JP6482058B2 - Frame with liquid jacket for electric motor - Google Patents
Frame with liquid jacket for electric motor Download PDFInfo
- Publication number
- JP6482058B2 JP6482058B2 JP2014181666A JP2014181666A JP6482058B2 JP 6482058 B2 JP6482058 B2 JP 6482058B2 JP 2014181666 A JP2014181666 A JP 2014181666A JP 2014181666 A JP2014181666 A JP 2014181666A JP 6482058 B2 JP6482058 B2 JP 6482058B2
- Authority
- JP
- Japan
- Prior art keywords
- plate portion
- partition plate
- hollow
- frame
- circumferential direction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Motor Or Generator Frames (AREA)
- Motor Or Generator Cooling System (AREA)
Description
本発明は、回転軸に外挿される回転子を囲う固定子が内側に配置される電動機、特に全閉形電動機の液体ジャケット付フレームに関する。 The present invention relates to an electric motor in which a stator enclosing a rotor extrapolated to a rotating shaft is arranged inside, and more particularly to a frame with a liquid jacket for a fully-closed electric motor.
全閉形電動機は例えば特許文献1で知られている。このものは、軸方向に長手の内筒部と、内筒部を囲う外筒部と、軸方向両端に夫々設けられて内筒部と外筒部との間の中空部を閉塞する一対の端板部とを備えるフレームを有する。フレームの長手方向両端に夫々連結されたブラケットには、一対の軸受を介して回転軸が軸支されている。回転軸には、永久磁石からなる回転子が外挿され、この回転子を囲うようにフレーム内には、ヨークにコイルを巻装して構成される固定子が配置されている。 A fully-closed electric motor is known from Patent Document 1, for example. This includes an axially long inner cylinder part, an outer cylinder part that surrounds the inner cylinder part, and a pair of ends that are provided at both ends in the axial direction and close the hollow part between the inner cylinder part and the outer cylinder part. A frame having a plate portion. A rotating shaft is pivotally supported via a pair of bearings on brackets respectively connected to both ends in the longitudinal direction of the frame. A rotor made of a permanent magnet is extrapolated on the rotating shaft, and a stator configured by winding a coil around a yoke is disposed in the frame so as to surround the rotor.
近年、この種の全閉形電動機には、小形軽量化を図りつつ、高出力(例えば200kw以上)で高速回転(例えば20000min−1)のものが要望されるようになっている。ここで、JIS B 0905−1992、回転機械の剛性ロータの釣合い良さの規格によれば、釣合い良さの等級がG0.4〜G4000まで11段階で規定されており、選定した釣合い良さの等級において、許容残留不釣り合いをUper(g・mm)、釣合いのバランスを図る剛性ロータの半径をR(mm)とすれば、許容不釣合い質量m(g)は、m=Uper/Rとなり、例えば、釣合い良さの最も良いG0.4を選定して製作したとしても、不釣り合い質量mが残存することになる。 In recent years, this type of fully-closed electric motor has been demanded to have a high output (for example, 200 kw or more) and a high-speed rotation (for example, 20000 min −1 ) while reducing the size and weight. Here, according to JIS B 0905-1992, the standard of the balance of the rigidity rotor of the rotating machine, the grade of the balance is defined in 11 stages from G0.4 to G4000. If the allowable residual unbalance is Upper (g · mm) and the radius of the rigid rotor that balances the balance is R (mm), the allowable unbalance mass m (g) is m = Upper / R. Even if G0.4 having the best quality is selected and manufactured, the unbalanced mass m remains.
上記回転軸回りの不釣合い質量mによって誘発されて回転軸に作用する振れ回りの強制外力をP、剛体ロータ(回転軸及び回転子)の回転数をn(min―1)とすると、P=mR・(2π×n/60)2となる。この場合、δは、回転子が設けられた箇所での回転軸周りの撓み変形量、Mは、前記箇所での回転軸周りの質量、Cは、前記箇所での回転軸周りの減衰係数、Kは、前記箇所での回転軸周りの撓み変形ばね定数とすると、M・d2δ/dt2+C・dδ/dt+Kδ=mR・(2π×n/60)2という振れ回りによる強制振動の運動方程式(1)が成立する。 Assuming that the forced external force acting on the rotating shaft induced by the unbalanced mass m around the rotating shaft is P, and the rotational speed of the rigid rotor (rotating shaft and rotor) is n (min −1 ), P = mR · (2π × n / 60) 2 In this case, δ is the amount of bending deformation around the rotation axis at the location where the rotor is provided, M is the mass around the rotation axis at the location, C is the damping coefficient around the rotation axis at the location, If K is a flexural deformation spring constant around the rotation axis at the above location, the movement of forced vibration due to the swing of M · d 2 δ / dt 2 + C · dδ / dt + Kδ = mR · (2π × n / 60) 2 Equation (1) holds.
上記式(1)から、強制外力Pに起因する振れ回りの振動の振幅は、不釣り合い質量mの1乗に比例し、回転数nの2乗に比例して増幅され、振れ回りの振動加速度はこの振動の振幅の増幅度合に比例して増大する。このため、上述したように、高速回転化すればする程、回転子の外挿された回転軸周りの不釣り合い質量により生じる回転軸での振れ回りの振動が増大化すると共に、上記電動機自体の振動も煽られ、誘発されて大きくなり、電動機自体での振動による振幅を所望の値(例えば、30μm以下)に抑制することが困難になるばかりでなく、回転軸を軸支している軸受の破損を招来するという問題が生じる。 From the above equation (1), the amplitude of the vibration of the run-out caused by the forced external force P is proportional to the first power of the unbalanced mass m, amplified in proportion to the square of the rotation speed n, and the vibration acceleration of the run-out Increases in proportion to the amplification degree of the amplitude of this vibration. For this reason, as described above, the higher the rotation speed, the greater the vibrations around the rotating shaft caused by the unbalanced mass around the rotating shaft on which the rotor is extrapolated, and the motor itself. Vibration is also induced and increased, and it becomes difficult not only to suppress the amplitude due to vibration in the motor itself to a desired value (for example, 30 μm or less), but also to the bearing that supports the rotating shaft. The problem of causing damage arises.
また、上記全閉形電動機において、小形軽量化と高出力化とをすればする程、電動機自体での単位容積当りの、特に固定子での銅損や鉄損による発熱量が著しく増加し、JEC―2100−2008 回転電気機械一般に規定されている絶縁種別(例えばH種など)の固定子のコイルの温度上昇を規格限度値以下に抑制することができないという問題がある。 In addition, in the above-mentioned fully-closed motor, the smaller the size and weight and the higher the output, the more the amount of heat generated per unit volume in the motor itself, particularly due to copper loss and iron loss in the stator, increases significantly. -2100-2008 There is a problem that the temperature rise of the stator coil of the insulation type (for example, H type) defined in general rotating electric machines cannot be suppressed below the standard limit value.
固定子のコイルに生じる熱をフレームに効率良く伝導させてものとして、フレームに液体ジャケットを付設したもので構成することが例えば特許文献2で知られている。このものは、固定子のコイルのコイルエンドと、固定子鉄心の外周を支持する外周スリーブとの間に高熱伝導性の樹脂を充填、固着すると共に、フレーム側の外周スリーブの周囲に通路壁で囲われ、かつ、外周スリーブの周囲を螺旋状に周回する仕切り壁で区切られている冷却液用通路を設け、冷却液を液入口から液出口に循環させて外周スリーブに伝熱された熱を奪うように構成している。 For example, Patent Document 2 discloses that a frame is provided with a liquid jacket to efficiently conduct heat generated in a stator coil to the frame. This is made by filling and fixing high thermal conductivity resin between the coil end of the stator coil and the outer sleeve supporting the outer periphery of the stator core, and with a passage wall around the outer sleeve on the frame side. A coolant passage surrounded by a partition wall that spirals around the outer sleeve is provided, and the heat transferred to the outer sleeve is circulated by circulating the coolant from the liquid inlet to the liquid outlet. It is configured to take away.
然し、上記特許文献2のものでは、外周スリーブがフレームと独立した部品であり、しかも、冷却液用通路を形成している仕切り壁が外周スリーブの周囲に螺旋状に周回するように設けられている。結果として、回転軸が振動することによって誘発される小形軽量化した電動機自体の振動を抑制して、振動による振れ幅を所望の値以下とするために必要なフレームの曲げ剛性(E・I)の値を充足できるレベルまで大きくすることが極めて困難である(Eは、縦弾性係数、Iは、断面二次モーメント)。なお、冷却性能に関しては具体的な記載が無く、詳細は不明である。 However, in the above-mentioned Patent Document 2, the outer sleeve is a part independent of the frame, and the partition wall forming the coolant passage is provided so as to spiral around the outer sleeve. Yes. As a result, the flexural rigidity of the frame (EI) required to suppress the vibration of the small and lightweight motor itself that is induced by the vibration of the rotating shaft and to keep the vibration amplitude due to vibration below the desired value. It is extremely difficult to increase to a level that can satisfy the value of E (E is the longitudinal elastic modulus, I is the cross-sectional secondary moment). In addition, there is no specific description regarding the cooling performance, and details are unknown.
本発明は、以上の点に鑑み、電動機の回転軸が振動することで誘発される、電動機自体の振動を抑制して、振動による振れ幅を小さくできると共に、電動機の損失によって生じる固定子からの発熱量を液体に効率よく熱伝達して固定子を冷却することができる電動機の液体ジャケット付フレームを提供することをその課題とするものである。 In view of the above points, the present invention suppresses vibration of the motor itself, which is induced by the vibration of the rotating shaft of the motor, and can reduce the fluctuation width due to the vibration, as well as from the stator caused by the loss of the motor. It is an object of the present invention to provide a frame with a liquid jacket for an electric motor capable of efficiently transferring heat to the liquid to cool the stator.
上記の課題を解決するために、回転軸に外挿される回転子を囲う固定子が内側に配置される本発明の電動機の液体ジャケット付フレームは、軸方向に長手の内筒部と、内筒部を囲う外筒部と、軸方向の一端と他端に夫々設けられて内筒部と外筒部との間の中空部を閉塞する一対の端板部とを備え、中空部が、内筒部から放射状にのびて外筒部に一体に連結される、周方向に間隔を存して配置される軸方向に長手の第1、第2及び第3の仕切り板部で複数個の中空通路に仕切られ、周方向一箇所の第1の仕切り板部が軸方向の一端及び他端の端板部に液密に接し、この第1の仕切り板部から周方向一方に数えて奇数番目の第2の仕切り板部が、軸方向他端に設けられた端板部からのび、軸方向一端に設けられた端板部との間に、これら第2の仕切り板部の周方向両側の中空通路を連通する第1の連通部が形成されると共に、第1の仕切り板部から周方向一方に数えて偶数番目の第3の仕切り板部が、軸方向一端に設けられた端板部からのび、軸方向他端に設けられた端板部との間に、これら第3の仕切り板部の周方向両側の中空通路を連通する第2の連通部が形成されて第1の仕切り板部の周方向両側の中空通路の一方から他方まで軸方向に蛇行しながら連続する冷媒循環通路が構成されるようにし、各中空通路の径方向に沿う断面形状が四角形または円形であり、同等の通路面積を持つ16個以上の中空通路が形成されるように第1、第2及び第3の仕切り板部で中空部が分割され、内筒部と外筒部と第1、第2及び第3の仕切り板部と一対の端板部との全てが連結されて一体化して構成されることを特徴とする。 In order to solve the above problem, a frame with a liquid jacket of an electric motor of the present invention in which a stator surrounding a rotor extrapolated to a rotating shaft is disposed inside includes an inner cylindrical portion and an inner cylindrical portion that are long in the axial direction. And a pair of end plate portions that are provided at one end and the other end in the axial direction , respectively, and close the hollow portion between the inner cylinder portion and the outer cylinder portion. A plurality of hollow passages in the first, second, and third partition plates that are radially extended from the portion and are integrally connected to the outer cylinder portion and arranged in the circumferential direction at intervals. The first partition plate portion in one circumferential direction is in liquid-tight contact with the end plate portion at one end and the other end in the axial direction , and the odd-numbered number counted from the first partition plate portion to one circumferential direction. the second partition plate portion, extending from the end plate portion provided on the other axial end, between the end plate part provided on one axial end, specifications of the second The circumferential sides of the hollow passage of Riita portion together with the first communication portion for communicating are formed, the third partition plate portion of the even-numbered counting from the first partition plate portion in one circumferential direction, axial direction There is a second communication portion extending from the end plate portion provided at one end and communicating with the hollow passages on both sides in the circumferential direction of the third partition plate portion between the end plate portion provided at the other end in the axial direction. A continuous refrigerant circulation passage is formed while meandering in the axial direction from one of the hollow passages on both sides in the circumferential direction of the first partition plate portion to the other, and the cross-sectional shape along the radial direction of each hollow passage is The hollow portion is divided by the first, second, and third partition plate portions so that 16 or more hollow passages that are quadrangular or circular and have the same passage area are formed , and the inner tube portion and the outer tube portion When the first, all the second and third partition plate portion and a pair of end plates is integrally coupled Characterized in that it is configured.
本発明によれば、中空通路の断面形状が四角形または円形となるように内筒部と外筒部とが補強リブとして機能する16枚以上の仕切り板部で連結して一体化した構成を採用したため、回転軸が強制振動することで誘発される、電動機自体の振動による振幅を効果的に抑制して、振動による振れ幅を所望の値以下とするために必要なフレームの曲げ剛性(E・I)の値を充足できるレベルまで大きくすることが可能となる。それに加えて、同等の通路面積を持つ16個以上の中空通路が形成される構成を採用したため、冷媒循環通路を流れる冷媒(冷却水)の流速が可及的に速くなると共に冷媒循環通路の全長に亘る流速分布が略均等になって、冷媒とフレームとの間の熱伝達率(α)を十分な値まで増大させることができ、その結果、電動機の損失によって生じる固定子からの発熱量を液体に効率よく熱伝達して固定子を冷却することができる。なお、フレームに形成する中空通路の数の上限は、冷媒循環通路に冷媒(冷却水)を供給するポンプの吐出能力(圧力)と内部通路における圧損とに応じて適宜設定される。 According to the present invention, the inner tube portion and the outer tube portion are connected and integrated by 16 or more partition plate portions functioning as reinforcing ribs so that the cross-sectional shape of the hollow passage is square or circular. Therefore, it is possible to effectively suppress the amplitude caused by the vibration of the motor itself, which is induced by the forced vibration of the rotating shaft, and the frame bending rigidity (E · It becomes possible to increase to a level that can satisfy the value of I). In addition, since a configuration in which 16 or more hollow passages having the same passage area are formed is adopted, the flow rate of the refrigerant (cooling water) flowing through the refrigerant circulation passage becomes as fast as possible and the entire length of the refrigerant circulation passage. And the heat transfer coefficient (α) between the refrigerant and the frame can be increased to a sufficient value. As a result, the amount of heat generated from the stator caused by the loss of the motor can be reduced. The stator can be cooled by efficiently transferring heat to the liquid. The upper limit of the number of hollow passages formed in the frame is appropriately set according to the discharge capacity (pressure) of the pump that supplies the refrigerant (cooling water) to the refrigerant circulation passage and the pressure loss in the internal passage.
本発明において、前記中空通路の断面形状が四角形である場合、前記四角形の互いに向かい合う一組の対辺が夫々径方向に位置し、残りの他組の対辺が夫々周方向に位置し、一組の対辺の平均長さと他組の対辺の平均長さを同等とし、第1及び第2の連通部の軸方向長さは、一組の対辺の平均長さの1〜3倍の長さに設定すればよい。なお、本発明において、「同等」といった場合、長さ等が厳密に一致している場合だけを言うものではなく、上述の技術課題を解決できるものであれば、「同等」に含まれる。 In the present invention, when the cross-sectional shape of the hollow passage is a quadrangle, one set of opposite sides of the quadrangle facing each other is positioned in the radial direction, and the other set of opposite sides is positioned in the circumferential direction, respectively. The average length of the opposite side is equal to the average length of the opposite side of the other set, and the axial length of the first and second communicating portions is 1 to 3 times the average length of the set of opposite sides. You only have to set it. In the present invention, “equivalent” does not mean only the case where the lengths or the like exactly match, but includes “equivalent” as long as the above technical problem can be solved.
以下、図面を参照して、埋込構造永久磁石電動機タイプの全閉形電動機に本発明の液体ジャケット付きフレームを適用したものを例にその実施形態を説明する。以下において、「上」、「下」、といった方向を示す用語は図1を基準とし、また、回転軸の軸方向を左右方向とし、図1中、電動機の反伝動側である左側を「前」、電動機の伝動側である右側を「後」とする。 DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to the drawings, in which a frame with a liquid jacket according to the present invention is applied to a fully-closed electric motor of an embedded structure permanent magnet motor type. In the following, terms indicating directions such as “up” and “down” are based on FIG. 1, and the axial direction of the rotating shaft is the left-right direction. In FIG. "The right side, which is the transmission side of the electric motor, is defined as" rear ".
図1を参照して、EMは、本実施形態の液体ジャケット付きフレーム1を備えた電動機である。電動機EMのフレーム1の前後には、前側ブラケット2aと後側ブラケット2bとが夫々連結されている。前側及び後側の両ブラケット2a,2bには、前後一対の軸受3a,3bを介して回転軸4が軸支されている。回転軸4には、永久磁石からなる回転子5が外挿され、この回転子5を囲うようにフレーム1内には、ヨーク6aとヨーク6aに巻装されたコイル6bとを有する固定子6が固定配置されている。また、前側ブラケット2aの外壁面には液冷却装置CMが取り付けられている。電動機EMや、液冷却装置CM(例えば、特許第5354558号公報)については、公知のものが利用できるため、ここではこれ以上の詳細な説明は省略する。 With reference to FIG. 1, EM is an electric motor provided with the frame 1 with a liquid jacket of this embodiment. A front bracket 2a and a rear bracket 2b are connected to the front and rear of the frame 1 of the electric motor EM, respectively. A rotating shaft 4 is pivotally supported by the front and rear brackets 2a and 2b via a pair of front and rear bearings 3a and 3b. A rotor 5 made of a permanent magnet is extrapolated on the rotary shaft 4, and a stator 6 having a yoke 6 a and a coil 6 b wound around the yoke 6 a in the frame 1 so as to surround the rotor 5. Is fixedly arranged. A liquid cooling device CM is attached to the outer wall surface of the front bracket 2a. As the electric motor EM and the liquid cooling device CM (for example, Japanese Patent No. 5354558), since well-known ones can be used, further detailed description is omitted here.
図2(a)〜図2(c)も参照して、本実施形態の液体ジャケット付きフレーム1は、例えば鋼材で製作され、軸方向に長手であって円筒状の内筒部11と、内筒部11を同心に囲う円筒状の外筒部12と、軸方向両端に夫々設けられて内筒部11と外筒部12との間の中空部13を閉塞する一対の端板部14a,14bとを備える。中空部13には、内筒部11から放射状にのびて外筒部12に一体に連結される、周方向に等間隔で配置される軸方向に長手であって所定の厚さを有する仕切り板部15で複数個の中空通路13aに仕切られている(図2(b)及び(c)参照)。 2 (a) to 2 (c), the frame 1 with a liquid jacket according to the present embodiment is made of, for example, a steel material, and has a cylindrical inner cylinder portion 11 that is long in the axial direction and has a cylindrical shape. A cylindrical outer tube portion 12 concentrically surrounding the tube portion 11, and a pair of end plate portions 14 a provided at both ends in the axial direction to close the hollow portion 13 between the inner tube portion 11 and the outer tube portion 12, 14b. The hollow portion 13 is a partition plate that extends radially from the inner cylinder portion 11 and is integrally connected to the outer cylinder portion 12 and is long in the axial direction and has a predetermined thickness arranged at equal intervals in the circumferential direction. The part 15 is partitioned into a plurality of hollow passages 13a (see FIGS. 2B and 2C).
周方向一箇所の所定の仕切り板部15を第1の仕切り板部15aとし、この仕切り板部15aは軸方向両端の端板部14a,14bに液密に夫々接している。そして、第1の仕切り板部15aから周方向一方(図2(b)中、時計回り)に数えて奇数番目の仕切り板部を第2の仕切り板部15bとし、第2の仕切り板部15bは、軸方向一端としての後側の端板部14bとの間に、これら第2の仕切り板部15bの周方向両側の中空通路13aを連通する第1の連通部としての切欠き部16aが形成されている。他方、所定の仕切り板部15aから周方向一方に数えて偶数番目の仕切り板部を第3の仕切り板部15cとし、第3の仕切り板部15cは、軸方向他端としての前側の端板部14aとの間に、これら第3の仕切り板部15cの周方向両側の中空通路13aを連通する第2の連通部としての切欠き部16bが形成されている。 A predetermined partition plate portion 15 at one place in the circumferential direction is defined as a first partition plate portion 15a, and the partition plate portion 15a is in liquid-tight contact with the end plate portions 14a and 14b at both ends in the axial direction. The odd-numbered partition plate portion counted in the circumferential direction from the first partition plate portion 15a (clockwise in FIG. 2B) is defined as the second partition plate portion 15b, and the second partition plate portion 15b. Is a notch portion 16a as a first communication portion communicating with the hollow passages 13a on both sides in the circumferential direction of the second partition plate portion 15b between the rear end plate portion 14b as one end in the axial direction. Is formed. On the other hand, an even-numbered partition plate portion counted in one circumferential direction from the predetermined partition plate portion 15a is defined as a third partition plate portion 15c, and the third partition plate portion 15c is a front end plate serving as the other axial end. A notch portion 16b is formed between the portion 14a and a second communicating portion that communicates with the hollow passages 13a on both sides in the circumferential direction of the third partition plate portion 15c.
また、各中空通路13aの径方向に沿う断面形状は偏倚度合の小さい四角形に形成され、同等の通路面積を持つ16個以上(本実施形態では、28個)の中空通路13aが形成されるように第1〜第3の仕切り板部15a〜15cで中空部13が分割されている。この場合、四角形の互いに向かい合う一組の対辺131が夫々径方向に位置し、残りの他組の対辺132が夫々周方向に位置し、一組の対辺131の平均長さと他組の対辺132の平均長さとが同等となるように形成している。なお、中空通路13aの断面形状が四角形といった場合、各中空通路13aを画成する各辺の全てが直線で構成されている必要はなく、例えば径方向に位置する辺131を内筒部11と同心の曲線とすることができる。また、内筒部11と外筒部12とを仕切り板部15a〜15cで一体に連結した構造にする場合、鋳込みや溶接などの方法が用いられ、また、筒状部材に中空通路としての孔を穿設するようにしてもよい。更に、切欠き部16a,16bの軸方向の長さWは、一組の対辺132の平均長さの1〜3倍の長さに設定され、連通部において冷媒が円滑に流れるようにしている。 Moreover, the cross-sectional shape along the radial direction of each hollow passage 13a is formed in a quadrangle with a small degree of deviation, so that 16 or more (28 in this embodiment) hollow passages 13a having the same passage area are formed. The hollow portion 13 is divided into first to third partition plate portions 15a to 15c. In this case, a pair of opposite sides 131 of the quadrangle facing each other is positioned in the radial direction, and the remaining other sets of opposite sides 132 are respectively positioned in the circumferential direction, and the average length of one set of opposite sides 131 and the other set of opposite sides 132 It is formed so that the average length is equivalent. In addition, when the cross-sectional shape of the hollow channel | path 13a is a square, it is not necessary for all the sides which define each hollow channel | path 13a to be comprised by the straight line, for example, the edge | side 131 located in radial direction is made into the inner cylinder part 11. It can be a concentric curve. Moreover, when making the structure which connected the inner cylinder part 11 and the outer cylinder part 12 integrally by the partition plate parts 15a-15c, methods, such as casting and welding, are used, and the hole as a hollow passage is used for a cylindrical member. You may make it pierce. Further, the length W in the axial direction of the notches 16a and 16b is set to 1 to 3 times the average length of the pair of opposite sides 132 so that the refrigerant flows smoothly in the communication portion. .
前側のブラケット2aには、前側の端板部14aを貫通して、第1仕切り板部15aの周方向一側に位置する中空通路13aに連通する流入口17aが形成され、更に、前側の端板部14aを貫通して、第1仕切り板部15aの周方向他側(周方向反対側)に位置する中空通路13aに連通する流出口17bが形成されている。これにより、流入口17aから、第1の仕切り板部15aの周方向両側の中空通路13aの一方から他方まで軸方向に蛇行しながら流出口17bまで連続する冷媒循環通路がフレーム1内に形成される。なお、中空通路13aの数が偶数である場合には、流入口17aと流出口17bとが共に前側の端板部14aに開設される一方で、中空通路13aの数が奇数である場合には、流入口17aが前側の端板部14aに開設され、流出口17bが後側の端板部14bに開設される。 The front bracket 2a is formed with an inflow port 17a that passes through the front end plate portion 14a and communicates with the hollow passage 13a located on one side in the circumferential direction of the first partition plate portion 15a. An outlet 17b that penetrates through the plate portion 14a and communicates with the hollow passage 13a located on the other circumferential side (the opposite side in the circumferential direction) of the first partition plate portion 15a is formed. As a result, a refrigerant circulation passage is formed in the frame 1 that continues from the inflow port 17a to the outflow port 17b while meandering in the axial direction from one to the other of the hollow passages 13a on both sides in the circumferential direction of the first partition plate portion 15a. The When the number of hollow passages 13a is an even number, both the inflow port 17a and the outflow port 17b are opened in the front end plate portion 14a, while the number of hollow passages 13a is an odd number. The inflow port 17a is opened in the front end plate portion 14a, and the outflow port 17b is opened in the rear end plate portion 14b.
上記実施形態では、内筒部11と外筒部12とを円筒状にしたものを例に説明したが、これに限定されるものではない。上記実施形態と同一の要素、部材に同一の符号を用いて説明すれば、図3(a)に示す変形例に係るフレーム10aでは、例えば外筒部12が多角形状(変形例では、八角形状)の輪郭を持つように形成されている。この場合、一の仕切り板部151は、内筒部11から多角形状の外筒部12の各頂点に向けて放射状にのびて一体に連結され、中空部13に形成しようとする中空通路13aの数(変形例では、16個)に応じて、互いに隣接する一の仕切り板部151相互の間に他の仕切り板部152が設けられている。この場合、上記同様、四角形の互いに向かい合う一組の対辺の平均長さと他組の対辺の平均長さとが同等となるように形成される。 In the said embodiment, although what made the inner cylinder part 11 and the outer cylinder part 12 cylindrical was demonstrated to the example, it is not limited to this. If it demonstrates using the same code | symbol for the element and member same as the said embodiment, in the flame | frame 10a which concerns on the modification shown to Fig.3 (a), for example, the outer cylinder part 12 is polygonal (in a modification, octagonal shape) ). In this case, the one partition plate portion 151 is radially connected from the inner cylinder portion 11 toward each vertex of the polygonal outer cylinder portion 12 so as to be integrally connected to the hollow passage 13a to be formed in the hollow portion 13. Depending on the number (16 in the modified example), other partition plate portions 152 are provided between the partition plate portions 151 adjacent to each other. In this case, similarly to the above, the average length of one pair of opposite sides of the quadrangle facing each other is equal to the average length of the opposite sides of the other set.
他方で、各中空通路13aの径方向に沿う断面形状を偏倚度合の小さい四角形に形成したものを例に説明したが、断面形状はこれに限定されるものではなく、図3(b)に示す更に他の実施形態に係るフレーム10bでは、各中空通路13aの径方向に沿う断面形状を円形にしている。この場合、円形には楕円形状や長円形状も含まれる。但し、上記のいずれの場合でも、同等の通路面積を持つ16個以上(本実施形態では、28個)の中空通路13aが形成されるように第1〜第3の仕切り板部15a〜15cで中空部13が分割されるようにする必要がある。 On the other hand, the example in which the cross-sectional shape along the radial direction of each hollow passage 13a is formed into a quadrangle with a small deviation degree has been described as an example, but the cross-sectional shape is not limited to this, and is shown in FIG. In the frame 10b according to still another embodiment, the cross-sectional shape along the radial direction of each hollow passage 13a is circular. In this case, the circular shape includes an elliptical shape and an oval shape. However, in any of the above cases, the first to third partition plate portions 15a to 15c may form 16 or more (28 in this embodiment) hollow passages 13a having the same passage area. It is necessary to divide the hollow portion 13.
ところで、冷媒との熱交換で固定子6を冷却するためのフレーム構造として次のものが考えられる。即ち、図4(a)及び図4(b)を参照して、比較品としてのフレームFLは、円筒状の内筒部A1と多角形状の外筒部A2と、軸方向両端に夫々設けられて内筒部A1と外筒部A2との間の中空部Bを閉塞する一対の端板部C1,C2とを備える。中空部Bには、内筒部A1から放射状にのびて外筒部A2に連結される、周方向に等間隔で配置される軸方向に長手であって所定の厚さを有する仕切り板部Dで複数個の中空通路B1に仕切られている。この場合、仕切り板部Dの先端を外筒部A2の各辺の略中点に連結して、五角形状の断面形状を持つ8個の中空通路B1が形成されるように中空部Bを分割している。中空通路B1には、内筒部A1から径方向外側に突出すると共に、両端板部C1,C2から夫々間隔を置いて軸方向に線状にのびる突条Eが形成され、放熱フィンとしての役割を果たす突条Eにより冷媒との接触面積を増加させるようにしている。そして、上記実施形態と同様、流入口Fから、第1の仕切り板部D1の周方向両側の中空通路B1の一方から他方まで軸方向に蛇行しながら流出口Gまで連続する冷媒循環通路がフレームFL内に形成されるようにしている。 By the way, the following can be considered as a frame structure for cooling the stator 6 by heat exchange with the refrigerant. That is, referring to FIG. 4A and FIG. 4B, the frame FL as a comparative product is provided on each of the cylindrical inner cylinder portion A1, the polygonal outer cylinder portion A2, and both axial ends. And a pair of end plate portions C1 and C2 for closing the hollow portion B between the inner tube portion A1 and the outer tube portion A2. In the hollow part B, a partition plate part D extending radially from the inner cylinder part A1 and connected to the outer cylinder part A2 is arranged in the circumferential direction at equal intervals and is long in the axial direction and has a predetermined thickness. Are partitioned into a plurality of hollow passages B1. In this case, the hollow portion B is divided so that eight hollow passages B1 having a pentagonal cross-sectional shape are formed by connecting the tip of the partition plate portion D to substantially the midpoint of each side of the outer cylinder portion A2. doing. The hollow passage B1 is formed with a ridge E that protrudes radially outward from the inner cylindrical portion A1 and extends linearly in the axial direction from the both end plate portions C1 and C2, respectively. The contact area with the refrigerant is increased by the protrusion E that fulfills the above. As in the above embodiment, the refrigerant circulation passage that continues from the inlet F to the outlet G while meandering in the axial direction from one side to the other of the hollow passages B1 on both sides in the circumferential direction of the first partition plate portion D1 is a frame. It is formed in the FL.
上記比較品では、突条Eを設けていても、中空通路B1の数が8個と少なく、しかも、この突条EはフレームFLの外筒部A2と連結一体化されていない。このため、回転軸4が強制振動することによって誘発される電動機EM自体での振動を抑制して、振動による振幅をユーザー要求の所定の値以下とするために、必要とするフレームの曲げ剛性(E・I)の値を充足できるレベルまで大きくすることが難しく、遂には前側のブラケット2aと後側のブラケット2bとに夫々設けられている軸受3a,3bを破損する場合があることが判った。 In the comparative product, even if the protrusions E are provided, the number of the hollow passages B1 is as small as eight, and the protrusions E are not connected and integrated with the outer cylindrical portion A2 of the frame FL. For this reason, in order to suppress the vibration in the electric motor EM itself induced by the forced vibration of the rotating shaft 4 and to make the amplitude due to the vibration below a predetermined value requested by the user, the required bending rigidity ( It has been found that it is difficult to increase the level of E · I) to a level that can satisfy the value, and eventually the bearings 3a and 3b provided on the front bracket 2a and the rear bracket 2b may be damaged. .
また、上記比較品では、突条Eを設けた冷媒循環通路に沿って冷媒を蛇行させて循環させ、このとき、各中空通路B1の断面形状が偏倚度合の大きな5辺からなるいびつな形状となっていることで、冷媒である液体の内部通路内における流速の分布が不均一で非常に乱れた流れとなる。その結果、冷媒循環通路を流れる冷媒と、突条Eを有するフレームFLとの相互間での熱伝達率(α)が悪くて小さな値となり、上記電動機EMの損失によって発生する固定子6の発熱量を、フレームFLを介して冷媒である液体に効率良く熱伝達して固定子6を冷却し、上記固定子のコイル6bの温度上昇を抑制して低下させることが極めて困難であることが判った。 Further, in the comparative product, the refrigerant is meandered and circulated along the refrigerant circulation passage provided with the protrusion E, and at this time, the cross-sectional shape of each hollow passage B1 is an irregular shape consisting of five sides with a large degree of deviation. As a result, the flow velocity distribution in the internal passage of the liquid, which is the refrigerant, is non-uniform and very turbulent. As a result, the heat transfer coefficient (α) between the refrigerant flowing in the refrigerant circulation passage and the frame FL having the ridge E is low and becomes a small value, and the heat generation of the stator 6 caused by the loss of the electric motor EM. It has been found that it is extremely difficult to reduce the amount by efficiently transferring the amount of heat to the liquid as the refrigerant through the frame FL to cool the stator 6 and to suppress the temperature rise of the coil 6b of the stator. It was.
それに対して、上記実施形態によれば、比較品と比べ、フレーム1の曲げ剛性(E・I)に寄与する仕切り板部15の数を少なくとも2倍以上になるように増加させながら、この仕切り板部15により、中空通路13aの断面形状が四角形または円形となるように内筒部11と外筒部12とを連結して一体化した構成を採用したため、回転軸が強制振動することで誘発される、電動機自体の振動による振幅を効果的に抑制して、振動による振れ幅を所望の値以下とするために必要なフレームの曲げ剛性(E・I)の値を充足できるレベルまで大きくすることが可能となる。なお、仕切り板部15の厚みは、フレーム1の断面形状に応じて、図2(b)中に示すX−X軸回りの断面二次モーメント(I)の増大化による曲げ剛性(E・I)の向上(縦弾性係数Eは材料物性値であり、一定の定数値となるため、断面二次モーメントIの値を大きくする必要がある)と、フレーム1の内筒部11から仕切り板部15への熱伝導解析を行い、比較品の突条Eの代役としての機能を果すように、冷却性能の向上とを勘案して適宜設定すればよい。 On the other hand, according to the above embodiment, the number of partition plate portions 15 contributing to the bending rigidity (E · I) of the frame 1 is increased so as to be at least twice as large as that of the comparative product. Since the plate portion 15 employs a configuration in which the inner cylinder portion 11 and the outer cylinder portion 12 are connected and integrated so that the cross-sectional shape of the hollow passage 13a is square or circular, the rotation axis is induced by forced vibration. The vibration amplitude of the motor itself is effectively suppressed, and the bending rigidity (E · I) value of the frame necessary to reduce the vibration amplitude due to the vibration to a desired value or less is increased to a level that can satisfy the value. It becomes possible. Note that the thickness of the partition plate portion 15 depends on the bending rigidity (E · I) due to the increase in the secondary moment (I) around the XX axis shown in FIG. ) (Longitudinal elastic modulus E is a material property value, and since it is a constant value, it is necessary to increase the value of the cross-sectional secondary moment I), and the partition plate portion from the inner cylinder portion 11 of the frame 1 The heat conduction analysis to No. 15 is performed, and it may be appropriately set in consideration of the improvement of the cooling performance so as to fulfill the function as a substitute for the protrusion E of the comparative product.
それに加えて、同等の通路面積を持つ16個以上の中空通路13aが形成される構成を採用したため、冷媒循環通路を流れる冷媒(冷却水)の流速が比較品に比べて可及的に速くなると共に冷媒循環通路の全長に亘る流速分布が略均等になって、冷媒循環通路を流れる冷媒と本実施形態に係る発明のフレーム1との間の熱伝達率(α)を十分な値まで増大させることができ、その結果、電動機EMの損失によって生じる固定子6からの発熱量を液体に効率よく熱伝達して固定子6、ひいてはコイル6bの温度上昇を抑制できる。なお、フレーム1に形成する中空通路13aの数の上限は、流体循環通路に冷媒(冷却水)を供給するポンプの吐出能力(圧力)と内部通路における圧損とに応じて設定すればよい。 In addition, since a configuration in which 16 or more hollow passages 13a having the same passage area are formed is adopted, the flow rate of the refrigerant (cooling water) flowing through the refrigerant circulation passage is as fast as possible as compared with the comparative product. At the same time, the flow velocity distribution over the entire length of the refrigerant circulation passage becomes substantially uniform, and the heat transfer coefficient (α) between the refrigerant flowing through the refrigerant circulation passage and the frame 1 of the invention according to the present embodiment is increased to a sufficient value. As a result, the amount of heat generated from the stator 6 caused by the loss of the electric motor EM can be efficiently transferred to the liquid to suppress the temperature rise of the stator 6 and thus the coil 6b. The upper limit of the number of hollow passages 13a formed in the frame 1 may be set according to the discharge capacity (pressure) of the pump that supplies the refrigerant (cooling water) to the fluid circulation passage and the pressure loss in the internal passage.
次に、本発明の効果を確認するため、次の実験を行った。この場合、275kw、215V/440V, 6000min−1/20000min−1仕様の埋込構造永久磁石同期電動機タイプの全閉形電動機を用い、フレームの種類をかえて回転軸4の回転数と電動機EM自体での振動加速度の大きさの相関関係を得た。 Next, in order to confirm the effect of the present invention, the following experiment was performed. In this case, a fully closed electric motor of an embedded structure permanent magnet synchronous motor type of 275 kw, 215 V / 440 V, 6000 min −1 / 20000 min −1 specifications is used, and the number of rotations of the rotating shaft 4 and the electric motor EM itself are changed by changing the frame type The correlation of the magnitude of vibration acceleration is obtained.
図5は、上記比較品のフレームFLと、本発明に係るフレーム1、10aとを夫々用いた場合において回転軸4の回転数(min−1)に対する電動機EM自体での振動加速度(m/s2)の変化を示すグラフであり、図5中、−○−線で示すものが回転軸4の回転数(min−1)に対する図4(a)に示すフレームFL(比較品)での振動加速度(m/s2)の変化、−●−線で示すものが回転軸4の回転数(min−1)に対するフレームFL(比較品)での振幅(μm)の変化を示すグラフである。また、図5中、−□−線で示すものが、図2(c)で示すフレーム1での振動加速度(m/s2)の変化であり(図2(c)で示すフレーム1に係るものを発明品1という)、−△−線で示すものが、図3(a)で示すフレーム10aでの振動加速度(m/s2)の変化である(図3(a)で示すフレーム10aに係るものを発明品2という)。 FIG. 5 shows vibration acceleration (m / s) in the electric motor EM itself with respect to the rotational speed (min −1 ) of the rotating shaft 4 when the comparative product frame FL and the frames 1 and 10a according to the present invention are used. 2 ) is a graph showing the change in FIG. 5, and the one indicated by the line − ◯ − in FIG. 5 is the vibration in the frame FL (comparative product) shown in FIG. 4A with respect to the rotational speed (min −1 ) of the rotating shaft 4. A change in acceleration (m / s 2 ), and a line indicated by a line ● − is a graph showing a change in amplitude (μm) in the frame FL (comparative product) with respect to the rotation speed (min −1 ) of the rotating shaft 4. Further, in FIG. 5, what is indicated by a line − □ − is a change in vibration acceleration (m / s 2 ) in the frame 1 shown in FIG. 2C (related to the frame 1 shown in FIG. 2C). (Referred to as invention product 1), what is indicated by a -Δ- line is a change in vibration acceleration (m / s 2 ) in the frame 10a shown in FIG. 3 (a) (frame 10a shown in FIG. 3 (a)). This is referred to as invention 2).
以上によれば、比較品では、回転軸4の回転数を増加させるにつれて上記の強制振動による振動加速度と振幅が概ね同様な傾向を辿って変化し、振動加速度が30m/s2となる付近で、振動による振幅も29umに達した。この場合、回転軸4を軸支している軸受3a,3bの破損を招来したケースもあった。それに対して、発明品2では、回転軸4の回転数を増加させると、振動加速度が変化するが、最大で18m/s2となり、発明品1では、最大でも7.1m/s2となっていることが判る。 According to the above, in the comparative product, the vibration acceleration and amplitude due to the above-mentioned forced vibration change following a generally similar tendency as the number of rotations of the rotating shaft 4 is increased, and the vibration acceleration is around 30 m / s 2. The amplitude due to vibration reached 29 um. In this case, there was a case where the bearings 3a and 3b supporting the rotating shaft 4 were damaged. In contrast, in the invention product 2, increasing the rotational speed of the rotary shaft 4, but a change in vibration acceleration, up to 18m / s 2, and the the inventions 1, a 7.1 m / s 2 at the maximum You can see that
ここで、比較品と、発明品1,2とのX−X軸回りの断面二次モーメントを比較してみると、比較品では、断面二次モーメント(I)が2.1×10mm4であるのに対して、発明品2では、3.5×10mm4、発明品1では、6.2×10mm4であり、断面二次モーメント(I)の大きさに概ね反比例して上記の電動機EM本体の振動の加速度最大値が抑制低下されて小さくなることが判る。 Here, when comparing the cross-sectional secondary moments around the XX axis between the comparative product and the inventive products 1 and 2, the comparative secondary moment (I) is 2.1 × 10 mm 4 in the comparative product. In contrast, the invention 2 has 3.5 × 10 mm 4 , and the invention 1 has 6.2 × 10 mm 4 , and the above-described electric motor is approximately in inverse proportion to the magnitude of the moment of inertia (I). It can be seen that the maximum acceleration value of the vibration of the EM main body is suppressed and reduced.
次に、他の実験として、上記同様の埋込構造永久磁石同期電動機タイプの全閉形電動機を用い、275kw、215V, 6000min−1での当該電動機の損失によって発生する固定子の発熱量が16.47kw、冷媒として25℃の水、流量が50リットル/minとし、フレームの種類をかえてフレームと冷媒との相互間における熱伝達率(α)の解析を行い、その結果を図6に示す。図6(a)は比較品、図6(b)は発明品1、図6(c)は発明品2である。 Next, as another experiment, a permanent magnet synchronous motor type fully closed motor similar to the above was used, and the amount of heat generated by the stator due to the loss of the motor at 275 kw, 215 V, 6000 min −1 was 16. The heat transfer coefficient (α) between the frame and the refrigerant was analyzed by changing the type of the frame at 47 kW, water at 25 ° C. as the refrigerant, the flow rate was 50 liters / min, and the results are shown in FIG. 6A is a comparative product, FIG. 6B is an invention product 1, and FIG. 6C is an invention product 2.
これによれば、比較品では、冷媒循環通路の全長に亘る平均熱伝達率(α)が2400w/(m2・K)となった。それに対して、発明品1では、平均熱伝達率(α)が3697w/(m2・K)となった。これは、冷媒(冷却水)の各内部通路での流速が速く、しかも、各内部通路断面での流速分布が均一で一様な流れになればなるほど、上記熱伝達率(α)の分布にムラが無くなることに起因している。その結果、平均熱伝達率(α)の値は、比較品を1とすると、発明品2で約1.16倍、発明品1で約1.54倍と増大化し、フレームを介して冷媒に効率良く熱伝達して固定子を冷却できることが判る。 According to this, in the comparative product, the average heat transfer coefficient (α) over the entire length of the refrigerant circulation passage was 2400 w / (m 2 · K). On the other hand, in invention 1, the average heat transfer coefficient (α) was 3697 w / (m 2 · K). This is because the higher the flow rate of refrigerant (cooling water) in each internal passage, and the more uniform and uniform flow velocity distribution in each internal passage cross section, the more the heat transfer coefficient (α) is distributed. This is because the unevenness disappears. As a result, when the comparison product is 1, the average heat transfer coefficient (α) increases to about 1.16 times for the invention product 2 and about 1.54 times for the invention product 1, and it becomes a refrigerant through the frame. It can be seen that the stator can be cooled by efficient heat transfer.
また、図7は、上記熱伝達率の解析結果を基に、フレーム毎に熱流体解析した固定子周りの温度分布の態様を示す図である。この場合、電動機の損失により発生する固定子の発熱量が16.47kwの場合において、温度上昇値が最大となる固定子の内径での夫々の温度上昇の値を比較すると、発明品2の場合は、比較品に比べて温度上昇値を5.63K低下させることができ、発明品1では、温度上昇値を9.12K低下させることができ、更には水温を同一にしたままで流量を80リットル/minに増やせば、平均熱伝達率は5298w/(m2・K)まで上昇するので、温度上昇値を11.21Kまで低下させることも可能となり、固定子コイルの温度上昇を規格限度値以下に抑制することができることが確認された。 Further, FIG. 7 is a diagram showing an aspect of temperature distribution around the stator subjected to thermal fluid analysis for each frame based on the analysis result of the heat transfer coefficient. In this case, when the calorific value of the stator generated due to the loss of the motor is 16.47 kw, when the respective temperature rise values at the stator inner diameter at which the temperature rise value is maximum are compared, the case of Invention 2 Can lower the temperature increase value by 5.63K compared to the comparative product, and the invention product 1 can decrease the temperature increase value by 9.12K, and further the flow rate can be kept at 80 with the water temperature kept the same. If it is increased to liters / min, the average heat transfer coefficient increases to 5298 w / (m 2 · K), so the temperature rise value can be lowered to 11.21 K, and the temperature rise of the stator coil can be reduced to the standard limit value. It was confirmed that the following can be suppressed.
なお、図3(b)に示す、四角形の中空通路の断面積とほぼ同面積となるように円形状の穴を穿孔した場合、X−X軸回りの断面二次モーメントは6.45×10mm4となり、曲げ剛性(E・I)の大きさはほとんど同じであり、しかも冷媒である水温とその流量が同一であれば、冷媒循環通路の全長に亘る平均熱伝達率及び固定子の温度上昇値を発明品1と同等に抑制し低下させることが可能となる。 In addition, when a circular hole is drilled so as to have substantially the same area as the cross-sectional area of the square hollow passage shown in FIG. 3B, the cross-sectional secondary moment around the XX axis is 6.45 × 10 mm. 4 and the bending rigidity (E · I) is almost the same, and if the coolant temperature and the flow rate are the same, the average heat transfer coefficient over the entire length of the coolant circulation path and the stator temperature increase The value can be suppressed and reduced equivalent to that of Invention Product 1.
EM…全閉形電動機(電動機)、1,10a,10b…液体ジャケット付フレーム、11…内筒部、12…外筒部、13…中空部、13a…中空通路、14a,14b…端板部、15…仕切り板部、15a…周方向一箇所の所定の仕切り板部、15b…所定の仕切り板部から周方向一方に数えて奇数番目の仕切り板部、15c…所定の仕切り板部から周方向一方に数えて偶数番目の仕切り板部、16a,16b…切欠き部(連通部)。
EM: Fully enclosed motor (electric motor), 1, 10a, 10b ... Frame with liquid jacket, 11 ... Inner cylinder part, 12 ... Outer cylinder part, 13 ... Hollow part, 13a ... Hollow passage, 14a, 14b ... End plate part, DESCRIPTION OF SYMBOLS 15 ... Partition plate part, 15a ... Predetermined partition plate part of one circumferential direction, 15b ... Odd-numbered partition plate part counted to one circumferential direction from a predetermined partition plate part, 15c ... Circumferential direction from predetermined partition plate part Even-numbered partition plates 16a, 16b ... notches (communications).
Claims (2)
軸方向に長手の内筒部と、内筒部を囲う外筒部と、軸方向の一端と他端に夫々設けられて内筒部と外筒部との間の中空部を閉塞する一対の端板部とを備え、中空部が、内筒部から放射状にのびて外筒部に一体に連結される、周方向に間隔を存して配置される軸方向に長手の第1、第2及び第3の仕切り板部で複数個の中空通路に仕切られ、
周方向一箇所の第1の仕切り板部が軸方向の一端及び他端の端板部に液密に接し、この第1の仕切り板部から周方向一方に数えて奇数番目の第2の仕切り板部が、軸方向他端に設けられた端板部からのび、軸方向一端に設けられた端板部との間に、これら第2の仕切り板部の周方向両側の中空通路を連通する第1の連通部が形成されると共に、第1の仕切り板部から周方向一方に数えて偶数番目の第3の仕切り板部が、軸方向一端に設けられた端板部からのび、軸方向他端に設けられた端板部との間に、これら第3の仕切り板部の周方向両側の中空通路を連通する第2の連通部が形成されて第1の仕切り板部の周方向両側の中空通路の一方から他方まで軸方向に蛇行しながら連続する冷媒循環通路が構成されるようにし、
各中空通路の径方向に沿う断面形状が四角形または円形であり、同等の通路面積を持つ16個以上の中空通路が形成されるように第1、第2及び第3の仕切り板部で中空部が分割され、内筒部と外筒部と第1、第2及び第3の仕切り板部と一対の端板部との全てが連結されて一体化して構成されることを特徴とする電動機の液体ジャケット付フレーム。 In the frame with the liquid jacket of the electric motor in which the stator surrounding the rotor extrapolated to the rotation shaft is arranged inside,
A pair of ends for closing the hollow portion between the inner cylinder portion and the outer cylinder portion, which are respectively provided at one end and the other end in the axial direction. And a hollow portion extending radially from the inner cylinder portion and integrally connected to the outer cylinder portion, the first, second and second axially longitudinally arranged at intervals in the circumferential direction Partitioned by a third partition plate into a plurality of hollow passages,
The first partition plate portion of the circumferential one place liquid-tight manner against the end plate portion in the axial direction of the one end and the other end, the odd-numbered second partition counted from the first partition plate portion in one circumferential direction The plate portion extends from the end plate portion provided at the other end in the axial direction , and communicates with the hollow passages on both sides in the circumferential direction of the second partition plate portion between the end plate portion provided at the one end in the axial direction. together with the first communicating portion is formed, the third partition plate portion of the even-numbered counting from the first partition plate portion in one circumferential direction, extending from the end plate part provided on one axial end, axially Between the end plate portion provided at the other end , second communication portions are formed to communicate the hollow passages on both sides in the circumferential direction of the third partition plate portion, and both sides in the circumferential direction of the first partition plate portion are formed. A continuous refrigerant circulation passage is formed while meandering in the axial direction from one of the hollow passages to the other,
The hollow portions of the first, second, and third partition plates are formed so that the cross-sectional shape along the radial direction of each hollow passage is a square or a circle and 16 or more hollow passages having the same passage area are formed. Of the electric motor, wherein the inner cylinder part, the outer cylinder part, the first, second and third partition plate parts, and the pair of end plate parts are connected and integrated. Frame with liquid jacket.
前記四角形の互いに向かい合う一組の対辺が夫々径方向に位置し、残りの他組の対辺が夫々周方向に位置し、一組の対辺の平均長さと他組の対辺の平均長さを同等とし、第1及び第2の連通部の軸方向長さは、一組の対辺の平均長さの1〜3倍の長さに設定されたことを特徴とする電動機の液体ジャケット付フレーム。 The liquid jacketed frame of the electric motor according to claim 1, wherein the hollow passage has a quadrangular cross-sectional shape.
A pair of opposite sides of the quadrangle facing each other is positioned in the radial direction, and the other pair of opposite sides is positioned in the circumferential direction, and the average length of one set of opposite sides is equal to the average length of the other set of opposite sides. The length of the first and second communicating portions in the axial direction is set to a length of 1 to 3 times the average length of the pair of opposite sides .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014181666A JP6482058B2 (en) | 2014-09-05 | 2014-09-05 | Frame with liquid jacket for electric motor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014181666A JP6482058B2 (en) | 2014-09-05 | 2014-09-05 | Frame with liquid jacket for electric motor |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016059109A JP2016059109A (en) | 2016-04-21 |
JP6482058B2 true JP6482058B2 (en) | 2019-03-13 |
Family
ID=55759098
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014181666A Active JP6482058B2 (en) | 2014-09-05 | 2014-09-05 | Frame with liquid jacket for electric motor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6482058B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11011955B2 (en) * | 2017-03-28 | 2021-05-18 | Lg Electronics Inc. | Motor |
WO2018182117A1 (en) * | 2017-03-28 | 2018-10-04 | 엘지전자 주식회사 | Motor |
JP2018207673A (en) * | 2017-06-05 | 2018-12-27 | 東芝三菱電機産業システム株式会社 | Rotary electric machine |
JP2020202601A (en) * | 2017-08-22 | 2020-12-17 | 株式会社安川電機 | Case for motor and motor |
KR102111408B1 (en) | 2018-11-27 | 2020-05-15 | 엘지전자 주식회사 | A motor |
JP6749438B2 (en) * | 2019-02-20 | 2020-09-02 | 三菱電機株式会社 | Rotating electric machine |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6727611B2 (en) * | 2002-05-28 | 2004-04-27 | Emerson Electric Co. | Cooling jacket for electric machines |
DE102004022557B4 (en) * | 2004-05-07 | 2021-07-22 | Siemens Aktiengesellschaft | Electric machine with water cooling |
JP5796346B2 (en) * | 2011-05-17 | 2015-10-21 | 日産自動車株式会社 | Manufacturing method of stator housing |
-
2014
- 2014-09-05 JP JP2014181666A patent/JP6482058B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2016059109A (en) | 2016-04-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6482058B2 (en) | Frame with liquid jacket for electric motor | |
JP6609704B2 (en) | Assembled hollow rotor shaft with cooling medium distribution element | |
JP6302736B2 (en) | Rotating electric machine | |
KR102030302B1 (en) | Motor rotor holder and motor | |
JP6368492B2 (en) | Rotating electric machine | |
JP5120137B2 (en) | Rotating electric machine | |
JP5505275B2 (en) | Stator cooling device | |
JP4786702B2 (en) | Cooling structure of rotating electric machine | |
JP2014220901A (en) | Permanent magnet built-in type rotary electric machine | |
JP2019176648A (en) | Stator frame, stator, and rotary electric machine | |
US20160344263A1 (en) | Electric machine | |
WO2016204238A1 (en) | Electric motor | |
WO2017082023A1 (en) | Dynamo-electric machine | |
JP6068419B2 (en) | Fully closed rotating electrical machine | |
JP6425065B2 (en) | Electric rotating machine | |
JP5507131B2 (en) | Motor unit | |
JP2019106773A (en) | Rotor and rotary electric machine | |
JP6152257B2 (en) | Liquid cooling motor | |
WO2022265009A1 (en) | Rotating electric machine case and rotating electric machine | |
JP5504794B2 (en) | Motor cooling structure | |
JP6324469B2 (en) | Cooling structure of rotating electric machine | |
JP6726071B2 (en) | Motor cooling mechanism | |
JP2013223391A (en) | Rotary electric machine | |
JP2019201521A (en) | Rotary machine | |
JP2006094664A (en) | Stator structure for axial-gap type rotating electric machine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170630 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180529 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20180530 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20181127 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190117 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190205 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190207 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6482058 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |