JP6485369B2 - Anchor coating agent - Google Patents

Anchor coating agent Download PDF

Info

Publication number
JP6485369B2
JP6485369B2 JP2016005208A JP2016005208A JP6485369B2 JP 6485369 B2 JP6485369 B2 JP 6485369B2 JP 2016005208 A JP2016005208 A JP 2016005208A JP 2016005208 A JP2016005208 A JP 2016005208A JP 6485369 B2 JP6485369 B2 JP 6485369B2
Authority
JP
Japan
Prior art keywords
solution
parts
resin
coating agent
anchor coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016005208A
Other languages
Japanese (ja)
Other versions
JP2017125131A (en
Inventor
山口 浩史
浩史 山口
紘平 直江
紘平 直江
渉 小清水
渉 小清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Ink SC Holdings Co Ltd
Toyochem Co Ltd
Original Assignee
Toyo Ink SC Holdings Co Ltd
Toyochem Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink SC Holdings Co Ltd, Toyochem Co Ltd filed Critical Toyo Ink SC Holdings Co Ltd
Priority to JP2016005208A priority Critical patent/JP6485369B2/en
Priority to CN201710019687.7A priority patent/CN106967377B/en
Publication of JP2017125131A publication Critical patent/JP2017125131A/en
Application granted granted Critical
Publication of JP6485369B2 publication Critical patent/JP6485369B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/04Homopolymers or copolymers of esters
    • C09J133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09J133/10Homopolymers or copolymers of methacrylic acid esters
    • C09J133/12Homopolymers or copolymers of methyl methacrylate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/04Homopolymers or copolymers of esters
    • C09J133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09J133/10Homopolymers or copolymers of methacrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/04Homopolymers or copolymers of esters
    • C09J133/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes
    • C09J175/06Polyurethanes from polyesters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0481Encapsulation of modules characterised by the composition of the encapsulation material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Paints Or Removers (AREA)
  • Laminated Bodies (AREA)
  • Adhesive Tapes (AREA)
  • Photovoltaic Devices (AREA)

Description

本発明は、太陽電池モジュール等の作製に使用するアンカーコート剤に関する。   The present invention relates to an anchor coating agent used for producing a solar cell module or the like.

近年、クリーンエネルギーとして注目されている太陽電池(太陽光発電)は、太陽電池素子の両面に封止材および保護材を備えた太陽電モジュールとして構成されている。前記保護材の代表的な例としてはガラス板や太陽電池保護シート(以下「保護シート」ともいう)等が挙げられる。ガラス板は、透明性、耐候性、耐擦傷性に非常に優れるが、コストや安全性、加工性の面に問題がある。一方、保護シートは、コストや安全性、加工性の面に優れるため、様々な態様の保護シートが提案されている(例えば、特許文献1)。また、封止材は、透明性が高く、耐湿性が優れているエチレン−酢酸ビニル共重合体(Ethylene−Vinyl Acetate copolymer、以下「EVA」という)が通常用いられている。   2. Description of the Related Art In recent years, solar cells (solar power generation) that have attracted attention as clean energy are configured as solar power modules that include a sealing material and a protective material on both sides of a solar cell element. Typical examples of the protective material include a glass plate and a solar cell protective sheet (hereinafter also referred to as “protective sheet”). A glass plate is very excellent in transparency, weather resistance, and scratch resistance, but has problems in cost, safety, and workability. On the other hand, since the protective sheet is excellent in terms of cost, safety, and workability, various types of protective sheets have been proposed (for example, Patent Document 1). As the sealing material, an ethylene-vinyl acetate copolymer (hereinafter referred to as “EVA”), which is highly transparent and excellent in moisture resistance, is usually used.

保護シートには、様々な性能が求められており、その中でも封止材との剥離強度、およびその剥離強度を保つ接着耐久性は重要な性能である。保護シートは、封止材との剥離強度が不十分であると、保護シートが剥がれ、太陽電池素子を水分や外的要因から保護できなくなり、太陽電池の出力が劣化してしまう。
封止材との剥離強度を確保する方法として、(1)保護シートの封止材と接する面にアンカーコート剤を塗布する方法や、(2)保護シートの封止材と接する面に、封止材との剥離強度の高いフィルムを使用する方法が挙げられるが、コストや効率の観点から近年では上記(1)の方法が注目されている。
アンカーコート剤としてはさまざまな種類が知られており、例えば特許文献2には、側鎖の末端にエチレン性不飽和二重結合を有するビニル系重合体を含むアンカーコート剤が開示されている。
Various performances are required for the protective sheet, and among them, the peel strength from the sealing material and the adhesion durability for maintaining the peel strength are important performances. If the protective sheet has insufficient peel strength from the sealing material, the protective sheet is peeled off, the solar cell element cannot be protected from moisture and external factors, and the output of the solar cell is deteriorated.
As a method of ensuring the peel strength with the sealing material, (1) a method of applying an anchor coating agent to the surface of the protective sheet in contact with the sealing material, or (2) a surface of the protective sheet in contact with the sealing material Although the method of using a film with high peeling strength with a stopping material is mentioned, the method of said (1) attracts attention in recent years from a viewpoint of cost or efficiency.
Various types of anchor coating agents are known. For example, Patent Document 2 discloses an anchor coating agent containing a vinyl polymer having an ethylenically unsaturated double bond at the end of a side chain.

特開2004−200322Japanese Patent Application Laid-Open No. 2004-200322 特開2013−071948JP2013-071948A

しかし、従来のアンカーコート剤は、エチレン性不飽和二重結合が存在するため、光や熱等の環境に不安定で、保管中に液体の増粘、ゲル化、着色等の劣化が生じたり、アンカーコート剤を塗布して樹脂層を形成した後も光や熱によって変性し剥離強度が低下したりする問題があったため、重合禁止剤を配合することで対処していたが、光反応性が低下する問題があった。   However, conventional anchor coating agents contain ethylenically unsaturated double bonds, so they are unstable in the environment such as light and heat, and may deteriorate during storage such as thickening, gelling, and coloring. Even after the anchor coat agent was applied and the resin layer was formed, there was a problem that it was denatured by light and heat and the peel strength was lowered, so it was dealt with by adding a polymerization inhibitor, but it was photoreactive There was a problem that decreased.

本発明は、保存安定性に優れ、基材や被着体との剥離強度に優れるアンカーコート剤の提供を目的とする。   An object of this invention is to provide the anchor coating agent which is excellent in storage stability and excellent in peeling strength with a base material or a to-be-adhered body.

本発明のアンカーコート剤は、複素環含有樹脂(A)と、硬化剤(B)とを含み、前記複素環が炭素−炭素二重結合を有する。   The anchor coating agent of the present invention includes a heterocyclic ring-containing resin (A) and a curing agent (B), and the heterocyclic ring has a carbon-carbon double bond.

また、本発明は基材と上記アンカーコート剤を含む樹脂層を備えた塗工物に関する。   The present invention also relates to a coated product comprising a substrate and a resin layer containing the anchor coating agent.

上記の本発明によると本発明のアンカーコート剤は、複素環内に炭素−炭素二重結合を有する複素環含有樹脂(A)を含むことで、保存安定性が向上し、アンカーコート剤を塗布する基材、その基材と密着させる被着体との剥離強度が向上する効果が得られた。   According to the present invention, the anchor coating agent of the present invention includes a heterocyclic ring-containing resin (A) having a carbon-carbon double bond in the heterocyclic ring, so that the storage stability is improved and the anchor coating agent is applied. The effect of improving the peel strength between the substrate to be bonded and the adherend to be adhered to the substrate was obtained.

本発明により保存安定性に優れ、基材や被着体との剥離強度に優れるアンカーコート剤を提供できる。   According to the present invention, an anchor coating agent having excellent storage stability and excellent peel strength with respect to a substrate or an adherend can be provided.

太陽電池用モジュールの断面図。Sectional drawing of the module for solar cells.

本明細書において「フィルム」や「シート」は、厚みによって区別されないものとする。換言すると、本明細書の「シート」は、厚みの薄いフィルム状のものも含まれ、本明細書の「フィルム」は、厚みのあるシート状のものも含まれるものとする。
また、本明細書において、「(メタ)アクリル系共重合体」は、「アクリル系共重合体」、「メタクリル系共重合体」、「アクリル系−メタクリル系共重合体」を包含する意であり、「(メタ)アクリロイル」は、「アクリロイル」、「メタクリロイル」を包含する意であり、「(メタ)アクリル」は、「アクリル」「メタクリル」を包含する意である。また、被着体は、樹脂層が形成された基材を貼り合わせる相手方をいう。
In this specification, “film” and “sheet” are not distinguished by thickness. In other words, the “sheet” in this specification includes a thin film-like material, and the “film” in this specification includes a thick sheet-like material.
Further, in this specification, “(meth) acrylic copolymer” includes “acrylic copolymer”, “methacrylic copolymer”, and “acrylic-methacrylic copolymer”. Yes, “(meth) acryloyl” means “acryloyl” and “methacryloyl”, and “(meth) acryl” means “acryl” and “methacryl”. Further, the adherend refers to a counterpart to which the base material on which the resin layer is formed is bonded.

本発明のアンカーコート剤は、複素環含有樹脂(A)と、硬化剤(B)とを含み、前記複素環が炭素−炭素二重結合を有する。アンカーコート剤は、基材上に塗工して樹脂層を形成する。そして、樹脂層付基材は、被着体と貼り合わせることで高い剥離強度が得られる。被着体は、各種プラスチック素材が好ましいところ、太陽電池封止材に用いられるEVAやポリオレフィンフィルムであることが好ましい。   The anchor coating agent of the present invention includes a heterocyclic ring-containing resin (A) and a curing agent (B), and the heterocyclic ring has a carbon-carbon double bond. The anchor coating agent is applied onto the substrate to form a resin layer. And a base material with a resin layer can obtain high peeling strength by bonding with an adherend. The adherend is preferably various plastic materials, and is preferably EVA or a polyolefin film used for a solar cell encapsulant.

本発明で用いる複素環含有樹脂(A)(以下「樹脂(A)」という。)は、複素環を有する樹脂であり、複素環内に炭素−炭素二重結合を有する樹脂である。樹脂(A)と硬化剤を配合したアンカーコート剤は、被着体と加熱圧着する際にラジカル架橋する被着体(例えば、太陽電池封止材のEVAシート)との剥離強度に優れることに加え、保存安定性にも優れるという驚くべき効果を有する。   The heterocyclic ring-containing resin (A) used in the present invention (hereinafter referred to as “resin (A)”) is a resin having a heterocyclic ring and a resin having a carbon-carbon double bond in the heterocyclic ring. An anchor coating agent containing a resin (A) and a curing agent is excellent in peel strength from an adherend (for example, an EVA sheet of a solar cell sealing material) that undergoes radical crosslinking when thermobonding with the adherend. In addition, it has a surprising effect of excellent storage stability.

本発明のアンカーコート剤が被着体との剥離強度と保存安定性を両立できる要因は、樹脂(A)の、環内に炭素−炭素二重結合を有する複素環(ヘテロ環ともいう)は、従来のエチレン性不飽和二重結合と比較して反応性が低いため、保管時に光や熱などによって増粘や、ゲル化することが少ない。一方、環内に炭素−炭素二重結合を有する複素環は、ラジカル架橋性を有するため前記EVAシートのようなラジカル架橋性の被着体とは十分に反応して良好な剥離強度が得られる。このように樹脂(A)を含むことアンカーコート剤は、保存安定性と剥離強度を両立している。   The factor that the anchor coating agent of the present invention can achieve both the peel strength from the adherend and the storage stability is that the heterocyclic ring (also referred to as a heterocycle) of the resin (A) having a carbon-carbon double bond in the ring. Since the reactivity is low as compared with conventional ethylenically unsaturated double bonds, it is less likely to thicken or gel due to light or heat during storage. On the other hand, since the heterocyclic ring having a carbon-carbon double bond in the ring has radical crosslinkability, it sufficiently reacts with the radical crosslinkable adherend such as the EVA sheet to obtain good peel strength. . Thus, the anchor coat agent containing resin (A) has both storage stability and peel strength.

炭素−炭素二重結合を有する複素環は、例えばピロール、フラン、チオフェン、ピリジン、アゼピン、オキセピン、チエピン、イミダゾール、ピラゾール、オキサゾール、チアゾール等が挙げられる。これらの中でも5員環の複素環が好ましく、フランがより好ましい。   Examples of the heterocyclic ring having a carbon-carbon double bond include pyrrole, furan, thiophene, pyridine, azepine, oxepin, thiepine, imidazole, pyrazole, oxazole, thiazole and the like. Among these, a 5-membered heterocyclic ring is preferable, and furan is more preferable.

樹脂(A)の種類としては、例えば(メタ)アクリル系樹脂、ポリエステル、ポリウレタン、ポリオレフィン等が好ましい。   As the type of the resin (A), for example, (meth) acrylic resin, polyester, polyurethane, polyolefin and the like are preferable.

(メタ)アクリル系樹脂は、(メタ)アクリル系モノマーを重合することで合成できる。(メタ)アクリル系モノマーは、例えば(メタ)アクリル酸アルキルエステル、水酸基含有モノマー、カルボキシル基含有モノマー、グリシジル基含有モノマー、その他ビニルモノマーが挙げられる。   The (meth) acrylic resin can be synthesized by polymerizing a (meth) acrylic monomer. Examples of (meth) acrylic monomers include (meth) acrylic acid alkyl esters, hydroxyl group-containing monomers, carboxyl group-containing monomers, glycidyl group-containing monomers, and other vinyl monomers.

(メタ)アクリル酸アルキルエステルは、例えばメチル(メタ)アクリレート、エチル(メタ)アクリレート、ノルマルブチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート等が挙げられる。   Examples of the (meth) acrylic acid alkyl ester include methyl (meth) acrylate, ethyl (meth) acrylate, normal butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, octyl (meth) acrylate and the like.

水酸基含有モノマーは、例えば2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、4−ヒドロキシブチル(メタ)アクリレート等が挙げられる。   Examples of the hydroxyl group-containing monomer include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, and the like.

カルボキシル基含有モノマーは、例えばアクリル酸、メタクリル酸、クロトン酸、イタコン酸、シトラコン酸等が挙げられる。   Examples of the carboxyl group-containing monomer include acrylic acid, methacrylic acid, crotonic acid, itaconic acid, citraconic acid and the like.

グリシジル基含有モノマーは、例えばアクリル酸グリシジル、メタクリル酸グリシジル、4−ヒドロキシブチルアクリレートグリシジルエーテル等が挙げられる。   Examples of the glycidyl group-containing monomer include glycidyl acrylate, glycidyl methacrylate, 4-hydroxybutyl acrylate glycidyl ether, and the like.

その他ビニルモノマーは、例えば酢酸ビニル、無水マレイン酸、ビニルエーテル、プロピオン酸ビニル、スチレン等の(メタ)アクリル系モノマーと共重合可能なモノマーが挙げられる。   Examples of other vinyl monomers include monomers copolymerizable with (meth) acrylic monomers such as vinyl acetate, maleic anhydride, vinyl ether, vinyl propionate, and styrene.

(メタ)アクリル系モノマーを重合する方法は、通常のラジカル重合、例えば、溶液重合、塊状重合、乳化重合等の公知の重合法が使用できる。これらの方法の中でも溶液重合が好ましい。重合反応に使用する重合開始剤は、有機過酸化物、アゾ系開始剤等が好ましい。有機過酸化物は、例えばベンゾイルパーオキサイド、アセチルパーオキサイド、メチルエチルケトンパーオキサイド、ラウロイルパーオキサイド等が挙げられる。アゾ系開始剤は、例えばアゾビスイソブチロニトリル等が挙げられる。   As a method for polymerizing the (meth) acrylic monomer, a known polymerization method such as normal radical polymerization, for example, solution polymerization, bulk polymerization, emulsion polymerization, or the like can be used. Among these methods, solution polymerization is preferable. The polymerization initiator used for the polymerization reaction is preferably an organic peroxide, an azo initiator, or the like. Examples of the organic peroxide include benzoyl peroxide, acetyl peroxide, methyl ethyl ketone peroxide, lauroyl peroxide, and the like. Examples of the azo initiator include azobisisobutyronitrile.

ポリエステルは、カルボン酸成分と水酸基成分とを常法に従い反応(エステル化反応、エステル交換反応)させて合成できる。
前記カルボン酸成分は、例えば安息香酸、p−tert−ブチル安息香酸、無水フタル酸、イソフタル酸、テレフタル酸、無水コハク酸、アジピン酸、アゼライン酸、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、無水マレイン酸、フマル酸、イタコン酸、テトラクロル無水フタル酸、1、4−シクロヘキサンジカルボン酸、無水トリメリット酸、メチルシクロヘキセントリカルボン酸無水物、無水ピロメリット酸、ε−カプロラクトン、脂肪酸等が挙げられる。
Polyester can be synthesized by reacting a carboxylic acid component and a hydroxyl component according to a conventional method (esterification reaction, transesterification reaction).
Examples of the carboxylic acid component include benzoic acid, p-tert-butylbenzoic acid, phthalic anhydride, isophthalic acid, terephthalic acid, succinic anhydride, adipic acid, azelaic acid, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, maleic anhydride Examples include acid, fumaric acid, itaconic acid, tetrachlorophthalic anhydride, 1,4-cyclohexanedicarboxylic acid, trimellitic anhydride, methylcyclohexericarboxylic anhydride, pyromellitic anhydride, ε-caprolactone, and fatty acid.

前記水酸基成分は、例えばエチレングリコール、プロピレングリコール、1、3−ブチレングリコール、1、6−ヘキサンジオール、ジエチレングリコール、ジプロピレングリコール、ネオペンチルグリコール、トリエチレングリコール、3−メチルペンタンジオール、1、4−シクロヘキサンジメタノール等のジオール成分の他、グリセリン、トリメチロールエタン、トリメチロールプロパン、トリスヒドロキシメチルアミノメタン、ペンタエリスリトール、ジペンタエリスリトール等の多官能アルコールが挙げられる。   Examples of the hydroxyl component include ethylene glycol, propylene glycol, 1,3-butylene glycol, 1,6-hexanediol, diethylene glycol, dipropylene glycol, neopentyl glycol, triethylene glycol, 3-methylpentanediol, 1,4- In addition to diol components such as cyclohexanedimethanol, polyfunctional alcohols such as glycerin, trimethylolethane, trimethylolpropane, trishydroxymethylaminomethane, pentaerythritol, and dipentaerythritol can be mentioned.

ポリウレタンは、イソシアネート化合物と水酸基成分を常法に従い反応させることで合成できる。   Polyurethane can be synthesized by reacting an isocyanate compound and a hydroxyl component according to a conventional method.

前記イソシアネート化合物は、例えばトリメチレンジイソシアネート(TDI)、ヘキサメチレンジイソシアネート(HDI)、メチレンビス(4、1−フェニレン)=ジイソシアネート(MDI)、3−イソシアネートメチル−3、5、5−トリメチルシクロヘキシルイソシアネート(IPDI)、キシリレンジイソシアネート(XDI)等のジイソシアネート、ならびにこれらジイソシアネートのトリメチロールプロパンアダクト体、ならびにこれらジイソシアネートの三量体であるイソシアヌレート体、ならびにこれらジイソシアネートのビューレット結合体、ポリメリックジイソシアネート等が挙げられる。   Examples of the isocyanate compound include trimethylene diisocyanate (TDI), hexamethylene diisocyanate (HDI), methylenebis (4,1-phenylene) = diisocyanate (MDI), 3-isocyanate methyl-3,5,5-trimethylcyclohexyl isocyanate (IPDI). ), Diisocyanates such as xylylene diisocyanate (XDI), trimethylolpropane adducts of these diisocyanates, isocyanurates that are trimers of these diisocyanates, and burette conjugates of these diisocyanates, polymeric diisocyanates, etc. .

ポリウレタンを構成する水酸基成分は、例えばポリエステルポリオール、ポリエーテルポリオール、ポリカーボネートポリオール、ならびにこれらのポリオールとジイソシアネートとの反応物であるポリウレタンポリオール等が挙げられる。   Examples of the hydroxyl component constituting the polyurethane include polyester polyol, polyether polyol, polycarbonate polyol, and polyurethane polyol which is a reaction product of these polyol and diisocyanate.

ポリエステルポリオールは、例えば前記ポリエステルで説明した中の分子末端に水酸基を有するポリエステルポリオール等が挙げられる。   Examples of the polyester polyol include a polyester polyol having a hydroxyl group at the molecular end in the polyester described above.

ポリエーテルポリオールは、例えば、エチレングリコール、プロピレングリコールのような2個以上の水酸基を有する化合物や水などを開始剤として用いて、エチレンオキシド、プロピレンオキシド、ブチレンオキシド、テトラヒドロフラン等のオキシラン化合物を重合させて合成したポリエーテルポリオール等が挙げられる。具体的にはポリプロピレングリコール、ポリエチレングリコール、ポリテトラメチレングリコール等の官能基数が2 以上の化合物が挙げられる。   Polyether polyol is obtained by polymerizing an oxirane compound such as ethylene oxide, propylene oxide, butylene oxide, tetrahydrofuran using a compound having two or more hydroxyl groups such as ethylene glycol or propylene glycol, or water as an initiator. Examples include synthesized polyether polyols. Specific examples include compounds having 2 or more functional groups such as polypropylene glycol, polyethylene glycol, and polytetramethylene glycol.

ポリカーボネートポリオールは、例えば、(1)エチレングリコール、プロピレングリコールのような2個以上の水酸基を有する化合物と炭酸エステルとの反応生成物、(2)エチレングリコール、プロピレングリコールのような2個以上の水酸基を有する化合物にアルカリの存在下でホスゲンを反応させた化合物等が挙げられる。   The polycarbonate polyol includes, for example, (1) a reaction product of a compound having two or more hydroxyl groups such as ethylene glycol and propylene glycol and a carbonate ester, and (2) two or more hydroxyl groups such as ethylene glycol and propylene glycol. And compounds obtained by reacting phosgene with a compound having a phosgene in the presence of an alkali.

前記(1)の製法で用いる炭酸エステルは、例えば、ジメチルカーボネート、ジエチルカーボネート、ジフェニルカーボネート、エチレンカーボネート、プロピレンカーボネート等が挙げられる。   Examples of the carbonic acid ester used in the production method (1) include dimethyl carbonate, diethyl carbonate, diphenyl carbonate, ethylene carbonate, and propylene carbonate.

ポリウレタンを合成する際に公知の触媒を使用できる。触媒は、例えば三級アミン系化合物、有機金属系化合物等が挙げられる。   Known catalysts can be used in synthesizing the polyurethane. Examples of the catalyst include tertiary amine compounds and organometallic compounds.

三級アミン系化合物は、例えば、トリエチルアミン、トリエチレンジアミン、N, N−ジメチルベンジルアミン、N−メチルモルホリン、1,8−ジアザビシクロ−(5,4,0)−ウンデセン−7(DBU)等が挙げられる。   Examples of the tertiary amine compound include triethylamine, triethylenediamine, N, N-dimethylbenzylamine, N-methylmorpholine, 1,8-diazabicyclo- (5,4,0) -undecene-7 (DBU), and the like. It is done.

有機金属系化合物は、例えば、錫系化合物、非錫系化合物を挙げることができる。
錫系化合物は、例えばジブチル錫ジクロライド、ジブチル錫オキサイド、ジブチル錫ジブロマイド、ジブチル錫ジマレエート、ジブチル錫ジラウレート(DBTDL)、ジブチル錫ジアセテート、ジブチル錫スルファイド、トリブチル錫スルファイド、トリブチル錫オキサイド、トリブチル錫アセテート、トリエチル錫エトキサイド、トリブチル錫エトキサイド、ジオクチル錫オキサイド、トリブチル錫クロライド、トリブチル錫トリクロロアセテート、2−エチルヘキサン酸錫等が挙げられる。
Examples of the organometallic compound include a tin compound and a non-tin compound.
Examples of tin compounds include dibutyltin dichloride, dibutyltin oxide, dibutyltin dibromide, dibutyltin dimaleate, dibutyltin dilaurate (DBTDL), dibutyltin diacetate, dibutyltin sulfide, tributyltin sulfide, tributyltin oxide, tributyltin acetate. , Triethyltin ethoxide, tributyltin ethoxide, dioctyltin oxide, tributyltin chloride, tributyltin trichloroacetate, tin 2-ethylhexanoate and the like.

非錫系化合物は、例えばジブチルチタニウムジクロライド、テトラブチルチタネート、ブトキシチタニウムトリクロライドなどのチタン系、オレイン酸鉛、2−エチルヘキサン酸鉛、安息香酸鉛、ナフテン酸鉛などの鉛系、2−エチルヘキサン酸鉄、鉄アセチルアセトネートなどの鉄系、安息香酸コバルト、2−エチルヘキサン酸コバルトなどのコバルト系、ナフテン酸亜鉛、2−エチルヘキサン酸亜鉛などの亜鉛系、ナフテン酸ジルコニウム等が挙げられる。   Non-tin compounds include, for example, titanium-based compounds such as dibutyltitanium dichloride, tetrabutyltitanate, butoxytitanium trichloride, lead-based compounds such as lead oleate, lead 2-ethylhexanoate, lead benzoate, lead naphthenate, 2-ethyl Examples thereof include iron systems such as iron hexanoate and iron acetylacetonate, cobalt systems such as cobalt benzoate and cobalt 2-ethylhexanoate, zinc systems such as zinc naphthenate and zinc 2-ethylhexanoate, and zirconium naphthenate. .

ポリオレフィンは、エチレン性モノマーを、ラジカル重合する公知の方法で合成できる。ポリオレフィンは、ホモポリマーであってもよいし、コポリマー(共重合体)であってもよく、コポリマー(共重合体)であることが好ましい。   Polyolefin can be synthesized by a known method of radical polymerization of an ethylenic monomer. The polyolefin may be a homopolymer or a copolymer (copolymer), and is preferably a copolymer (copolymer).

エチレン性モノマーは、例えばエチレン、プロピレン、n−ブテン、イソブチレン、2−ブテン、シクロペンテン、シクロヘキセン等のオレフィン;メチルビニルエーテル、エチルビニルエーテル、プロピルビニルエーテル、ブチルビニルエーテル、n−ヘキシルビニルエーテル、2−エチルヘキシルビニルエーテル、シクロヘキシルビニルエーテル、ヒドロキシエチルビニルエーテル、ヒドロキシプロピルビニルエーテル、ヒドロキシブチルビニルエーテル等のビニルエーテル;酢酸ビニル、カプロン酸ビニル、ラウリン酸ビニル、パルミチン酸ビニル、ステアリン酸ビニル、安息香酸ビニル、シクロヘキシルカルボン酸ビニル等のビニルエステル等が挙げられる。エチレン性モノマーは、単独または2種類以上を併用できる。   Examples of the ethylenic monomer include olefins such as ethylene, propylene, n-butene, isobutylene, 2-butene, cyclopentene, and cyclohexene; methyl vinyl ether, ethyl vinyl ether, propyl vinyl ether, butyl vinyl ether, n-hexyl vinyl ether, 2-ethylhexyl vinyl ether, cyclohexyl Vinyl ethers such as vinyl ether, hydroxyethyl vinyl ether, hydroxypropyl vinyl ether, hydroxybutyl vinyl ether; vinyl esters such as vinyl acetate, vinyl caproate, vinyl laurate, vinyl palmitate, vinyl stearate, vinyl benzoate, vinyl cyclohexylcarboxylate, etc. Can be mentioned. The ethylenic monomer can be used alone or in combination of two or more.

ポリオレフィンの市販品は、例えば、「ユニストール」(三井化学社製)、「アウローレン」(日本製紙ケミカル社製)等が挙げられる。   Examples of commercially available polyolefins include “Unistall” (manufactured by Mitsui Chemicals), “Auroren” (manufactured by Nippon Paper Chemicals), and the like.

樹脂(A)は、例えば、公知の方法で樹脂に水酸基と反応可能な官能基を付与し、前記官能基に炭素−炭素二重結合を有する複素環および水酸基を有する化合物(a)と反応させることで合成できる。なお、本発明では、合計経路の関係なく樹脂(A)を使用することが重要であるので、下記合成方法に限定されないことはいうまでもない。   Resin (A) gives the functional group which can react with a hydroxyl group to resin by a well-known method, for example, and makes it react with the compound (a) which has the heterocyclic ring and hydroxyl group which have a carbon-carbon double bond in the said functional group. Can be synthesized. In the present invention, since it is important to use the resin (A) regardless of the total route, it goes without saying that the present invention is not limited to the following synthesis method.

前記水酸基と反応可能な官能基は、例えばイソシアネート基等が好ましい。   The functional group capable of reacting with the hydroxyl group is preferably an isocyanate group, for example.

(メタ)アクリル系樹脂にイソシアネート基を導入する方法としては、例えば(メタ)アクリル系モノマーとしてイソシアネート基を有する(メタ)アクリル系モノマーを使用する方法が挙げられる。イソシアネート基を有する(メタ)アクリル系モノマーとしては、2−イソシアナトエチルアクリレート、2−イソシアナトエチルメタクリレート等が挙げられる。前記モノマーの市販品は、昭和電工社製のカレンズAOI、カレンズMOIなどがある。   Examples of the method of introducing an isocyanate group into the (meth) acrylic resin include a method of using a (meth) acrylic monomer having an isocyanate group as the (meth) acrylic monomer. Examples of the (meth) acrylic monomer having an isocyanate group include 2-isocyanatoethyl acrylate and 2-isocyanatoethyl methacrylate. Examples of commercially available monomers include Karenz AOI and Karenz MOI manufactured by Showa Denko.

ポリエステルにイソシアネート基を導入する方法としては、例えばカルボン酸成分と水酸基成分とを反応させてポリエステルを得る際に水酸基成分を過剰にすることで末端が水酸基のポリエステルを得、さらに末端水酸基と当量のジイソシアネートを付加する方法が挙げられる。   As a method for introducing an isocyanate group into the polyester, for example, when a polyester is obtained by reacting a carboxylic acid component and a hydroxyl component, a hydroxyl group component is excessive to obtain a polyester having a terminal hydroxyl group, The method of adding diisocyanate is mentioned.

ポリウレタンにイソシアネート基を導入する方法としては、例えばイソシアネート化合物と水酸基成分を反応させてポリウレタンを得る際に、イソシアネート化合物の量を過剰にすることで末端がイソシアネート基のポリウレタンを得ることができる。   As a method for introducing an isocyanate group into polyurethane, for example, when a polyurethane is obtained by reacting an isocyanate compound with a hydroxyl component, a polyurethane having a terminal isocyanate group can be obtained by increasing the amount of the isocyanate compound.

炭素−炭素二重結合を有する複素環および水酸基を有する化合物(a)としては、例えば2−フランメタノール(2−フリルメタノール)、3−フランメタノール、2−チオフェンメタノール、3−チオフェンメタノール等が挙げられる。   Examples of the compound (a) having a heterocyclic ring having a carbon-carbon double bond and a hydroxyl group include 2-furanmethanol (2-furylmethanol), 3-furanmethanol, 2-thiophenmethanol, 3-thiophenmethanol, and the like. It is done.

ポリオレフィンに炭素−炭素二重結合を有する複素環を含有させる方法としては、例えば無水マレイン酸変性ポリオレフィンに炭素−炭素二重結合を有する複素環および水酸基を有する化合物(a)を反応させることで合成できる。   Examples of the method of incorporating a heterocyclic ring having a carbon-carbon double bond into polyolefin include synthesis by reacting a maleic anhydride-modified polyolefin with a heterocyclic ring having a carbon-carbon double bond and a compound (a) having a hydroxyl group. it can.

(メタ)アクリル系樹脂に炭素−炭素二重結合を有する複素環を含有させる他の方法としては、(メタ)アクリル系モノマーに加え、フリル基を有するモノマーを共重合させることで合成できる。この方法は、合成の反応プロセスを少なくできる点で優れている。   As another method of incorporating a heterocyclic ring having a carbon-carbon double bond into the (meth) acrylic resin, it can be synthesized by copolymerizing a monomer having a furyl group in addition to the (meth) acrylic monomer. This method is excellent in that the reaction process of synthesis can be reduced.

フリル基を有するモノマーとしては、例えばフルフリルメタクリレート、フルフリルビニルエーテル、フルフリルアリルエーテル等が挙げられる。これらの中でもモノマーの安定性や重合性の観点からフルフリルメタクリレートが好ましい。   Examples of the monomer having a furyl group include furfuryl methacrylate, furfuryl vinyl ether, furfuryl allyl ether, and the like. Among these, furfuryl methacrylate is preferable from the viewpoints of monomer stability and polymerizability.

本発明において樹脂(A)の重量平均分子量は、10,000〜1,000,000が好ましく、20,000〜750,000がより好ましく、30,000〜500,000がさらに好ましい。樹脂(A)の重量平均分子量が1,000,000以下になるとアンカーコート剤の塗工性がより向上する。また重量平均分子量が10,000以上になるとアンカーコート剤の耐湿熱試験後の剥離強度がより向上する。   In the present invention, the weight average molecular weight of the resin (A) is preferably 10,000 to 1,000,000, more preferably 20,000 to 750,000, and still more preferably 30,000 to 500,000. When the weight average molecular weight of the resin (A) is 1,000,000 or less, the coatability of the anchor coating agent is further improved. Moreover, when the weight average molecular weight is 10,000 or more, the peel strength after the moist heat resistance test of the anchor coating agent is further improved.

なお、重量平均分子量は、樹脂(A)のゲルパーミエーションクロマトグラフィ(GPC)によるポリスチレン換算の値である。例えば、カラム(昭和電社製KF−805L、KF−803L、及びKF−802)の温度を40℃として、溶離液としてTHFを用い、流速を0.2ml/minとし、検出をRI、試料濃度を0.02%とし、標準試料としてポリスチレンを用いて行ったものである。本発明の重量平均分子量は、上記の方法により測定した値を記載している。   In addition, a weight average molecular weight is the value of polystyrene conversion by the gel permeation chromatography (GPC) of resin (A). For example, the temperature of the columns (KF-805L, KF-803L, and KF-802 manufactured by Showa Denko) is 40 ° C., THF is used as an eluent, the flow rate is 0.2 ml / min, detection is RI, sample concentration 0.02%, and polystyrene was used as a standard sample. The weight average molecular weight of the present invention describes the value measured by the above method.

樹脂(A)中が炭素−炭素二重結合を有する複素環の量は、複素環全体を官能基とした場合、官能基当量50,000以下が好ましく、40,000以下がより好ましく、30,000以下がさらに好ましい。官能基当量が50,000以上になると被着体への密着性がより向上する。   The amount of the heterocyclic ring having a carbon-carbon double bond in the resin (A) is preferably a functional group equivalent of 50,000 or less, more preferably 40,000 or less, when the entire heterocyclic ring is a functional group, 000 or less is more preferable. When the functional group equivalent is 50,000 or more, the adhesion to the adherend is further improved.

本発明において官能基当量とは、[樹脂(A)の重量平均分子量]÷[樹脂(A)が有する官能基の個数]で計算される。換言すると、官能基一つあたりの樹脂(A)の重量平均分子量である。例えば、重量平均分子量が50,000、官能基の個数が20であれば、この官能基当量は2,500と計算できる。樹脂(A)の重量平均分子量は先述した方法で測定することができる。   In the present invention, the functional group equivalent is calculated by [weight average molecular weight of resin (A)] / [number of functional groups of resin (A)]. In other words, it is the weight average molecular weight of the resin (A) per functional group. For example, if the weight average molecular weight is 50,000 and the number of functional groups is 20, this functional group equivalent can be calculated as 2,500. The weight average molecular weight of the resin (A) can be measured by the method described above.

樹脂(A)のガラス転移温度は−20〜100℃が好ましく、0〜90℃がより好ましく、20〜80℃がさらに好ましい。樹脂(A)のガラス転移温度が100℃以下になると基材への接着力がより向上する。また、ガラス転移温度が−20℃以上になると塗布物同士のブロッキングを抑制し易い。   The glass transition temperature of the resin (A) is preferably -20 to 100 ° C, more preferably 0 to 90 ° C, further preferably 20 to 80 ° C. When the glass transition temperature of the resin (A) is 100 ° C. or lower, the adhesive force to the substrate is further improved. Moreover, when a glass transition temperature becomes -20 degreeC or more, it will be easy to suppress blocking of coating materials.

なお、ガラス転移温度とは、樹脂(A)を乾燥させて不揮発分100%にした樹脂について、示差走査熱量分析(DSC)によって計測したガラス転移温度のことを示す。例えば、ガラス転移温度は、試料約10mgを秤量したサンプルを入れたアルミニウムパンと、試料を入れていないアルミニウムパンとをDSC装置にセットし、これを窒素気流中で、液体窒素を用いて−100℃まで急冷処理し、その後、20℃/分で200℃まで昇温し、DSC曲線をプロットする。このDSC曲線の低温側のベースライン(試験片に転移および反応を生じない温度領域のDSC曲線部分)を高温側に延長した直線と、ガラス転移の階段状変化部分の曲線の勾配が最大になるような点で引いた接線との交点から、補外ガラス転移開始温度(Tig)を求め、これをガラス転移温度として求めることができる。本発明のガラス転移温度は、上記の方法により測定した値を記載している。   The glass transition temperature refers to the glass transition temperature measured by differential scanning calorimetry (DSC) for a resin obtained by drying the resin (A) to have a nonvolatile content of 100%. For example, for the glass transition temperature, an aluminum pan containing a sample weighed about 10 mg and an aluminum pan not containing a sample are set in a DSC apparatus, and this is set to −100 using liquid nitrogen in a nitrogen stream. A rapid cooling treatment is performed until the temperature is increased to 200 ° C. at 20 ° C./min, and a DSC curve is plotted. The slope of the DSC curve on the low temperature side (the DSC curve portion in the temperature region where no transition or reaction occurs in the test piece) is extended to the high temperature side, and the slope of the step change portion of the glass transition is maximized. From the intersection with the tangent drawn at such a point, the extrapolated glass transition start temperature (Tig) can be determined, and this can be determined as the glass transition temperature. The glass transition temperature of this invention has described the value measured by said method.

樹脂(A)は、硬化剤(B)と架橋可能な官能基を有することが好ましい。
前記官能基が水酸基である場合、樹脂(A)の水酸基価は0.1〜100(mgKOH/g)が好ましく、1〜50(mgKOH/g)がより好ましく、2〜30(mgKOH/g)がさらに好ましい。水酸基価が100(mgKOH/g)以下になると基材への接着性がより向上する。また、水酸基価が0.1(mgKOH/g)以上になると湿熱試験後の剥離強度の低下を抑制し易い。
また、前記官能基がカルボキシル基である場合、樹脂(A)の酸価は0.1〜100(mgKOH/g)が好ましく、1〜50(mgKOH/g)がより好ましく、2〜30(mgKOH/g)がさらに好ましい。酸価が100(mgKOH/g)以下になると基材への接着性がより向上する。また、酸価が0.1(mgKOH/g)以上になると湿熱試験後の剥離強度の低下を抑制し易い。
The resin (A) preferably has a functional group capable of crosslinking with the curing agent (B).
When the functional group is a hydroxyl group, the hydroxyl value of the resin (A) is preferably 0.1 to 100 (mgKOH / g), more preferably 1 to 50 (mgKOH / g), and 2 to 30 (mgKOH / g). Is more preferable. When the hydroxyl value is 100 (mgKOH / g) or less, the adhesion to the substrate is further improved. Moreover, when the hydroxyl value is 0.1 (mgKOH / g) or more, it is easy to suppress a decrease in peel strength after the wet heat test.
When the functional group is a carboxyl group, the acid value of the resin (A) is preferably 0.1 to 100 (mgKOH / g), more preferably 1 to 50 (mgKOH / g), and 2 to 30 (mgKOH). / G) is more preferred. When the acid value is 100 (mgKOH / g) or less, the adhesion to the substrate is further improved. Moreover, when an acid value becomes 0.1 (mgKOH / g) or more, it is easy to suppress the fall of the peeling strength after a wet heat test.

本発明で用いる硬化剤(B)は、樹脂(A)に含まれる官能基に結合(反応)する官能基を二つ以上有する化合物であれば良く限定されない。硬化剤(B)が樹脂(A)を架橋させることで耐久性の向上、および基材への密着性が向上する。   The curing agent (B) used in the present invention is not limited as long as it is a compound having two or more functional groups that bind (react) to the functional group contained in the resin (A). When the curing agent (B) crosslinks the resin (A), the durability is improved and the adhesion to the substrate is improved.

硬化剤(B)は、例えば、樹脂(A)が水酸基、カルボキシル基などの反応性官能基を含有する場合、これらの官能基と反応する化合物が好ましい。硬化剤(B)は、例えば、イソシアネート系硬化剤、エポキシ系硬化剤、金属キレート系硬化剤、アジリジン系硬化剤、オキサゾリン系硬化剤、カルボジイミド系硬化剤等が挙げられる。これらの中でも、イソシアネート系硬化剤、エポキシ系硬化剤が好ましく、イソシアネート系硬化剤がより好ましい。   For example, when the resin (A) contains a reactive functional group such as a hydroxyl group or a carboxyl group, the curing agent (B) is preferably a compound that reacts with these functional groups. Examples of the curing agent (B) include an isocyanate curing agent, an epoxy curing agent, a metal chelate curing agent, an aziridine curing agent, an oxazoline curing agent, and a carbodiimide curing agent. Among these, an isocyanate curing agent and an epoxy curing agent are preferable, and an isocyanate curing agent is more preferable.

イソシアネート系硬化剤は、ジイソシアネート化合物として、例えば1,3−フェニレンジイソシアネート、4,4’−ジフェニルジイソシアネート、1,4−フェニレンジイソシアネート、4,4’−ジフェニルメタンジイソシアネート、2,4−トリレンジイソシアネート、2,6−トリレンジイソシアネート、4,4’−トルイジンジイソシアネート、2,4,6−トリイソシアネートトルエン、1,3,5−トリイソシアネートベンゼン、ジアニシジンジイソシアネート、4,4’−ジフェニルエーテルジイソシアネート、4,4’,4”−トリフェニルメタントリイソシアネート、トリメチレンジイソシアネート、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート(HDI)、ペンタメチレンジイソシアネート、1,2−プロピレンジイソシアネート、2,3−ブチレンジイソシアネート、1,3−ブチレンジイソシアネート、ドデカメチレンジイソシアネート、2,4,4−トリメチルヘキサメチレンジイソシアネート、3−イソシアネートメチル−3,5,5−トリメチルシクロヘキシルイソシアネート(IPDI)、1,3−シクロペンタンジイソシアネート、1,3−シクロヘキサンジイソシアネート、1,4−シクロヘキサンジイソシアネート、メチル−2,4−シクロヘキサンジイソシアネート、メチル−2,6−シクロヘキサンジイソシアネート、4,4’−メチレンビス(シクロヘキシルイソシアネート)、1,4−ビス(イソシアネートメチル)シクロヘキサン等が挙げられる。   Isocyanate-based curing agents are diisocyanate compounds such as 1,3-phenylene diisocyanate, 4,4′-diphenyl diisocyanate, 1,4-phenylene diisocyanate, 4,4′-diphenylmethane diisocyanate, 2,4-tolylene diisocyanate, 2 , 6-tolylene diisocyanate, 4,4'-toluidine diisocyanate, 2,4,6-triisocyanate toluene, 1,3,5-triisocyanate benzene, dianisidine diisocyanate, 4,4'-diphenyl ether diisocyanate, 4,4 ', 4 "-triphenylmethane triisocyanate, trimethylene diisocyanate, tetramethylene diisocyanate, hexamethylene diisocyanate (HDI), pentamethylene diisocyanate 1,2-propylene diisocyanate, 2,3-butylene diisocyanate, 1,3-butylene diisocyanate, dodecamethylene diisocyanate, 2,4,4-trimethylhexamethylene diisocyanate, 3-isocyanate methyl-3,5,5-trimethylcyclohexyl isocyanate (IPDI), 1,3-cyclopentane diisocyanate, 1,3-cyclohexane diisocyanate, 1,4-cyclohexane diisocyanate, methyl-2,4-cyclohexane diisocyanate, methyl-2,6-cyclohexane diisocyanate, 4,4′-methylenebis (Cyclohexyl isocyanate), 1,4-bis (isocyanatomethyl) cyclohexane and the like.

また、上記ジイソシアネート化合物とトリメチロールプロパン等のポリオール化合物とのアダクト体、上記ジイソシアネート化合物のビュレット体、上記ジイソシアネート化合物のイソシアヌレート体、更にはイソシアネート化合物と公知のポリエーテルポリオールやポリエステルポリオール、アクリルポリオール、ポリブタジエンポリオール、ポリイソプレンポリオール等とのアダクト体等、3官能以上のイソシアネート系硬化剤が挙げられる。これらの中でもヘキサメチレンジイソシアネート(HDI)のイソシアヌレート体、3−イソシアネートメチル−3,5,5−トリメチルシクロヘキシルイソシアネート(IPDI)のイソシアヌレート体が好ましい。   In addition, adducts of the diisocyanate compound and a polyol compound such as trimethylolpropane, a burette of the diisocyanate compound, an isocyanurate of the diisocyanate compound, and an isocyanate compound and a known polyether polyol, polyester polyol, acrylic polyol, Trifunctional or higher functional isocyanate curing agents such as adducts with polybutadiene polyol, polyisoprene polyol and the like can be mentioned. Among these, hexamethylene diisocyanate (HDI) isocyanurate and 3-isocyanate methyl-3,5,5-trimethylcyclohexyl isocyanate (IPDI) isocyanurate are preferred.

また、イソシアネート系硬化剤としてブロックイソシアネート系硬化剤を使用することも好ましい。これにより耐湿熱試験後の剥離強度がより向上する。
本発明のアンカーコート剤を太陽電池用保護シート用途で使用する場合、イソシアネート化合物は、ブロック化イソシアネート化合物であることが好ましい。
It is also preferable to use a blocked isocyanate curing agent as the isocyanate curing agent. This further improves the peel strength after the wet heat resistance test.
When the anchor coating agent of the present invention is used for a solar cell protective sheet, the isocyanate compound is preferably a blocked isocyanate compound.

ブロックイソシアネート系硬化剤のブロック化剤としては、例えばフェノール、チオフェノール、メチルチオフェノール、キシレノール、クレゾール、レゾルシノール、ニトロフェノール、クロロフェノール等のフェノール;アセトンオキシム、メチルエチルケトンオキシム、シクロヘキサノンオキシム等のオキシム;メタノール、エタノール、n−プロピルアルコール、イソプロピルアルコール、n−ブチルアルコール、イソブチルアルコール、t−ブチルアルコール、t−ペンタノール、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、ベンジルアルコールなどのアルコール;3,5−ジメチルピラゾール、1,2−ピラゾール等のピラゾール;1,2,4−トリアゾール等のトリアゾール;エチレンクロルヒドリン、1,3−ジクロロ−2−プロパノール等のハロゲン置換アルコール;ε−カプロラクタム、δ−バレロラクタム、γ−ブチロラクタム、β−プロピルラクタム等のラクタム類、アセト酢酸メチル、アセト酢酸エチル、アセチルアセトン、マロン酸メチル、マロン酸エチル等の活性メチレン化合物等が挙げられる。その他にもアミン、イミド、メルカプタン、イミン、尿素、ジアリール等も挙げられる。ブロック化剤は、単独または2種類以上を併用できる。
ブロック剤の解離温度は、80〜150℃が好ましく、90〜140℃がより好ましい。ブロック剤は、例えばメチルエチルケトンオキシム(解離温度:140℃、以下同様)、3,5−ジメチルピラゾール(120℃)、ジイソプロピルアミン(120℃)等がより好ましい。
Examples of the blocking agent for the blocked isocyanate curing agent include phenols such as phenol, thiophenol, methylthiophenol, xylenol, cresol, resorcinol, nitrophenol, and chlorophenol; oximes such as acetone oxime, methyl ethyl ketone oxime, and cyclohexanone oxime; methanol, Ethanol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, isobutyl alcohol, t-butyl alcohol, t-pentanol, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monoethyl ether, propylene glycol monomethyl ether, benzyl Alcohols such as alcohol; 3,5-dimethylpyrazole, 1, -Pyrazoles such as pyrazole; triazoles such as 1,2,4-triazole; halogen-substituted alcohols such as ethylene chlorohydrin and 1,3-dichloro-2-propanol; ε-caprolactam, δ-valerolactam, γ-butyrolactam, Examples include lactams such as β-propyl lactam, and active methylene compounds such as methyl acetoacetate, ethyl acetoacetate, acetylacetone, methyl malonate, and ethyl malonate. In addition, amines, imides, mercaptans, imines, ureas, diaryls, and the like are also included. The blocking agents can be used alone or in combination of two or more.
80-150 degreeC is preferable and the dissociation temperature of a blocking agent has more preferable 90-140 degreeC. As the blocking agent, for example, methyl ethyl ketone oxime (dissociation temperature: 140 ° C., the same applies hereinafter), 3,5-dimethylpyrazole (120 ° C.), diisopropylamine (120 ° C.) and the like are more preferable.

本発明のアンカーコート剤は、さらに粒子(有機系粒子、無機系粒子)を含有できる。粒子を含むことで、樹脂層のタックを抑制できる。無機系粒子は、基材への密着性が向上するため好ましい。無機粒子の中でも、タルク、ハイドロタルサイト、マイカ、カオリンがより好ましい。   The anchor coating agent of the present invention can further contain particles (organic particles, inorganic particles). By including particles, tackiness of the resin layer can be suppressed. Inorganic particles are preferred because of their improved adhesion to the substrate. Of the inorganic particles, talc, hydrotalcite, mica, and kaolin are more preferable.

有機系粒子は、例えば、ポリスチレン、ナイロン(登録商標)樹脂、メラミン樹脂、グアナミン樹脂、フェノール樹脂、ユリア樹脂、シリコン樹脂、メタクリレート樹脂、アクリレート樹脂などのポリマー粒子;セルロースパウダー、ニトロセルロースパウダー、木粉、古紙粉、籾殻粉、澱粉等が挙げられる。   Organic particles include, for example, polymer particles such as polystyrene, nylon (registered trademark) resin, melamine resin, guanamine resin, phenol resin, urea resin, silicon resin, methacrylate resin, acrylate resin; cellulose powder, nitrocellulose powder, wood powder Waste paper powder, rice husk powder, starch and the like.

前記ポリマー粒子は、乳化重合法、懸濁重合法、分散重合法、ソープフリー重合法、シード重合法、マイクロサスペンジョン重合法などの重合法により得ることができる。
ポリマー粒子は、融点もしくは軟化点が150℃以上の粒子が好ましい。融点もしくは軟化点が150℃以上になることで、樹脂層形成時に熱で軟化しにくいので、ブロッキング性を抑制し易い。
The polymer particles can be obtained by a polymerization method such as an emulsion polymerization method, a suspension polymerization method, a dispersion polymerization method, a soap-free polymerization method, a seed polymerization method, or a microsuspension polymerization method.
The polymer particles are preferably particles having a melting point or softening point of 150 ° C. or higher. When the melting point or softening point is 150 ° C. or higher, it is difficult to soften with heat during the formation of the resin layer, and thus it is easy to suppress blocking properties.

無機系粒子は、例えばマグネシウム、カルシウム、バリウム、亜鉛、ジルコニウム、モリブデン、ケイ素、アンチモン、チタン等の金属の酸化物、ならびにその水酸化物、ならびにその硫酸塩、ならびにその炭酸塩、ならびにそのケイ酸塩等が挙げられる。無機系粒子は、例えば、シリカゲル、酸化アルミニウム、水酸化カルシウム、炭酸カルシウム、酸化マグネシウム、水酸化マグネシウム、炭酸マグネシウム、酸化亜鉛、鉛酸化物、珪藻土、ゼオライト、アルミノシリケート、タルク、ホワイトカーボン、マイカ、ガラス繊維、ガラス粉末、ガラスビーズ、クレー、ワラスナイト、酸化鉄、酸化アンチモン、酸化チタン、リトポン、軽石粉、硫酸アルミニウム、ケイ酸ジルコニウム、炭酸バリウム、ドロマイト、二硫化モリブデン、砂鉄、カーボンブラック等が挙げられる。   Inorganic particles include, for example, oxides of metals such as magnesium, calcium, barium, zinc, zirconium, molybdenum, silicon, antimony, titanium, hydroxides thereof, sulfates thereof, carbonates thereof, and silicas thereof. Examples include salts. Inorganic particles include, for example, silica gel, aluminum oxide, calcium hydroxide, calcium carbonate, magnesium oxide, magnesium hydroxide, magnesium carbonate, zinc oxide, lead oxide, diatomaceous earth, zeolite, aluminosilicate, talc, white carbon, mica, Glass fiber, glass powder, glass beads, clay, wollastonite, iron oxide, antimony oxide, titanium oxide, lithopone, pumice powder, aluminum sulfate, zirconium silicate, barium carbonate, dolomite, molybdenum disulfide, iron sand, carbon black, etc. It is done.

粒子は、単独または2種類以上を併用できる。   The particles can be used alone or in combination of two or more.

また、アンカーコート剤には、課題を解決できる範囲内であれば、さらに架橋促進剤を添加できる。架橋促進剤は、樹脂(A)と硬化剤(B)の反応を促進する触媒としての役割を果たす。架橋促進剤は、スズ化合物、金属塩、塩基などが挙げられ、具体的にはオクチル酸スズ、ジブチルスズジアセテート、ジブチルスズジラウレート、ジオクチルスズジラウレート、塩化スズ、オクチル酸鉄、オクチル酸コバルト、ナフテン酸亜鉛、トリエチルアミン、トリエチレンジアミン等が挙げられる。
架橋促進剤は、単独または2種類以上を併用できる。
In addition, a crosslinking accelerator can be further added to the anchor coating agent as long as the problem can be solved. The crosslinking accelerator serves as a catalyst for promoting the reaction between the resin (A) and the curing agent (B). Examples of the crosslinking accelerator include tin compounds, metal salts, bases, and the like. Specifically, tin octylate, dibutyltin diacetate, dibutyltin dilaurate, dioctyltin dilaurate, tin chloride, iron octylate, cobalt octylate, zinc naphthenate. , Triethylamine, triethylenediamine and the like.
The crosslinking accelerator can be used alone or in combination of two or more.

また、アンカーコート剤には、課題を解決できる範囲内であれば、さらに顔料を添加できる。顔料は、無機顔料よび有機顔料が挙げられる。
無機顔料は、例えばカーボンブラック、酸化チタン、炭酸カルシウム等が挙げられる。
有機顔料は、例えばトルイジンレッド、トルイジンマルーン、ハンザエロー、ベンジジンエロー、ピラゾロンレッド等の不溶性アゾ顔料;リトールレッド、ヘリオボルドー、ピグメントスカーレット、パーマネントレッド2B等の溶性アゾ顔料;アリザリン、インダントロン、チオインジゴマルーン等の建染染料からの誘導体;フタロシアニンブルー、フタロシアニングリーン等のフタロシアニン系有機顔料;キナクリドンレッド、キナクリドンマゼンタ等のキナクリドン系有機顔料;ペリレンレッド、ペリレンスカーレット等のペリレン系有機顔料;イソインドリノンエロー、イソインドリノンオレンジ等のイソインドリノン系有機顔料;ピランスロンレッド、ピランスロンオレンジ等のピランスロン系有機顔料、チオインジゴ系有機顔料、縮合アゾ系有機顔料、ベンズイミダゾロン系有機顔料、キノフタロンエロー等のキノフタロン系有機顔料;イソインドリンエロー等のイソインドリン系有機顔料:その他の顔料として、フラバンスロンエロー、アシルアミドエロー、ニッケルアゾエロー、銅アゾメチンエロー、ペリノンオレンジ、アンスロンオレンジ、ジアンスラキノニルレッド、ジオキサジンバイオレット等が挙げられる。
In addition, a pigment can be further added to the anchor coating agent as long as the problem can be solved. Examples of the pigment include inorganic pigments and organic pigments.
Examples of the inorganic pigment include carbon black, titanium oxide, and calcium carbonate.
Organic pigments include, for example, insoluble azo pigments such as toluidine red, toluidine maroon, Hansa yellow, benzidine yellow, and pyrazolone red; soluble azo pigments such as lithol red, heliobordeaux, pigment scarlet, and permanent red 2B; alizarin, indanthrone, thioindigo Derivatives from vat dyes such as maroon; Phthalocyanine organic pigments such as phthalocyanine blue and phthalocyanine green; Quinacridone organic pigments such as quinacridone red and quinacridone magenta; Perylene organic pigments such as perylene red and perylene scarlet; Isoindolinone yellow , Isoindolinone organic pigments such as isoindolinone orange; pyranthrone organic pigments such as pyranthrone red and pyranthrone orange, thioindigo organic pigments Condensed azo organic pigments, benzimidazolone organic pigments, quinophthalone organic pigments such as quinophthalone yellow; isoindoline organic pigments such as isoindoline yellow: Other pigments include flavanthrone yellow, acylamide yellow, nickel azo yellow, Examples include copper azomethine yellow, perinone orange, anthrone orange, dianslaquinonyl red, and dioxazine violet.

顔料を使用する場合は、同時に分散剤を添加することが好ましい。これにより顔料の分散性の向上、およびアンカーコート剤の保存安定性を向上できる。   When a pigment is used, it is preferable to add a dispersant at the same time. Thereby, the dispersibility of the pigment can be improved, and the storage stability of the anchor coating agent can be improved.

分散剤としては、水酸基含有カルボン酸エステル、長鎖ポリアミノアマイドと高分子量酸エステルの塩、高分子量ポリカルボン酸の塩、長鎖ポリアミノアマイドと極性酸エステルの塩、高分子量不飽和酸エステル、高分子共重合物、変性ポリウレタン、変性ポリアクリレート、ポリエーテルエステル型アニオン系活性剤、ナフタレンスルホン酸ホルマリン縮合物塩、芳香族スルホン酸ホルマリン縮合物塩、ポリオキシエチレンアルキルリン酸エステル、ポリオキシエチレンノニルフェニルエーテル、ステアリルアミンアセテート等が挙げられる。   Examples of the dispersant include a hydroxyl group-containing carboxylic acid ester, a salt of a long-chain polyaminoamide and a high molecular weight acid ester, a salt of a high molecular weight polycarboxylic acid, a salt of a long chain polyaminoamide and a polar acid ester, a high molecular weight unsaturated acid ester, Molecular copolymer, modified polyurethane, modified polyacrylate, polyether ester type anionic activator, naphthalene sulfonic acid formalin condensate salt, aromatic sulfonic acid formalin condensate salt, polyoxyethylene alkyl phosphate ester, polyoxyethylene nonyl Examples include phenyl ether and stearylamine acetate.

また、本発明のアンカーコート剤に、エポキシ樹脂(Ep)を添加することにより、耐湿熱性向上の効果を期待できる。エポキシ樹脂の添加量は、樹脂(A)100部に対して0.1〜70重量部が好ましく、0.5〜60重量部がより好ましく、1〜50重量部がさらに好ましい。   Moreover, the effect of a heat-and-moisture resistance improvement can be anticipated by adding an epoxy resin (Ep) to the anchor coating agent of this invention. The amount of the epoxy resin added is preferably 0.1 to 70 parts by weight, more preferably 0.5 to 60 parts by weight, and still more preferably 1 to 50 parts by weight with respect to 100 parts of the resin (A).

エポキシ樹脂は、例えばグリシジルエーテル化合物、グリシジルエステル化合物等が挙げられる。   Examples of the epoxy resin include glycidyl ether compounds and glycidyl ester compounds.

グリシジルエーテル化合物としては、例えばビスフェノール型エポキシ樹脂、ノボラック型エポキシ樹脂、ビフェノール型エポキシ樹脂、ビキシレノール型エポキシ樹脂、トリヒドロキシフェニルメタン型エポキシ樹脂、テトラフェニロールエタン型エポキシ樹脂等が挙げられる。   Examples of the glycidyl ether compound include bisphenol type epoxy resin, novolac type epoxy resin, biphenol type epoxy resin, bixylenol type epoxy resin, trihydroxyphenylmethane type epoxy resin, tetraphenylolethane type epoxy resin and the like.

ビスフェノール型エポキシ樹脂としては、例えばビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、臭素化ビスフェノールA型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂等が挙げられる。   Examples of the bisphenol type epoxy resin include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, brominated bisphenol A type epoxy resin, hydrogenated bisphenol A type epoxy resin and the like.

ノボラック型エポキシ樹脂としては、例えばフェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、臭素化フェノールノボラック型エポキシ樹脂、ナフタレン骨格含有フェノールノボラック型エポキシ樹脂、ジシクロペンタジエン骨格含有フェノールノボラック型エポキシ樹脂等が挙げられる。   Examples of novolak type epoxy resins include phenol novolak type epoxy resins, cresol novolak type epoxy resins, brominated phenol novolak type epoxy resins, naphthalene skeleton containing phenol novolak type epoxy resins, dicyclopentadiene skeleton containing phenol novolak type epoxy resins, and the like. It is done.

グリシジルエステル化合物としては、例えばテレフタル酸ジグリシジルエステルなどが挙げられる。
エポキシ樹脂は、単独または2種類以上を併用できる。
Examples of the glycidyl ester compound include terephthalic acid diglycidyl ester.
Epoxy resins can be used alone or in combination of two or more.

本発明のアンカーコート剤は、溶剤を添加できる。
溶剤としては、メタノール、エタノール、プロパノール、ブタノール、エチレングリコールメチルエーテル、ジエチレングリコールメチルエーテル等のアルコール;
アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン;
テトラヒドロフラン、ジオキサン、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル等のエーテル;、
ヘキサン、ヘプタン、オクタン等の炭化水素類、
ベンゼン、トルエン、キシレン、クメン等の芳香族;
酢酸エチル、酢酸ブチル等のエステル等が挙げられる。これらの中でも沸点が50℃〜200℃の溶剤が好ましい。沸点が50以上によると塗工で均一な厚さの樹脂層を形成し易い。また、沸点が200℃以下になると塗工の際の乾燥性がより向上する。
溶剤は単独または2種類以上を併用できる。
A solvent can be added to the anchor coating agent of the present invention.
Examples of the solvent include alcohols such as methanol, ethanol, propanol, butanol, ethylene glycol methyl ether, and diethylene glycol methyl ether;
Ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone;
Ethers such as tetrahydrofuran, dioxane, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether;
Hydrocarbons such as hexane, heptane, octane,
Aromatics such as benzene, toluene, xylene, cumene;
Examples include esters such as ethyl acetate and butyl acetate. Among these, a solvent having a boiling point of 50 ° C to 200 ° C is preferable. When the boiling point is 50 or more, it is easy to form a resin layer having a uniform thickness by coating. Moreover, when the boiling point is 200 ° C. or lower, the drying property at the time of coating is further improved.
The solvent can be used alone or in combination of two or more.

本発明のアンカーコート剤には、必要に応じて、充填剤、チクソトロピー付与剤、老化防止剤、酸化防止剤、帯電防止剤、難燃剤、熱伝導性改良剤、可塑剤、ダレ防止剤、防汚剤、防腐剤、殺菌剤、消泡剤、レベリング剤、硬化剤、増粘剤、顔料分散剤、シランカップリング剤等の各種の添加剤を添加してもよい。   The anchor coating agent of the present invention includes a filler, a thixotropy imparting agent, an anti-aging agent, an antioxidant, an antistatic agent, a flame retardant, a thermal conductivity improving agent, a plasticizer, an anti-sagging agent, an anti-sticking agent as necessary. Various additives such as a soiling agent, an antiseptic, a disinfectant, an antifoaming agent, a leveling agent, a curing agent, a thickener, a pigment dispersant, and a silane coupling agent may be added.

本発明の塗工物は、基材と、アンカーコート剤を含む樹脂層とを備えている。樹脂層は、アンカーコート剤と塗工することで形成できる。   The coated product of the present invention includes a base material and a resin layer containing an anchor coat agent. The resin layer can be formed by coating with an anchor coating agent.

アンカーコート剤を、基材に塗工する方法としては、従来公知の方法を用いることができる。塗工方法(塗工装置)は、例えばコンマコーティング、グラビアコーティング、リバースコーティング、ロールコーティング、リップコーティング、スプレーコーティング等が挙げられる。塗工の際に加熱乾燥を行うことが好ましい。   A conventionally known method can be used as a method of applying the anchor coating agent to the substrate. Examples of the coating method (coating apparatus) include comma coating, gravure coating, reverse coating, roll coating, lip coating, and spray coating. It is preferable to perform heat drying during coating.

基材は、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステルフィルム;ポリエチレン、ポリプロピレン、ポリシクロペンタジエンなどのオレフィンフィルム、ポリフッ化ビニル、ポリフッ化ビニリデンフィルム、ポリテトラフルオロエチレンフィルム、エチレン‐テトラフルオロエチレン共重合体フィルム等のフッ素系フィルム;、アクリルフィルム、トリアセチルセルロースフィルム等のプラスチックフィルムが挙げられる。その他、例えばガラス板などの剛直な基材(板材)に塗工しても良い。また、基材は2層以上の複層構造でも良く、金属酸化物や非金属無機酸化物を蒸着した蒸着フィルムが積層されていても良い。さらに、基材は透明であっても着色されていても良い。
基材の厚みは、通常10〜300μm程度である。
Examples of the base material include polyester films such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate; olefin films such as polyethylene, polypropylene, and polycyclopentadiene, polyvinyl fluoride, polyvinylidene fluoride film, polytetrafluoroethylene film, ethylene- Fluorine-based films such as tetrafluoroethylene copolymer films; plastic films such as acrylic films and triacetylcellulose films. In addition, it may be applied to a rigid base material (plate material) such as a glass plate. Further, the substrate may have a multilayer structure of two or more layers, and a deposited film in which a metal oxide or a nonmetallic inorganic oxide is deposited may be laminated. Furthermore, the substrate may be transparent or colored.
The thickness of the substrate is usually about 10 to 300 μm.

樹脂層の厚みは、通常0.1〜30μm程度である。   The thickness of the resin layer is usually about 0.1 to 30 μm.

本発明の塗工物は、多くの実施態様があるところ、太陽電池モジュールを構成する保護シート(前面保護シートまたは裏面保護シート)として使用することが好ましい。   The coated product of the present invention is preferably used as a protective sheet (a front protective sheet or a back protective sheet) that constitutes a solar cell module where there are many embodiments.

保護シートとして使用する場合、例えば太陽電池モジュールを製造する際に太陽電池封止材のEVAシート面と保護シートが加熱圧着されて両者が密着する。加熱圧着条件としては、例えば140℃〜170℃で3〜10分間程度真空脱泡し、その後温度を維持したまま大気圧で10〜50分間程度圧着する。加熱圧着後、必要に応じて100〜200℃オーブンに入れて5〜60分程度の加熱を行っても良い。   When using it as a protective sheet, for example, when manufacturing a solar cell module, the EVA sheet surface of the solar cell encapsulant and the protective sheet are thermocompression bonded so that they are in close contact with each other. As thermocompression bonding conditions, for example, vacuum degassing is performed at 140 ° C. to 170 ° C. for about 3 to 10 minutes, and then pressure bonding is performed at atmospheric pressure for about 10 to 50 minutes while maintaining the temperature. After thermocompression bonding, if necessary, it may be put into an oven at 100 to 200 ° C. and heated for about 5 to 60 minutes.

次に太陽電池モジュールについて説明する。
太陽電池モジュールの代表的な構成は、図1の断面図に示すように、太陽電池素子3に対し、太陽電池素子3の受光面側に位置する太陽電池表面保護材1を太陽電池セルの受光面側に位置する封止材2を介して積層し、保護シート5を太陽電池セルの非受光面側に位置する封止材4を介して積層し、加熱圧着することによって得ることができる。
Next, the solar cell module will be described.
As shown in the sectional view of FIG. 1, the typical configuration of the solar cell module is that the solar cell surface protection material 1 positioned on the light receiving surface side of the solar cell element 3 is received by the solar cell with respect to the solar cell element 3. It can be obtained by laminating via the sealing material 2 located on the surface side, laminating the protective sheet 5 via the sealing material 4 located on the non-light-receiving surface side of the solar battery cell, and thermocompression bonding.

太陽電池表面保護材1としては、ガラス板、ポリカーボネートやポリアクリレートのプラスチック板などを挙げることができる   Examples of the solar cell surface protective material 1 include glass plates, polycarbonate and polyacrylate plastic plates, and the like.

封止材2および封止材4は、EVAやオレフィンフィルム等が好ましい。これらの封止材には耐候性向上のための紫外線吸収剤、光安定剤や、封止材自身を架橋させるための有機過酸化物などの添加剤が含まれていても良い。   The sealing material 2 and the sealing material 4 are preferably EVA, an olefin film, or the like. These sealing materials may contain additives such as an ultraviolet absorber and a light stabilizer for improving weather resistance, and an organic peroxide for crosslinking the sealing material itself.

太陽電池素子3としては、結晶シリコン、アモルファスシリコン、銅インジウムセレナイドに代表される化合物半導体などの光電変換層に電極を設けた素子が挙げられる。前記素子はガラス等の基板上に形成されていても良い。     Examples of the solar cell element 3 include an element in which an electrode is provided on a photoelectric conversion layer such as a compound semiconductor typified by crystalline silicon, amorphous silicon, or copper indium selenide. The element may be formed on a substrate such as glass.

本発明のアンカーコート剤は、太陽電池保護シート用途のみでなく、さまざまな被着体と基材との剥離強度を向上するために使用することができる。具体的に、本発明のアンカーコート剤が剥離強度を向上できると考えられる被着体としては、例えばUV硬化型印刷インキやUV硬化型ハードコート剤などが挙げられる。   The anchor coating agent of the present invention can be used not only for solar cell protective sheet applications but also for improving the peel strength between various adherends and substrates. Specifically, examples of the adherend on which the anchor coating agent of the present invention is considered to improve the peel strength include UV curable printing ink and UV curable hard coating agent.

本発明のアンカーコート剤がこれらの被着体との剥離強度を向上できるメカニズムは、樹脂(A)がラジカル架橋性を有しているので、これらの被着体にUV照射してラジカル架橋させる際に被着体とアンカーコート剤が化学架橋を形成するためと推測している。   The mechanism by which the anchor coating agent of the present invention can improve the peel strength with these adherends is that the resin (A) has radical crosslinkability, so these adherends are radically crosslinked by UV irradiation. It is presumed that the adherend and the anchor coating agent form chemical crosslinks.

以下、実施例により、本発明をさらに詳細に説明するが、本発明は、以下の実施例によって限定されるものではない。なお、実施例中、部は重量部を示し、%は重量%を示す。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited by a following example. In the examples, “part” represents “part by weight” and “%” represents “% by weight”.

ガラス転移温度、水酸基価は、下記の通り測定した。   The glass transition temperature and the hydroxyl value were measured as follows.

<ガラス転移温度(Tg)の測定>
ガラス転移温度の測定は、前述した示差走査熱量測定(DSC)法により求めた。
なお、Tg測定用の試料は、測定する樹脂溶液を150℃で約15分、加熱し、乾固させた不揮発分を用いた。
<Measurement of glass transition temperature (Tg)>
The glass transition temperature was measured by the differential scanning calorimetry (DSC) method described above.
In addition, the sample for Tg measurement used the non-volatile part which heated the resin solution to measure at 150 degreeC for about 15 minutes, and was made to dry.

<酸価の測定>
共栓三角フラスコ中に試料(樹脂の溶液:約50%)約1gを精密に量り採り、トルエン/エタノール(容量比:トルエン/エタノール=2/1)混合液100mlを加えて溶解する。これに、フェノールフタレイン試液を指示薬として加え、30秒間保持する。その後、溶液が淡紅色を呈するまで0.1Nアルコール性水酸化カリウム溶液で滴定する。
酸価は次式により求めた。酸価は樹脂の乾燥状態の数値とした(単位:mgKOH/g)。
酸価(mgKOH/g)={(5.611×a×F)/S}/(不揮発分濃度/100)
ただし、S:試料の採取量(g)
a:0.1Nアルコール性水酸化カリウム溶液の消費量(ml)
F:0.1Nアルコール性水酸化カリウム溶液の力価
<Measurement of acid value>
About 1 g of a sample (resin solution: about 50%) is accurately weighed in a stoppered Erlenmeyer flask, and 100 ml of a toluene / ethanol (volume ratio: toluene / ethanol = 2/1) mixed solution is added and dissolved. To this is added phenolphthalein reagent as an indicator and held for 30 seconds. Thereafter, the solution is titrated with a 0.1N alcoholic potassium hydroxide solution until the solution becomes light red.
The acid value was determined by the following formula. The acid value was a numerical value of the dry state of the resin (unit: mgKOH / g).
Acid value (mgKOH / g) = {(5.611 × a × F) / S} / (Nonvolatile content concentration / 100)
Where S: Amount of sample collected (g)
a: Consumption of 0.1N alcoholic potassium hydroxide solution (ml)
F: Potency of 0.1N alcoholic potassium hydroxide solution

<水酸基価の測定>
共栓三角フラスコ中に試料約1gを精密に量り採り、トルエン/エタノール(容量比:トルエン/エタノール=2/1)混合液100mlを加えて溶解する。更にアセチル化剤(無水酢酸25gをピリジンで溶解し、容量100mlとした溶液)を正確に5ml加え、約1時間攪拌した。これに、フェノールフタレイン試液を指示薬として加え、30秒間持続する。その後、溶液が淡紅色を呈するまで0.5Nアルコール性水酸化カリウム溶液で滴定する。
水酸基価は次式により求めた。水酸基価は樹脂の乾燥状態の数値とした(単位:mgKOH/g)。
水酸基価(mgKOH/g)=[{(b−a)×F×28.05}/S]/(不揮発分濃度/100)+D
ただし、S:試料の採取量(g)
a:0.5Nアルコール性水酸化カリウム溶液の消費量(ml)
b:空実験の0.5Nアルコール性水酸化カリウム溶液の消費量(ml)
F:0.5Nアルコール性水酸化カリウム溶液の力価
D:酸価(mgKOH/g)
<Measurement of hydroxyl value>
About 1 g of a sample is accurately weighed in a stoppered Erlenmeyer flask, and 100 ml of a toluene / ethanol (volume ratio: toluene / ethanol = 2/1) mixed solution is added and dissolved. Further, exactly 5 ml of an acetylating agent (a solution in which 25 g of acetic anhydride was dissolved in pyridine to make a volume of 100 ml) was added and stirred for about 1 hour. To this, phenolphthalein reagent is added as an indicator and lasts for 30 seconds. Thereafter, the solution is titrated with a 0.5N alcoholic potassium hydroxide solution until the solution becomes light red.
The hydroxyl value was determined by the following formula. The hydroxyl value was a numerical value in the dry state of the resin (unit: mgKOH / g).
Hydroxyl value (mgKOH / g) = [{(ba) × F × 28.05} / S] / (Nonvolatile content concentration / 100) + D
Where S: Amount of sample collected (g)
a: Consumption of 0.5N alcoholic potassium hydroxide solution (ml)
b: Consumption of the 0.5N alcoholic potassium hydroxide solution in the blank experiment (ml)
F: Potency of 0.5N alcoholic potassium hydroxide solution D: Acid value (mgKOH / g)

<合成例1(メタ)アクリル系樹脂A1溶液>
冷却管、撹拌装置、温度計、窒素導入管を備えた4つ口フラスコにトルエン50部、メチルエチルケトン50部を仕込み、窒素雰囲気下で100℃に昇温した。次にメチルメタクリレート10部、シクロヘキシルメタクリレート10部、n−ブチルメタクリレート71部、フルフリルメタクリレート5部、2−ヒドロキシエチルメタクリレート4部、アゾビスイソブチロニトリル0.25部を含むモノマー液を滴下ロートに仕込み、モノマー液を2時間かけて連続滴下した。続いて、フラスコ中にアゾビスイソブチロニトリル0.25部を3分割して1時間ごとに添加して重合反応を行い、さらに1時間反応を継続した。反応終了後、冷却を行い重量平均分子量が82,000、水酸基価が17.0(mgKOH/g)、酸価が0(mgKOH/g)、Tgが36℃、フリル基の官能基当量が3323、不揮発分50%の(メタ)アクリル系共重合体A1溶液を得た。
<Synthesis Example 1 (Meth) acrylic resin A1 solution>
Into a four-necked flask equipped with a cooling tube, a stirrer, a thermometer, and a nitrogen introduction tube were charged 50 parts of toluene and 50 parts of methyl ethyl ketone, and the temperature was raised to 100 ° C. in a nitrogen atmosphere. Next, a monomer solution containing 10 parts of methyl methacrylate, 10 parts of cyclohexyl methacrylate, 71 parts of n-butyl methacrylate, 5 parts of furfuryl methacrylate, 4 parts of 2-hydroxyethyl methacrylate and 0.25 part of azobisisobutyronitrile is added dropwise. The monomer solution was continuously added dropwise over 2 hours. Subsequently, 0.25 part of azobisisobutyronitrile was added to the flask in three portions and added every hour to conduct a polymerization reaction, and the reaction was continued for another hour. After completion of the reaction, the reaction mixture was cooled and the weight average molecular weight was 82,000, the hydroxyl value was 17.0 (mgKOH / g), the acid value was 0 (mgKOH / g), the Tg was 36 ° C., and the functional group equivalent of furyl group was 3323. A (meth) acrylic copolymer A1 solution having a nonvolatile content of 50% was obtained.

<合成例2(メタ)アクリル系樹脂A2溶液>
冷却管、撹拌装置、温度計、窒素導入管を備えた4つ口フラスコにトルエン50部、メチルエチルケトン50部を仕込み、窒素雰囲気下で100℃に昇温した。次にn−ブチルメタクリレート60部、t−ブチルメタクリレート24部、フルフリルメタクリレート10部、2−ヒドロキシエチルメタクリレート6部、アゾビスイソブチロニトリル0.5部を含むモノマー液を滴下ロートに仕込み、モノマー液を2時間かけて連続滴下した。続いて、フラスコ中にアゾビスイソブチロニトリルを0.25部を3分割して1時間ごとに添加して重合反応を行い、さらに1時間反応を継続した。反応終了後、冷却を行い重量平均分子量が55,000、水酸基価が25.9(mgKOH/g)、酸価が0(mgKOH/g)、Tgが45℃、フリル基の官能基当量が1662、不揮発分50%の(メタ)アクリル系共重合体A2溶液を得た。
<Synthesis Example 2 (Meth) acrylic resin A2 solution>
Into a four-necked flask equipped with a cooling tube, a stirrer, a thermometer, and a nitrogen introduction tube were charged 50 parts of toluene and 50 parts of methyl ethyl ketone, and the temperature was raised to 100 ° C. in a nitrogen atmosphere. Next, a monomer solution containing 60 parts of n-butyl methacrylate, 24 parts of t-butyl methacrylate, 10 parts of furfuryl methacrylate, 6 parts of 2-hydroxyethyl methacrylate and 0.5 part of azobisisobutyronitrile was charged into the dropping funnel, The monomer liquid was continuously added dropwise over 2 hours. Subsequently, 0.25 parts of azobisisobutyronitrile was added to the flask in three portions and added every hour to conduct a polymerization reaction, and the reaction was continued for another hour. After completion of the reaction, the reaction mixture was cooled and the weight average molecular weight was 55,000, the hydroxyl value was 25.9 (mgKOH / g), the acid value was 0 (mgKOH / g), the Tg was 45 ° C., and the functional group equivalent of furyl group was 1662. A (meth) acrylic copolymer A2 solution having a nonvolatile content of 50% was obtained.

<合成例3(メタ)アクリル系樹脂A3溶液>
冷却管、撹拌装置、温度計、窒素導入管を備えた4つ口フラスコにトルエン50部、メチルエチルケトン50部を仕込み、窒素雰囲気下で100℃に昇温した。次にメチルメタクリレート18部、シクロヘキシルメタクリレート10部、n−ブチルメタクリレート40部、フルフリルメタクリレート30部、2−ヒドロキシエチルメタクリレート2部、アゾビスイソブチロニトリル0.20部を含むモノマー液を滴下ロートに仕込み、モノマー液を2時間かけて連続滴下した。続いて、フラスコ中にアゾビスイソブチロニトリルを0.25部を3分割して1時間ごとに添加して重合反応を行い、さらに1時間反応を継続した。反応終了後、冷却を行い、重量平均分子量が123,000、水酸基価が8.9(mgKOH/g)、酸価が0(mgKOH/g)、Tgが51℃、フリル基の官能基当量が554、不揮発分50%の(メタ)アクリル系共重合体A3溶液を得た。
<Synthesis Example 3 (Meth) acrylic resin A3 solution>
Into a four-necked flask equipped with a cooling tube, a stirrer, a thermometer, and a nitrogen introduction tube were charged 50 parts of toluene and 50 parts of methyl ethyl ketone, and the temperature was raised to 100 ° C. in a nitrogen atmosphere. Next, a monomer solution containing 18 parts of methyl methacrylate, 10 parts of cyclohexyl methacrylate, 40 parts of n-butyl methacrylate, 30 parts of furfuryl methacrylate, 2 parts of 2-hydroxyethyl methacrylate and 0.20 part of azobisisobutyronitrile is added dropwise. The monomer solution was continuously added dropwise over 2 hours. Subsequently, 0.25 parts of azobisisobutyronitrile was added to the flask in three portions and added every hour to conduct a polymerization reaction, and the reaction was continued for another hour. After completion of the reaction, cooling is performed, the weight average molecular weight is 123,000, the hydroxyl value is 8.9 (mgKOH / g), the acid value is 0 (mgKOH / g), the Tg is 51 ° C., and the functional group equivalent of the furyl group is 554, a (meth) acrylic copolymer A3 solution having a nonvolatile content of 50% was obtained.

<合成例4(メタ)アクリル系樹脂A4溶液>
冷却管、撹拌装置、温度計、窒素導入管を備えた4つ口フラスコにトルエン50部、メチルエチルケトン50部を仕込み、窒素雰囲気下で100℃に昇温した。次にシクロヘキシルメタクリレート20部、n−ブチルメタクリレート20部、フルフリルメタクリレート50部、2−ヒドロキシエチルメタクリレート10部、アゾビスイソブチロニトリル0.20部を含むモノマー液を滴下ロートに仕込み、モノマー液を2時間かけて連続滴下した。続いて、フラスコ中に、アゾビスイソブチロニトリルを0.25部を3分割して1時間ごとに添加して重合反応を行い、さらに1時間反応を継続した。反応終了後、冷却を行い、重量平均分子量が134,000、水酸基価が43.4(mgKOH/g)、酸価が0(mgKOH/g)、Tgが55℃、フリル基の官能基当量が332、不揮発分50%の(メタ)アクリル系共重合体A4溶液を得た。
<Synthesis Example 4 (Meth) acrylic resin A4 solution>
Into a four-necked flask equipped with a cooling tube, a stirrer, a thermometer, and a nitrogen introduction tube were charged 50 parts of toluene and 50 parts of methyl ethyl ketone, and the temperature was raised to 100 ° C. in a nitrogen atmosphere. Next, a monomer solution containing 20 parts of cyclohexyl methacrylate, 20 parts of n-butyl methacrylate, 50 parts of furfuryl methacrylate, 10 parts of 2-hydroxyethyl methacrylate, and 0.20 part of azobisisobutyronitrile is charged into the dropping funnel, and the monomer solution Was continuously added dropwise over 2 hours. Subsequently, 0.25 part of azobisisobutyronitrile was added to the flask in three portions and added every hour to conduct a polymerization reaction, and the reaction was continued for another hour. After completion of the reaction, cooling is performed, the weight average molecular weight is 134,000, the hydroxyl value is 43.4 (mgKOH / g), the acid value is 0 (mgKOH / g), the Tg is 55 ° C., and the functional group equivalent of the furyl group is 332. A (meth) acrylic copolymer A4 solution having a nonvolatile content of 50% was obtained.

<合成例5(メタ)アクリル系樹脂A5溶液>
冷却管、撹拌装置、温度計、窒素導入管を備えた4つ口フラスコにトルエン50部、メチルエチルケトン50部を仕込み、窒素雰囲気下で100℃に昇温した。次にn−ブチルメタクリレート5部、フルフリルメタクリレート90部、2−ヒドロキシエチルメタクリレート5部、アゾビスイソブチロニトリル0.15部を含むモノマー液を滴下ロートに仕込み、モノマー液を2時間かけて連続滴下した。続いて、フラスコ中に、アゾビスイソブチロニトリルを0.25部を3分割して1時間ごとに添加して重合反応を行い、さらに1時間反応を継続した。反応終了後、冷却を行い、重量平均分子量が178,000、水酸基価が22.1(mgKOH/g)、酸価が0(mgKOH/g)、Tgが57℃、フリル基の官能基当量が185、不揮発分50%の(メタ)アクリル系共重合体A5溶液を得た。
<Synthesis Example 5 (Meth) acrylic resin A5 solution>
Into a four-necked flask equipped with a cooling tube, a stirrer, a thermometer, and a nitrogen introduction tube were charged 50 parts of toluene and 50 parts of methyl ethyl ketone, and the temperature was raised to 100 ° C. in a nitrogen atmosphere. Next, a monomer solution containing 5 parts of n-butyl methacrylate, 90 parts of furfuryl methacrylate, 5 parts of 2-hydroxyethyl methacrylate, and 0.15 part of azobisisobutyronitrile was charged into the dropping funnel, and the monomer solution was added over 2 hours. Continuous dripping. Subsequently, 0.25 part of azobisisobutyronitrile was added to the flask in three portions and added every hour to conduct a polymerization reaction, and the reaction was continued for another hour. After completion of the reaction, cooling is performed, the weight average molecular weight is 178,000, the hydroxyl value is 22.1 (mgKOH / g), the acid value is 0 (mgKOH / g), the Tg is 57 ° C., and the functional group equivalent of the furyl group is A (meth) acrylic copolymer A5 solution having a nonvolatile content of 50% was obtained.

<合成例6(メタ)アクリル系樹脂A6溶液>
冷却管、撹拌装置、温度計、窒素導入管を備えた4つ口フラスコにトルエン50部、メチルエチルケトン50部を仕込み、窒素雰囲気下で100℃に昇温した。次にメタクリル酸5部、メチルメタクリレート10部、シクロヘキシルメタクリレート10部、n−ブチルメタクリレート65部、2−イソシアナトエチルメタクリレート10部、アゾビスイソブチロニトリル0.15部を含むモノマー液を滴下ロートに仕込み、モノマー液を2時間かけて連続滴下した。続いて、フラスコ中に、アゾビスイソブチロニトリルを0.25部を3分割して1時間ごとに添加して重合反応を行い、さらに1時間撹拌して重合させた。次いで、フルフリルアルコール6.3部、ジブチルスズジラウレート0.03部を加え、40℃で撹拌しながら2時間かけて反応させた。IRでイソシアネートピーク(2260cm−1)が消失したことを確認し、重量平均分子量が152,000、水酸基価が0(mgKOH/g)、酸価が29.0(mgKOH/g)、Tgが43℃、フリル基の官能基当量が1650、不揮発分50%の(メタ)アクリル系共重合体A6溶液を得た。
<Synthesis Example 6 (Meth) acrylic resin A6 solution>
Into a four-necked flask equipped with a cooling tube, a stirrer, a thermometer, and a nitrogen introduction tube were charged 50 parts of toluene and 50 parts of methyl ethyl ketone, and the temperature was raised to 100 ° C. in a nitrogen atmosphere. Next, a monomer solution containing 5 parts of methacrylic acid, 10 parts of methyl methacrylate, 10 parts of cyclohexyl methacrylate, 65 parts of n-butyl methacrylate, 10 parts of 2-isocyanatoethyl methacrylate and 0.15 part of azobisisobutyronitrile is added dropwise. The monomer solution was continuously added dropwise over 2 hours. Subsequently, 0.25 part of azobisisobutyronitrile was added to the flask in three portions and added every hour to conduct a polymerization reaction, and further stirred for 1 hour for polymerization. Next, 6.3 parts of furfuryl alcohol and 0.03 part of dibutyltin dilaurate were added, and the mixture was reacted at 40 ° C. with stirring for 2 hours. It was confirmed by IR that the isocyanate peak (2260 cm-1) had disappeared, the weight average molecular weight was 152,000, the hydroxyl value was 0 (mgKOH / g), the acid value was 29.0 (mgKOH / g), and the Tg was 43. A (meth) acrylic copolymer A6 solution having a functional group equivalent of 1650 ° C. and a non-volatile content of 50% was obtained.

<合成例7(メタ)アクリル系樹脂A7溶液>
冷却管、撹拌装置、温度計、窒素導入管を備えた4つ口フラスコにトルエン50部、メチルエチルケトン50部を仕込み、窒素雰囲気下で100℃に昇温した。次にメチルメタクリレート10部、シクロヘキシルメタクリレート15部、n−ブチルメタクリレート60部、2−ヒドロキシエチルメタクリレート15部、アゾビスイソブチロニトリル0.15部を含むモノマー液を滴下ロートに仕込み、モノマー液を2時間かけて連続滴下した。続いて、フラスコ中に、アゾビスイソブチロニトリルを0.25部を3分割して1時間ごとに添加して重合反応を行い、さらに1時間撹拌して重合させた。次いで、イソホロンジイソシアネートの一級イソシアネート基に2−チオフェンメタノールを付加した化合物(分子量336.46)25.9部、ジブチルスズジラウレート0.03部を加え、60℃で撹拌しながら5時間かけて反応させた。IRでイソシアネートピーク(2260cm−1)が消失したことを確認し、重量平均分子量が166,000、水酸基価が17.0(mgKOH/g)、酸価が0(mgKOH/g)、Tgが20℃、チエニル基の官能基当量が1638、不揮発分50%の(メタ)アクリル系共重合体A7溶液を得た。
<Synthesis Example 7 (Meth) acrylic resin A7 solution>
Into a four-necked flask equipped with a cooling tube, a stirrer, a thermometer, and a nitrogen introduction tube were charged 50 parts of toluene and 50 parts of methyl ethyl ketone, and the temperature was raised to 100 ° C. in a nitrogen atmosphere. Next, a monomer solution containing 10 parts of methyl methacrylate, 15 parts of cyclohexyl methacrylate, 60 parts of n-butyl methacrylate, 15 parts of 2-hydroxyethyl methacrylate, and 0.15 part of azobisisobutyronitrile was charged into the dropping funnel, It was continuously dropped over 2 hours. Subsequently, 0.25 part of azobisisobutyronitrile was added to the flask in three portions and added every hour to conduct a polymerization reaction, and further stirred for 1 hour for polymerization. Next, 25.9 parts of a compound obtained by adding 2-thiophene methanol to the primary isocyanate group of isophorone diisocyanate (molecular weight: 336.46) and 0.03 part of dibutyltin dilaurate were added and reacted at 60 ° C. with stirring for 5 hours. . It was confirmed by IR that the isocyanate peak (2260 cm-1) had disappeared, the weight average molecular weight was 166,000, the hydroxyl value was 17.0 (mgKOH / g), the acid value was 0 (mgKOH / g), and the Tg was 20 A (meth) acrylic copolymer A7 solution having a functional group equivalent of thienyl group of 1638 and a non-volatile content of 50% was obtained.

<合成例8(メタ)アクリル系樹脂A8溶液>
冷却管、撹拌装置、温度計、窒素導入管を備えた4つ口フラスコにトルエン50部、メチルエチルケトン50部を仕込み、窒素雰囲気下で100℃に昇温した。次にメチルメタクリレート10部、シクロヘキシルメタクリレート15部、n−ブチルメタクリレート60部、2−ヒドロキシエチルメタクリレート15部、アゾビスイソブチロニトリル0.15部を含むモノマー液を滴下ロートに仕込み、モノマー液を2時間かけて連続滴下した。続いて、フラスコ中に、アゾビスイソブチロニトリルを0.25部を3分割して1時間ごとに添加して重合反応を行い、さらに1時間撹拌して重合させた。次いで、イソホロンジイソシアネートの一級イソシアネート基に3−ピリジンメタノールを付加した化合物(分子量331.42)25.5部、ジブチルスズジラウレート0.03部を加え、60℃で撹拌しながら5時間かけて反応させた。IRでイソシアネートピーク(2260cm−1)が消失したことを確認し、重量平均分子量が181,000、水酸基価が18.1(mgKOH/g)、酸価が0(mgKOH/g)、Tgが23℃、ピリジル基の官能基当量が1633、不揮発分50%の(メタ)アクリル系共重合体A8溶液を得た。
<Synthesis Example 8 (Meth) acrylic resin A8 solution>
Into a four-necked flask equipped with a cooling tube, a stirrer, a thermometer, and a nitrogen introduction tube were charged 50 parts of toluene and 50 parts of methyl ethyl ketone, and the temperature was raised to 100 ° C. in a nitrogen atmosphere. Next, a monomer solution containing 10 parts of methyl methacrylate, 15 parts of cyclohexyl methacrylate, 60 parts of n-butyl methacrylate, 15 parts of 2-hydroxyethyl methacrylate, and 0.15 part of azobisisobutyronitrile was charged into the dropping funnel, It was continuously dropped over 2 hours. Subsequently, 0.25 part of azobisisobutyronitrile was added to the flask in three portions and added every hour to conduct a polymerization reaction, and further stirred for 1 hour for polymerization. Next, 25.5 parts of a compound obtained by adding 3-pyridinemethanol to the primary isocyanate group of isophorone diisocyanate (molecular weight 331.42) and 0.03 part of dibutyltin dilaurate were added and reacted at 60 ° C. with stirring for 5 hours. . It was confirmed by IR that the isocyanate peak (2260 cm-1) had disappeared, the weight average molecular weight was 181,000, the hydroxyl value was 18.1 (mgKOH / g), the acid value was 0 (mgKOH / g), and the Tg was 23. A (meth) acrylic copolymer A8 solution having a functional group equivalent of pyridyl group of 1633 and a non-volatile content of 50% was obtained.

<合成例9(メタ)アクリル系樹脂A9溶液>
冷却管、撹拌装置、温度計、窒素導入管を備えた4つ口フラスコにトルエン50部、メチルエチルケトン49.33部を仕込み、窒素雰囲気下で100℃に昇温した。次にメチルメタクリレート5部、シクロヘキシルメタクリレート10部、n−ブチルメタクリレート60部、t−ブチルメタクリレート19部、フルフリルメタクリレート0.34部、2−ヒドロキシエチルメタクリレート5部、アゾビスイソブチロニトリル0.25部を含むモノマー液を滴下ロートに仕込み、モノマー液を2時間かけて連続滴下した。続いて、フラスコ中に、アゾビスイソブチロニトリルを0.25部を3分割して1時間ごとに添加して重合反応を行い、さらに1時間反応を継続した。反応終了後、冷却を行い、重量平均分子量が78,000、水酸基価が21.7(mgKOH/g)、酸価が0(mgKOH/g)、Tgが46℃、フリル基の官能基当量が48551、不揮発分50%の(メタ)アクリル系共重合体A9溶液を得た。
<Synthesis Example 9 (Meth) acrylic resin A9 solution>
Into a four-necked flask equipped with a cooling tube, a stirrer, a thermometer, and a nitrogen introduction tube were charged 50 parts of toluene and 49.33 parts of methyl ethyl ketone, and the temperature was raised to 100 ° C. in a nitrogen atmosphere. Next, 5 parts methyl methacrylate, 10 parts cyclohexyl methacrylate, 60 parts n-butyl methacrylate, 19 parts t-butyl methacrylate, 0.34 parts furfuryl methacrylate, 5 parts 2-hydroxyethyl methacrylate, azobisisobutyronitrile. A monomer liquid containing 25 parts was charged into a dropping funnel, and the monomer liquid was continuously dropped over 2 hours. Subsequently, 0.25 part of azobisisobutyronitrile was added to the flask in three portions and added every hour to conduct a polymerization reaction, and the reaction was continued for another hour. After completion of the reaction, cooling is performed, the weight average molecular weight is 78,000, the hydroxyl value is 21.7 (mgKOH / g), the acid value is 0 (mgKOH / g), the Tg is 46 ° C., and the functional group equivalent of the furyl group is A 48551, (meth) acrylic copolymer A9 solution having a nonvolatile content of 50% was obtained.

<合成例10(メタ)アクリル系樹脂A21溶液>
冷却管、撹拌装置、温度計、窒素導入管を備えた4つ口フラスコにトルエン50部、メチルエチルケトン50部を仕込み、窒素雰囲気下で100℃に昇温した。次にメチルメタクリレート10部、シクロヘキシルメタクリレート16部、n−ブチルメタクリレート70部、2−ヒドロキシエチルメタクリレート2部、グリシジルメタクリレート2部、アゾビスイソブチロニトリル0.15部を含むモノマー液を滴下ロートに仕込み、モノマー液を2時間かけて連続滴下した。続いて、フラスコ中に、アゾビスイソブチロニトリルを0.25部を3分割して1時間ごとに添加して重合反応を行い、さらに1時間撹拌して重合させた。
その後、ジメチルベンジルアミンを0.8部、アクリル酸を1部と重合禁止剤を添加し、100℃で15時間加熱撹拌した。酸価が2以下であることを確認した後、冷却を行い重量平均分子量が39,000、水酸基価が17.2(mgKOH/g)、酸価が0(mgKOH/g)、Tgが30℃、アクリロイル基の官能基当量が7278、不揮発分50%の(メタ)アクリル系共重合体A21溶液を得た。
<Synthesis Example 10 (Meth) acrylic resin A21 solution>
Into a four-necked flask equipped with a cooling tube, a stirrer, a thermometer, and a nitrogen introduction tube were charged 50 parts of toluene and 50 parts of methyl ethyl ketone, and the temperature was raised to 100 ° C. in a nitrogen atmosphere. Next, a monomer solution containing 10 parts of methyl methacrylate, 16 parts of cyclohexyl methacrylate, 70 parts of n-butyl methacrylate, 2 parts of 2-hydroxyethyl methacrylate, 2 parts of glycidyl methacrylate and 0.15 part of azobisisobutyronitrile is added to the dropping funnel. The monomer liquid was continuously dropped over 2 hours. Subsequently, 0.25 part of azobisisobutyronitrile was added to the flask in three portions and added every hour to conduct a polymerization reaction, and further stirred for 1 hour for polymerization.
Thereafter, 0.8 part of dimethylbenzylamine, 1 part of acrylic acid and a polymerization inhibitor were added, and the mixture was heated and stirred at 100 ° C. for 15 hours. After confirming that the acid value was 2 or less, the system was cooled and the weight average molecular weight was 39,000, the hydroxyl value was 17.2 (mgKOH / g), the acid value was 0 (mgKOH / g), and the Tg was 30 ° C. Thus, a (meth) acrylic copolymer A21 solution having an acryloyl group functional group equivalent of 7278 and a nonvolatile content of 50% was obtained.

<合成例11(メタ)アクリル系樹脂A22溶液>
冷却管、撹拌装置、温度計、窒素導入管を備えた4つ口フラスコにトルエン50部、メチルエチルケトン50部を仕込み、窒素雰囲気下で100℃に昇温した。次にメチルメタクリレート10部、シクロヘキシルメタクリレート20部、ブチルアクリレート25部、n−ブチルメタクリレート5部、t−ブチルメタクリレート15部、テトラヒドロフルフリルメタクリレート20部、2−ヒドロキシエチルメタクリレート5部、アゾビスイソブチロニトリル0.30部を含むモノマー液を滴下ロートに仕込み、モノマー液を2時間かけて連続滴下した。続いて、フラスコ中に、アゾビスイソブチロニトリルを0.25部を3分割して1時間ごとに添加して重合反応を行い、さらに1時間反応を継続した。反応終了後、冷却を行い、重量平均分子量が66,000、水酸基価が21.0(mgKOH/g)、酸価が0(mgKOH/g)、Tgが32℃、テトラヒドロフリル基の官能基当量が851、不揮発分50%の(メタ)アクリル系共重合体A22溶液を得た。
<Synthesis Example 11 (Meth) acrylic resin A22 solution>
Into a four-necked flask equipped with a cooling tube, a stirrer, a thermometer, and a nitrogen introduction tube were charged 50 parts of toluene and 50 parts of methyl ethyl ketone, and the temperature was raised to 100 ° C. in a nitrogen atmosphere. Next, 10 parts methyl methacrylate, 20 parts cyclohexyl methacrylate, 25 parts butyl acrylate, 5 parts n-butyl methacrylate, 15 parts t-butyl methacrylate, 20 parts tetrahydrofurfuryl methacrylate, 5 parts 2-hydroxyethyl methacrylate, azobisisobuty A monomer liquid containing 0.30 part of nitrile was charged into a dropping funnel, and the monomer liquid was continuously dropped over 2 hours. Subsequently, 0.25 part of azobisisobutyronitrile was added to the flask in three portions and added every hour to conduct a polymerization reaction, and the reaction was continued for another hour. After completion of the reaction, cooling is performed, the weight average molecular weight is 66,000, the hydroxyl value is 21.0 (mgKOH / g), the acid value is 0 (mgKOH / g), Tg is 32 ° C., the functional group equivalent of the tetrahydrofuryl group Was 851, and a (meth) acrylic copolymer A22 solution having a nonvolatile content of 50% was obtained.

<合成例12(メタ)アクリル系樹脂A23溶液>
冷却管、撹拌装置、温度計、窒素導入管を備えた4つ口フラスコにトルエン50部、メチルエチルケトン50部を仕込み、窒素雰囲気下で100℃に昇温した。次にメチルメタクリレート10部、シクロヘキシルメタクリレート20部、ブチルアクリレート25部、n−ブチルメタクリレート25部、t−ブチルメタクリレート15部、2−ヒドロキシエチルメタクリレート5部、アゾビスイソブチロニトリル0.30部を含むモノマー液を滴下ロートに仕込み、モノマー液を2時間かけて連続滴下した。続いて、フラスコ中に、アゾビスイソブチロニトリルを0.25部を3分割して1時間ごとに添加して重合反応を行い、さらに1時間反応を継続した。反応終了後、冷却を行い、重量平均分子量が61,000、水酸基価が23.0(mgKOH/g)、酸価が0(mgKOH/g)、Tgが25℃、不揮発分50%の(メタ)アクリル系共重合体A23溶液を得た。
<Synthesis Example 12 (Meth) acrylic resin A23 solution>
Into a four-necked flask equipped with a cooling tube, a stirrer, a thermometer, and a nitrogen introduction tube were charged 50 parts of toluene and 50 parts of methyl ethyl ketone, and the temperature was raised to 100 ° C. in a nitrogen atmosphere. Next, 10 parts of methyl methacrylate, 20 parts of cyclohexyl methacrylate, 25 parts of butyl acrylate, 25 parts of n-butyl methacrylate, 15 parts of t-butyl methacrylate, 5 parts of 2-hydroxyethyl methacrylate, and 0.30 part of azobisisobutyronitrile. The monomer liquid containing was charged into the dropping funnel, and the monomer liquid was continuously dropped over 2 hours. Subsequently, 0.25 part of azobisisobutyronitrile was added to the flask in three portions and added every hour to conduct a polymerization reaction, and the reaction was continued for another hour. After completion of the reaction, the reaction mixture is cooled, and the weight average molecular weight is 61,000, the hydroxyl value is 23.0 (mgKOH / g), the acid value is 0 (mgKOH / g), Tg is 25 ° C., ) Acrylic copolymer A23 solution was obtained.

<合成例13(メタ)アクリル系樹脂A24溶液>
撹拌機、還流冷却器、温度計および滴下層を取りつけた4つ口フラスコに、水90部を投入し、フラスコ中の温度を85℃に上げてから、過硫酸カリウム0.2部を添加した。次に、水50部、n−ブチルメタクリレート92部、2−ヒドロキシエチルメタクリレート8部、ポリオキシアルキレンアルキルエーテル硫酸エステルアンモニウム(製品名:エレミノールCLS−20[三洋化成工業社製])の20%水溶液1.5部、およびポリオキシエチレンアルキルエーテル(製品名:エマルゲンE1118S−70[花王社製])の25%水溶液2部を混合した混合液を、フラスコ中へ滴下層より2時間かけて滴下した。滴下中はフラスコ中の温度を80℃に保った。滴下が終了してからフラスコ中の温度を85℃にして30分保持した。次に、フラスコ内の温度を62℃まで冷却し、t-ブチルヒドロペルオキシドの5%水溶液1部、イソアスコルビン酸ナトリウムの1%水溶液2部を続けて添加し、フラスコ内の温度を62℃で30分保持した。最後に、室温まで冷却し、25%アンモニア水を添加してpH8に調整してからナイロンメッシュでろ過し、水酸基価が34.4(mgKOH/g)、酸価が0(mgKOH/g)、Tgが21℃、不揮発分40%の(メタ)アクリル系共重合体A24溶液を得た。なお、A24は分子量が高すぎて重量平均分子量が測定できなかった。
<Synthesis Example 13 (Meth) acrylic resin A24 solution>
To a four-necked flask equipped with a stirrer, a reflux condenser, a thermometer and a dropping layer, 90 parts of water was added and the temperature in the flask was raised to 85 ° C., and then 0.2 part of potassium persulfate was added. . Next, 50 parts of water, 92 parts of n-butyl methacrylate, 8 parts of 2-hydroxyethyl methacrylate, ammonium polyoxyalkylene alkyl ether sulfate (product name: Eleminol CLS-20 [manufactured by Sanyo Chemical Industries Ltd.]) 20% aqueous solution A mixed solution obtained by mixing 1.5 parts and 2 parts of a 25% aqueous solution of polyoxyethylene alkyl ether (product name: Emulgen E1118S-70 [manufactured by Kao Corporation)] was dropped into the flask over 2 hours from the dropping layer. . During the dropping, the temperature in the flask was kept at 80 ° C. After completion of the dropping, the temperature in the flask was kept at 85 ° C. for 30 minutes. Next, the temperature in the flask is cooled to 62 ° C., 1 part of a 5% aqueous solution of t-butyl hydroperoxide and 2 parts of a 1% aqueous solution of sodium isoascorbate are added successively, and the temperature in the flask is kept at 62 ° C. Hold for 30 minutes. Finally, it is cooled to room temperature, adjusted to pH 8 by adding 25% aqueous ammonia, filtered through a nylon mesh, hydroxyl value is 34.4 (mgKOH / g), acid value is 0 (mgKOH / g), A (meth) acrylic copolymer A24 solution having a Tg of 21 ° C. and a nonvolatile content of 40% was obtained. A24 had a molecular weight that was too high to measure the weight average molecular weight.

<合成例14(メタ)アクリル系樹脂A25溶液>
冷却管、撹拌装置、温度計、窒素導入管を備えた4つ口フラスコにトルエン50部、メチルエチルケトン50部を仕込み、窒素雰囲気下で100℃に昇温した。次にシクロヘキシルメタクリレート86部、ブチルアクリレート5部、2−ヒドロキシエチルメタクリレート9部、アゾビスイソブチロニトリル0.20部を含むモノマー液を滴下ロートに仕込み、モノマー液を2時間かけて連続滴下した。続いて、フラスコ中に、アゾビスイソブチロニトリルを0.25部を3分割して1時間ごとに添加して重合反応を行い、さらに1時間反応を継続した。その後、ジブチルスズジラウレートを0.03部添加し、2−イソシアナトエチルメタクリレート3.58部を40℃で撹拌しながら2時間かけて滴下した。IRでイソシアネートピーク(2260cm−1)が消失したことを確認した後、冷却を行い重量平均分子量が122,000、水酸基価が25.8(mgKOH/g)、酸価が0(mgKOH/g)、Tgが65℃、メタクリロイル基の官能基当量が4493、不揮発分50%の(メタ)アクリル系共重合体A25溶液を得た。
<Synthesis Example 14 (Meth) acrylic resin A25 solution>
Into a four-necked flask equipped with a cooling tube, a stirrer, a thermometer, and a nitrogen introduction tube were charged 50 parts of toluene and 50 parts of methyl ethyl ketone, and the temperature was raised to 100 ° C. in a nitrogen atmosphere. Next, a monomer liquid containing 86 parts of cyclohexyl methacrylate, 5 parts of butyl acrylate, 9 parts of 2-hydroxyethyl methacrylate, and 0.20 part of azobisisobutyronitrile was charged into the dropping funnel, and the monomer liquid was continuously dropped over 2 hours. . Subsequently, 0.25 part of azobisisobutyronitrile was added to the flask in three portions and added every hour to conduct a polymerization reaction, and the reaction was continued for another hour. Thereafter, 0.03 part of dibutyltin dilaurate was added, and 3.58 parts of 2-isocyanatoethyl methacrylate was added dropwise over 2 hours while stirring at 40 ° C. After confirming the disappearance of the isocyanate peak (2260 cm-1) by IR, cooling was performed, the weight average molecular weight was 122,000, the hydroxyl value was 25.8 (mgKOH / g), and the acid value was 0 (mgKOH / g). Thus, a (meth) acrylic copolymer A25 solution having a Tg of 65 ° C., a functional group equivalent of methacryloyl group of 4493, and a non-volatile content of 50% was obtained.

<合成例15 ポリエステルP1溶液>
重合槽、攪拌機、温度計、水分離装置、還流冷却器、窒素導入管を備えた重合反応装置の重合槽に、テレフタル酸31部、イソフタル酸31部、アジピン酸5部、エチレングリコール21.5部、ネオペンチルグリコール9部、トリメチロールプロパン1.5部およびフルフリルアルコール1部を重合槽に仕込み、窒素気流下で攪拌しながら160〜240℃に加熱し、エステル交換反応を行なった。次いで重合槽を徐々に1〜2トールまで減圧し、所定の粘度となったところで減圧下での反応を終了し、重量平均分子量が62,000、水酸基価が7.2(mgKOH/g)、酸価が0(mgKOH/g)、Tgが28℃、フリル基の官能基当量が9810のポリエステルポリオールを得た。さらに、酢酸エチルで希釈して、不揮発分40%のポリエステルP1溶液を得た。
<Synthesis Example 15 Polyester P1 Solution>
In a polymerization tank of a polymerization reactor equipped with a polymerization tank, a stirrer, a thermometer, a water separator, a reflux condenser, and a nitrogen introduction tube, 31 parts of terephthalic acid, 31 parts of isophthalic acid, 5 parts of adipic acid, 21.5 ethylene glycol Part, 9 parts of neopentyl glycol, 1.5 parts of trimethylolpropane and 1 part of furfuryl alcohol were charged into a polymerization tank and heated to 160 to 240 ° C. while stirring under a nitrogen stream to conduct a transesterification reaction. Next, the polymerization tank was gradually depressurized to 1 to 2 Torr, and when the predetermined viscosity was reached, the reaction under reduced pressure was terminated, the weight average molecular weight was 62,000, the hydroxyl value was 7.2 (mgKOH / g), A polyester polyol having an acid value of 0 (mgKOH / g), a Tg of 28 ° C., and a furyl functional group equivalent of 9810 was obtained. Further, it was diluted with ethyl acetate to obtain a polyester P1 solution having a nonvolatile content of 40%.

<合成例16 ポリウレタンU1溶液>
冷却管、窒素導入管、撹拌装置、温度計、滴下ロートを備えた4つ口フラスコに、C−2090(クラレ社製、ポリカーボネートポリオール)130部、1,6−ヘキサンジオール10部、シクロヘキサンジメタノール10部、トリメチロールプロパン2部、イソホロンジイソシアネート51部、トルエン100部を仕込み、触媒としてジブチル錫ジラウレート0.03部を仕込み、100℃まで徐々に昇温して、3時間反応を行った。IR測定によりNCOピークがないことを確認した後、イソホロンジイソシアネートの一級イソシアネート基にフルフリルアルコールを付加した化合物(分子量320.39)を2.85部加え、4時間反応して付加させた。再度IR測定によりNCOピークがないことを確認した後、酢酸エチル106部を添加して冷却を行うことで、数平均分子量が39,000、水酸基価が4.1(mgKOH/g)、酸価が0(mgKOH/g)、Tgが20℃、フリル基の官能基当量が23162、不揮発分50%のポリウレタンU1溶液を得た。
<Synthesis Example 16 Polyurethane U1 Solution>
In a four-necked flask equipped with a cooling tube, a nitrogen introducing tube, a stirring device, a thermometer, and a dropping funnel, 130 parts of C-2090 (manufactured by Kuraray Co., Ltd., polycarbonate polyol), 10 parts of 1,6-hexanediol, cyclohexanedimethanol 10 parts, 2 parts of trimethylolpropane, 51 parts of isophorone diisocyanate and 100 parts of toluene were added, 0.03 part of dibutyltin dilaurate was added as a catalyst, the temperature was gradually raised to 100 ° C., and the reaction was carried out for 3 hours. After confirming that there was no NCO peak by IR measurement, 2.85 parts of a compound (molecular weight 320.39) obtained by adding furfuryl alcohol to the primary isocyanate group of isophorone diisocyanate was added and reacted for 4 hours to be added. After confirming again that there is no NCO peak by IR measurement, by adding 106 parts of ethyl acetate and cooling, the number average molecular weight is 39,000, the hydroxyl value is 4.1 (mgKOH / g), the acid value Was 0 (mgKOH / g), Tg was 20 ° C., furyl functional group equivalent was 23162, and a polyurethane U1 solution having a nonvolatile content of 50% was obtained.

(メタ)アクリル系樹脂A1〜A9、ポリエステルP1、ポリウレタンU1、(メタ)アクリル系樹脂A21〜23の重量平均分子量、OH価、Tg、間の官能基当量を一覧にしたものを表1に示す。   Table 1 shows a list of weight average molecular weights, OH values, Tg, and functional group equivalents of (meth) acrylic resins A1 to A9, polyester P1, polyurethane U1, and (meth) acrylic resins A21 to 23. .

Figure 0006485369
Figure 0006485369

<イソシアネート硬化剤溶液B1>
MEKオキシムでブロックされた、ヘキサメチレンジイソシアネートのイソシアヌレート体および3,5−ジメチルピラゾールでブロックされた、ヘキサメチレンジイソシアネートのイソシアヌレート体を1:1の比率で含む、不揮発分75%の溶液をイソシアネート硬化剤溶液B1とした。
<Isocyanate curing agent solution B1>
An isocyanurate of hexamethylene diisocyanate blocked with MEK oxime and an isocyanurate of hexamethylene diisocyanate blocked with 3,5-dimethylpyrazole in a ratio of 1: 1 were used to obtain a 75% nonvolatile solution. Curing agent solution B1 was obtained.

<カルボジイミド硬化剤溶液B2>
カルボジライトV−03(日清紡ケミカル社製)をカルボジイミド硬化剤溶液B2とした。
<Carbodiimide curing agent solution B2>
Carbodilite V-03 (Nisshinbo Chemical Co., Ltd.) was used as a carbodiimide curing agent solution B2.

<アンカーコート剤溶液1>
(メタ)アクリル系樹脂A1溶液と、イソシアネート硬化剤溶液B1とをNCO/OHのモル比率が1.5となるように配合した溶液をアンカーコート剤溶液1とした。
<Anchor coating agent solution 1>
A solution in which the (meth) acrylic resin A1 solution and the isocyanate curing agent solution B1 were blended so that the NCO / OH molar ratio was 1.5 was designated as anchor coating agent solution 1.

<アンカーコート剤溶液2〜5>
アンカーコート剤溶液1の(メタ)アクリル系樹脂A1を(メタ)アクリル系樹脂A2〜A5溶液に変更したこと以外は、アンカーコート剤溶液1と同様にしてそれぞれアンカーコート剤溶液2〜5を作成した。
<Anchor coating agent solutions 2-5>
Prepare anchor coat agent solutions 2 to 5 in the same manner as anchor coat agent solution 1 except that (meth) acrylic resin A1 of anchor coat agent solution 1 is changed to (meth) acrylic resin A2 to A5 solution. did.

<アンカーコート剤溶液6>
(メタ)アクリル系樹脂A6溶液と、カルボジイミド硬化剤溶液B2を、カルボキシル基とカルボジイミド基のモル比率が1.5となるように配合した溶液をアンカーコート剤溶液6とした。
<Anchor coating agent solution 6>
A solution in which the (meth) acrylic resin A6 solution and the carbodiimide curing agent solution B2 were blended so that the molar ratio of carboxyl groups to carbodiimide groups was 1.5 was designated as anchor coating agent solution 6.

<アンカーコート剤溶液7〜9>
アンカーコート剤溶液1の(メタ)アクリル系樹脂A1を(メタ)アクリル系樹脂A7〜A9溶液に変更したこと以外は、アンカーコート剤溶液1と同様にしてそれぞれアンカーコート剤溶液7〜9を作成した。
<Anchor coating agent solutions 7-9>
The anchor coating agent solutions 7 to 9 are prepared in the same manner as the anchor coating agent solution 1 except that the (meth) acrylic resin A1 of the anchor coating agent solution 1 is changed to the (meth) acrylic resin A7 to A9 solution. did.

<アンカーコート剤溶液10>
ポリエステルP1溶液と、イソシアネート硬化剤溶液B1をNCO/OHのモル比率が1.5となるように配合した溶液をアンカーコート剤溶液10とした。
<Anchor coating agent solution 10>
A solution in which the polyester P1 solution and the isocyanate curing agent solution B1 were blended so that the NCO / OH molar ratio was 1.5 was designated as anchor coating agent solution 10.

<アンカーコート剤溶液11>
ポリウレタンU1溶液と、イソシアネート硬化剤溶液B1をNCO/OHのモル比率が1.5となるように配合した溶液をアンカーコート剤溶液11とした。
<Anchor coating agent solution 11>
A solution in which the polyurethane U1 solution and the isocyanate curing agent solution B1 were blended so that the NCO / OH molar ratio was 1.5 was designated as an anchor coating agent solution 11.

<アンカーコート剤溶液12>
(メタ)アクリル系樹脂A21溶液と、イソシアネート硬化剤溶液B1をNCO/OHのモル比率が1.5となるように配合した溶液をアンカーコート剤溶液12とした。
<Anchor coating agent solution 12>
A solution in which the (meth) acrylic resin A21 solution and the isocyanate curing agent solution B1 were blended so that the NCO / OH molar ratio was 1.5 was designated as anchor coating agent solution 12.

<アンカーコート剤溶液13>
(メタ)アクリル系樹脂A22溶液と、イソシアネート硬化剤溶液B1をNCO/OHのモル比率が1.5となるように配合した溶液をアンカーコート剤溶液13とした。
<Anchor coating agent solution 13>
A solution in which the (meth) acrylic resin A22 solution and the isocyanate curing agent solution B1 were blended so that the NCO / OH molar ratio was 1.5 was designated as an anchor coating agent solution 13.

<アンカーコート剤溶液14>
(メタ)アクリル系樹脂A23溶液と、イソシアネート硬化剤溶液B1をNCO/OHのモル比率が1.5となるように配合した溶液をアンカーコート剤溶液14とした。
<Anchor coating agent solution 14>
A solution in which the (meth) acrylic resin A23 solution and the isocyanate curing agent solution B1 were blended so that the NCO / OH molar ratio was 1.5 was designated as the anchor coating agent solution 14.

<アンカーコート剤溶液15>
(メタ)アクリル系樹脂A24溶液と、オキサゾリン基含有ポリマーの溶液であるエポクロスK−2030E(日本触媒社製、Tg50℃、オキサゾリン基の官能基当量556)を不揮発分比で2:1の割合となるように配合し、ここにブロックイソシアネートの水分散体であるImprafix 2794XP(Bayer MaterialScience AG製)をNCO/OHのモル比率が1.5となるように配合した溶液をアンカーコート剤溶液15とした。
<Anchor coating agent solution 15>
The ratio of the (meth) acrylic resin A24 solution and Epocross K-2030E (Nippon Shokubai Co., Ltd., Tg 50 ° C., functional group equivalent 556 of the oxazoline group), which is a solution of the oxazoline group-containing polymer, in a nonvolatile content ratio of 2: 1 An anchor coating agent solution 15 was prepared by mixing Imprafix 2794XP (manufactured by Bayer MaterialScience AG), which is an aqueous dispersion of blocked isocyanate, so that the NCO / OH molar ratio was 1.5. .

<アンカーコート剤溶液16>
(メタ)アクリル系樹脂A25溶液と、イソシアネート硬化剤溶液B1をNCO/OHモル比率が1.5となるように配合した溶液をアンカーコート剤溶液16とした。
<Anchor coating agent solution 16>
A solution in which the (meth) acrylic resin A25 solution and the isocyanate curing agent solution B1 were blended so that the NCO / OH molar ratio was 1.5 was designated as the anchor coating agent solution 16.

[実施例1]
アンカーコート剤溶液1を用い、後述する方法で、アンカーコート剤と酢酸ビニル−エチレン共重合体フィルム(サンビック社製、ファストタイプ、以下EVAフィルム)との剥離強度、耐湿熱試験(500時間後、1000時間後、2000時間後)剥離強度の評価を行った。
[Example 1]
Peel strength between anchor coat agent and vinyl acetate-ethylene copolymer film (manufactured by Sunvic, fast type, hereinafter referred to as EVA film), moisture heat resistance test (after 500 hours, using anchor coat agent solution 1) After 1000 hours and 2000 hours), the peel strength was evaluated.

<剥離強度>
アンカーコート剤溶液1をグラビアコーターで厚さ188μmのポリエステルフィルム(東レ社製、ルミラーX10S)のコロナ処理面に塗布し、100℃1分で溶剤を乾燥させ、塗布量:3g/平方メートルの樹脂層を設けた。樹脂層の上にEVAフィルム、白板ガラス板を重ね、この積層体を140℃に加熱したモジュールラミネータPVL0505S(日清紡メカトロニクス社製)の熱板の上に、白板ガラスが下になるように置き、1Torr程度に真空排気して5分間放置した。次いで、140℃を維持したまま大気圧でプレスし、15分間放置して測定サンプルを作製した。ポリエステルフィルムの面をカッターで15mm幅に切り、アンカーコート剤とEVAフィルムとの初期の剥離強度を測定した。測定には、引っ張り試験機を用い、荷重速度100mm/minで180度剥離試験を行った。得られた測定値に対して、以下のように評価した。
◎:50N/15mm以上 良好
○:30N/15mm以上〜50N/15mm未満 実用域
△:10N/15mm以上〜30N/15mm未満 実用不可
×:10N/15mm未満 実用不可
<Peel strength>
The anchor coating agent solution 1 is applied to the corona-treated surface of a 188 μm thick polyester film (Lumirror X10S, manufactured by Toray Industries Inc.) with a gravure coater, and the solvent is dried at 100 ° C. for 1 minute. The coating amount is 3 g / square meter resin layer Was provided. An EVA film and a white glass plate are stacked on the resin layer, and this laminated body is placed on a heat plate of a module laminator PVL0505S (manufactured by Nisshinbo Mechatronics Co., Ltd.) heated to 140 ° C. so that the white plate glass faces downward. It was evacuated to a certain degree and left for 5 minutes. Next, the sample was pressed at atmospheric pressure while maintaining 140 ° C., and allowed to stand for 15 minutes to prepare a measurement sample. The surface of the polyester film was cut into a width of 15 mm with a cutter, and the initial peel strength between the anchor coating agent and the EVA film was measured. For the measurement, a tensile tester was used, and a 180 degree peel test was performed at a load speed of 100 mm / min. The obtained measurement values were evaluated as follows.
◎: 50 N / 15 mm or more Good ○: 30 N / 15 mm or more to less than 50 N / 15 mm Practical range Δ: 10 N / 15 mm or more to less than 30 N / 15 mm Impractical use ×: Less than 10 N / 15 mm Impractical use

<耐湿熱試験後剥離強度>
別途作製した測定サンプルを、温度85℃相対湿度85%RH雰囲気中にそれぞれ500時間、1000時間、2000時間静置した後、耐湿熱試験後の剥離強度を測定した。なお、評価基準は、上記同様である。
<Peel strength after wet heat test>
Separately prepared measurement samples were allowed to stand for 500 hours, 1000 hours, and 2000 hours in an atmosphere of 85 ° C. and 85% relative humidity, respectively, and then the peel strength after the wet heat resistance test was measured. The evaluation criteria are the same as described above.

[実施例2〜11、比較例1〜4]
実施例1と同様にアンカーコート剤溶液2〜15をそれぞれ評価することでそれぞれ実施例2〜11、比較例1〜4とした。
[Examples 2 to 11, Comparative Examples 1 to 4]
The anchor coating agent solutions 2 to 15 were evaluated in the same manner as in Example 1 to give Examples 2 to 11 and Comparative Examples 1 to 4, respectively.

Figure 0006485369
Figure 0006485369

実施例1〜11は、樹脂が炭素−炭素二重結合を有する複素環を含有する樹脂と硬化剤を含むアンカーコート剤を使用しているので、初期剥離強度と耐湿熱試験後の剥離強度に優れることが分かる。   Since Examples 1-11 use the anchor coat agent containing resin and the hardening agent in which the resin contains the heterocyclic ring which has a carbon-carbon double bond, it is in the initial peeling strength and the peeling strength after a heat-and-moisture resistance test. It turns out that it is excellent.

比較例1はアクリロイル基を有する樹脂である(メタ)アクリル系樹脂A21と硬化剤を含むアンカーコート剤を使用している。(メタ)アクリル系樹脂A21は溶液作成の際、ゲル化を防ぐ目的で重合禁止剤を多く使用しているため、アンカーコート剤とEVAフィルムとの接着を阻害し、剥離強度に劣る。   Comparative Example 1 uses (meth) acrylic resin A21, which is a resin having an acryloyl group, and an anchor coating agent containing a curing agent. Since the (meth) acrylic resin A21 uses a large amount of a polymerization inhibitor for the purpose of preventing gelation during the preparation of the solution, the adhesion between the anchor coating agent and the EVA film is inhibited, and the peel strength is inferior.

比較例2はテトラヒドロフリル基を有する樹脂と硬化剤を含むアンカーコート剤を使用している。テトラヒドロフリル基は複素環構造を有するが、複素環が炭素−炭素二重結合を有さないため剥離強度に劣る。   Comparative Example 2 uses an anchor coat agent containing a resin having a tetrahydrofuryl group and a curing agent. Although the tetrahydrofuryl group has a heterocyclic structure, since the heterocyclic ring does not have a carbon-carbon double bond, the peel strength is inferior.

比較例3は樹脂と硬化剤を含むアンカーコート剤を使用しているが、樹脂が炭素−炭素二重結合を有する複素環を含有しないため剥離強度に劣る。   Comparative Example 3 uses an anchor coating agent containing a resin and a curing agent, but the resin does not contain a heterocyclic ring having a carbon-carbon double bond, so that the peel strength is inferior.

比較例4はオキサゾリン基を有する樹脂と硬化剤を含むアンカーコート剤を使用している。オキサゾリン基は複素環構造を有するが、複素環が炭素−炭素二重結合を有さないため剥離強度に劣る。   In Comparative Example 4, an anchor coat agent containing a resin having an oxazoline group and a curing agent is used. Although the oxazoline group has a heterocyclic structure, since the heterocyclic ring does not have a carbon-carbon double bond, the peel strength is inferior.

<保存安定性>   <Storage stability>

[実施例21]
保存安定性をアンカーコート剤溶液の塗工物の剥離強度で評価した。アンカーコート剤溶液1をグラビアコーターで厚さ188μmのポリエステルフィルム(東レ社製、ルミラーX10S)のコロナ処理面に塗布し、100℃1分乾燥させることで、塗布量:3g/平方メートルの樹脂層を設けた。この樹脂層付きポリエステルフィルムを60℃の恒温槽で3ヶ月間放置した後、上記同様に剥離強度を測定した。なお、評価基準は下記の通りである。
◎:50N/15mm以上 良好
○:30N/15mm以上〜50N/15mm未満 実用域
△:10N/15mm以上〜30N/15mm未満 実用不可
×:10N/15mm未満 実用不可
[Example 21]
The storage stability was evaluated by the peel strength of the anchor coating solution. An anchor coating agent solution 1 is applied to a corona-treated surface of a polyester film (Lumirror X10S, manufactured by Toray Industries, Inc.) having a thickness of 188 μm with a gravure coater, and dried at 100 ° C. for 1 minute to form a resin layer having a coating amount of 3 g / square meter. Provided. After leaving this polyester film with a resin layer for 3 months in a 60 degreeC thermostat, peel strength was measured similarly to the above. The evaluation criteria are as follows.
◎: 50 N / 15 mm or more Good ○: 30 N / 15 mm or more to less than 50 N / 15 mm Practical range Δ: 10 N / 15 mm or more to less than 30 N / 15 mm Impractical use ×: Less than 10 N / 15 mm Impractical use

[実施例22〜31]
実施例21のアンカーコート剤溶液1をアンカーコート剤溶液2〜11溶液に変更したこと以外は実施例21と同様にして実施し、それぞれ実施例22〜31とした。
[Examples 22 to 31]
It implemented similarly to Example 21 except having changed the anchor coating agent solution 1 of Example 21 into the anchor coating agent solution 2-11 solution, and was set as Examples 22-31, respectively.

[比較例5]
実施例21においてアンカーコート剤溶液1をアンカーコート剤溶液16に変更したこと以外は実施例21と同様にして実施し、比較例5とした。
[Comparative Example 5]
The same procedure as in Example 21 was performed except that the anchor coating agent solution 1 was changed to the anchor coating agent solution 16 in Example 21 to obtain Comparative Example 5.

実施例21〜31、比較例5の結果を表3に示す。   Table 3 shows the results of Examples 21 to 31 and Comparative Example 5.

Figure 0006485369
Figure 0006485369

実施例21〜31は60℃で3ヶ月放置した後も剥離強度が高く、保存安定性に優れることが分かる。一方、比較例5は60℃3ヶ月の保存で変質し剥離強度が低下した。   It can be seen that Examples 21 to 31 have high peel strength and excellent storage stability even after being left at 60 ° C. for 3 months. On the other hand, Comparative Example 5 was altered by storage at 60 ° C. for 3 months, and the peel strength decreased.

[UV硬化型印刷インキの密着性試験] [Adhesion test of UV curable printing ink]

[実施例41]
密着性を下記の通り評価した。厚さ188μmの透明ポリエステルフィルム(メリネックスS 帝人デュポンフィルム社製)のコロナ処理面に、アンカーコート剤溶液1をグラビアコーターで塗布し、100℃1分で溶剤を乾燥させ、塗布量:3g/平方メートルの樹脂層を設けた。この樹脂層の上に東洋インキ社製UV硬化型印刷インキをRIテスター(簡易展色装置)を用いて厚さが5μmとなるように印刷し、112W/cmの空冷式メタルハライドランプ((株)東芝製)を用いて、所定の照射量で紫外線を照射して、インキ層を硬化させた。このインキ層と樹脂層との密着性を、JIS K 5600−5−6に準拠して、カッターを用いて、独立した縦1cm×横1cm程度のチップを100個備えた試験サンプルを作製した。前記試験サンプル上にセロハンテープを使用して個々のチップが剥離するか否かを試験した。なお、評価は、下記基準で行った。
◎:試験サンプル上のチップの残存率100% 良好
○:試験サンプル上のチップの残存率100%未満80%以上 実用域
△:試験サンプル上のチップの残存率80未満50%以上 実用不可
×:試験サンプル上のチップの残存率50%未満 実用不可
[Example 41]
The adhesion was evaluated as follows. On the corona-treated surface of a 188 μm thick transparent polyester film (Merinex S Teijin DuPont Films Co., Ltd.), the anchor coating agent solution 1 is applied with a gravure coater, and the solvent is dried at 100 ° C. for 1 minute. The resin layer was provided. On this resin layer, a UV curable printing ink manufactured by Toyo Ink Co., Ltd. was printed using an RI tester (simple color developing device) to a thickness of 5 μm, and a 112 W / cm air-cooled metal halide lamp (Corporation) Using Toshiba), the ink layer was cured by irradiating ultraviolet rays at a predetermined irradiation amount. A test sample having 100 independent chips of about 1 cm in length and 1 cm in width was prepared using a cutter in accordance with JIS K 5600-5-6 for the adhesion between the ink layer and the resin layer. It was tested whether each chip | tip peeled using the cellophane tape on the said test sample. Evaluation was performed according to the following criteria.
◎: Residual rate of chip on test sample 100% Good ○: Residual rate of chip on test sample less than 100% 80% or more Practical range Δ: Residual rate of chip on test sample less than 80 50% or more Impractical ×: Residual rate of chip on test sample is less than 50%

[実施例42〜45]
実施例41においてアンカーコート剤溶液1をアンカーコート剤溶液2〜5に変更したこと以外は、実施例41と同様にして実施し、実施例42〜45とした。
[Examples 42 to 45]
Except having changed the anchor coating agent solution 1 into the anchor coating agent solutions 2-5 in Example 41, it implemented similarly to Example 41 and was set as Examples 42-45.

[比較例6]
実施例41においてアンカーコート剤溶液1をアンカーコート剤溶液12に変更したこと以外は、実施例41と同様にして実施し、比較例6とした。
[Comparative Example 6]
The same procedure as in Example 41 was performed except that the anchor coating agent solution 1 was changed to the anchor coating agent solution 12 in Example 41 to obtain Comparative Example 6.

[比較例7]
実施例41においてアンカーコート剤溶液1をアンカーコート剤溶液14に変更したこと以外は、実施例41と同様にして実施し、比較例7とした。
[Comparative Example 7]
The same procedure as in Example 41 was performed except that the anchor coating agent solution 1 was changed to the anchor coating agent solution 14 in Example 41, and Comparative Example 7 was obtained.

[比較例8]
実施例41のアンカーコート剤溶液1を使用せず、透明ポリエステルフィルムのコロナ処理面に直接UV硬化型印刷インキI1を印刷塗布したこと以外は、実施例41と同様にして実施し、比較例8とした。
[Comparative Example 8]
Comparative Example 8 was carried out in the same manner as in Example 41 except that the anchor coating agent solution 1 of Example 41 was not used, and the UV curable printing ink I1 was directly printed on the corona-treated surface of the transparent polyester film. It was.

実施例41〜45、比較例6〜8の結果を表4に示す。   Table 4 shows the results of Examples 41 to 45 and Comparative Examples 6 to 8.

Figure 0006485369
Figure 0006485369

表4の結果から実施例41〜45は、インキ層の密着性が向上した。一方、比較例6はゲル化を防ぐ目的で重合禁止剤を多量に含むため密着性が低かった。また、比較例7は、樹脂(A)を含まないため密着性が低かった。また、比較例8は、アンカーコート剤を使用しなかったため、密着性が低い。   From the results in Table 4, in Examples 41 to 45, the adhesion of the ink layer was improved. On the other hand, since Comparative Example 6 contained a large amount of a polymerization inhibitor for the purpose of preventing gelation, the adhesion was low. Moreover, since the comparative example 7 did not contain resin (A), adhesiveness was low. Moreover, since the comparative example 8 did not use an anchor coat agent, adhesiveness is low.

[UV硬化型ハードコート剤の密着性試験] [Adhesion test of UV curable hard coat agent]

[実施例51]
厚さ188μmの透明ポリエステルフィルムであるメリネックスS(帝人デュポンフィルム社製)のコロナ処理面に、アンカーコート剤溶液1をグラビアコーターで塗布し、100℃1分で溶剤を乾燥させ、塗布量:3g/平方メートルの樹脂層を設けた。この樹脂層の上に東洋インキ社製UV硬化型ハードコート剤をメイヤーバーを用いて乾燥後厚さが5μmとなるように塗布し、オーブンで溶剤を乾燥させた後、メタルハライドランプで400mJ/cm2の紫外線を照射し、コート層を形成した。このコート層の密着性試験を上記同様に行い、上記同様の基準で評価した。
[Example 51]
On the corona-treated surface of Melinex S (manufactured by Teijin DuPont Films), a transparent polyester film with a thickness of 188 μm, the anchor coating agent solution 1 is applied with a gravure coater, and the solvent is dried at 100 ° C. for 1 minute. / A square meter resin layer was provided. On this resin layer, a UV curable hard coating agent manufactured by Toyo Ink Co., Ltd. was applied using a Mayer bar so that the thickness was 5 μm after drying, the solvent was dried in an oven, and then 400 mJ / cm with a metal halide lamp. The coating layer was formed by irradiating the ultraviolet ray 2 . The adhesion test of this coat layer was performed in the same manner as described above, and evaluated according to the same criteria as described above.

[実施例52〜55]
実施例51においてアンカーコート剤溶液1をアンカーコート剤溶液2〜5に変更したこと以外は、実施例51と同様にして実施し、実施例52〜55とした。
[Examples 52 to 55]
Except having changed the anchor coating agent solution 1 into the anchor coating agent solutions 2-5 in Example 51, it implemented similarly to Example 51 and was set as Examples 52-55.

[比較例9]
実施例51においてアンカーコート剤溶液1をアンカーコート剤溶液12に変更したこと以外は、実施例51と同様にして実施し、比較例9とした。
[Comparative Example 9]
The same operation as in Example 51 was performed except that the anchor coating agent solution 1 was changed to the anchor coating agent solution 12 in Example 51, and Comparative Example 9 was obtained.

[比較例10]
実施例51においてアンカーコート剤溶液1をアンカーコート剤溶液14に変更したこと以外は、実施例51と同様にして実施し、比較例10とした。
[Comparative Example 10]
The same operation as in Example 51 was performed except that the anchor coating agent solution 1 was changed to the anchor coating agent solution 14 in Example 51, and Comparative Example 10 was obtained.

[比較例11]
実施例51において、アンカーコート剤溶液1を使用せず、透明ポリエステルフィルムのコロナ処理面に直接UV硬化型ハードコート剤を印刷塗布したこと以外は、実施例51と同様にして実施し、比較例11とした。
[Comparative Example 11]
In Example 51, the same procedure as in Example 51 was performed except that the anchor coating agent solution 1 was not used and the UV curable hard coating agent was directly printed on the corona-treated surface of the transparent polyester film. Comparative Example It was set to 11.

実施例51〜55、比較例9〜11の結果を表5に示す。   Table 5 shows the results of Examples 51 to 55 and Comparative Examples 9 to 11.

Figure 0006485369
Figure 0006485369

表5の結果から実施例51〜55は、密着性が良好であった。また、比較例6は、ゲル化を防ぐ目的で重合禁止剤を多量に含むため、樹脂層とコート層との密着性が低い。また、比較例7は、樹脂(A)を含まないため密着性が低い。また、比較例8はアンカーコート剤を使用しなかったため、密着性が低い。   From the results in Table 5, Examples 51 to 55 had good adhesion. Moreover, since Comparative Example 6 contains a large amount of a polymerization inhibitor for the purpose of preventing gelation, the adhesion between the resin layer and the coat layer is low. Moreover, since the comparative example 7 does not contain resin (A), adhesiveness is low. Moreover, since the comparative example 8 did not use an anchor coat agent, adhesiveness is low.

1 太陽電池表面保護材
2 封止材
3 太陽電池素子
4 封止材
5 保護シート
DESCRIPTION OF SYMBOLS 1 Solar cell surface protective material 2 Sealing material 3 Solar cell element 4 Sealing material 5 Protective sheet

Claims (2)

複素環含有樹脂(A)と、硬化剤(B)とを含み、
前記複素環が炭素−炭素二重結合を有する、太陽電池保護シート用アンカーコート剤。
Including a heterocyclic ring-containing resin (A) and a curing agent (B),
An anchor coating agent for a solar cell protective sheet, wherein the heterocyclic ring has a carbon-carbon double bond.
基材と、請求項1記載の太陽電池保護シート用アンカーコート剤を含む樹脂層とを備えた、太陽電池保護シート。  The solar cell protective sheet provided with the base material and the resin layer containing the anchor coating agent for solar cell protective sheets of Claim 1.
JP2016005208A 2016-01-14 2016-01-14 Anchor coating agent Active JP6485369B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016005208A JP6485369B2 (en) 2016-01-14 2016-01-14 Anchor coating agent
CN201710019687.7A CN106967377B (en) 2016-01-14 2017-01-11 Thickening coating agent and coated article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016005208A JP6485369B2 (en) 2016-01-14 2016-01-14 Anchor coating agent

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019005330A Division JP6504328B1 (en) 2019-01-16 2019-01-16 Anchor coating agent

Publications (2)

Publication Number Publication Date
JP2017125131A JP2017125131A (en) 2017-07-20
JP6485369B2 true JP6485369B2 (en) 2019-03-20

Family

ID=59334888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016005208A Active JP6485369B2 (en) 2016-01-14 2016-01-14 Anchor coating agent

Country Status (2)

Country Link
JP (1) JP6485369B2 (en)
CN (1) CN106967377B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7128749B2 (en) * 2019-01-15 2022-08-31 三井化学株式会社 Laminates and solar modules

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4215499A1 (en) * 1992-05-12 1993-11-18 Basf Lacke & Farben Process for the production of a multilayer protective and / or decorative coating on a substrate surface and aqueous lacquers suitable for carrying out the process
JP2002363189A (en) * 2001-06-01 2002-12-18 Yokohama Rubber Co Ltd:The Silane coupling agent and polymer composition containing the same
JP5339686B2 (en) * 2007-03-30 2013-11-13 富士フイルム株式会社 Pigment dispersion composition, curable composition, color filter and method for producing the same
JP5834719B2 (en) * 2011-02-09 2015-12-24 東洋紡株式会社 Easy-adhesive polyester film for solar cell and back sheet using the same
JP2013022831A (en) * 2011-07-21 2013-02-04 Fujifilm Corp Easy adhesive film and method of manufacturing the same
JP2013211336A (en) * 2012-03-30 2013-10-10 Toyo Ink Sc Holdings Co Ltd Manufacturing method of rear surface protection sheet for solar cell, rear surface protection sheet for solar cell, and solar cell module
JP6330272B2 (en) * 2012-08-30 2018-05-30 セントラル硝子株式会社 Photosensitive resin composition and pattern forming method using the same
JP5967654B2 (en) * 2012-11-28 2016-08-10 日本化薬株式会社 Resin composition and cured product thereof (2)
WO2014132794A1 (en) * 2013-02-28 2014-09-04 ナガセケムテックス株式会社 Plating primer composition, method for manufacturing plated article, and plated article
KR102323947B1 (en) * 2013-11-19 2021-11-09 닛토덴코 가부시키가이샤 Resin sheet
JP6613649B2 (en) * 2014-06-23 2019-12-04 東洋インキScホールディングス株式会社 Adhesive composition, laminated sheet, back surface protection sheet for solar cell

Also Published As

Publication number Publication date
JP2017125131A (en) 2017-07-20
CN106967377A (en) 2017-07-21
CN106967377B (en) 2020-10-27

Similar Documents

Publication Publication Date Title
JP4807473B2 (en) Solar cell back surface protective sheet, method for producing the same, and solar cell module
TWI465536B (en) Solar cell inner protective sheet adhesive, solar cell inner protective sheet, and solar module
TWI470052B (en) Solar cell inner protective sheet adhesive, solar cell inner protective sheet, and solar module
JP5776541B2 (en) Protective sheet for solar cell and solar cell module
JP5825105B2 (en) Easy adhesive for solar cell protective sheet, solar cell protective sheet, and solar cell module
JP6511994B2 (en) Curable adhesive resin composition, and solar cell back surface protection sheet using the same
JP6485369B2 (en) Anchor coating agent
JP6303502B2 (en) Easy adhesive for solar cell protective sheet, solar cell protective sheet, and solar cell module
JP5751164B2 (en) Easy adhesive for solar cell surface protective sheet, solar cell surface protective sheet, and solar cell module
JP6504328B1 (en) Anchor coating agent
JP5644456B2 (en) Solar cell back surface protection sheet, method for producing the sheet, and solar cell module
JP5867064B2 (en) Easy adhesive for solar cell back surface protective sheet, solar cell back surface protective sheet, and solar cell module
JP5853668B2 (en) Easy adhesive for solar cell back surface protective sheet, solar cell back surface protective sheet, and solar cell module
JP2018145289A (en) Anchor coat agent
JP2013187349A (en) Solar cell module, method for manufacturing solar cell module, and protective sheet for solar cell
JP5729292B2 (en) Easy adhesive for solar cell back surface protective sheet, solar cell back surface protective sheet, and solar cell module
JP5741423B2 (en) Easy adhesive for solar cell back surface protective sheet, solar cell back surface protective sheet, and solar cell module
JP6497001B2 (en) Thermosetting resin composition and solar cell back surface protective sheet
JP6750271B2 (en) Anchor coating agent for solar cells, protective material, and solar cell module
JP2019114793A (en) Primer and solar cell backside protective sheet
JP2018120919A (en) Adhesive for solar cell protective sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180803

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20180911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180911

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20181120

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20181127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190204

R151 Written notification of patent or utility model registration

Ref document number: 6485369

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350