JP6484441B2 - solenoid valve - Google Patents

solenoid valve Download PDF

Info

Publication number
JP6484441B2
JP6484441B2 JP2014256435A JP2014256435A JP6484441B2 JP 6484441 B2 JP6484441 B2 JP 6484441B2 JP 2014256435 A JP2014256435 A JP 2014256435A JP 2014256435 A JP2014256435 A JP 2014256435A JP 6484441 B2 JP6484441 B2 JP 6484441B2
Authority
JP
Japan
Prior art keywords
valve
winding
electromagnetic
electromagnetic valve
valve body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014256435A
Other languages
Japanese (ja)
Other versions
JP2016118213A (en
Inventor
真典 梅野
真典 梅野
成敏 宮田
成敏 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamada Manufacturing Co Ltd
Original Assignee
Yamada Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamada Manufacturing Co Ltd filed Critical Yamada Manufacturing Co Ltd
Priority to JP2014256435A priority Critical patent/JP6484441B2/en
Publication of JP2016118213A publication Critical patent/JP2016118213A/en
Application granted granted Critical
Publication of JP6484441B2 publication Critical patent/JP6484441B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Description

本発明は自動車のエンジン冷却系における電磁弁に関する。   The present invention relates to a solenoid valve in an automobile engine cooling system.

自動車のエンジン冷却系では、機械式または電動のウォータポンプとサーモスタットやバルブを用いたシステムがある。そして近年のハイブリッド車や、アイドリングストップ車の普及とあいまって、電動式ウォータポンプの需要が増えている。これは、これらの車はエンジンが止まっていてもエンジンや室内を適切な温度に保つ必要があるからである。   In an automobile engine cooling system, there is a system using a mechanical or electric water pump and a thermostat or a valve. Along with the recent spread of hybrid vehicles and idling stop vehicles, the demand for electric water pumps is increasing. This is because these vehicles need to keep the engine and the room at an appropriate temperature even when the engine is stopped.

特開2012−167573号公報JP 2012-167573 A

自動車のエンジンルーム内に冷却系を配置するには、前記ポンプ等の機器を備え付ける土台や、組み付け部品や水路ホースが必要となる。これらの部品や水路ホースは、組み付けスペースのコンパクト化を困難とし、重量の増加や組み付け工数の増大化という課題を有している。   In order to arrange a cooling system in the engine room of an automobile, a base on which equipment such as the pump is provided, an assembly part, and a waterway hose are required. These parts and the waterway hose make it difficult to make the assembly space compact, and have the problems of increasing the weight and increasing the number of assembly steps.

特許文献1には、電磁石と圧縮ばねで、鉄等の磁性体でできた弁体を開閉制御する電磁弁が示されている。これは、エンジン、ラジエータ、ヒータコア等の機器を冷却液の循環路で接続して、車両用の冷却装置を構成したものである。そして、電動ウォータポンプで送り出された前記冷却液が、前記電磁弁で制御されている。ここでも、まとめられる機器はなるべく一体化して、更なる、前記循環路の効率化と、冷却装置全体の省スペース化をすることが課題となっている。   Patent Document 1 discloses an electromagnetic valve that controls opening and closing of a valve body made of a magnetic material such as iron using an electromagnet and a compression spring. In this device, a cooling device for a vehicle is configured by connecting devices such as an engine, a radiator, and a heater core through a coolant circulation path. And the said cooling liquid sent out with the electric water pump is controlled by the said solenoid valve. Also here, the devices to be combined are integrated as much as possible to further improve the efficiency of the circulation path and to save the space of the entire cooling device.

そこで本発明は、冷却系を構成する機器の一体化により、循環路の効率化と、冷却装置全体の省スペース化及び、組み付け工数の省力化を可能とする電磁弁を提供することを目的とする。   Accordingly, an object of the present invention is to provide an electromagnetic valve that can improve efficiency of a circulation path, save space in the entire cooling device, and save labor in assembling man-hours by integrating devices constituting a cooling system. To do.

本発明の目的は、電動機に隣接した電磁弁であって、磁性を帯びた弁体と、該弁体の付勢手段と、電磁コイルと、流入路と、流出路を有し、前記電磁コイルは、前記電動機のステータコアのティース部を該電動機ロータの回転軸方向に延長して巻き線コアとし、少なくとも、前記付勢手段の付勢力と前記電磁コイルの磁力で前記弁体を移動させることを特徴とする電磁弁によって達成される。   An object of the present invention is an electromagnetic valve adjacent to an electric motor, which has a magnetic valve body, an urging means for the valve body, an electromagnetic coil, an inflow path, and an outflow path, and the electromagnetic coil Extends the tooth portion of the stator core of the motor in the direction of the rotation axis of the motor rotor to form a winding core, and moves the valve body by at least the urging force of the urging means and the magnetic force of the electromagnetic coil. This is achieved by a characteristic solenoid valve.

本発明の電磁弁は、電動機と一体化することで、自動車の冷却系装置の部品点数の削減、組み付け工数の削減の効果がある。また、前記部品点数の削減により、前記冷却系装置の軽量化、信頼性の向上、省スペース化の効果がある。また、省スペース化により、前記冷却系装置の循環路の短縮化が可能となり冷却機能の効率化が図れる効果がある。   By integrating the electromagnetic valve of the present invention with an electric motor, there is an effect of reducing the number of parts of an automobile cooling system and reducing the number of assembly steps. Further, the reduction in the number of parts has the effect of reducing the weight of the cooling system, improving the reliability, and saving the space. In addition, the space saving can shorten the circulation path of the cooling system device, and can effectively improve the cooling function.

また、本発明の電磁弁の電磁コイルの磁場の向きと、前記電磁弁に隣接する電動機の駆動磁場とは、直交しているので、お互いの磁場の干渉を最小化する効果がある。   In addition, since the direction of the magnetic field of the electromagnetic coil of the electromagnetic valve of the present invention and the driving magnetic field of the electric motor adjacent to the electromagnetic valve are orthogonal, there is an effect of minimizing the interference between the magnetic fields.

(A)は流路遮断時の、本発明の電磁弁と隣接する電動機の断面図、(B)はX1−X1矢視による断面図、(C)はX2−X2矢視による断面図である。(A) is sectional drawing of the electric motor adjacent to the solenoid valve of this invention at the time of flow path interruption | blocking, (B) is sectional drawing by X1-X1 arrow, (C) is sectional drawing by X2-X2 arrow. . (A)は、矢印方向aに冷却液の圧力が掛かっている場合の本発明の電磁弁における、流路遮断時の断面図、(B)は流路接続時の断面図である。(A) is sectional drawing at the time of flow-path interruption | blocking in the solenoid valve of this invention in case the pressure of the cooling fluid has applied to the arrow direction a, (B) is sectional drawing at the time of flow-path connection. (A)は、矢印方向cに冷却液の圧力が掛かっている場合の本発明の電磁弁における、流路遮断時の断面図、(B)は流路接続時の断面図である。(A) is sectional drawing at the time of flow-path interruption | blocking in the solenoid valve of this invention when the pressure of the cooling fluid is applied to the arrow direction c, (B) is sectional drawing at the time of flow-path connection. (A)は、電動機用巻き線31aと31bが作る磁場Z1と、電磁弁用巻き線42の位置関係を示す図、(B)は、電磁弁用巻き線42が作る磁場Z2aとZ2bと、電動機用巻き線31aと31bの位置関係を示す図である。(A) is a diagram showing the positional relationship between the magnetic field Z1 created by the motor windings 31a and 31b and the solenoid valve winding 42, and (B) is a magnetic field Z2a and Z2b created by the solenoid valve winding 42; It is a figure which shows the positional relationship of the windings 31a and 31b for motors.

図1に基づいて、本発明の電磁弁の実施の一例を説明する。図1(A)は流路遮断時の、本発明の電磁弁及びこれに隣接する電動機の断面図である。図1(B)はX1−X1矢視による断面図で、同図(C)はX2−X2矢視による断面図である。   Based on FIG. 1, an example of implementation of the solenoid valve of this invention is demonstrated. FIG. 1A is a cross-sectional view of the solenoid valve of the present invention and the electric motor adjacent thereto when the flow path is shut off. FIG. 1B is a cross-sectional view taken along arrow X1-X1, and FIG. 1C is a cross-sectional view taken along arrow X2-X2.

図1(A)に示すように本発明の電磁弁は電磁弁ハウジング1と電磁コイル4から成る。そして、電磁弁ハウジング1の内部には、流路11と、流路12と、電磁弁13と、弁体軸13aと、弁体規制部13bと、付勢ばね13cが構成されている。本発明の電磁弁は、電動機に接近して構成されていて、電磁弁ハウジング1と電動機ハウジング2は接するか、非常に近接して存在してもよいし、一体成形されていてもよい。   As shown in FIG. 1 (A), the electromagnetic valve of the present invention comprises an electromagnetic valve housing 1 and an electromagnetic coil 4. And inside the electromagnetic valve housing 1, the flow path 11, the flow path 12, the electromagnetic valve 13, the valve body axis | shaft 13a, the valve body control part 13b, and the urging | biasing spring 13c are comprised. The electromagnetic valve of the present invention is configured close to the electric motor, and the electromagnetic valve housing 1 and the electric motor housing 2 may be in contact with each other, or may be in close proximity, or may be integrally formed.

前記電動機は電動機ハウジング2と、ロータ21と、回転軸22と、ステータコア3を有する。該ステータコア3には、電動機用巻き線31aと31bを有する。そして、ステータコア3には、ティース芯部33とティース部32が形成されている。電動機用巻き線31aと31bは、ティース芯部33に巻かれている。更に、ティース部32が回転軸22の方向に延長されティース延長部32aを構成している。ティース延長部32aは、電磁コイル4の巻き線コア41として用いられ、電磁弁用巻き線42が巻かれている。   The electric motor has an electric motor housing 2, a rotor 21, a rotating shaft 22, and a stator core 3. The stator core 3 has motor windings 31a and 31b. The stator core 3 is formed with a tooth core portion 33 and a tooth portion 32. The motor windings 31 a and 31 b are wound around the tooth core 33. Furthermore, the teeth part 32 is extended in the direction of the rotating shaft 22 to constitute a tooth extension part 32a. The teeth extension part 32a is used as the winding core 41 of the electromagnetic coil 4, and the electromagnetic valve winding 42 is wound thereon.

ティース延長部32aは、図1(A)に示す例では、ステータコア3の外周円筒壁よりも回転軸22方向に飛び出した部分である。該飛び出し部全体を巻き線コア41として、電磁弁用巻き線42を巻いてもよいし、前記飛び出し部の一部を巻き線コア41として、電磁弁用巻き線42を巻いてもよい。   In the example shown in FIG. 1A, the tooth extension portion 32 a is a portion that protrudes in the direction of the rotation shaft 22 from the outer peripheral cylindrical wall of the stator core 3. The entire protruding portion may be wound as the winding core 41 and the electromagnetic valve winding 42 may be wound, or the portion of the protruding portion may be wound as the winding core 41 and the electromagnetic valve winding 42 may be wound.

弁体13は例えば永久磁石を含む部材で構成されていて、上下方向に磁場が発生するように、S極とN極に磁化されている。弁体13は弁体軸13aを通じて、弁体規制部13bによって、上下方向のみに動けるように規制されている。弁体13と弁体規制部13bの間には付勢ばね13cが装着されていて、弁体規制部13bに対して、弁体13を一方向へ付勢している。   The valve body 13 is made of, for example, a member including a permanent magnet, and is magnetized to the S pole and the N pole so that a magnetic field is generated in the vertical direction. The valve body 13 is regulated to move only in the vertical direction through the valve body shaft 13a by the valve body regulating portion 13b. A biasing spring 13c is mounted between the valve body 13 and the valve body restricting portion 13b, and biases the valve body 13 in one direction with respect to the valve body restricting portion 13b.

次に図2と図3に基づいて、本発明の電磁弁の動作説明をする。図2は、流路12に対して、矢印方向aの向きに、冷却液の圧力が掛かっている場合である。図2(A)においては、弁体13が流路12を塞いでいるために、流路12と流路11は遮断されている。付勢ばね13cに圧縮ばねを用いた場合は、付勢ばね13cの反発力によって、弁体13が電磁弁ハウジング1底部に押し付けられて、流路12を塞いでいる。付勢ばね13cの反発力により、矢印方向aの液圧に抗して弁体13が電磁弁ハウジング1底部に押し付けられている。   Next, the operation of the solenoid valve of the present invention will be described with reference to FIGS. FIG. 2 shows a case where the coolant pressure is applied to the flow path 12 in the direction of the arrow a. In FIG. 2A, since the valve body 13 blocks the flow path 12, the flow path 12 and the flow path 11 are blocked. When a compression spring is used as the urging spring 13c, the valve body 13 is pressed against the bottom of the electromagnetic valve housing 1 by the repulsive force of the urging spring 13c, thereby closing the flow path 12. The valve element 13 is pressed against the bottom of the electromagnetic valve housing 1 against the hydraulic pressure in the arrow direction a by the repulsive force of the urging spring 13c.

図2(B)は、電磁コイル4で上下方向に磁場を発生させて、磁力の反発力によって、弁体13を上方へ移動させている状態である。このとき、流路12と流路11は接続して、流路12は流入路となり、流路11は矢印方向bへ流出する流出路となる。前記磁力による反発力と矢印方向aの液圧の和が付勢ばね13cの反発力より大きくなれば、弁体13が上方へ移動する。   FIG. 2B shows a state where a magnetic field is generated in the vertical direction by the electromagnetic coil 4 and the valve element 13 is moved upward by the repulsive force of the magnetic force. At this time, the flow path 12 and the flow path 11 are connected, the flow path 12 becomes an inflow path, and the flow path 11 becomes an outflow path that flows out in the arrow direction b. When the sum of the repulsive force due to the magnetic force and the hydraulic pressure in the arrow direction a is greater than the repulsive force of the biasing spring 13c, the valve body 13 moves upward.

電磁コイル4に流す電流を調整して前記磁力を弱めたり、前記電流を止めて前記磁力を止めたりすることにより、付勢ばね13cの反発力により弁体13は再び下方へ移動して、流路12は遮断される。また、矢印方向aの液圧が強い場合は、付勢ばね13cの反発力を強めるほか、電磁コイル4で弁体13を引き付ける磁場を発生させて、弁体13を下方へ移動させるようにしてもよい。   By adjusting the current flowing through the electromagnetic coil 4 to weaken the magnetic force, or by stopping the current to stop the magnetic force, the valve element 13 moves downward again due to the repulsive force of the urging spring 13c. The path 12 is blocked. When the hydraulic pressure in the arrow direction a is strong, the repulsive force of the urging spring 13c is increased, and a magnetic field that attracts the valve body 13 is generated by the electromagnetic coil 4 so that the valve body 13 is moved downward. Also good.

電磁コイル4をDUTY制御電流により励磁し、弁体13に対する反発力若しくは引力を発生させて、流路12の開口面積を段階的に変化させる構成をとることもできる。   The electromagnetic coil 4 can be excited by a DUTY control current to generate a repulsive force or attractive force with respect to the valve body 13 so that the opening area of the flow path 12 can be changed stepwise.

図3は、流路11に対して、矢印方向cの向きに、冷却液の圧力が掛かっている場合である。図3(A)においては、弁体13が流路12を塞いでいるために、流路12と流路11は遮断されている。付勢ばね13cに圧縮ばねを用いた場合は、付勢ばね13cの反発力によって、弁体13が電磁弁ハウジング1底部に押し付けられて、流路12を塞いでいる。付勢ばね13cの反発力と矢印方向cの液圧によって弁体13が電磁弁ハウジング1底部に押し付けられている。   FIG. 3 shows the case where the coolant pressure is applied to the flow path 11 in the direction of the arrow c. In FIG. 3A, since the valve body 13 blocks the flow path 12, the flow path 12 and the flow path 11 are blocked. When a compression spring is used as the urging spring 13c, the valve body 13 is pressed against the bottom of the electromagnetic valve housing 1 by the repulsive force of the urging spring 13c, thereby closing the flow path 12. The valve body 13 is pressed against the bottom of the electromagnetic valve housing 1 by the repulsive force of the urging spring 13c and the hydraulic pressure in the arrow direction c.

図3(B)は、電磁コイル4で上下方向に磁場を発生させて、磁力の反発力によって、弁体13を上方へ移動させている状態である。このとき、流路12と流路11は接続して、流路11は流入路となり、流路12は矢印方向dへの流出路となる。前記磁力による反発力が矢印方向cの液圧と付勢ばね13cの反発力の和より大きくなれば、弁体13が上方へ移動する。電磁コイル4に流す電流を調整して前記磁力を弱めたり、前記電流を止めて前記磁力を止めたりすることにより、付勢ばね13cの反発力により弁体13は再び下方へ移動して、流路12は遮断される。   FIG. 3B shows a state where a magnetic field is generated in the vertical direction by the electromagnetic coil 4 and the valve body 13 is moved upward by the repulsive force of the magnetic force. At this time, the flow path 12 and the flow path 11 are connected, the flow path 11 becomes an inflow path, and the flow path 12 becomes an outflow path in the arrow direction d. When the repulsive force due to the magnetic force becomes larger than the sum of the hydraulic pressure in the arrow direction c and the repulsive force of the biasing spring 13c, the valve body 13 moves upward. By adjusting the current flowing through the electromagnetic coil 4 to weaken the magnetic force, or by stopping the current to stop the magnetic force, the valve element 13 moves downward again due to the repulsive force of the urging spring 13c. The path 12 is blocked.

以上の電磁弁の構成により、自動車の冷却系装置の部品点数の削減、組み付け工数の削減の効果がある。また、前記部品点数の削減により、前記冷却系装置の軽量化、信頼性の向上、省スペース化の効果がある。また、省スペース化により、前記冷却系装置の循環路の短縮化が可能となり冷却機能の効率化が図れる効果がある。   With the above-described configuration of the solenoid valve, there is an effect of reducing the number of parts of the automobile cooling system and reducing the number of assembly steps. Further, the reduction in the number of parts has the effect of reducing the weight of the cooling system, improving the reliability, and saving the space. In addition, the space saving can shorten the circulation path of the cooling system device, and can effectively improve the cooling function.

本発明の電磁弁は、電磁コイル4と電動機用巻き線31a及び31bが接近している特徴がある。しかし、電磁コイル4と前記電動機用巻き線(31aと31b)の巻き軸の属する面が互いに直交しているので、互いの磁気的な干渉は最小に抑えることができるという効果がある。この理由を、図4を使って説明する。図4(A)は、本発明の電磁弁に係る電磁コイル4の巻き線42である。また、電動機用巻き線のうち、回転軸22(図4には表示せず)に対して回転対称の関係にある電動機用巻き線31aと31bが示されている。   The electromagnetic valve of the present invention is characterized in that the electromagnetic coil 4 and the motor windings 31a and 31b are close to each other. However, since the surfaces to which the winding axes of the electromagnetic coil 4 and the motor windings (31a and 31b) belong are orthogonal to each other, there is an effect that mutual magnetic interference can be minimized. The reason for this will be described with reference to FIG. FIG. 4A shows the winding 42 of the electromagnetic coil 4 according to the electromagnetic valve of the present invention. In addition, among the windings for the motor, windings 31a and 31b for the motor that are rotationally symmetric with respect to the rotating shaft 22 (not shown in FIG. 4) are shown.

ここで、磁気的な干渉とは、電動機用の巻き線が作る磁場によって電磁弁用の巻き線に誘導起電力が生じたり、電磁弁用の巻き線が作る磁場によって電動機用の巻き線に誘導起電力が生じたりすることをいう。   Here, magnetic interference means that an induced electromotive force is generated in the winding for the electromagnetic valve by the magnetic field generated by the winding for the motor, or the induction for the winding for the motor is generated by the magnetic field generated by the winding for the electromagnetic valve. An electromotive force is generated.

図4(A)は、電動機用巻き線31aと31bが作る磁場Z1が、電磁弁用巻き線42に与える影響を示す図である。回転軸に対して回転対称にある巻き線31aと31bは同一方向、向きと強さの磁場を発生する。磁場の概略は矢印付の曲線で示している。該矢印は逆向きの場合もある。巻き線42に誘導起電力を生じさせる磁場は、42の巻き軸の方向の成分を有する磁場である。しかし、磁場Z1には該方向の成分は少ない。このため、磁場Z1が誘導起電力として、電磁弁用巻き線42に与える影響は少ない。   FIG. 4A is a diagram showing the influence of the magnetic field Z1 created by the electric motor windings 31a and 31b on the electromagnetic valve winding 42. FIG. The windings 31a and 31b that are rotationally symmetric with respect to the rotation axis generate a magnetic field having the same direction, direction, and strength. The outline of the magnetic field is shown by a curve with an arrow. The arrow may be reversed. The magnetic field that generates the induced electromotive force in the winding 42 is a magnetic field having a component in the direction of the winding axis of 42. However, the magnetic field Z1 has few components in the direction. For this reason, the magnetic field Z1 has little influence on the electromagnetic valve winding 42 as the induced electromotive force.

電動機の巻き線の中、前記31aと31b以外の巻き線も、電磁弁用巻き線42と直交しているという点で同様であり、電磁弁用巻き線42に与える影響は少ない。しかし、磁場Z1にある巻き線42に電流を流すと、該巻き線42を回転させようとするローレンツ力が作用するため、これに抗する程度に該巻き線42は固定されていなければならない。   Among the windings of the electric motor, the windings other than 31a and 31b are the same in that they are orthogonal to the solenoid valve winding 42, and the influence on the solenoid valve winding 42 is small. However, when a current is passed through the winding 42 in the magnetic field Z1, a Lorentz force that attempts to rotate the winding 42 acts, so the winding 42 must be fixed to an extent that resists this.

次に、電磁弁用巻き線42が作る磁場が電動機用巻き線31aと31bに与える影響について説明する。図4(B)に電磁弁用巻き線42が作る磁場の概略を磁力線Z2aとZ2bで示す。矢印がそれぞれ逆の場合もあり得る。これらの磁力線は、電磁弁用巻き線42の巻き軸に対して、回転対称になる。そうすると、電動機用巻き線31aと31bには等しい強さで、同方向逆向きの磁場となる。これらは電動機用巻き線31aと31bにたいして、それぞれ逆向きの誘導起電力を発生させる。しかしここで、電動機用巻き線31aと31bを短絡しておけば、これらの誘導起電力は相殺される。したがって、電磁弁用巻き線42が作る磁場が電動機用巻き線に影響を与えなくなる。   Next, the influence of the magnetic field created by the solenoid valve winding 42 on the motor windings 31a and 31b will be described. FIG. 4B schematically shows the magnetic field generated by the solenoid valve winding 42 by magnetic lines of force Z2a and Z2b. The arrows may be reversed. These lines of magnetic force are rotationally symmetric with respect to the winding axis of the solenoid valve winding 42. If it does so, it will become a magnetic field of the same direction and a reverse direction with the same intensity | strength in the windings 31a and 31b for motors. These generate induced electromotive forces in opposite directions to the motor windings 31a and 31b, respectively. However, if the motor windings 31a and 31b are short-circuited, these induced electromotive forces are canceled out. Therefore, the magnetic field created by the solenoid valve winding 42 does not affect the motor winding.

以上説明したように、本発明の電磁弁は、電動機用巻き線と接近していながらも、お互いの影響を最小化した配置とする効果がある。この効果により、電磁弁用の電磁コイル4をDUTY制御するにも好適な配置といえる。このように、電動機と電磁弁の磁気的な干渉を最小化するには、前記電動機ロータの回転軸の延長直線が、電磁弁の電磁コイル4の巻き線コアを貫く配置であってもよい。   As described above, the electromagnetic valve of the present invention has an effect of minimizing the influence of each other while being close to the winding for the motor. Due to this effect, it can be said that the arrangement is suitable for DUTY control of the electromagnetic coil 4 for the electromagnetic valve. Thus, in order to minimize the magnetic interference between the electric motor and the electromagnetic valve, the extended straight line of the rotating shaft of the electric motor rotor may be disposed through the winding core of the electromagnetic coil 4 of the electromagnetic valve.

本発明の電磁弁を、例えば、電動ウォータバルブとして用いて、前記電動機を電動ウォータポンプとすれば、本発明の電磁弁とこれに隣接する電動機は、自動車の冷却系に適用することができる。   If the electromagnetic valve of the present invention is used as, for example, an electric water valve and the electric motor is an electric water pump, the electromagnetic valve of the present invention and the electric motor adjacent thereto can be applied to a cooling system of an automobile.

1…電磁弁ハウジング、11…流路、12…流路、13…弁体、13a…弁体軸、
13b…弁体規制部、13c…付勢ばね、2…電動機ハウジング、21…ロータ、
22…回転軸、3…ステータコア、31a…電動機用巻き線、31b…電動機用巻き線、32…ティース、32a…ティース延長部、33…ティース芯部、4…電磁コイル、
41(32a)…巻き線コア、42…電磁弁用巻き線。
DESCRIPTION OF SYMBOLS 1 ... Solenoid valve housing, 11 ... Flow path, 12 ... Flow path, 13 ... Valve body, 13a ... Valve body axis | shaft,
13b ... Valve regulating part, 13c ... Biasing spring, 2 ... Motor housing, 21 ... Rotor,
22 ... Rotating shaft, 3 ... Stator core, 31a ... Winding for motor, 31b ... Winding for motor, 32 ... Teeth, 32a ... Teeth extension, 33 ... Teeth core, 4 ... Electromagnetic coil,
41 (32a) ... winding core, 42 ... winding for solenoid valve.

Claims (3)

電動機に隣接した電磁弁であって、磁性を帯びた弁体と、該弁体の付勢手段と、電磁コイルと、流入路と、流出路を有し、前記電磁コイルは、前記電動機のステータコアのティース部を該電動機ロータの回転軸方向に延長して巻き線コアとし、少なくとも、前記付勢手段の付勢力と前記電磁コイルの磁力で前記弁体を移動させることを特徴とする電磁弁。   An electromagnetic valve adjacent to an electric motor having a magnetic valve body, a biasing means for the valve body, an electromagnetic coil, an inflow path, and an outflow path, wherein the electromagnetic coil is a stator core of the electric motor An electromagnetic valve characterized in that the teeth portion is extended in the direction of the rotation axis of the motor rotor to form a winding core, and the valve element is moved at least by the urging force of the urging means and the magnetic force of the electromagnetic coil. 請求項1において、前記付勢手段は圧縮ばねで構成され、前記磁性を帯びた弁体は磁石を含む部材で構成されていることを特徴とする電磁弁。   2. The electromagnetic valve according to claim 1, wherein the biasing means is constituted by a compression spring, and the magnetic valve element is constituted by a member including a magnet. 請求項1又は2において、前記電動機は電動ウォータポンプを構成し、前記電磁弁は電動ウォータバルブを構成することを特徴とする電磁弁。   3. The electromagnetic valve according to claim 1, wherein the electric motor constitutes an electric water pump, and the electromagnetic valve constitutes an electric water valve.
JP2014256435A 2014-12-18 2014-12-18 solenoid valve Expired - Fee Related JP6484441B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014256435A JP6484441B2 (en) 2014-12-18 2014-12-18 solenoid valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014256435A JP6484441B2 (en) 2014-12-18 2014-12-18 solenoid valve

Publications (2)

Publication Number Publication Date
JP2016118213A JP2016118213A (en) 2016-06-30
JP6484441B2 true JP6484441B2 (en) 2019-03-13

Family

ID=56242899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014256435A Expired - Fee Related JP6484441B2 (en) 2014-12-18 2014-12-18 solenoid valve

Country Status (1)

Country Link
JP (1) JP6484441B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56147969A (en) * 1981-03-23 1981-11-17 Yamatake Honeywell Co Ltd Fluid distributing apparatus
JP2000008852A (en) * 1998-06-26 2000-01-11 Aisin Seiki Co Ltd Water pump
JP2006322494A (en) * 2005-05-18 2006-11-30 Rinnai Corp Motor safety valve

Also Published As

Publication number Publication date
JP2016118213A (en) 2016-06-30

Similar Documents

Publication Publication Date Title
JP5126588B2 (en) Electric pump
US6695113B2 (en) Viscous coupling
JP5776739B2 (en) Winding switch and vehicle
JP2007028861A (en) Stepping motor and valve device
JP2011010489A (en) Rotor
JP6484441B2 (en) solenoid valve
JP4857600B2 (en) Linear actuator
US7201096B2 (en) Linear motor having a magnetically biased neutral position
JP2017115944A (en) Flow rate control valve
JP6307867B2 (en) Fluid control valve
JP6927180B2 (en) Fluid control valve
JP5343480B2 (en) Hydraulic field control rotating electric machine
JP2006329190A (en) Magnetic force-driven pump unit
WO2019058887A1 (en) Fluid control valve
JP6442880B2 (en) Control valve
JP5440314B2 (en) Vehicle water pump
KR101766010B1 (en) High Efficiency Reciprocating Piston Electro-Magnetic Pump
JP7103066B2 (en) Fluid control valve
CN109415968B (en) Apparatus for driving and controlling rotation of fan
WO2019210955A1 (en) Electric motor
JP2010063255A (en) Dc series motor and starter
JP7358754B2 (en) fluid control valve
JP5582336B2 (en) Vehicle water pump
CN110325742A (en) It is with electric notor control device, for so that the pump that the cooling fluid of combustion engine recycles
WO2020184031A1 (en) Fluid control valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180710

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180712

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190218

R150 Certificate of patent or registration of utility model

Ref document number: 6484441

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees