JP6477278B2 - Control device for variable compression ratio internal combustion engine - Google Patents

Control device for variable compression ratio internal combustion engine Download PDF

Info

Publication number
JP6477278B2
JP6477278B2 JP2015120710A JP2015120710A JP6477278B2 JP 6477278 B2 JP6477278 B2 JP 6477278B2 JP 2015120710 A JP2015120710 A JP 2015120710A JP 2015120710 A JP2015120710 A JP 2015120710A JP 6477278 B2 JP6477278 B2 JP 6477278B2
Authority
JP
Japan
Prior art keywords
compression ratio
control shaft
motor
power transmission
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015120710A
Other languages
Japanese (ja)
Other versions
JP2017002879A (en
Inventor
和彦 岡本
和彦 岡本
日吉 亮介
亮介 日吉
高橋 英二
英二 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2015120710A priority Critical patent/JP6477278B2/en
Publication of JP2017002879A publication Critical patent/JP2017002879A/en
Application granted granted Critical
Publication of JP6477278B2 publication Critical patent/JP6477278B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Output Control And Ontrol Of Special Type Engine (AREA)

Description

本発明は、機関圧縮比を変更可能な可変圧縮比機構を備えた内燃機関の制御装置に関する。   The present invention relates to a control device for an internal combustion engine provided with a variable compression ratio mechanism capable of changing an engine compression ratio.

従来より、制御軸の回転位置に応じて内燃機関の機関圧縮比を変化させる可変圧縮比機構を備えた可変圧縮比内燃機関が知られている。また特許文献1には、制御軸の回転位置を変更・保持する駆動モータの温度に応じて駆動モータの作動を制限したり、あるいは駆動モータの作動を停止する技術が開示されている。   Conventionally, a variable compression ratio internal combustion engine including a variable compression ratio mechanism that changes the engine compression ratio of the internal combustion engine in accordance with the rotational position of a control shaft is known. Patent Document 1 discloses a technique for restricting the operation of the drive motor or stopping the operation of the drive motor in accordance with the temperature of the drive motor that changes and holds the rotational position of the control shaft.

特開2009−185629号公報JP 2009-185629 A

可変圧縮比機構では、機関運転中にエンジントルク相当の負荷が制御軸に繰り返し作用することから、制御軸を駆動する駆動モータには、高い負荷・荷重を支えるモータトルクが要求され、ひいては駆動モータに流す電流が大きくなり、モータ温度の過度な昇温や、これに伴うモータトルクの低下が懸念される。   In the variable compression ratio mechanism, a load corresponding to the engine torque repeatedly acts on the control shaft during engine operation. Therefore, the drive motor that drives the control shaft is required to have a motor torque that supports a high load and load. There is a concern that the current flowing through the motor increases, and the motor temperature is excessively increased and the motor torque is reduced accordingly.

本発明は、このような事情に鑑みてなされたものであり、モータ温度が高い場合に、制御軸から駆動モータ側へ作用する負荷・荷重を軽減して、駆動モータの発熱を抑制することを目的としている。   The present invention has been made in view of such circumstances. When the motor temperature is high, the load / load acting on the drive motor side from the control shaft is reduced to suppress the heat generation of the drive motor. It is aimed.

本発明に係る可変圧縮比内燃機関の制御装置は、機関本体に回転可能に支持される制御軸の回転位置に応じて機関圧縮比を変化させる可変圧縮比機構と、上記制御軸の回転位置を変更・保持する駆動モータと、を有し、上記制御軸の回転位置に応じて、上記駆動モータから上記制御軸への回転動力伝達経路の減速比が変化するように構成されている。   A control apparatus for a variable compression ratio internal combustion engine according to the present invention includes a variable compression ratio mechanism that changes an engine compression ratio according to a rotational position of a control shaft that is rotatably supported by an engine body, and a rotational position of the control shaft. And a drive motor that is changed and held, and is configured such that the reduction ratio of the rotational power transmission path from the drive motor to the control shaft changes according to the rotational position of the control shaft.

そして、上記駆動モータのモータ温度を検出もしくは推定するモータ温度取得手段を有し、上記モータ温度が所定温度以上となると、上記回転動力伝達機構の減速比が高くなるように上記制御軸の回転位置を変更する。   And a motor temperature acquisition means for detecting or estimating the motor temperature of the drive motor, and when the motor temperature becomes equal to or higher than a predetermined temperature, the rotational position of the control shaft is increased so that the reduction ratio of the rotational power transmission mechanism is increased. To change.

本発明によれば、モータ温度が所定温度以上に高くなると、制御軸の回転位置の変更により回転動力伝達機構の減速比が高くなることで、制御軸から駆動モータ側へ作用する負荷・荷重が軽減されるために、駆動モータ側のそれ以上の発熱を抑制し、駆動モータの信頼性・耐久性を向上するとともに、駆動モータの保持トルクを確保して、制御軸の不用意な変動に伴う圧縮比の変動を抑制することができる。   According to the present invention, when the motor temperature is higher than the predetermined temperature, the reduction ratio of the rotational power transmission mechanism is increased by changing the rotational position of the control shaft, so that the load / load acting from the control shaft to the drive motor side is reduced. In order to reduce this, it is possible to suppress further heat generation on the drive motor side, improve the reliability and durability of the drive motor, and ensure the holding torque of the drive motor, resulting in inadvertent fluctuation of the control shaft The fluctuation of the compression ratio can be suppressed.

本発明の一実施例に係る可変圧縮比機構を示す概略構成図。The schematic block diagram which shows the variable compression ratio mechanism which concerns on one Example of this invention. 上記実施例の可変圧縮比内燃機関の一部を示す斜視図。The perspective view which shows a part of variable compression ratio internal combustion engine of the said Example. 連結機構の減速比と機関圧縮比との関係を示す特性図。The characteristic view which shows the relationship between the reduction ratio of a connection mechanism, and an engine compression ratio. 本発明の一実施例に係る制御の流れを示すフローチャート。The flowchart which shows the flow of control which concerns on one Example of this invention. 本発明の他の実施例に係る制御の流れを示すフローチャート。The flowchart which shows the flow of control which concerns on the other Example of this invention. 上記実施例に係るリンク構成を示す説明図。Explanatory drawing which shows the link structure which concerns on the said Example.

以下、本発明の好ましい実施例を図面を参照して詳細に説明する。先ず、図1及び図2を参照して、本発明の一実施例に係る複リンク式ピストン−クランク機構を利用した可変圧縮比機構について説明する。なお、この機構は上記の特開2009−185629号公報等にも記載のように公知であるので、簡単な説明にとどめる。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. First, a variable compression ratio mechanism using a multi-link piston-crank mechanism according to an embodiment of the present invention will be described with reference to FIGS. Since this mechanism is known as described in the above-mentioned Japanese Patent Application Laid-Open No. 2009-185629, etc., only a brief description will be given.

内燃機関の機関本体の一部を構成するシリンダブロック1には、各気筒のピストン3がシリンダ2内に摺動可能に嵌合しているとともに、クランクシャフト4が回転可能に支持されている。可変圧縮比機構10は、クランクシャフト4のクランクピン5に回転可能に取り付けられるロアリンク11と、このロアリンク11とピストン3とを連結するアッパリンク12と、シリンダブロック1等の機関本体側に回転可能に支持される制御軸14と、この制御軸14に偏心して設けられた制御偏心軸部15と、この制御偏心軸部15とロアリンク11とを連結する制御リンク13と、を有している。ピストン3とアッパリンク12の上端とはピストンピン16を介して相対回転可能に連結され、アッパリンク12の下端とロアリンク11とは第1連結ピン17を介して相対回転可能に連結され、制御リンク13の上端とロアリンク11とは第2連結ピン18を介して相対回転可能に連結され、制御リンク13の下端は上記の制御偏心軸部15に回転可能に取り付けられている。   A piston 3 of each cylinder is slidably fitted in a cylinder 2 and a crankshaft 4 is rotatably supported on a cylinder block 1 constituting a part of an engine body of the internal combustion engine. The variable compression ratio mechanism 10 includes a lower link 11 rotatably attached to the crankpin 5 of the crankshaft 4, an upper link 12 connecting the lower link 11 and the piston 3, and the engine body side such as the cylinder block 1. A control shaft 14 rotatably supported; a control eccentric shaft portion 15 provided eccentric to the control shaft 14; and a control link 13 connecting the control eccentric shaft portion 15 and the lower link 11. ing. The piston 3 and the upper end of the upper link 12 are connected via a piston pin 16 so as to be relatively rotatable, and the lower end of the upper link 12 and the lower link 11 are connected via a first connecting pin 17 so as to be relatively rotatable. The upper end of the link 13 and the lower link 11 are connected to each other via a second connecting pin 18 so as to be relatively rotatable, and the lower end of the control link 13 is rotatably attached to the control eccentric shaft portion 15.

制御軸14には、連結機構21を介して駆動モータ20(図2等参照)が連結されており、この駆動モータ20により制御軸14の回転位置を変更・保持することによって、ロアリンク11の姿勢の変化を伴って、ピストン上死点位置やピストン下死点位置を含むピストンストローク特性が変化して、機関圧縮比が変化する。従って、制御部40により駆動モータ20を駆動制御することによって、機関運転状態に応じて機関圧縮比を制御することができる。   A drive motor 20 (see FIG. 2 and the like) is connected to the control shaft 14 via a connection mechanism 21, and the rotational position of the control shaft 14 is changed and held by the drive motor 20, thereby the lower link 11. As the posture changes, the piston stroke characteristics including the piston top dead center position and the piston bottom dead center position change, and the engine compression ratio changes. Therefore, by controlling the drive motor 20 by the control unit 40, the engine compression ratio can be controlled according to the engine operating state.

機関本体としてシリンダブロック1の下方に固定されるオイルパンアッパ6Aの吸気側の側壁7には、連結機構21を収容するハウジング22と、駆動モータ20と、が機関前後方向に沿うように配置されている。   On the side wall 7 on the intake side of the oil pan upper 6A that is fixed below the cylinder block 1 as the engine body, a housing 22 that houses the coupling mechanism 21 and a drive motor 20 are arranged along the longitudinal direction of the engine. ing.

図1,図2に示すように、機関本体内部に配置される制御軸14と、ハウジング22内に配置される連結機構21の回転軸23とは、レバー24によって連結されている。なお、この実施例では回転軸23を減速機(図示省略)の出力軸と一体的に構成しているが、回転軸23を減速機の出力軸と別体の構成とし、両者が一体的に回転する構造としても良い。   As shown in FIGS. 1 and 2, the control shaft 14 disposed in the engine body and the rotating shaft 23 of the coupling mechanism 21 disposed in the housing 22 are coupled by a lever 24. In this embodiment, the rotating shaft 23 is configured integrally with the output shaft of the speed reducer (not shown). However, the rotating shaft 23 is configured separately from the output shaft of the speed reducer, and both are integrated. A rotating structure may be used.

レバー24の一端と、制御軸14の中心より径方向外方へ延びる第1アーム部25の先端とは、第3連結ピン33を介して相対回転可能に連結されており、回転軸23の中心より径方向外方へ延びる第2アーム部27の先端とレバー24の他端とが第4連結ピン35を介して相対回転可能に連結されている。なお、図2では、第4連結ピン35を省略し、この第4連結ピン35が嵌合する回転軸23のピン連結孔35Aが描かれている。オイルパンアッパ6Aの吸気側の側壁7には、上記のレバー24が挿通するスリット状の連通孔が貫通形成されている。   One end of the lever 24 and the tip of the first arm portion 25 extending radially outward from the center of the control shaft 14 are connected to each other via a third connecting pin 33 so as to be relatively rotatable. The distal end of the second arm portion 27 extending outward in the radial direction and the other end of the lever 24 are connected via a fourth connecting pin 35 so as to be relatively rotatable. In FIG. 2, the fourth connection pin 35 is omitted, and a pin connection hole 35 </ b> A of the rotating shaft 23 into which the fourth connection pin 35 is fitted is illustrated. The side wall 7 on the intake side of the oil pan upper 6A is formed with a slit-like communication hole through which the lever 24 is inserted.

連結機構21には、駆動モータ20の出力を減速して制御軸14側へ伝達する減速機が設けられている。減速機としては、大きな減速比が得られる波動歯車装置やサイクロ減速機等が用いられる。さらに、レバー24、第1アーム部25、及び第2アーム部27を含めたリンク構造による減速比は、制御軸14の回転位置に応じて変化するように構成されている。すなわち、制御軸14を回転すると機関圧縮比が変化するとともに、第1アーム部25、第2アーム部27及びレバー24の姿勢が変化することから、モータ20から制御軸14への回転動力伝達経路の減速比も変化することとなる。具体的には、図3に示すように、基本的には制御軸14が低圧縮比側に回転するとモータ20から制御軸14への回転動力伝達経路の減速比が高くなるように構成されており、かつ、最大圧縮比の近傍では、制御軸14が高圧縮比側へ回転すると減速比が高くなるように構成されている。
次に、図3のような機関圧縮比と減速比との関係が得られる具体的な構造について、図6を参照して説明する。図6(A)に示すように、レバー24の長さ24Cは、第1、第2アーム部25、27とレバー24とが直交する姿勢におけるレバー長さ24Bよりも長く設定されている。言い換えると、第1アーム部25又は第2アーム部27の一方がレバー24と直交するときに、第1アーム部25又は第2アーム部27の他方とレバー24とのなす角度が鋭角となるように、レバー24の長さ24Cが設定されている。更に図6(B)に示すように、レバー24と第1アーム部25とのなす角度は、低圧縮比時に鈍角、高圧縮比時に鋭角となり、かつ、制御軸14の制御偏心軸部15が、制御軸14に対して回転軸23に近い側に配置されている。以上に示すようなリンクレイアウトによれば、中間圧縮比付近で減速比が最小減速比となり、この中間圧縮比付近から高圧縮比側もしくは低圧縮比側へ向かうに従って減速比が徐々に大きくなり、低圧縮比側で最大の減速比となる。
The coupling mechanism 21 is provided with a speed reducer that decelerates the output of the drive motor 20 and transmits it to the control shaft 14 side. As the speed reducer, a wave gear device or a cyclo speed reducer that can obtain a large speed reduction ratio is used. Further, the reduction ratio by the link structure including the lever 24, the first arm portion 25, and the second arm portion 27 is configured to change according to the rotational position of the control shaft 14. That is, when the control shaft 14 is rotated, the engine compression ratio is changed and the postures of the first arm portion 25, the second arm portion 27, and the lever 24 are changed, so that the rotational power transmission path from the motor 20 to the control shaft 14 is changed. The reduction ratio will also change. Specifically, as shown in FIG. 3, basically, when the control shaft 14 rotates to the low compression ratio side, the reduction ratio of the rotational power transmission path from the motor 20 to the control shaft 14 is increased. In the vicinity of the maximum compression ratio, when the control shaft 14 rotates to the high compression ratio side, the reduction ratio is increased.
Next, a specific structure capable of obtaining the relationship between the engine compression ratio and the reduction ratio as shown in FIG. 3 will be described with reference to FIG. As shown in FIG. 6A, the length 24C of the lever 24 is set longer than the lever length 24B in a posture in which the first and second arm portions 25, 27 and the lever 24 are orthogonal to each other. In other words, when one of the first arm portion 25 or the second arm portion 27 is orthogonal to the lever 24, the angle between the other of the first arm portion 25 or the second arm portion 27 and the lever 24 is an acute angle. In addition, the length 24C of the lever 24 is set. Further, as shown in FIG. 6B, the angle formed by the lever 24 and the first arm portion 25 is an obtuse angle when the compression ratio is low and an acute angle when the compression ratio is high, and the control eccentric shaft portion 15 of the control shaft 14 is The control shaft 14 is disposed on the side closer to the rotation shaft 23. According to the link layout as described above, the reduction ratio becomes the minimum reduction ratio near the intermediate compression ratio, and the reduction ratio gradually increases from the vicinity of the intermediate compression ratio toward the high compression ratio side or the low compression ratio side. Maximum reduction ratio on the low compression ratio side.

図4は、本実施例の制御の流れを示すフローチャートであり、本ルーチンは例えば上記の制御部40により所定期間毎(例えば、10ms毎)に繰り返し実行される。ステップS11では、駆動モータ20の温度であるモータ温度が所定温度以上であるか否かを判定する。このモータ温度は、例えば内燃機関の油温を検出する油温センサ41の検出値を用いて推定される。   FIG. 4 is a flowchart showing the control flow of the present embodiment. This routine is repeatedly executed by the control unit 40, for example, every predetermined period (for example, every 10 ms). In step S11, it is determined whether or not the motor temperature, which is the temperature of the drive motor 20, is equal to or higher than a predetermined temperature. This motor temperature is estimated using the detection value of the oil temperature sensor 41 which detects the oil temperature of an internal combustion engine, for example.

モータ温度が所定温度以上でなければ、ステップS12へ進み、機関圧縮比を制限することなく本ルーチンを終了する。一方、モータ温度が所定温度以上であれば、ステップS13へ進み、モータ20から制御軸14への回転動力伝達経路の減速比が高くなるように、機関圧縮比を低圧縮比側へ変換する。これによって、例えば機関高負荷時にモータ温度が所定温度以上に高くなっても、モータ20から制御軸14への回転動力伝達経路の減速比を高くすることで、駆動モータ20にかかる負荷・荷重を抑制し、モータ発熱量を低減することで、駆動モータ20の耐久性・信頼性を向上することができる。また、モータ20から制御軸14への回転動力伝達経路の減速比が高い運転点を低圧縮比側とすることで、モータ高温時でも車両の走行性能を損ねることがない。   If the motor temperature is not equal to or higher than the predetermined temperature, the process proceeds to step S12, and this routine is terminated without limiting the engine compression ratio. On the other hand, if the motor temperature is equal to or higher than the predetermined temperature, the process proceeds to step S13, and the engine compression ratio is converted to the low compression ratio side so that the reduction ratio of the rotational power transmission path from the motor 20 to the control shaft 14 is increased. Thus, for example, even if the motor temperature becomes higher than a predetermined temperature when the engine is heavily loaded, the load / load applied to the drive motor 20 can be reduced by increasing the reduction ratio of the rotational power transmission path from the motor 20 to the control shaft 14. By suppressing the motor heat generation amount, the durability and reliability of the drive motor 20 can be improved. In addition, by setting the operating point with a high reduction ratio of the rotational power transmission path from the motor 20 to the control shaft 14 to the low compression ratio side, the running performance of the vehicle is not impaired even at high motor temperatures.

更に、汎用的に用いられる油温センサ41の油温を用いてモータ温度を推定することで、モータ温度センサが不要となり、低コスト化を図ることができる。   Furthermore, by estimating the motor temperature using the oil temperature of the oil temperature sensor 41 that is used for general purposes, the motor temperature sensor becomes unnecessary, and the cost can be reduced.

但し、モータ温度を検出もしくは推定する手法はこれに限らず、例えば、油温に加えて車速センサ42により求められる車速や吸気温センサ43により求められる吸気温を併用して推定するようにしても良い。この場合、より高精度にモータ温度を推定することが可能となる。また、また、実際にモータ温度を検出するモータ温度センサを用いて直接的にモータ温度を検出するようにしても良く、あるいは運転履歴からモータ温度を推定するようにしても良い。   However, the method for detecting or estimating the motor temperature is not limited to this, and for example, the vehicle temperature obtained by the vehicle speed sensor 42 and the intake air temperature obtained by the intake air temperature sensor 43 may be estimated in addition to the oil temperature. good. In this case, the motor temperature can be estimated with higher accuracy. Further, the motor temperature may be detected directly using a motor temperature sensor that actually detects the motor temperature, or the motor temperature may be estimated from the operation history.

図5は、他の実施例に係る制御の流れを示すフローチャートであり、ステップS11及びステップS12の処理は図4と同様である。可変圧縮比機構10では、ピストン側から作用する荷重により駆動モータ20を停止すると制御軸14は可及的に低圧縮比側へ回転することとなる。そこで本実施例では、モータ温度が所定温度以上である場合、ステップS11からステップS13Aへ進み、駆動モータ20の作動を停止する。この場合、駆動モータ20の作動停止に伴い、制御軸14が力学的な安定点である低圧縮比側へ移行することとなり、上記の実施例と同様に、モータ20から制御軸14への回転動力伝達経路の減速比を高くすることで、駆動モータ20にかかる負荷・荷重を抑制し、モータ発熱量を低減し、駆動モータ20の耐久性・信頼性を向上することができることに加え、駆動モータ20を停止することにより消費電力を抑制しつつ更にモータ発熱量を抑制することができる。   FIG. 5 is a flowchart showing the flow of control according to another embodiment, and the processes in steps S11 and S12 are the same as those in FIG. In the variable compression ratio mechanism 10, when the drive motor 20 is stopped by a load acting from the piston side, the control shaft 14 rotates as much as possible to the low compression ratio side. Therefore, in this embodiment, when the motor temperature is equal to or higher than the predetermined temperature, the process proceeds from step S11 to step S13A, and the operation of the drive motor 20 is stopped. In this case, as the drive motor 20 stops operating, the control shaft 14 shifts to the low compression ratio side, which is a mechanically stable point, and the rotation from the motor 20 to the control shaft 14 is similar to the above embodiment. In addition to suppressing the load and load applied to the drive motor 20 by increasing the reduction ratio of the power transmission path, the motor heat generation amount can be reduced, and the durability and reliability of the drive motor 20 can be improved. By stopping the motor 20, it is possible to further suppress the motor heat generation while suppressing the power consumption.

以上のように本発明を具体的な実施例に基づいて説明してきたが、本発明は上記実施例に限定されるものではなく、種々の変形・変更を含むものである。例えば、上記実施例では、図6に示すように、制御軸14の中心と回転軸23の中心とを通る直線に対し、第1アーム部25の突出方向と第2アーム部27の突出方向とが同方向に設定されているが、この突出方向を逆方向に設定しても良い。     As described above, the present invention has been described based on the specific embodiments. However, the present invention is not limited to the above-described embodiments, and includes various modifications and changes. For example, in the above embodiment, as shown in FIG. 6, the protruding direction of the first arm portion 25 and the protruding direction of the second arm portion 27 with respect to a straight line passing through the center of the control shaft 14 and the center of the rotating shaft 23. Are set in the same direction, but the protruding direction may be set in the opposite direction.

10…可変圧縮比機構
14…制御軸
20…駆動モータ
21…連結機構
40…制御部
41…油温センサ
42…車速センサ
43…吸気温センサ
DESCRIPTION OF SYMBOLS 10 ... Variable compression ratio mechanism 14 ... Control shaft 20 ... Drive motor 21 ... Connection mechanism 40 ... Control part 41 ... Oil temperature sensor 42 ... Vehicle speed sensor 43 ... Intake temperature sensor

Claims (5)

機関本体に回転可能に支持される制御軸の回転位置に応じて機関圧縮比を変化させる可変圧縮比機構と、
上記制御軸の回転位置を変更・保持する駆動モータと、
を有し、
上記制御軸の回転位置に応じて、上記駆動モータから上記制御軸への回転動力伝達経路の減速比が変化するように構成されており、
かつ、上記駆動モータのモータ温度を検出もしくは推定するモータ温度取得手段を有し
上記モータ温度が所定温度以上となると、上記回転動力伝達経路の減速比が高くなるように上記制御軸の回転位置を変更することを特徴とする可変圧縮比内燃機関の制御装置。
A variable compression ratio mechanism that changes the engine compression ratio according to the rotational position of a control shaft that is rotatably supported by the engine body;
A drive motor for changing / holding the rotational position of the control shaft;
Have
According to the rotational position of the control shaft, the reduction ratio of the rotational power transmission path from the drive motor to the control shaft is configured to change,
And it has a motor temperature acquisition means for detecting or estimating the motor temperature of the drive motor,
A control apparatus for a variable compression ratio internal combustion engine, wherein the rotational position of the control shaft is changed so that a reduction ratio of the rotational power transmission path is increased when the motor temperature is equal to or higher than a predetermined temperature.
上記制御軸が低圧縮比側に回転すると、上記回転動力伝達経路の減速比が高くなるように構成されており、
上記モータ温度が上記所定温度以上となると、上記回転動力伝達経路の減速比が高くなるように上記制御軸の回転位置を変更して機関圧縮比を低圧縮比側に変更することを特徴とする請求項1に記載の可変圧縮比内燃機関の制御装置。
When the control shaft rotates to the low compression ratio side, the reduction ratio of the rotational power transmission path is configured to be high,
When the motor temperature becomes the predetermined temperature or higher, and changes the engine compression ratio by changing the rotational position of the control shaft so a reduction ratio is increased in the rotation power transmission path in the low compression ratio side The control apparatus for a variable compression ratio internal combustion engine according to claim 1.
上記制御軸が低圧縮比側に回転すると、上記回転動力伝達経路の減速比が高くなるように構成されており、
上記モータ温度が上記所定温度以上となると、上記回転動力伝達経路の減速比が高くなるように上記駆動モータを停止することを特徴とする請求項1に記載の可変圧縮比内燃機関の制御装置。
When the control shaft rotates to the low compression ratio side, the reduction ratio of the rotational power transmission path is configured to be high,
When the motor temperature becomes the predetermined temperature or higher, the control device for a variable compression ratio internal combustion engine according to claim 1, characterized in that stopping the drive motor so that the speed reduction ratio of the rotation power transmission path is high.
上記モータ温度取得手段は、油温センサにより検出される機関油温と、車速センサにより検出される車速と、吸気温度センサにより検出される吸気温度と、の少なくとも一つに基づいて上記モータ温度を推定することを特徴とする請求項1〜3のいずれかに記載の可変圧縮比内燃機関の制御装置。   The motor temperature acquisition means calculates the motor temperature based on at least one of the engine oil temperature detected by the oil temperature sensor, the vehicle speed detected by the vehicle speed sensor, and the intake air temperature detected by the intake air temperature sensor. The control apparatus for a variable compression ratio internal combustion engine according to any one of claims 1 to 3, wherein the controller is estimated. 上記制御軸が機関圧縮比を高くする高圧縮比側へ回転すると、上記回転動力伝達経路の減速比が高くなることを特徴とする請求項1〜4のいずれかに記載の可変圧縮比内燃機関の制御装置。The variable compression ratio internal combustion engine according to any one of claims 1 to 4, wherein when the control shaft rotates toward a high compression ratio that increases an engine compression ratio, a reduction ratio of the rotational power transmission path increases. Control device.
JP2015120710A 2015-06-16 2015-06-16 Control device for variable compression ratio internal combustion engine Active JP6477278B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015120710A JP6477278B2 (en) 2015-06-16 2015-06-16 Control device for variable compression ratio internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015120710A JP6477278B2 (en) 2015-06-16 2015-06-16 Control device for variable compression ratio internal combustion engine

Publications (2)

Publication Number Publication Date
JP2017002879A JP2017002879A (en) 2017-01-05
JP6477278B2 true JP6477278B2 (en) 2019-03-06

Family

ID=57753792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015120710A Active JP6477278B2 (en) 2015-06-16 2015-06-16 Control device for variable compression ratio internal combustion engine

Country Status (1)

Country Link
JP (1) JP6477278B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3832352B2 (en) * 2002-02-08 2006-10-11 日産自動車株式会社 Vehicle engine control device
JP2009185629A (en) * 2008-02-04 2009-08-20 Nissan Motor Co Ltd Variable compression ratio engine
JP5035317B2 (en) * 2009-10-22 2012-09-26 マツダ株式会社 Internal combustion engine control method and internal combustion engine system
JP6024221B2 (en) * 2012-06-06 2016-11-09 日産自動車株式会社 Variable compression ratio internal combustion engine
EP2947298B1 (en) * 2013-01-17 2017-10-04 Nissan Motor Co., Ltd Internal-combustion-engine control device and control method
JP2015045296A (en) * 2013-08-29 2015-03-12 日立オートモティブシステムズ株式会社 Control device of internal combustion engine

Also Published As

Publication number Publication date
JP2017002879A (en) 2017-01-05

Similar Documents

Publication Publication Date Title
JP5720857B2 (en) Control device and control method for variable compression ratio internal combustion engine
MXPA06012498A (en) Controller of internal combustion engine.
JP6365778B2 (en) Variable compression ratio internal combustion engine
JP2011169152A (en) Variable compression ratio device for internal combustion engine
US20080289605A1 (en) Actuator control apparatus
JP2004116301A (en) Controller of internal combustion engine
JP6372617B2 (en) Variable compression ratio internal combustion engine and learning method thereof
JP2004183591A (en) Controller of internal combustion engine having adjustable valve train
US20090156340A1 (en) Variable tensioner
JP6477278B2 (en) Control device for variable compression ratio internal combustion engine
JP4894820B2 (en) Compression ratio control device and compression ratio control method
JP2010242690A (en) Control device of variable compression ratio internal combustion engine
JP4389773B2 (en) Linear motion evaluation device
JP6743907B2 (en) Internal combustion engine control method and control apparatus
JP4061976B2 (en) Valve lift adjustment device
JP2005030288A (en) Variable compression ratio mechanism for internal combustion engine
JP2010185399A (en) Compression ratio controller of internal combustion engine
JP4241351B2 (en) Control device and control method for variable compression ratio internal combustion engine
WO2016067375A1 (en) Control device for internal combustion engine
JP2007291930A (en) Internal combustion engine and method for controlling the same
JP5272495B2 (en) Electric motor control device
JP6266281B2 (en) Electronic control unit for automobile
JP2008286051A (en) Control device for variable valve gear
JP2009115104A (en) Damper device
JP2009085147A (en) Control device for variable valve train

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190121

R151 Written notification of patent or utility model registration

Ref document number: 6477278

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151