JP6477038B2 - Method for producing aromatic hydrocarbon formaldehyde resin - Google Patents

Method for producing aromatic hydrocarbon formaldehyde resin Download PDF

Info

Publication number
JP6477038B2
JP6477038B2 JP2015044603A JP2015044603A JP6477038B2 JP 6477038 B2 JP6477038 B2 JP 6477038B2 JP 2015044603 A JP2015044603 A JP 2015044603A JP 2015044603 A JP2015044603 A JP 2015044603A JP 6477038 B2 JP6477038 B2 JP 6477038B2
Authority
JP
Japan
Prior art keywords
aromatic hydrocarbon
sulfuric acid
formaldehyde resin
parts
manufactured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015044603A
Other languages
Japanese (ja)
Other versions
JP2016164218A (en
Inventor
雅司 荻原
雅司 荻原
裕稀 渡部
裕稀 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2015044603A priority Critical patent/JP6477038B2/en
Publication of JP2016164218A publication Critical patent/JP2016164218A/en
Application granted granted Critical
Publication of JP6477038B2 publication Critical patent/JP6477038B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Phenolic Resins Or Amino Resins (AREA)

Description

本発明は、樹脂中に酸素原子を一定割合含む芳香族炭化水素ホルムアルデヒド樹脂及びその製造法に関する。   The present invention relates to an aromatic hydrocarbon formaldehyde resin containing a certain proportion of oxygen atoms in the resin and a method for producing the same.

芳香族炭化水素を酸触媒下でホルムアルデヒドと反応させ芳香族炭化水素ホルムアルデヒド樹脂を製造することは公知であり、特にメタキシレンを硫酸触媒存在下にホルムアルデヒドと反応させて得た樹脂はキシレンホルムアルデヒド樹脂としてよく知られている(特許文献1参照)。このキシレンホルムアルデヒド樹脂はフェノール類、カルボン酸類、グリコール類等で変性して熱硬化性樹脂素材として各種用途に用いられたり、接着剤及び粘着剤等の粘着付与剤として用いられたり、更にエポキシ樹脂の希釈剤や塩化ビニル樹脂の可塑剤として用いられることが知られている(特許文献2参照)。   It is known to produce an aromatic hydrocarbon formaldehyde resin by reacting an aromatic hydrocarbon with formaldehyde in the presence of an acid catalyst. In particular, a resin obtained by reacting metaxylene with formaldehyde in the presence of a sulfuric acid catalyst is known as a xylene formaldehyde resin. It is well known (see Patent Document 1). This xylene formaldehyde resin is modified with phenols, carboxylic acids, glycols, etc. and used as thermosetting resin materials in various applications, or as tackifiers such as adhesives and adhesives. It is known to be used as a diluent or plasticizer for vinyl chloride resin (see Patent Document 2).

特開平10−168147号公報JP-A-10-168147 特開2001−261815号公報JP 2001-261815 A

上記芳香族炭化水素ホルムアルデヒド樹脂の製造方法においては、原料としてホルマリンが使用されているが、ホルマリンはホルムアルデヒド濃度が40〜60質量%の水溶液であり、仕込みの約半分を水が占めているため、仕込み時の反応容器の容積を圧迫し、一回の反応で得られる芳香族炭化水素ホルムアルデヒド樹脂の収量が少ないという問題があった。
また、その他のホルムアルデヒド源としては、ホルムアルデヒドの重合物であるパラホルムアルデヒドがあるが、パラホルムアルデヒドは固体であり、融点が高いため、未反応のパラホルムアルデヒドの溶け残りが配管やバルブ等の目詰まりの原因となり、工業的に使用しにくいという問題がある。
また、触媒として使用する硫酸は質量換算の濃度が98%の濃硫酸であるが、反応終了後はこのホルマリンの水と合わせた希硫酸として回収されるため、次の反応等に再利用することができず、廃硫酸となる。よって、反応系中で用いる水の量が多いほど発生する廃硫酸量が多くなり、環境負荷が高くなるという問題があった。
本発明は、従来の芳香族炭化水素ホルムアルデヒド樹脂に見られる上述の欠点がなく、原料仕込み時の容積効率の向上、及び最大仕込み容積反応時の生産性を向上させる製造方法を提供することを目的とする。
In the method for producing the aromatic hydrocarbon formaldehyde resin, formalin is used as a raw material, but formalin is an aqueous solution having a formaldehyde concentration of 40 to 60% by mass, and water accounts for about half of the preparation. There was a problem that the volume of the reaction vessel at the time of charging was reduced and the yield of the aromatic hydrocarbon formaldehyde resin obtained by one reaction was small.
Another formaldehyde source is paraformaldehyde, which is a polymer of formaldehyde, but paraformaldehyde is a solid and has a high melting point. This causes a problem that it is difficult to use industrially.
The sulfuric acid used as the catalyst is concentrated sulfuric acid with a concentration in terms of mass of 98%, but it is recovered as dilute sulfuric acid combined with this formalin water after completion of the reaction, so it can be reused for the next reaction, etc. Cannot be produced, resulting in waste sulfuric acid. Therefore, there is a problem that the larger the amount of water used in the reaction system, the more waste sulfuric acid is generated, which increases the environmental load.
An object of the present invention is to provide a production method that does not have the above-mentioned drawbacks seen in conventional aromatic hydrocarbon formaldehyde resins, improves volumetric efficiency during raw material charging, and improves productivity during maximum charged volume reaction. And

本発明者らは、鋭意検討した結果、芳香族炭化水素ホルムアルデヒド樹脂の製造において、水の含有量が0〜60質量%であるトリオキサン及び芳香族炭化水素を硫酸触媒存在下、縮合反応させる工程を含むことにより、上述の課題を解決できることを見出し、本発明を完成するに至った。   As a result of intensive studies, the present inventors have conducted a step of subjecting trioxane and aromatic hydrocarbon having a water content of 0 to 60% by mass to a condensation reaction in the presence of a sulfuric acid catalyst in the production of an aromatic hydrocarbon formaldehyde resin. By including, it discovered that the above-mentioned subject could be solved and came to complete the present invention.

本発明では、芳香族炭化水素ホルムアルデヒド樹脂の製造においてホルムアルデヒド源としてトリオキサンを使用することで、ホルマリンを使用時と比較し得られる樹脂質量が増加し、廃硫酸量を削減することができる。   In the present invention, by using trioxane as a formaldehyde source in the production of an aromatic hydrocarbon formaldehyde resin, the resin mass that can be obtained compared to when formalin is used is increased, and the amount of waste sulfuric acid can be reduced.

以下、本発明を詳細に説明する。
本発明の製造方法においては、水の含有量が0〜60質量%であるトリオキサン及び芳香族炭化水素を硫酸触媒存在下、縮合反応させる工程を含む。
Hereinafter, the present invention will be described in detail.
The production method of the present invention includes a step of subjecting trioxane and aromatic hydrocarbon having a water content of 0 to 60% by mass to a condensation reaction in the presence of a sulfuric acid catalyst.

本発明の縮合反応工程で使用する芳香族炭化水素としてはトルエン、エチルベンゼン、キシレンの3異性体(o−キシレン、m−キシレン、p−キシレン)、メシチレン、プソイドキュメン、炭素数が10以上の単環芳香族炭化水素化合物、ナフタレン、メチルナフタレン、等の多環芳香族炭化水素化合物などがある。尚、これらの混合物も使用することが出来る。
これらは市販品を用いてもよい。
これらの中でもキシレン、メシチレンであることが、工業的に入手が容易な観点から好ましい。
The aromatic hydrocarbon used in the condensation reaction step of the present invention is toluene, ethylbenzene, xylene isomers (o-xylene, m-xylene, p-xylene), mesitylene, pseudocumene, monocyclic having 10 or more carbon atoms. Examples include aromatic hydrocarbon compounds, polycyclic aromatic hydrocarbon compounds such as naphthalene and methylnaphthalene. A mixture of these can also be used.
Commercial products may be used for these.
Among these, xylene and mesitylene are preferable from the viewpoint of industrial availability.

本発明の縮合反応工程で使用するトリオキサンは、ホルムアルデヒドが3分子連結したものである。用いるトリオキサンは水を含有していてもよく、トリオキサン中における水の含有量としては、0〜60質量%のものを使用する。60質量%以下である理由としては、この範囲であると十分な収量の芳香族炭化水素ホルムアルデヒド樹脂を得られるからである。
また、本発明の縮合反応工程においては、芳香族炭化水素とトリオキサンの量比については特に限定はないが、トリオキサンをホルムアルデヒド換算した値で、芳香族炭化水素:トリオキサン=1:0.5〜1:5であることが好ましく、1:1〜1:3がさらに好ましい。その理由としては、この範囲であると、得られる芳香族炭化水素ホルムアルデヒド樹脂中の酸素含有率が高くなり、未反応で残るホルムアルデヒドが少なくなるからである。
The trioxane used in the condensation reaction step of the present invention is one in which three molecules of formaldehyde are linked. The trioxane to be used may contain water, and the content of water in the trioxane is 0 to 60% by mass. The reason why it is 60% by mass or less is that an aromatic hydrocarbon formaldehyde resin having a sufficient yield can be obtained when the amount is within this range.
In the condensation reaction step of the present invention, the amount ratio of the aromatic hydrocarbon to trioxane is not particularly limited, but the value obtained by converting trioxane into formaldehyde is aromatic hydrocarbon: trioxane = 1: 0.5 to 1. : 5 is preferable, and 1: 1 to 1: 3 is more preferable. The reason for this is that if it is within this range, the oxygen content in the resulting aromatic hydrocarbon formaldehyde resin becomes high, and the formaldehyde remaining unreacted decreases.

本発明の縮合反応において用いられる硫酸触媒としては、濃硫酸が用いられる。その濃度としては、96〜98質量%のものであることが、工業的入手容易な観点から好ましい。硫酸触媒は市販品も容易に入手することができる。
また、本発明の縮合反応に用いられる硫酸触媒の使用量としては、トリオキサンに対し、濃度として10〜50質量%に調整することが、反応速度の観点から好ましい。
硫酸触媒の添加方法は、特に限定されず、一括して添加してもよいし、分割して添加してもよいが、分割して添加することが触媒添加時の発熱による液温上昇を防ぐ点から好ましい。
Concentrated sulfuric acid is used as the sulfuric acid catalyst used in the condensation reaction of the present invention. The concentration is preferably 96 to 98% by mass from the viewpoint of easy industrial availability. Commercially available sulfuric acid catalysts can be easily obtained.
Moreover, as a usage-amount of the sulfuric acid catalyst used for the condensation reaction of this invention, it is preferable from a viewpoint of reaction rate to adjust to 10-50 mass% as a density | concentration with respect to trioxane.
The method of adding the sulfuric acid catalyst is not particularly limited, and may be added all at once or may be added in portions, but adding in portions prevents an increase in the liquid temperature due to heat generated during the addition of the catalyst. It is preferable from the point.

本発明の縮合反応においては、炭素数1〜8の脂肪族アルコールを使用することができる。脂肪族アルコールは、縮合反応の末端停止剤として作用し、得られる芳香族ホルムアルデヒド樹脂の過度の高分子量化を抑えることができる観点から好適に用いられる。
脂肪族アルコールの炭素数としては、1〜8であることが工業的に入手容易な観点から好ましいが、その中でも炭素数1〜4のものを用いることが特に好ましい。
炭素数1〜8の脂肪族アルコールとして具体的には、メタノール、エタノール、n−プロパノール、イソプロパノール、n−ブタノール、sec−ブタノール、tert−ブタノール、ペンタノール(各異性体を含む)、ヘプタノール(各異性体を含む)、2−エチル−ヘキシルアルコール、n−オクタノール等の脂肪族アルコールが例示できるが、上述した理由により、メタノールであることが好ましい。
また、トリオキサンと炭素数1〜8の脂肪族アルコールの量比については特に限定はないが、トリオキサンをホルムアルデヒド換算した値で、トリオキサン:脂肪族アルコール=1:0.1〜1:1であることが好ましい。その理由としては、この範囲であると過度の高分子量化を抑える効果が高く、未反応として残るアルコール類が少なくなるからである。
In the condensation reaction of the present invention, an aliphatic alcohol having 1 to 8 carbon atoms can be used. The aliphatic alcohol is preferably used from the viewpoint of acting as a terminal stopper for the condensation reaction and suppressing an excessive increase in the molecular weight of the resulting aromatic formaldehyde resin.
The number of carbon atoms of the aliphatic alcohol is preferably 1 to 8 from the viewpoint of industrial availability, but among them, the one having 1 to 4 carbon atoms is particularly preferable.
Specific examples of the aliphatic alcohol having 1 to 8 carbon atoms include methanol, ethanol, n-propanol, isopropanol, n-butanol, sec-butanol, tert-butanol, pentanol (including each isomer), heptanol (each (Including isomers), aliphatic alcohols such as 2-ethyl-hexyl alcohol, n-octanol, etc., but methanol is preferred for the reasons described above.
Further, the amount ratio of trioxane and the aliphatic alcohol having 1 to 8 carbon atoms is not particularly limited, but it is a value obtained by converting trioxane into formaldehyde, and trioxane: aliphatic alcohol = 1: 0.1 to 1: 1. Is preferred. The reason for this is that if it is within this range, the effect of suppressing excessive increase in the molecular weight is high, and alcohols remaining as unreacted are reduced.

次に、本発明の縮合反応工程の反応条件について詳細に説明する。
各成分の反応系への加え方としては、芳香族炭化水素、トリオキサン及び硫酸触媒を反応系に同時に添加してもよいし、芳香族炭化水素をトリオキサン及び硫酸触媒が存在する系に逐次添加する縮合反応としてもよい。
Next, the reaction conditions of the condensation reaction step of the present invention will be described in detail.
As a method of adding each component to the reaction system, an aromatic hydrocarbon, trioxane and a sulfuric acid catalyst may be simultaneously added to the reaction system, or an aromatic hydrocarbon is sequentially added to a system where trioxane and a sulfuric acid catalyst are present. It may be a condensation reaction.

反応温度は、特に限定されないが、用いる成分の融点以上の温度にて行うことが好ましい。その中でも反応系に存在する芳香族炭化水素、アルコール、水、トリオキサンが還流する温度で行うことが特に好ましい。例えば、芳香族炭化水素にメタキシレン、アルコールにメタノールを使用する場合、80〜120℃であることが好ましく、90〜110℃がさらに好ましい。
このような範囲にすることで、未反応の芳香族炭化水素が少なく経済的に、かつ工業的に有利な芳香族炭化水素ホルムアルデヒド樹脂が得られる。
Although reaction temperature is not specifically limited, It is preferable to carry out at the temperature more than melting | fusing point of the component to be used. Among these, it is particularly preferable to carry out at a temperature at which the aromatic hydrocarbon, alcohol, water and trioxane present in the reaction system are refluxed. For example, when meta-xylene is used for the aromatic hydrocarbon and methanol is used for the alcohol, the temperature is preferably 80 to 120 ° C, more preferably 90 to 110 ° C.
By setting it as such a range, an aromatic hydrocarbon formaldehyde resin with few unreacted aromatic hydrocarbons and economically and industrially advantageous can be obtained.

反応時間は、特に限定されないが、0.5〜10時間が好ましく、0.5〜5時間がより好ましく、2〜6時間がさらに好ましい。このような範囲にすることで、未反応の芳香族炭化水素が少なく経済的に、かつ工業的に有利な芳香族炭化水素ホルムアルデヒド樹脂が得られる。   Although reaction time is not specifically limited, 0.5 to 10 hours are preferable, 0.5 to 5 hours are more preferable, and 2 to 6 hours are further more preferable. By setting it as such a range, an aromatic hydrocarbon formaldehyde resin with few unreacted aromatic hydrocarbons and economically and industrially advantageous can be obtained.

反応圧力は、特に限定されず、常圧でも加圧でもよい。本実施における縮合反応は、必要に応じて系内に窒素、ヘリウム、アルゴンなどの不活性ガスを通気してもよい。   The reaction pressure is not particularly limited, and may be normal pressure or increased pressure. In the condensation reaction in the present embodiment, an inert gas such as nitrogen, helium, or argon may be passed through the system as necessary.

縮合反応においては必要に応じて、縮合反応に不活性な溶媒を希釈溶媒として使用できる。前記溶媒としては、ヘキサン等の飽和脂肪族炭化水素;シクロヘキサン等の脂環式炭化水素;ジオキサン、ジブチルエーテル等のエーテル;2‐プロパノール等のアルコール;メチルイソブチルケトン等のケトン;エチルプロピオネート等のカルボン酸エステル;酢酸等のカルボン酸等が挙げられる。尚、これらの混合物も使用することが出来る。また、反応に用いる芳香族炭化水素も、系中で溶媒として作用する。   In the condensation reaction, if necessary, a solvent inert to the condensation reaction can be used as a dilution solvent. Examples of the solvent include saturated aliphatic hydrocarbons such as hexane; alicyclic hydrocarbons such as cyclohexane; ethers such as dioxane and dibutyl ether; alcohols such as 2-propanol; ketones such as methyl isobutyl ketone; ethyl propionate and the like. Carboxylic acid ester of; Acetic acid etc. Carboxylic acid etc. are mentioned. A mixture of these can also be used. In addition, the aromatic hydrocarbon used in the reaction also acts as a solvent in the system.

希釈溶媒の使用量は、特に限定されないが、静置分離時に油層と水層の二相に分離できれば良い。   Although the usage-amount of a dilution solvent is not specifically limited, What is necessary is just to be able to isolate | separate into two phases of an oil layer and a water layer at the time of stationary separation.

反応終了後、必要に応じて芳香族炭化水素をさらに添加して希釈した後、静置することにより二相分離させ、油層である樹脂相、硫酸触媒を含む水相に分離した後、水相部分を抜き出した物を廃硫酸として処理し、樹脂相を水洗など行なうことで酸性触媒を完全に除去し、添加した芳香族炭化水素及び未反応の原料を蒸留等の一般的な方法で除去することにより、芳香族炭化水素ホルムアルデヒド樹脂が得られる。   After completion of the reaction, if necessary, after further diluting by adding aromatic hydrocarbons, the mixture is allowed to stand to separate into two phases, and after separation into a resin phase that is an oil layer and an aqueous phase containing a sulfuric acid catalyst, an aqueous phase The extracted material is treated as waste sulfuric acid, the resin phase is washed with water, etc. to completely remove the acidic catalyst, and the added aromatic hydrocarbon and unreacted raw material are removed by a general method such as distillation. As a result, an aromatic hydrocarbon formaldehyde resin is obtained.

上記縮合反応工程を含む製造方法により得られる芳香族炭化水素ホルムアルデヒド樹脂は、特に限定されないが、ゲル浸透クロマトグラフィー(GPC)分析により測定されるポリスチレン換算の重量平均分子量(Mw)が300〜1200であることが、溶剤への溶解性やハンドリングの観点から好ましい。   The aromatic hydrocarbon formaldehyde resin obtained by the production method including the condensation reaction step is not particularly limited, but the polystyrene-equivalent weight average molecular weight (Mw) measured by gel permeation chromatography (GPC) analysis is 300 to 1200. It is preferable from the viewpoint of solubility in a solvent and handling.

以下、実施例を挙げて、本発明をさらに具体的に説明する。但し、本発明は、これらの実施例に特に限定はされない。なお、実施例、比較例において「%」、「部」は特別な記述をしない限りそれぞれ「質量%」、「質量部」を示す。   Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not particularly limited to these examples. In Examples and Comparative Examples, “%” and “parts” represent “% by mass” and “parts by mass”, respectively, unless otherwise specified.

得られた芳香族炭化水素ホルムアルデヒド樹脂の分子量は下記の方法により求めた。
<分子量>
ゲル浸透クロマトグラフィー(GPC)分析により、ポリスチレン換算の重量平均分子量(Mw)を求めた。
装置:Shodex GPC−101型(昭和電工(株)製)
カラム:LF−804×3
溶離液:THF 1ml/min
温度:40℃
The molecular weight of the obtained aromatic hydrocarbon formaldehyde resin was determined by the following method.
<Molecular weight>
The weight average molecular weight (Mw) in terms of polystyrene was determined by gel permeation chromatography (GPC) analysis.
Apparatus: Shodex GPC-101 (manufactured by Showa Denko KK)
Column: LF-804 × 3
Eluent: THF 1ml / min
Temperature: 40 ° C

実施例1
温度計、還流冷却器、攪拌機を備えた底抜きが可能な内容積1リットルの四つ口フラスコにトリオキサン196.7部(ホルムアルデヒドとして6.6mol、三菱ガス化学(株)製)、純水49.1部、メタノール35.7部(1.1mol、三菱ガス化学(株)製)を仕込み、98質量%工業用硫酸72.2部(0.74mol、三菱ガス化学(株)製)を30分かけて滴下後、メタキシレン347.9部(3.3mol、三菱ガス化学(株)製)を一括で仕込み、その後、反応系をマントルヒーターにより加熱し、温度100℃前後で攪拌しながら、水を4時間加熱還流させた。その後、希釈溶媒としてメタキシレン340部(三菱ガス化学(株)製)を加え、静置して樹脂相と硫酸触媒を含有する水相(廃硫酸)とに分離した後、樹脂相を6回水洗し、水蒸気蒸留及び減圧蒸留の二段階に分けて蒸留を行い、希釈添加したメタキシレン及び未反応のメタキシレンを除去し、重量平均分子量900の芳香族炭化水素ホルムアルデヒド樹脂460部、廃硫酸190部を得た。
Example 1
196.7 parts of trioxane (6.6 mol as formaldehyde, manufactured by Mitsubishi Gas Chemical Co., Ltd.) and pure water 49 in a 1-liter four-necked flask equipped with a thermometer, reflux condenser and stirrer and capable of bottoming .1 part, 35.7 parts of methanol (1.1 mol, manufactured by Mitsubishi Gas Chemical Co., Ltd.), and 72.2 parts of 98 mass% industrial sulfuric acid (0.74 mol, manufactured by Mitsubishi Gas Chemical Co., Ltd.) were added 30 After dropwise addition over a period of time, 347.9 parts of metaxylene (3.3 mol, manufactured by Mitsubishi Gas Chemical Co., Ltd.) were charged all at once, and then the reaction system was heated with a mantle heater and stirred at a temperature of about 100 ° C. Water was heated to reflux for 4 hours. Thereafter, 340 parts of meta-xylene (manufactured by Mitsubishi Gas Chemical Co., Inc.) was added as a diluting solvent and allowed to stand to separate into a resin phase and an aqueous phase (waste sulfuric acid) containing a sulfuric acid catalyst. Washing with water, distilling in two steps, steam distillation and vacuum distillation, removing diluted meta-xylene and unreacted meta-xylene, 460 parts of aromatic hydrocarbon formaldehyde resin having a weight average molecular weight of 900, and waste sulfuric acid 190 Got a part.

実施例2
実施例1と同様の器具を用いて、トリオキサン196.7部(ホルムアルデヒドとして6.6mol、三菱ガス化学(株)製)、純水49.1部を仕込み、98質量%工業用硫酸63.0部(0.64mol、三菱ガス化学(株)製)を、30分かけて滴下後、メタキシレン347.9部(3.3mol、三菱ガス化学(株)製)を一括で仕込み、その後、反応系をマントルヒーターにより加熱し、温度100℃前後で攪拌しながら、水を4時間加熱還流させた。その後、希釈溶媒としてメタキシレン340部(三菱ガス化学(株)製)を加え、静置して樹脂相と硫酸触媒を含有する水相(廃硫酸)とに分離した後、樹脂相を6回水洗し、水蒸気蒸留及び減圧蒸留の二段階に分けて蒸留を行い、希釈添加したメタキシレン及び未反応のメタキシレンを除去し、重量平均分子量2003の芳香族炭化水素ホルムアルデヒド樹脂450部、廃硫酸150部を得た。
Example 2
Using the same apparatus as in Example 1, 196.7 parts of trioxane (6.6 mol as formaldehyde, manufactured by Mitsubishi Gas Chemical Co., Ltd.) and 49.1 parts of pure water were charged, and 63.0 mass% of sulfuric acid for industrial use 63.0%. Part (0.64 mol, manufactured by Mitsubishi Gas Chemical Co., Inc.) was added dropwise over 30 minutes, and then 347.9 parts of metaxylene (3.3 mol, manufactured by Mitsubishi Gas Chemical Co., Ltd.) were charged all at once. The system was heated by a mantle heater, and water was heated to reflux for 4 hours while stirring at a temperature of about 100 ° C. Thereafter, 340 parts of meta-xylene (manufactured by Mitsubishi Gas Chemical Co., Inc.) was added as a diluting solvent and allowed to stand to separate into a resin phase and an aqueous phase (waste sulfuric acid) containing a sulfuric acid catalyst. Washing with water, distilling in two steps, steam distillation and vacuum distillation, removing diluted metaxylene and unreacted metaxylene, 450 parts by weight of aromatic hydrocarbon formaldehyde resin with a weight average molecular weight of 2003, 150 waste sulfuric acid Got a part.

実施例3
実施例1と同様の器具を用いて、トリオキサン196.7部(ホルムアルデヒドとして6.6mol、三菱ガス化学(株)製)、純水49.1部を仕込み、98質量%工業用硫酸72.2部(0.74mol、三菱ガス化学(株)製)を、30分かけて滴下後、メシチレン393.7部(3.3mol、三菱ガス化学(株)製)を一括で仕込み、その後、反応系をマントルヒーターにより加熱し、温度100℃前後で攪拌しながら、水を4時間加熱還流させた。その後、希釈溶媒としてメシチレン340部(三菱ガス化学(株)製)を加え、静置して樹脂相と硫酸触媒を含有する水相(廃硫酸)とに分離した後、樹脂相を6回水洗し、水蒸気蒸留及び減圧蒸留の二段階に分けて蒸留を行い、希釈添加したメシチレン及び未反応のメシチレンを除去し、重量平均分子量765の芳香族炭化水素ホルムアルデヒド樹脂465部、廃硫酸153部を得た。
Example 3
Using the same apparatus as in Example 1, 196.7 parts of trioxane (6.6 mol as formaldehyde, manufactured by Mitsubishi Gas Chemical Co., Ltd.) and 49.1 parts of pure water were added, and 72.2 mass% of sulfuric acid for industrial use 72.2%. Part (0.74 mol, manufactured by Mitsubishi Gas Chemical Co., Ltd.) was added dropwise over 30 minutes, and then 393.7 parts of mesitylene (3.3 mol, manufactured by Mitsubishi Gas Chemical Co., Ltd.) were charged all at once, and then the reaction system Was heated with a mantle heater, and water was heated to reflux for 4 hours while stirring at a temperature of about 100 ° C. Thereafter, 340 parts of mesitylene (Mitsubishi Gas Chemical Co., Ltd.) was added as a diluting solvent, allowed to stand and separated into a resin phase and an aqueous phase (waste sulfuric acid) containing a sulfuric acid catalyst, and then the resin phase was washed with water six times. Then, the distillation is performed in two stages of steam distillation and vacuum distillation to remove diluted mesitylene and unreacted mesitylene to obtain 465 parts of an aromatic hydrocarbon formaldehyde resin having a weight average molecular weight of 765 and 153 parts of waste sulfuric acid. It was.

実施例4
実施例1と同様の器具を用いて、トリオキサン196.7部(ホルムアルデヒドとして6.6mol、三菱ガス化学(株)製)、純水49.1部、メタノール14.7部(0.46mol、三菱ガス化学(株)製)を仕込み、98質量%工業用硫酸66.8部(0.68mol、三菱ガス化学(株)製)を、30分かけて滴下後、メタキシレン347.9部(3.3mol、三菱ガス化学(株)製)を一括で仕込み、その後、反応系をマントルヒーターにより加熱し、温度100℃前後で攪拌しながら、水を4時間加熱還流させた。その後、希釈溶媒としてメタキシレン340部(三菱ガス化学(株)製)を加え、静置して樹脂相と硫酸触媒を含有する水相(廃硫酸)とに分離した後、樹脂相を6回水洗し、水蒸気蒸留及び減圧蒸留の二段階に分けて蒸留を行い、希釈添加したメタキシレン及び未反応のメタキシレンを除去し、重量平均分子量1600の芳香族炭化水素ホルムアルデヒド樹脂440部、廃硫酸171部を得た。
Example 4
Using the same apparatus as in Example 1, 196.7 parts of trioxane (6.6 mol as formaldehyde, manufactured by Mitsubishi Gas Chemical Co., Ltd.), 49.1 parts of pure water, 14.7 parts of methanol (0.46 mol, Mitsubishi) Gas Chemical Co., Ltd.) was charged, and 66.8 parts of 98% by mass industrial sulfuric acid (0.68 mol, manufactured by Mitsubishi Gas Chemical Co., Ltd.) was added dropwise over 30 minutes, followed by 347.9 parts of metaxylene (3 .3 mol, manufactured by Mitsubishi Gas Chemical Co., Ltd.), and then the reaction system was heated with a mantle heater, and water was heated to reflux for 4 hours while stirring at a temperature of about 100 ° C. Thereafter, 340 parts of meta-xylene (manufactured by Mitsubishi Gas Chemical Co., Inc.) was added as a diluting solvent and allowed to stand to separate into a resin phase and an aqueous phase (waste sulfuric acid) containing a sulfuric acid catalyst. Washing with water, distilling in two steps, steam distillation and vacuum distillation, removing diluted meta-xylene and unreacted meta-xylene, 440 parts of aromatic hydrocarbon formaldehyde resin having a weight average molecular weight of 1600, waste sulfuric acid 171 Got a part.

比較例1
実施例1と同様の器具を用いて、40質量%ホルマリン(ホルムアルデヒド成分が40質量%の水溶液)315部(4.2mol、三菱ガス化学(株)製)を仕込み、98質量%工業用硫酸112.6部(1.1mol、三菱ガス化学(株)製)を、30分かけて滴下しメタキシレン222.6部(2.1mol、三菱ガス化学(株)製)を一括で仕込み、その後、反応系をマントルヒーターにより加熱し、温度100℃前後で攪拌しながら、水を4時間加熱還流させた。その後、希釈溶媒としてメタキシレン220部(三菱ガス化学(株)製)を加え、静置して樹脂相と硫酸触媒を含有する水相(廃硫酸)とに分離した後、樹脂相を6回水洗し、水蒸気蒸留及び減圧蒸留の二段階に分けて蒸留を行い、希釈添加したメタキシレン及び未反応のメタキシレンを除去し、重量平均分子量770の芳香族炭化水素ホルムアルデヒド樹脂288部、廃硫酸345部を得た。
Comparative Example 1
Using the same equipment as in Example 1, 315 parts (4.2 mol, manufactured by Mitsubishi Gas Chemical Co., Ltd.) of 40% by weight formalin (aqueous solution having a formaldehyde component of 40% by weight) were charged, and 98% by weight industrial sulfuric acid 112 was charged. .6 parts (1.1 mol, manufactured by Mitsubishi Gas Chemical Co., Ltd.) was added dropwise over 30 minutes, and 222.6 parts of metaxylene (2.1 mol, manufactured by Mitsubishi Gas Chemical Co., Ltd.) were charged all at once. The reaction system was heated with a mantle heater, and water was heated to reflux for 4 hours while stirring at a temperature of about 100 ° C. Thereafter, 220 parts of meta-xylene (manufactured by Mitsubishi Gas Chemical Co., Ltd.) was added as a diluting solvent and allowed to stand to separate into a resin phase and an aqueous phase containing sulfuric acid catalyst (waste sulfuric acid). Washing with water, distilling in two stages, steam distillation and vacuum distillation, removing diluted meta-xylene and unreacted meta-xylene, 288 parts of an aromatic hydrocarbon formaldehyde resin having a weight average molecular weight of 770, 345 waste sulfuric acid Got a part.

比較例2
実施例1と同様の器具を用いて、パラホルムアルデヒド137.1部(ホルムアルデヒドとして4.2mol、三菱ガス化学(株)製)、純水43.1部を仕込み、98質量%工業用硫酸52.2部(0.53mol、三菱ガス化学(株)製)を、30分かけて滴下しメタキシレン223.0部(2.1mol、三菱ガス化学(株)製)を一括で仕込み、その後、反応系をマントルヒーターにより加熱し、温度100℃前後で攪拌しながら、水を4時間加熱還流させた。その後、希釈溶媒としてメタキシレン220部(三菱ガス化学(株)製)を加え、静置して樹脂相と硫酸触媒を含有する水相(廃硫酸)とに分離した後、樹脂相を6回水洗し、水蒸気蒸留及び減圧蒸留の二段階に分けて蒸留を行い、希釈添加したメタキシレン及び未反応のメタキシレンを除去し、重量平均分子量2021の芳香族炭化水素ホルムアルデヒド樹脂293部、廃硫酸134部を得たが、四つ口フラスコの底抜き部分パラホルムアルデヒドの溶け残りが確認され、底抜き管の目詰まりが確認された。
Comparative Example 2
Using the same apparatus as in Example 1, 137.1 parts of paraformaldehyde (4.2 mol as formaldehyde, manufactured by Mitsubishi Gas Chemical Co., Ltd.) and 43.1 parts of pure water were charged, and 52 mass% of 98% by mass industrial sulfuric acid. 2 parts (0.53 mol, manufactured by Mitsubishi Gas Chemical Co., Ltd.) were dropped over 30 minutes, and 223.0 parts (2.1 mol, manufactured by Mitsubishi Gas Chemical Co., Ltd.) of metaxylene were charged all at once, and then reacted. The system was heated by a mantle heater, and water was heated to reflux for 4 hours while stirring at a temperature of about 100 ° C. Thereafter, 220 parts of meta-xylene (manufactured by Mitsubishi Gas Chemical Co., Ltd.) was added as a diluting solvent and allowed to stand to separate into a resin phase and an aqueous phase containing sulfuric acid catalyst (waste sulfuric acid). Washing with water, distilling in two steps of steam distillation and vacuum distillation, removing meta-xylene diluted and unreacted meta-xylene, removing 293 parts of an aromatic hydrocarbon formaldehyde resin having a weight average molecular weight of 2021, and waste sulfuric acid 134 The bottom portion of the four-necked flask was confirmed to be undissolved in paraformaldehyde, and clogging of the bottom tube was confirmed.

Figure 0006477038
Figure 0006477038

Claims (5)

水の含有量が0〜60質量%であるトリオキサン及び芳香族炭化水素を、硫酸触媒及び炭素数1〜8の脂肪族アルコールの存在下、縮合反応させる工程を含み、前記芳香族炭化水素とトリオキサンとのモル比が1:2/3〜1:5/3である、芳香族炭化水素ホルムアルデヒド樹脂の製造方法。 A step of subjecting trioxane and aromatic hydrocarbon having a water content of 0 to 60% by mass to a condensation reaction in the presence of a sulfuric acid catalyst and an aliphatic alcohol having 1 to 8 carbon atoms . molar ratio of Riokisan 1: 2/3 to 1: 5 / a 3, process for producing an aromatic hydrocarbon formaldehyde resin. 前記芳香族炭化水素が、キシレン及び/又はメシチレンである、請求項1に記載の製造方法。   The production method according to claim 1, wherein the aromatic hydrocarbon is xylene and / or mesitylene. 記トリオキサンと炭素数1〜8の脂肪族アルコールとのモル比が、1/3:0.1〜1/3:1である、請求項1又は2に記載の芳香族炭化水素ホルムアルデヒド樹脂の製造方法。 Before the molar ratio of the aliphatic alcohols Quito Riokisan and 1-8 carbon atoms, 1/3: 0.1 / 3: 1, an aromatic according to claim 1 or 2 hydrocarbon formaldehyde resin Manufacturing method. 前記硫酸触媒が濃度96〜98質量%の濃硫酸である、請求項1〜3のいずれか一項に記載の芳香族炭化水素ホルムアルデヒド樹脂の製造方法。   The method for producing an aromatic hydrocarbon formaldehyde resin according to any one of claims 1 to 3, wherein the sulfuric acid catalyst is concentrated sulfuric acid having a concentration of 96 to 98 mass%. 前記縮合反応の反応時間が2〜6時間である、請求項1〜4のいずれか一項に記載の芳香族炭化水素ホルムアルデヒド樹脂の製造方法。   The method for producing an aromatic hydrocarbon formaldehyde resin according to any one of claims 1 to 4, wherein a reaction time of the condensation reaction is 2 to 6 hours.
JP2015044603A 2015-03-06 2015-03-06 Method for producing aromatic hydrocarbon formaldehyde resin Expired - Fee Related JP6477038B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015044603A JP6477038B2 (en) 2015-03-06 2015-03-06 Method for producing aromatic hydrocarbon formaldehyde resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015044603A JP6477038B2 (en) 2015-03-06 2015-03-06 Method for producing aromatic hydrocarbon formaldehyde resin

Publications (2)

Publication Number Publication Date
JP2016164218A JP2016164218A (en) 2016-09-08
JP6477038B2 true JP6477038B2 (en) 2019-03-06

Family

ID=56876528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015044603A Expired - Fee Related JP6477038B2 (en) 2015-03-06 2015-03-06 Method for producing aromatic hydrocarbon formaldehyde resin

Country Status (1)

Country Link
JP (1) JP6477038B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03247616A (en) * 1990-02-27 1991-11-05 Kashima Sekiyu Kk Production of aromatic petroleum resin
JPH069742A (en) * 1992-06-25 1994-01-18 Mitsubishi Oil Co Ltd Aromatic petroleum resin and acrylic adhesive composition containing the same

Also Published As

Publication number Publication date
JP2016164218A (en) 2016-09-08

Similar Documents

Publication Publication Date Title
JP2018518467A5 (en)
KR20150113005A (en) Novel aryl compound and method for producing same
JP2018030857A (en) METHOD FOR PRODUCING α-FLUOROACRYLATE
EP2006274B1 (en) Method for producing 3,3,3-trifluoropropionic acid chloride
JP6477038B2 (en) Method for producing aromatic hydrocarbon formaldehyde resin
JP2015140302A (en) Method for producing ether compound, and method for producing polymerizable compound
JP6349943B2 (en) Compound purification method and polymer compound production method
WO2010125899A1 (en) Process for producing fluoromethyl hexafluoroisopropyl ether
JP6086163B2 (en) Method for producing 2&#39;-trifluoromethyl group-substituted aromatic ketone
JP6001780B2 (en) Method for producing allyl alcohol
CN111574327A (en) Process for the preparation of 3-heptanol from a mixture comprising 2-ethylhexanol and 3-heptanoate formate
CN107540520B (en) Method for preparing pyromellitic acid or trimellitic acid from pinacol
JP2015042621A (en) Method of producing vinylbenzyl(fluoroalkyl) ether
US9790164B2 (en) Process of production of dehydrolinalyl acetate (II)
JP5206736B2 (en) Method for producing glycidyloxybutyl acrylate
JP6439219B2 (en) Production method of fluorine-containing phenol
JP2017523998A (en) Method for producing trioxane
JP5076313B2 (en) Process for producing purified 2,2-dimethyl-3-formylcyclopropanecarboxylic acid ester and intermediate thereof
US20220306571A1 (en) Method of producing acrylonitrile dimer
JP6267057B2 (en) Method for producing carboxylic anhydride
KR101990384B1 (en) A Method for Producing highly pure Allyl Alcohol and Process system for Producing highly pure Allyl Alcohol
JP2012001471A (en) Production step control method of sulfolane
CN108349866B (en) Process for producing terephthalic acid
JP2006312605A (en) Method for producing high-purity 1,3-dimethyl-2-imidazolidinone
JP2016108252A (en) Method for producing 1-alkoxy-2-alkanol compound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180814

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180926

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20180926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190121

R151 Written notification of patent or utility model registration

Ref document number: 6477038

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees