ガスを供給して錯体溶液中のコバルトイオンを還元してコバルト粉を得る方法は、工業的に安価であり有用である。けれども、この方法においては得られるコバルト粉粒子は粗大化しやすい問題があった。
特に、水溶液中から粒子を発生させ成長させようとする場合、種晶と呼ばれる微細な結晶を少量共存させ、そこに還元剤を供給し、種晶を成長させて所定の粒径の粉末を得る方法が用いられる。
On the other hand, as shown in Non-Patent Document 1, a method of supplying cobalt gas to a cobalt sulfate ammine complex solution to reduce cobalt ions in the complex solution to obtain cobalt powder is industrially inexpensive and useful. . However, in this method, there is a problem that the cobalt powder particles obtained are easily coarsened.
In particular, when generating and growing particles from an aqueous solution, a small amount of fine crystals called seed crystals coexist in a small amount, a reducing agent is supplied thereto, and seed crystals are grown to obtain a powder having a predetermined particle size. The method is used.

この方法では、用いる水溶液中のコバルト濃度や種晶の種類などによっては、高い反応効率を得ることができず、収率が減少するのでコスト増加につながる。
一般的にこのような場合、種晶の粒径を小さくし反応場を増やすことで反応効率を改善することが可能であるが、種晶の粒径を小さくするためには手間が生じ、また異種金属の種晶を使用する場合では、その種晶成分が残留することで製品の純度が低下するなどの問題が生じる。
In this method, depending on the cobalt concentration in the aqueous solution to be used, the type of seed crystal, etc., high reaction efficiency cannot be obtained, and the yield decreases, leading to an increase in cost.
Generally, in such a case, it is possible to improve the reaction efficiency by reducing the seed crystal particle size and increasing the reaction field, but it takes time and effort to reduce the seed crystal particle size. In the case of using a seed crystal of a dissimilar metal, there is a problem that the purity of the product is lowered by the seed crystal component remaining.

そのため、種晶として異種金属を用いず、且つ粒径が必ずしも小さい種晶を用いずに高い反応効率を有する方法が求められていた。   Therefore, there has been a demand for a method having high reaction efficiency without using a dissimilar metal as a seed crystal and without using a seed crystal having a small particle size.

特開2005−505695号公報JP-A-2005-505695 特許5407495号公報Japanese Patent No. 5407495 特許4286220号公報Japanese Patent No. 4286220

“The Manufacture and properties of Metal powder produced by the gaseous reduction of aqueous solutions”,Powder metallurgy,No.1/2(1958),PP40−52.“The Manufacture and properties of Metal powder produced by the gaseous reduction of aquatic solutions”, Powder metallurgy. 1/2 (1958), PP40-52.

このような状況の中で、本発明は、硫酸コバルトアンミン錯体を含有する溶液からコバルト粉を製造する際に種晶の添加量を制御することにより高い反応効率を得て、コバルト粉を製造する方法を提供するものである。   Under such circumstances, the present invention obtains high reaction efficiency by controlling the amount of seed crystals added when producing cobalt powder from a solution containing a cobalt sulfate ammine complex, and produces cobalt powder. A method is provided.

このような課題を解決するための、本発明の第1の発明は、コバルトおよびコバルト混合硫化物、粗硫酸コバルト、酸化コバルト、水酸化コバルト、炭酸コバルト、コバルト粉から選ばれる一種、または複数の混合物から成る工業中間物のコバルト含有物からのコバルト粉の製造方法であって、前記コバルト含有物をコバルト供給源とする、硫酸アンモニウム濃度が、10〜500g/Lの範囲である硫酸コバルトアンミン錯体を含有する溶液に、種晶として前記始液に含有されるコバルト量の1.5倍以上、3.0倍以下の量の平均粒径0.1〜5μmのコバルト粉末を加え、次いで加えた種晶量の1.5重量%〜3.0重量%の分散剤を加えて混合スラリーを形成する混合工程と、その混合スラリーを反応槽内に装入した後、150〜200℃の温度に昇温、保持した混合スラリー内に水素ガスを吹き込んで、前記反応槽内気相部の圧力を、1.0〜4.0MPaの範囲とし、その混合スラリーに含まれるコバルト錯イオンを還元して、種晶表面にコバルト析出物を形成する還元・析出工程を、順に経てコバルト粉を作製することを特徴とするコバルト粉の製造方法である。 In order to solve such a problem, the first invention of the present invention is one or more selected from cobalt and cobalt mixed sulfide, crude cobalt sulfate, cobalt oxide, cobalt hydroxide, cobalt carbonate, and cobalt powder. A method for producing cobalt powder from a cobalt-containing material of an industrial intermediate comprising a mixture, wherein a cobalt sulfate ammine complex having an ammonium sulfate concentration in the range of 10 to 500 g / L, using the cobalt-containing material as a cobalt source. To the solution contained , cobalt powder having an average particle size of 0.1 to 5 μm in an amount of 1.5 to 3.0 times the amount of cobalt contained in the starting solution as seed crystals was added, and then added seeds a mixing step of forming a 1.5% to 3.0% by weight of a dispersing agent were added and mixed slurry of Akiraryou, after charging the mixed slurry in the reaction vessel, 150-2 0 ℃ temperature raised of the retained mixed in the slurry by blowing hydrogen gas, the pressure of the reactor vapor phase part, a range of 1.0~4.0MPa, cobalt complex contained in the mixed slurry It is a method for producing cobalt powder, characterized in that the cobalt powder is produced through a reduction / precipitation step in which ions are reduced to form a cobalt precipitate on the seed crystal surface.

本発明の第2の発明は、第1の発明における硫酸コバルトアンミン錯体を含有する溶液中の硫酸アンモニウム濃度が、10〜500g/Lの範囲であることを特徴とするコバルト粉の製造方法である。   2nd invention of this invention is a manufacturing method of cobalt powder characterized by the ammonium sulfate density | concentration in the solution containing the cobalt sulfate ammine complex in 1st invention being the range of 10-500 g / L.

本発明の第3の発明は、第1及び第2の発明の還元工程における水素ガスを吹き込む際の混合スラリーの温度が、150〜200℃であることを特徴とするコバルト粉の製造方法である。   A third invention of the present invention is a method for producing cobalt powder, wherein the temperature of the mixed slurry when hydrogen gas is blown in the reduction step of the first and second inventions is 150 to 200 ° C. .

本発明の第4の発明は、第1から第3の発明の還元工程における水素ガスを吹き込む際の反応槽内気相部の圧力が、1.0〜4.0MPaの範囲であることを特徴とするコバルト粉の製造方法である。   The fourth invention of the present invention is characterized in that the pressure in the gas phase part in the reaction tank when hydrogen gas is blown in the reduction process of the first to third inventions is in the range of 1.0 to 4.0 MPa. It is a manufacturing method of cobalt powder made into.

本発明によれば、コバルトアンミン錯体溶液に分散剤を添加し、高温高圧下で水素還元してコバルト粉を製造する方法において、高い反応効率でコバルト粉を製造することが可能となる。   According to the present invention, a cobalt powder can be produced with high reaction efficiency in a method of producing a cobalt powder by adding a dispersant to a cobalt ammine complex solution and performing hydrogen reduction under high temperature and pressure.

本発明に係るコバルト粉の製造方法の製造フロー図である。It is a manufacturing flow figure of the manufacturing method of cobalt powder concerning the present invention. 実施例1で生成したコバルト粉の外観を示すSEM像である。2 is an SEM image showing an appearance of cobalt powder generated in Example 1. FIG.

本発明の高純度コバルト粉の製造方法は、オートクレーブなどの高圧容器を用いて硫酸コバルトアンミン錯体溶液に種晶を添加し、高温高圧で水素による還元処理をする加圧水素還元処理をする際に、種晶として始液コバルト量の1.5倍以上、10.0倍以下、好ましくは1.5倍以上、3.0倍以下の量、より好ましくは2.0倍のコバルト粉末を添加してコバルト粉を製造することを特徴とするコバルト粉の製造方法である。
以下、本発明のコバルト粉の製造方法を、図1に示す製造フロー図を参照して説明する。
The high purity cobalt powder production method of the present invention uses a high pressure vessel such as an autoclave to add a seed crystal to a cobalt sulfate ammine complex solution, and performs a hydrogen reduction treatment with hydrogen at a high temperature and high pressure. Add 1.5 times or more and 10.0 times or less, preferably 1.5 times or more and 3.0 times or less, more preferably 2.0 times as much cobalt powder as the seed solution cobalt amount. It is a manufacturing method of cobalt powder characterized by manufacturing cobalt powder.
Hereinafter, the manufacturing method of the cobalt powder of this invention is demonstrated with reference to the manufacturing flowchart shown in FIG.

[硫酸コバルトアンミン錯体溶液]
本発明に用いる硫酸コバルトアンミン錯体溶液は、特に限定はされないが、コバルトおよびコバルト混合硫化物、粗硫酸コバルト、酸化コバルト、水酸化コバルト、炭酸コバルト、コバルト粉などから選ばれる一種、または複数の混合物から成る工業中間物などのコバルト含有物を、硫酸あるいはアンモニアにより溶解して得られるコバルト浸出液(コバルトを含む溶液)を、溶媒抽出法、イオン交換法、中和などの浄液工程を施すことにより溶液中の不純物元素を除去して得られる溶液に、アンモニアを添加し、硫酸コバルトアンミン錯体溶液としたもの等が適し、コバルトはコバルト錯イオンの形で含まれている。
[Cobalt sulfate ammine complex solution]
The cobalt sulfate ammine complex solution used in the present invention is not particularly limited, but one or a mixture selected from cobalt and cobalt mixed sulfide, crude cobalt sulfate, cobalt oxide, cobalt hydroxide, cobalt carbonate, cobalt powder and the like. Cobalt leachate (solution containing cobalt) obtained by dissolving cobalt-containing materials such as industrial intermediates composed of sulfuric acid or ammonia, and subjecting it to liquid purification processes such as solvent extraction, ion exchange, and neutralization A solution obtained by removing the impurity elements in the solution and adding ammonia to form a cobalt ammine sulfate complex solution is suitable, and cobalt is contained in the form of cobalt complex ions.

[混合工程]
この工程では、上記で作製された硫酸コバルトアンミン錯体溶液に、種晶を添加し、その添加した種晶量に応じた分散剤を加えて混合スラリーとする。
ここで添加する種晶には、コバルトの粉末を用いる。
その種晶に用いるコバルトの粉末としては、市販品を用いても良いが、本発明の製造方法で得られた製品の一部を繰り返して用いることがより好ましい。
[Mixing process]
In this step, seed crystals are added to the cobalt sulfate ammine complex solution prepared above, and a dispersant according to the amount of the added seed crystals is added to obtain a mixed slurry.
Cobalt powder is used for the seed crystal added here.
As the cobalt powder used for the seed crystal, a commercial product may be used, but it is more preferable to use a part of the product obtained by the production method of the present invention repeatedly.

そのコバルト粉末の粒径は、0.1〜5μm程度の平均粒径となるものが好ましく、1μm前後のサイズで粒径がばらつかず揃っているものが特に好ましい。
細かすぎると反応で得られるコバルト粉が微細過ぎて取り扱いに難があり好ましくない。一方、大きすぎると撹拌時に沈降しやすく均一なコバルト粉が得難くなる問題がある。
The cobalt powder preferably has an average particle size of about 0.1 to 5 μm, and particularly preferably has a size of about 1 μm and a uniform particle size.
If it is too fine, the cobalt powder obtained by the reaction is too fine and difficult to handle, which is not preferable. On the other hand, if it is too large, there is a problem that it is easy to settle during stirring, and it becomes difficult to obtain uniform cobalt powder.

その添加量としては、反応効率を高く維持するために、元液に含有されるコバルト量の1.5倍以上、3.0倍以下の量、好ましくは2.0倍の量を添加することが好ましい。
添加量が1.5倍未満では、種晶の数が不足して反応する場が減少するので、高い反応効率を得ることができない。また。3.0倍を超えても反応効率は向上せず、手間やコストがかかりすぎる割に効率は向上しない。むしろ種晶の数が多すぎて得られるコバルト粉の成長が不十分で粒径が小さくなるので、製品として使用する際に、取扱いやハンドリングに手間が掛かるなどの使用上の問題が生じ易く、又溶けやすいあるいは酸化されやすいなどの特性上の問題が生じて好ましくない。
In order to keep the reaction efficiency high, the amount added is 1.5 times or more and 3.0 times or less, preferably 2.0 times the amount of cobalt contained in the original solution. Is preferred.
If the addition amount is less than 1.5 times, the number of seed crystals is insufficient and the reaction field decreases, so that high reaction efficiency cannot be obtained. Also. Even if it exceeds 3.0 times, the reaction efficiency is not improved, and the efficiency is not improved although it takes too much time and cost. On the contrary, the growth of cobalt powder obtained by too many seed crystals is insufficient and the particle size becomes small, so when using it as a product, problems such as handling and handling are likely to occur, In addition, it is not preferable because of problems in characteristics such as easy melting and oxidation.

さらに、添加する分散剤の量は、硫酸コバルトアンミン錯体溶液に添加した種晶量に対して1.5重量%以上、3.0重量%以下の範囲の濃度で含むことで、より添加された種晶が均一に分散され、所望のニッケル粉が得られやすいので望ましい。   Furthermore, the amount of the dispersant added is more added by including the concentration in the range of 1.5 wt% or more and 3.0 wt% or less with respect to the seed crystal amount added to the cobalt sulfate ammine complex solution. This is desirable because the seed crystals are uniformly dispersed and the desired nickel powder is easily obtained.

また、溶液中の硫酸アンモニウム濃度は10〜500g/Lの範囲とすることが好ましい。
500g/L以上では溶解度を超えてしまい結晶が析出する。その下限は、反応により硫酸アンモニウムが新たに生成するため、10g/L未満を達成するのは困難である。
The ammonium sulfate concentration in the solution is preferably in the range of 10 to 500 g / L.
If it is 500 g / L or more, the solubility is exceeded and crystals are deposited. The lower limit is difficult to achieve less than 10 g / L because ammonium sulfate is newly generated by the reaction.

[還元・析出工程]
次に、前工程において種晶を添加したスラリーを、耐高圧高温容器の反応槽内に装入し、その反応槽内に貯留されたスラリー内に水素ガスを吹き込み、そのスラリー中のコバルト錯イオンを還元し、含まれる種晶上にコバルトを析出させる。
[Reduction / precipitation process]
Next, the slurry added with seed crystals in the previous step is charged into a reaction vessel of a high pressure resistant high temperature vessel, and hydrogen gas is blown into the slurry stored in the reaction vessel, and cobalt complex ions in the slurry are added. To deposit cobalt on the contained seed crystals.

このときの混合スラリーの温度、即ち反応温度は、150〜200℃の範囲が好ましい。150℃未満では還元効率が低下し、200℃以上にしても反応への影響はなく、むしろ熱エネルギー等のロスが増加するので適さない。   The temperature of the mixed slurry at this time, that is, the reaction temperature is preferably in the range of 150 to 200 ° C. If it is less than 150 degreeC, reduction efficiency will fall, and even if it is 200 degreeC or more, there is no influence on reaction, rather, since loss, such as a heat energy, increases, it is not suitable.

さらに、反応時における反応槽内気相部(反応槽に溶液を貯留した後に残った反応槽内の空間部を指す)の圧力は、水素ガスの供給量を制御して1.0〜4.0MPaの範囲に維持することが好ましい。圧力が1.0MPa未満では反応効率が低下し好ましくない。また、4.0MPaを超えても反応効率への影響はなく、水素ガスのロスが増加する。
なお、水素ガスの混合スラリー内への吹き込みは、この反応槽内の液内に直接吹き込んでも、あるいは気相部に吹き込んでもスラリー中のコバルト錯イオンを還元できる。
Furthermore, the pressure of the gas phase part in the reaction tank at the time of reaction (referring to the space part in the reaction tank remaining after storing the solution in the reaction tank) controls the supply amount of hydrogen gas to 1.0 to 4. It is preferable to maintain in the range of 0 MPa. If the pressure is less than 1.0 MPa, the reaction efficiency is lowered, which is not preferable. Moreover, even if it exceeds 4.0 Mpa, there is no influence on reaction efficiency and the loss of hydrogen gas increases.
In addition, blowing hydrogen gas into the mixed slurry can reduce cobalt complex ions in the slurry by blowing directly into the liquid in the reaction tank or blowing into the gas phase portion.

本発明の還元・析出処理によって、種晶上にコバルトの析出物が形成され、微細な粉状のコバルトの析出物として溶液に含まれるコバルトを回収し、繰り返し使用できる。   By the reduction / precipitation treatment of the present invention, a cobalt precipitate is formed on the seed crystal, and the cobalt contained in the solution can be recovered and used repeatedly as a fine powdery cobalt precipitate.

以上のようにして種晶として使用できる微細な粉状のコバルト粉末の種晶を作製し、水素還元を繰り返すことにより、その種晶表面にコバルトの析出物を設けた粒子を形成し、その粒子を成長させて高純度のコバルトメタルを製造することができる。   By preparing a seed crystal of fine powdery cobalt powder that can be used as a seed crystal as described above and repeating hydrogen reduction, particles having cobalt precipitates formed on the seed crystal surface are formed. Can be grown to produce high purity cobalt metal.

以下に本発明を、実施例を用いて説明する。   Hereinafter, the present invention will be described with reference to examples.

[混合工程]
コバルト75gを含む硫酸コバルト溶液に硫酸アンモニウム465gを添加し、さらに25%アンモニア水を191ml添加した溶液を元液とし、これに種晶として、0.1〜5μm程度の平均粒径のコバルト粉を元液の2.0倍量となる150g添加し、さらに分散剤として40wt%ポリアクリル酸を種晶量に対して2.0重量%となる量を加え、さらに液量が1000mlになるように調整して、種晶を含んだ硫酸コバルトアンミン錯体を含有する混合スラリーを作製した。
[Mixing process]
A solution obtained by adding 465 g of ammonium sulfate to a cobalt sulfate solution containing 75 g of cobalt and further adding 191 ml of 25% ammonia water is used as a base solution, and as a seed crystal, cobalt powder having an average particle diameter of about 0.1 to 5 μm is used as a base solution. Add 150g, which is 2.0 times the amount of the liquid, and add 40wt% polyacrylic acid as a dispersant to the amount of 2.0% by weight of the seed crystal, and adjust the liquid volume to 1000ml. Thus, a mixed slurry containing a cobalt sulfate ammine complex containing seed crystals was produced.

[還元・析出工程]
次いで、その混合スラリーを、オートクレーブの内筒缶内に装入し、密閉して撹拌しながら185℃に昇温し、保持した状態となってから、混合スラリー中に水素ガスを吹き込み、オートクレーブの内筒缶内の圧力を3.5MPaに維持するように水素ガスをボンベから供給した。
水素ガスの供給から60分が経過した後に水素ガスの供給を停止し、内筒缶を冷却した。
[Reduction / precipitation process]
Next, the mixed slurry was charged into an inner cylinder can of the autoclave, sealed and heated to 185 ° C. while being stirred, and after being held, hydrogen gas was blown into the mixed slurry, Hydrogen gas was supplied from the cylinder so as to maintain the pressure in the inner cylinder can at 3.5 MPa.
After 60 minutes had passed since the supply of hydrogen gas, the supply of hydrogen gas was stopped and the inner cylinder can was cooled.

冷却後、内筒缶内の混合スラリーを濾過し回収したコバルト粉を電子顕微鏡(SEM)を用いて観察したところ、図2に示すように微細なコバルト粉が生成していることを確認した。
また、回収できたコバルトの物量から種晶の量を引いたコバルト析出量を、元液に含有したコバルト量で割って求めたコバルト粉の生成反応率すなわち還元生成率は、72%となった。
After cooling, the cobalt slurry collected by filtering the mixed slurry in the inner cylinder can was observed using an electron microscope (SEM), and it was confirmed that fine cobalt powder was produced as shown in FIG.
Further, the cobalt powder production reaction rate obtained by subtracting the amount of precipitated cobalt obtained by subtracting the amount of seed crystals from the amount of cobalt recovered by the amount of cobalt contained in the original solution, that is, the reduction production rate was 72%. .

(比較例1)
上記実施例1と同様な条件と方法でコバルトを含有する元液を作製し、この元液に種晶としてコバルト粉を元液の1.0倍量となる75gを添加し、液量が1000mlになるように調整して比較例1に係る混合スラリーを作製した。次に、その作製した溶液を、オートクレーブの内筒缶内に装入後、撹拌しながら185℃に昇温、保持した状態で、水素ガスを吹き込み、オートクレーブの内筒缶内の圧力を3.5MPaに維持するように水素ガスを供給した。
水素ガスの供給から60分が経過した後に水素ガスの供給を停止し、内筒缶を冷却した。
(Comparative Example 1)
A base solution containing cobalt was prepared under the same conditions and method as in Example 1 above, 75 g of cobalt powder as a seed crystal was added 1.0 g of the original solution as a seed crystal, and the liquid volume was 1000 ml. Thus, a mixed slurry according to Comparative Example 1 was prepared. Next, after charging the prepared solution into the inner cylinder can of the autoclave, hydrogen gas was blown in the state where the temperature was raised and maintained at 185 ° C. while stirring, and the pressure in the inner cylinder can of the autoclave was changed to 3. Hydrogen gas was supplied to maintain the pressure at 5 MPa.
After 60 minutes had passed since the supply of hydrogen gas, the supply of hydrogen gas was stopped and the inner cylinder can was cooled.

冷却後、内筒缶内の溶液を濾過すると、微細なコバルト粉が生成していた。
しかし、コバルト粉の生成反応率は36%にとどまり、本発明の実施例1ほど高い効率は得られなかった。
After cooling, when the solution in the inner cylinder can was filtered, fine cobalt powder was generated.
However, the production reaction rate of cobalt powder was only 36%, and the efficiency as high as Example 1 of the present invention was not obtained.

Claims (4)

コバルトおよびコバルト混合硫化物、粗硫酸コバルト、酸化コバルト、水酸化コバルト、炭酸コバルト、コバルト粉から選ばれる一種、または複数の混合物から成る工業中間物のコバルト含有物からのコバルト粉の製造方法であって、
前記コバルト含有物をコバルト供給源とする、硫酸アンモニウム濃度が、10〜500g/Lの範囲である硫酸コバルトアンミン錯体を含有する溶液に、種晶として前記溶液に含有するコバルト量の1.5倍以上、3.0倍以下の量の平均粒径0.1〜5μmのコバルト粉末を加え、次いで加えた種晶量の1.5重量%〜3.0重量%の分散剤を加えて混合スラリーを形成する混合工程と、
前記混合スラリーを反応槽内に装入した後、150〜200℃の温度に昇温、保持した混合スラリー内に水素ガスを吹き込んで、前記反応槽内気相部の圧力を、1.0〜4.0MPaの範囲とし、前記混合スラリーに含まれるコバルト錯イオンを還元して、前記種晶表面にコバルト析出物を形成する還元・析出工程を、
順に経てコバルト粉を作製することを特徴とするコバルト粉の製造方法。
A method for producing cobalt powder from cobalt-containing industrial intermediates consisting of one or a mixture selected from cobalt and cobalt mixed sulfide, crude cobalt sulfate, cobalt oxide, cobalt hydroxide, cobalt carbonate, cobalt powder. And
1.5 times or more the amount of cobalt contained in the solution as a seed crystal in a solution containing a cobalt sulfate ammine complex whose ammonium sulfate concentration is in the range of 10 to 500 g / L using the cobalt-containing material as a cobalt supply source Add cobalt powder with an average particle size of 0.1 to 5 μm in an amount of 3.0 times or less, and then add 1.5% to 3.0% by weight of the added seed crystal with a dispersing slurry. A mixing step to form;
After charging the mixed slurry into the reaction tank, hydrogen gas was blown into the mixed slurry heated to and maintained at a temperature of 150 to 200 ° C., and the pressure in the gas phase in the reaction tank was adjusted to 1.0 to A reduction / precipitation step of reducing the cobalt complex ions contained in the mixed slurry to form cobalt precipitates on the surface of the seed crystal, with a range of 4.0 MPa .
A method for producing cobalt powder, characterized in that cobalt powder is produced in order.
前記硫酸コバルトアンミン錯体を含有する溶液中の硫酸アンモニウム濃度が、10〜500g/Lの範囲であることを特徴とする請求項1に記載のコバルト粉の製造方法。   The method for producing cobalt powder according to claim 1, wherein the ammonium sulfate concentration in the solution containing the cobalt sulfate ammine complex is in the range of 10 to 500 g / L. 前記還元工程における水素ガスを吹き込む際の混合スラリーの温度が、150〜200℃であることを特徴とする請求項1又は2に記載のコバルト粉の製造方法。   The method for producing cobalt powder according to claim 1 or 2, wherein the temperature of the mixed slurry when hydrogen gas is blown in the reduction step is 150 to 200 ° C. 前記還元工程における水素ガスを吹き込む際の反応槽内気相部の圧力が、1.0〜4.0MPaの範囲であることを特徴とする請求項1〜3のいずれか1項に記載のコバルト粉の製造方法。   Cobalt according to any one of claims 1 to 3, wherein the pressure in the gas phase portion in the reaction tank when hydrogen gas is blown in the reduction step is in the range of 1.0 to 4.0 MPa. Powder manufacturing method.
JP2015134743A 2015-07-03 2015-07-03 Method for producing cobalt powder Active JP6489315B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2015134743A JP6489315B2 (en) 2015-07-03 2015-07-03 Method for producing cobalt powder
PCT/JP2016/069030 WO2017006795A1 (en) 2015-07-03 2016-06-27 Method for producing cobalt powder
CN201680039447.7A CN107735199A (en) 2015-07-03 2016-06-27 The manufacture method of cobalt powder
CA2990568A CA2990568A1 (en) 2015-07-03 2016-06-27 Method for producing cobalt powder
AU2016291485A AU2016291485A1 (en) 2015-07-03 2016-06-27 Method for producing cobalt powder
EP16821264.5A EP3321015A4 (en) 2015-07-03 2016-06-27 Method for producing cobalt powder
US15/738,244 US20180169764A1 (en) 2015-07-03 2016-06-27 Method for producing cobalt powder
PH12018500025A PH12018500025A1 (en) 2015-07-03 2018-01-03 Method for producing cobalt powder
AU2019275612A AU2019275612A1 (en) 2015-07-03 2019-12-05 Method for producing cobalt powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015134743A JP6489315B2 (en) 2015-07-03 2015-07-03 Method for producing cobalt powder

Publications (2)

Publication Number Publication Date
JP2017014593A JP2017014593A (en) 2017-01-19
JP6489315B2 true JP6489315B2 (en) 2019-03-27

Family

ID=57685569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015134743A Active JP6489315B2 (en) 2015-07-03 2015-07-03 Method for producing cobalt powder

Country Status (8)

Country Link
US (1) US20180169764A1 (en)
EP (1) EP3321015A4 (en)
JP (1) JP6489315B2 (en)
CN (1) CN107735199A (en)
AU (2) AU2016291485A1 (en)
CA (1) CA2990568A1 (en)
PH (1) PH12018500025A1 (en)
WO (1) WO2017006795A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3527306A1 (en) * 2018-02-14 2019-08-21 H.C. Starck Tungsten GmbH Powder comprising coated hard particles
CN113292106B (en) * 2020-02-24 2023-07-25 荆门市格林美新材料有限公司 Three-time calcination preparation method of large-particle-size aluminum-doped cobaltosic oxide
CN112195350A (en) * 2020-08-19 2021-01-08 衢州华友钴新材料有限公司 Preparation method of coarse particle cobalt cluster
CN112371990A (en) * 2020-10-22 2021-02-19 宁波互邦新材料有限公司 Preparation process of ammoniation-free metal cobalt powder
CN113500203A (en) * 2021-06-23 2021-10-15 安徽寒锐新材料有限公司 Preparation process of nano cobalt powder
CN116197405A (en) * 2022-11-21 2023-06-02 安徽寒锐新材料有限公司 Preparation method of superfine cobalt powder, superfine cobalt powder and pilot-scale production line

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3775098A (en) * 1971-12-27 1973-11-27 Sherritt Gordon Mines Ltd Cobalt precipitation from aqueous solutions
GB1436595A (en) * 1973-03-30 1976-05-19 Sherritt Gordon Mines Ltd Process for the production of finely divided cobalt powders
CA1151881A (en) * 1980-08-21 1983-08-16 Eric A. Devuyst Cobalt metal powder by hydrogen reduction
US4545814A (en) * 1984-05-23 1985-10-08 Amax Inc. Production of cobalt and nickel powder
US5246481A (en) * 1992-10-26 1993-09-21 Sherritt Gordon Limited Production of metallic powder
CN1297364C (en) * 2005-05-18 2007-01-31 北京科技大学 Precipitation reduction method of preparing nano-cobalt powder
CN101428349B (en) * 2008-07-29 2011-06-22 张建玲 Method for producing nickel-cobalt metal powder

Also Published As

Publication number Publication date
PH12018500025A1 (en) 2018-07-09
AU2016291485A1 (en) 2018-01-18
WO2017006795A1 (en) 2017-01-12
CA2990568A1 (en) 2017-01-12
CN107735199A (en) 2018-02-23
EP3321015A1 (en) 2018-05-16
US20180169764A1 (en) 2018-06-21
JP2017014593A (en) 2017-01-19
AU2019275612A1 (en) 2020-01-02
EP3321015A4 (en) 2019-03-20

Similar Documents

Publication Publication Date Title
JP6489315B2 (en) Method for producing cobalt powder
JP6099601B2 (en) Method for producing nickel powder
JP2015140480A (en) Method for manufacturing nickel powder
JP2015166488A5 (en)
JP5811376B2 (en) Method for producing seed crystal used for producing hydrogen reduced nickel powder
WO2016117138A1 (en) Method for producing nickel powder
JP6816755B2 (en) Nickel powder manufacturing method
JP5796696B1 (en) Method for producing nickel powder
JP6241617B2 (en) Method for producing cobalt powder
WO2017073392A1 (en) Method for producing seed crystal of cobalt powder
JP5881091B2 (en) Method for producing nickel powder
JP6641632B2 (en) Nickel powder manufacturing method
JP2017155253A (en) Production method of nickel powder
JP2017155319A5 (en)
WO2017150105A1 (en) Nickel powder production method
JP7272761B2 (en) Nickel powder manufacturing method
JP2017155265A5 (en)
JP2018154883A (en) Method for producing a nickel powder
JP2018145510A (en) Nickel powder production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190212

R150 Certificate of patent or registration of utility model

Ref document number: 6489315

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150