JP6476972B2 - Leakage determination device - Google Patents

Leakage determination device Download PDF

Info

Publication number
JP6476972B2
JP6476972B2 JP2015028825A JP2015028825A JP6476972B2 JP 6476972 B2 JP6476972 B2 JP 6476972B2 JP 2015028825 A JP2015028825 A JP 2015028825A JP 2015028825 A JP2015028825 A JP 2015028825A JP 6476972 B2 JP6476972 B2 JP 6476972B2
Authority
JP
Japan
Prior art keywords
determination
frequency
leakage
signal
peak value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015028825A
Other languages
Japanese (ja)
Other versions
JP2016152688A (en
Inventor
将且 堀口
将且 堀口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2015028825A priority Critical patent/JP6476972B2/en
Publication of JP2016152688A publication Critical patent/JP2016152688A/en
Application granted granted Critical
Publication of JP6476972B2 publication Critical patent/JP6476972B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

本発明は、高電圧回路と車体との漏電の有無を判定する漏電判定装置に関する。   The present invention relates to a leakage determination device that determines the presence or absence of leakage between a high-voltage circuit and a vehicle body.

車両に搭載された高電圧回路と車体とは電気的に絶縁されているが、その絶縁性能が低下するおそれがある。そこで、従来から高電圧回路と車体との漏電の有無が判定されている。   Although the high voltage circuit mounted on the vehicle and the vehicle body are electrically insulated, the insulation performance may be reduced. Therefore, it has been conventionally determined whether or not there is a leakage between the high voltage circuit and the vehicle body.

例えば、特許文献1では、発振部から第1の周波数の交流信号と、第1の周波数とは異なる第2の周波数の交流信号とを別々のタイミングで出力することで、高電圧回路に対して周波数の異なる複数の交流信号を印加する。そして第1の周波数に対応する第1の交流信号の波高値と、第2の周波数に対応する第2の波高値とを検出することによって特定される高電圧回路(電気系統)の電気的特性に基づいて、当該高電圧回路のコモン容量を推定する。そしてコモン容量の推定値に基づき漏電判定の閾値を設定し、交流信号の波高値が閾値を下回る場合には、絶縁抵抗が低下していると判定するようにしている。   For example, in Patent Literature 1, an alternating-current signal having a first frequency and an alternating-current signal having a second frequency different from the first frequency are output from the oscillating unit at different timings. A plurality of AC signals having different frequencies are applied. The electrical characteristics of the high voltage circuit (electric system) specified by detecting the peak value of the first AC signal corresponding to the first frequency and the second peak value corresponding to the second frequency. Based on the above, the common capacity of the high-voltage circuit is estimated. Then, a threshold value for leakage detection is set based on the estimated value of the common capacity, and when the peak value of the AC signal is lower than the threshold value, it is determined that the insulation resistance is reduced.

特開2014−155329号公報JP 2014-155329 A

交流信号を用いて漏電判定を行う場合、コモン容量の影響による交流信号の波高値の低下を避けるために低周波数の交流信号が用いられることが好ましい。しかし、低周波数の交流信号を用いて漏電判定をすることは、漏電判定の時間を短縮する際の制約となる。   When performing leakage check using an AC signal, it is preferable to use a low-frequency AC signal in order to avoid a decrease in the peak value of the AC signal due to the influence of the common capacitance. However, making a leakage determination using a low-frequency AC signal is a limitation when reducing the leakage determination time.

本発明は上記に鑑みてなされたものであり、漏電判定をより適切に実施できる漏電判定装置を提供することを主たる目的とするものである。   This invention is made | formed in view of the above, and makes it a main objective to provide the leak determination apparatus which can implement a leak determination more appropriately.

本発明は、高電圧回路(100)と車体との漏電の有無を判定する漏電判定装置(20)であって、前記高電圧回路に対して抵抗器(26)を介して交流信号を出力する交流信号出力手段(24)と、前記交流信号出力手段により前記交流信号が出力された状態で、前記抵抗器と前記高電圧回路の絶縁抵抗成分とで分圧された前記交流信号の波高値を取得する波高値取得手段(51)と、前記交流信号の周波数を設定する周波数設定手段(54)と、前記波高値が閾値未満であるか否かに基づいて、漏電の有無を判定する漏電判定手段(50b)と、を備え、前記周波数設定手段は、前記交流信号の周波数を、第1周波数とそれよりも低周波数の第2周波数とで切り替え可能であり、前記漏電判定手段は、前記周波数設定手段で前記交流信号の周波数を前記第1周波数に設定した状態で、前記波高値が前記閾値未満であるか否かの第1判定を実施し、前記第1判定で前記波高値が前記閾値未満であると判定した場合に、前記交流信号の周波数を前記第2周波数に設定した状態で、前記波高値が前記閾値未満であるか否かの第2判定を実施し、前記第2判定の判定結果に基づいて、前記漏電の有無を判定することを特徴とする。   The present invention is a leakage determination device (20) for determining whether or not there is a leakage between a high voltage circuit (100) and a vehicle body, and outputs an AC signal to the high voltage circuit via a resistor (26). With the AC signal output means (24) and the AC signal output means outputting the AC signal, the peak value of the AC signal divided by the resistor and the insulation resistance component of the high voltage circuit is obtained. Leakage determination for determining the presence or absence of leakage based on whether or not the peak value acquisition means (51) to be acquired, frequency setting means (54) for setting the frequency of the AC signal, and whether the peak value is less than a threshold value Means (50b), wherein the frequency setting means can switch the frequency of the AC signal between a first frequency and a second frequency lower than the first frequency, and the leakage determination means The AC signal in the setting means In a state where the frequency is set to the first frequency, a first determination is made as to whether or not the peak value is less than the threshold value, and it is determined in the first determination that the peak value is less than the threshold value In the state where the frequency of the AC signal is set to the second frequency, a second determination is made as to whether or not the peak value is less than the threshold, and based on the determination result of the second determination, It is characterized by determining the presence or absence of electric leakage.

本発明によれば、第1判定で漏電の可能性が無いと判定される状態では、第1判定が継続されるため、漏電判定に要する時間を短縮できる。一方、第1判定で漏電の可能性があると判定された場合には、第1周波数よりも低い第2周波数で第2判定が実施されるため、コモン容量の影響の少ない低周波数で漏電判定を実施でき、漏電判定の精度を向上させることができる。以上により、漏電判定の高速化を図りつつ、漏電判定を精度よく実施できる。   According to the present invention, in the state where it is determined that there is no possibility of electric leakage in the first determination, since the first determination is continued, the time required for the electric leakage determination can be shortened. On the other hand, when it is determined that there is a possibility of electric leakage in the first determination, the second determination is performed at the second frequency lower than the first frequency, so the electric leakage determination is performed at a low frequency with little influence of the common capacity. Can be implemented, and the accuracy of the leakage determination can be improved. As described above, leakage determination can be performed with high accuracy while speeding up leakage determination.

漏電判定装置を含む全体構成図。1 is an overall configuration diagram including a leakage determination device. 漏電判定装置を示す図。The figure which shows an electrical leakage determination apparatus. 漏電判定処理のフローチャート。The flowchart of an electrical leakage determination process. 漏電判定処理のタイミングチャート。The timing chart of a leak determination process.

以下、本発明の実施形態を図面に基づいて説明する。なお本実施形態の漏電判定装置は、直流電源の電力を走行駆動源に用いて走行可能であるとともに、直流電源への充電を外部電力で実施できるハイブリッド自動車や電気自動車等の車両に適用される。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The leakage determination device of the present embodiment is applicable to a vehicle such as a hybrid vehicle or an electric vehicle that can travel using the power of the DC power source as a travel drive source and can charge the DC power source with external power. .

図1において高電圧回路100は、直流電源11、電力変換回路10を備えている。直流電源11と電力変換回路10とはシステムメインリレー(以下SMR12と称する)を介して接続されている。また、高電圧回路100には漏電判定装置20が接続されている。   In FIG. 1, the high voltage circuit 100 includes a DC power supply 11 and a power conversion circuit 10. DC power supply 11 and power conversion circuit 10 are connected via a system main relay (hereinafter referred to as SMR 12). In addition, a leakage determination device 20 is connected to the high voltage circuit 100.

直流電源11は、充電可能なリチウムイオン電池等の二次電池が直列に複数個接続されて構成された電池群である。SMR12は、直流電源11から電力変換回路10に電力供給をする際、または電力変換回路10から直流電源11に電力を供給する際に接続される。   The DC power supply 11 is a battery group configured by connecting a plurality of secondary batteries such as rechargeable lithium ion batteries in series. The SMR 12 is connected when power is supplied from the DC power supply 11 to the power conversion circuit 10 or when power is supplied from the power conversion circuit 10 to the DC power supply 11.

電力変換回路10は、図示を略すコンバータ、インバータ、MG等の各種の電気装置を備えて構成されており、直流電源11の電圧をコンバータで昇圧したり、MGで発電された交流電力をインバータで直流電力に変換して、その変換後の直流電力をコンバータで降圧して直流電源11に供給したりする。   The power conversion circuit 10 includes various electric devices (not shown) such as a converter, an inverter, and an MG. The voltage of the DC power source 11 is boosted by the converter, and the AC power generated by the MG is converted by the inverter. The DC power is converted into DC power, and the converted DC power is stepped down by a converter and supplied to the DC power supply 11.

以上の構成の高電圧回路100は、車体から電気的に絶縁されている。そのため、直流電源11と車体、電力変換回路10と車体との間には、それぞれ対地絶縁抵抗(以下、絶縁抵抗Rgと称する)が発生する。   The high voltage circuit 100 having the above configuration is electrically insulated from the vehicle body. Therefore, a ground insulation resistance (hereinafter referred to as an insulation resistance Rg) is generated between the DC power source 11 and the vehicle body, and between the power conversion circuit 10 and the vehicle body.

また、高電圧回路100が車体から絶縁されていることで、直流電源11と車体、電力変換回路10と車体との間にコモン容量Cgが発生する。なおコモン容量Cgとは、車体に対する高電圧回路100の静電容量であって、浮遊容量とも称される。図1ではこれらの絶縁抵抗Rgとコモン容量Cgとの等価回路を説明の便宜上図示している。   Further, since the high voltage circuit 100 is insulated from the vehicle body, a common capacitance Cg is generated between the DC power source 11 and the vehicle body, and between the power conversion circuit 10 and the vehicle body. The common capacitance Cg is an electrostatic capacitance of the high voltage circuit 100 with respect to the vehicle body, and is also referred to as a stray capacitance. FIG. 1 shows an equivalent circuit of these insulation resistance Rg and common capacitor Cg for convenience of explanation.

この絶縁抵抗Rgが低下すると車体に意図しない電流が流れる漏電が発生しうる。そこで、漏電判定装置20による漏電判定が行われる。   When this insulation resistance Rg is lowered, an electric leakage in which an unintended current flows through the vehicle body may occur. Therefore, the leakage determination by the leakage determination device 20 is performed.

図2において漏電判定装置20は、コンデンサ22、発振器24、抵抗器26、信号入力部28、マイコン50を備えている。なお図2では、高電圧回路100を絶縁抵抗Rgとコモン容量Cgとの等価回路で示している。   In FIG. 2, the leakage determination device 20 includes a capacitor 22, an oscillator 24, a resistor 26, a signal input unit 28, and a microcomputer 50. In FIG. 2, the high voltage circuit 100 is shown as an equivalent circuit of an insulation resistance Rg and a common capacitor Cg.

コンデンサ22は、高電圧回路100と漏電判定装置20とを直流的に絶縁するものであり、一端が高電圧回路100に接続され、他端が抵抗器26に接続される。   The capacitor 22 insulates the high voltage circuit 100 and the leakage determination device 20 in a DC manner, and has one end connected to the high voltage circuit 100 and the other end connected to the resistor 26.

発振器24は、交流信号を生成及び出力する。詳しくは、発振器24は、矩形波の電圧信号を生成し、抵抗器26を介してコンデンサ22に接続された高電圧回路100の配線経路(コモン経路)に出力する。コモン経路とは、直流電源11と抵抗器26とを接続する配線経路であり、より具体的にはコンデンサ22の他端と抵抗器26とを結ぶ配線である。本実施形態の発振器24は、交流信号の周波数を可変設定することができる。例えば、2〜100Hzの範囲で交流信号の周波数を可変設定できる。   The oscillator 24 generates and outputs an AC signal. Specifically, the oscillator 24 generates a rectangular wave voltage signal and outputs the voltage signal to the wiring path (common path) of the high voltage circuit 100 connected to the capacitor 22 via the resistor 26. The common path is a wiring path that connects the DC power supply 11 and the resistor 26, and more specifically, a wiring that connects the other end of the capacitor 22 and the resistor 26. The oscillator 24 of this embodiment can variably set the frequency of the AC signal. For example, the frequency of the AC signal can be variably set in the range of 2 to 100 Hz.

信号入力部28は、コモン経路における抵抗器26とコンデンサ22との間の接続点Dにかかる電圧を検出信号として入力してA/D変換器(図示略)に出力する。A/D変換器は、信号入力部28で検出した検出信号をデジタル信号に変換してマイコン50に出力する。本実施形態ではマイコン50とA/D変換器とを別構成としているが、マイコン50がA/D変換器を備えていてもよい。   The signal input unit 28 inputs a voltage applied to a connection point D between the resistor 26 and the capacitor 22 in the common path as a detection signal, and outputs the detection signal to an A / D converter (not shown). The A / D converter converts the detection signal detected by the signal input unit 28 into a digital signal and outputs it to the microcomputer 50. In the present embodiment, the microcomputer 50 and the A / D converter are configured separately, but the microcomputer 50 may include an A / D converter.

マイコン50は、CPU、RAM、ROM、フラッシュメモリ等からなるマイクロコンピュータを主体として構成されており、ROMに記憶されたプログラムに従って、CPUが漏電判定に関する各種処理を実行する。   The microcomputer 50 is mainly configured by a microcomputer including a CPU, RAM, ROM, flash memory, and the like, and the CPU executes various processes relating to leakage determination according to a program stored in the ROM.

本実施形態のマイコン50は、漏電判定条件が成立した際、発振器24から出力される交流信号の周波数fを所定の第1周波数f1に設定して漏電の可能性があるか否かの仮判定を実施する。そして仮判定で漏電の可能性があると判定した場合には、発振器24から出力される交流信号の周波数fを、第1周波数f1よりも低周波数の第2周波数f2に設定して、高電圧回路100に漏電があることを確定するための本判定を実施する。   The microcomputer 50 of the present embodiment temporarily determines whether or not there is a possibility of electric leakage by setting the frequency f of the AC signal output from the oscillator 24 to a predetermined first frequency f1 when the electric leakage determination condition is satisfied. To implement. If it is determined that there is a possibility of electric leakage in the tentative determination, the frequency f of the AC signal output from the oscillator 24 is set to a second frequency f2 that is lower than the first frequency f1, and a high voltage is set. This determination is performed to determine that the circuit 100 has a leakage.

詳しく説明すると、マイコン50は、デジタルフィルタ処理部50a、漏電判定処理部50bを備えている。デジタルフィルタ処理部50aは、例えば、有限インパルス応答(finite impulse response)によって、A/D変換後のデジタルの交流信号から、発振器24から出力された交流信号の周波数帯域及びその周辺の帯域成分を抽出することで、交流信号に含まれるノイズ成分を除去する。   More specifically, the microcomputer 50 includes a digital filter processing unit 50a and an electric leakage determination processing unit 50b. The digital filter processing unit 50a extracts the frequency band of the AC signal output from the oscillator 24 and its surrounding band components from the digital AC signal after A / D conversion by, for example, a finite impulse response. By doing so, the noise component contained in the AC signal is removed.

デジタルフィルタ処理部50aは、発振器24から出力された交流信号の周波数帯域の信号を抽出する。すなわち、デジタルフィルタ処理部50aは、発振器24から出力される交流信号の周波数帯域に合わせてそのフィルタ特性が可変設定される。   The digital filter processing unit 50a extracts a signal in the frequency band of the AC signal output from the oscillator 24. That is, the filter characteristics of the digital filter processing unit 50a are variably set in accordance with the frequency band of the AC signal output from the oscillator 24.

漏電判定処理部50bは、交流信号の周波数設定部54と、コモン容量推定部55と、漏電判定部56とを備えている。   The leakage determination processing unit 50 b includes an AC signal frequency setting unit 54, a common capacity estimation unit 55, and a leakage determination unit 56.

周波数設定部54は、発振器24から出力する交流信号の周波数fを設定する。詳しくは、仮判定の際には交流信号の周波数fを第1周波数f1に設定する。本判定の際には交流信号の周波数fを第2周波数f2に設定する。なお本実施形態では、第1周波数f1から所定の周波数の下限値(以下、下限周波数faと称する)までの範囲で周波数を段階的に低下させて第2周波数f2を設定する。すなわち、本判定が開始されると、第1周波数f1から所定の周波数Δfを減算して第2周波数f2を設定する。そしてその第2周波数での波高値が閾値未満であるか否かを判定する。その後、本判定が行われる毎に、前回の周波数から所定の周波数Δfを減算して、今回の第2周波数f2を設定する。   The frequency setting unit 54 sets the frequency f of the AC signal output from the oscillator 24. Specifically, the frequency f of the AC signal is set to the first frequency f1 in the provisional determination. In this determination, the frequency f of the AC signal is set to the second frequency f2. In the present embodiment, the second frequency f2 is set by gradually reducing the frequency in the range from the first frequency f1 to the lower limit value of the predetermined frequency (hereinafter referred to as the lower limit frequency fa). That is, when this determination is started, the second frequency f2 is set by subtracting the predetermined frequency Δf from the first frequency f1. Then, it is determined whether or not the peak value at the second frequency is less than the threshold value. Thereafter, every time this determination is made, a predetermined frequency Δf is subtracted from the previous frequency to set the current second frequency f2.

コモン容量推定部55は、本判定の際に、コモン容量Cgの推定値を算出する。詳しくは、仮判定で取得した交流信号の波高値と、本判定で取得した交流信号の波高値との差ΔVを算出する。そして波高値の差ΔVとコモン容量Cgとの関係を定める演算式やマップを用いてコモン容量Cgの推定値を算出する。なお、仮判定では、交流信号の周波数を基本的には変化させないため、コモン容量Cgの推定値を算出しないこととする。この場合、仮判定の高速化をより図ることができる。   The common capacity estimation unit 55 calculates an estimated value of the common capacity Cg at the time of this determination. Specifically, a difference ΔV between the peak value of the AC signal acquired in the provisional determination and the peak value of the AC signal acquired in the main determination is calculated. Then, an estimated value of the common capacitance Cg is calculated using an arithmetic expression or a map that defines the relationship between the difference ΔV of the peak values and the common capacitance Cg. In the provisional determination, since the frequency of the AC signal is not basically changed, the estimated value of the common capacitance Cg is not calculated. In this case, the speed of temporary determination can be further increased.

漏電判定部56は、デジタルフィルタ処理部50aで検出した交流信号の波高値を用いて漏電の有無を判定する。詳しくは、仮判定の際には、交流信号の波高値の検出値が所定の閾値Th未満であるかを判定する。仮判定で交流信号の波高値が閾値Th以上であると判定されれば、仮判定を継続する。仮判定で波高値が閾値Th未満と判定されれば、本判定を実施する。本判定では、コモン容量推定部55が算出したコモン容量Cgの推定値を用いて、本判定で取得した交流信号の波高値の検出値を補正し、補正後の交流信号の波高値が所定の閾値Th未満であるか否かに基づいて、漏電の有無を判定する。そして、本判定で漏電があると判定した場合に、高電圧回路100に漏電があることが確定されることとなる。   The leakage determination unit 56 determines the presence or absence of leakage using the peak value of the AC signal detected by the digital filter processing unit 50a. Specifically, in the provisional determination, it is determined whether the detected value of the peak value of the AC signal is less than a predetermined threshold Th. If it is determined in the tentative determination that the peak value of the AC signal is equal to or greater than the threshold Th, the tentative determination is continued. If the peak value is determined to be less than the threshold Th in the tentative determination, this determination is performed. In this determination, the detected value of the peak value of the AC signal acquired in this determination is corrected using the estimated value of the common capacity Cg calculated by the common capacity estimation unit 55, and the peak value of the corrected AC signal is a predetermined value. Based on whether or not it is less than the threshold value Th, the presence or absence of electric leakage is determined. When it is determined that there is a leak in this determination, it is determined that there is a leak in the high voltage circuit 100.

なお本実施形態では、仮判定と本判定とで使用する閾値Thは同じとしているが、仮判定と本判定とで使用する閾値Thは異なっていてもよい。例えば、コモン容量Cgの影響を考慮して、仮判定の際の閾値よりも、本判定の際の閾値が低めに設定してもよい。   In the present embodiment, the threshold Th used in the temporary determination and the main determination is the same, but the threshold Th used in the temporary determination and the main determination may be different. For example, in consideration of the influence of the common capacitance Cg, the threshold value in the main determination may be set lower than the threshold value in the temporary determination.

以上により、仮判定では、第1周波数f1を用いることで漏電判定に要する時間を短縮できる。本判定では、コモン容量Cgの影響による交流信号の波高値の低下を抑えた状態で、漏電の有無を精度よく判定できる。   As described above, in the temporary determination, the time required for the leakage determination can be shortened by using the first frequency f1. In this determination, the presence or absence of electric leakage can be accurately determined in a state in which the decrease in the peak value of the AC signal due to the influence of the common capacitance Cg is suppressed.

ところで、仮判定の際にコモン容量Cgの影響で交流信号の波高値が低下することが想定される。この場合、本判定において第1周波数f1よりも低い第2周波数f2が用いられると、コモン容量Cgの影響が抑えられて、交流信号の波高値が閾値Th以上に回復しうる。この場合には、漏電の判定に比較的に時間を要する本判定を終了して、仮判定が行われることが好ましい。また、高電圧回路100が一時的に漏電状態となっていた場合には、その原因が解消された際に、交流信号の波高値が閾値Th以上に回復することがある。この場合にも、本判定を終了して、仮判定が行われることが好ましい。   By the way, it is assumed that the peak value of the AC signal decreases due to the influence of the common capacitance Cg in the temporary determination. In this case, if the second frequency f2 lower than the first frequency f1 is used in this determination, the influence of the common capacitor Cg can be suppressed, and the peak value of the AC signal can be recovered to the threshold Th or higher. In this case, it is preferable that the temporary determination is performed after the main determination that requires a relatively long time to determine the leakage is completed. In addition, when the high voltage circuit 100 is temporarily in a leakage state, the peak value of the AC signal may be restored to the threshold value Th or more when the cause is eliminated. Also in this case, it is preferable that the final determination is performed after the final determination.

そこで本実施形態では、本判定の実施中に、交流信号の波高値が閾値Th以上に回復した場合には、本判定を終了して、仮判定の状態に戻す。これにより、漏電の可能性が無い場合における漏電判定にかかる時間を短縮する。   Therefore, in the present embodiment, when the peak value of the AC signal is recovered to be equal to or greater than the threshold Th during the main determination, the main determination is terminated and the provisional determination state is restored. Thereby, the time taken for the leakage determination when there is no possibility of leakage is shortened.

なお、仮判定の際に、コモン容量Cgの影響で波高値が低下し、本判定で、交流信号の波高値が閾値以上に回復した場合には、その際の周波数を用いて仮判定を行うことにより、コモン容量Cgの影響による波高値の低下を回避できる。そこで、本実施形態では、本判定で交流信号の波高値が閾値Th以上に回復し、仮判定の状態に戻した際に、本判定を終了した時点での交流信号の周波数を第1周波数f1として更新して仮判定を実施する。   Note that when the peak value decreases due to the influence of the common capacitance Cg during the temporary determination and the peak value of the AC signal recovers to a threshold value or more in this determination, the temporary determination is performed using the frequency at that time. Accordingly, it is possible to avoid a decrease in the peak value due to the influence of the common capacitance Cg. Therefore, in the present embodiment, when the peak value of the AC signal is recovered to the threshold value Th or more in the main determination and returned to the temporary determination state, the frequency of the AC signal at the time when the main determination is finished is the first frequency f1. Are updated and provisional determination is performed.

次にマイコン50が実施する漏電判定処理の手順について図3を用いて説明する。本処理は、マイコン50が、所定周期で繰り返し実施する。   Next, the procedure of the leakage determination process performed by the microcomputer 50 will be described with reference to FIG. This process is repeatedly performed by the microcomputer 50 at a predetermined cycle.

まず、漏電判定条件が成立したか否かを判定する(S11)。本処理は、例えばSMR12の接続前や、SMR12の開放後、または電力変換回路10による電力変換が実施されない状況下において肯定判定する。   First, it is determined whether or not a leakage determination condition is satisfied (S11). In this process, for example, an affirmative determination is made before the SMR 12 is connected, after the SMR 12 is opened, or when power conversion by the power conversion circuit 10 is not performed.

漏電判定条件が成立した場合には、本判定フラグがオフであるか否かを判定する(S12)。本判定フラグは、後述のS16で波高値が閾値Th未満と判定した際にオンとなる。   If the leakage determination condition is satisfied, it is determined whether or not the determination flag is off (S12). This determination flag is turned on when it is determined in S16 described later that the peak value is less than the threshold value Th.

本判定フラグがオフの場合には、S13〜S18で仮判定を実施する。まず、本判定が未実施であるか否かを判定する(S13)。本処理は、漏電判定条件の成立後、本判定フラグが一度もオンになっていない場合に肯定判定する。S13で本判定が未実施の場合には、交流信号の周波数を第1周波数f1にする(S14)。次に、交流信号の波高値が閾値Th未満であるか否かを判定する(S16)。交流信号の波高値が閾値Th以上の場合には、本判定フラグをオフにする(S17)。交流信号の波高値が閾値Th未満の場合には、本判定フラグをオンにする(S18)。   When this determination flag is off, provisional determination is performed in S13 to S18. First, it is determined whether this determination is not performed (S13). This process makes an affirmative determination when the determination flag has never been turned on after the leakage determination condition is satisfied. When this determination is not performed in S13, the frequency of the AC signal is set to the first frequency f1 (S14). Next, it is determined whether or not the peak value of the AC signal is less than the threshold value Th (S16). If the peak value of the AC signal is greater than or equal to the threshold Th, the determination flag is turned off (S17). When the peak value of the AC signal is less than the threshold value Th, this determination flag is turned on (S18).

S12で本判定フラグがオンであると判定した場合には、S19〜S25で本判定を実施する。まず、前回の交流信号の周波数fが所定の下限周波数fa以上であるか否かを判定する(S19)。肯定判定した場合には、前回の交流信号の周波数fから所定の周波数Δfを減算して、第2周波数f2を設定する(S20)。S19で否定判定した場合には、下限周波数faを第2周波数f2に設定する(S21)。   If it is determined in S12 that the main determination flag is on, the main determination is performed in S19 to S25. First, it is determined whether or not the frequency f of the previous AC signal is equal to or higher than a predetermined lower limit frequency fa (S19). If an affirmative determination is made, the second frequency f2 is set by subtracting the predetermined frequency Δf from the frequency f of the previous AC signal (S20). If a negative determination is made in S19, the lower limit frequency fa is set to the second frequency f2 (S21).

その後、コモン容量Cgの推定値を算出する(S22)。次に、コモン容量Cgの推定値による補正後の交流信号の波高値が、所定の閾値Th未満であるか否かを判定する(S23)。肯定判定した場合には、高電圧回路100に漏電が生じていると判定する(S24)。否定判定した場合には、本判定フラグをオフにする(S25)。   Thereafter, an estimated value of the common capacity Cg is calculated (S22). Next, it is determined whether or not the peak value of the AC signal after correction based on the estimated value of the common capacitance Cg is less than a predetermined threshold Th (S23). If an affirmative determination is made, it is determined that a leakage has occurred in the high voltage circuit 100 (S24). If a negative determination is made, this determination flag is turned off (S25).

なお、S11で漏電判定条件が不成立の場合には処理を終了する。この場合、全条件を一旦リセットする。また、S13で本判定の実施があると判定した場合には、第1周波数f1を更新する(S15)。すなわち、前回が本判定の場合には、本判定の終了時点(仮判定への切替時点)の第2周波数f2を第1周波数f1に設定する。前回が仮判定の場合には、前回の仮判定の際と同じ第1周波数f1に設定する。その後、S16〜S18の処理を実施する。   In addition, a process is complete | finished when the leak determination conditions are not satisfied in S11. In this case, all conditions are once reset. If it is determined in S13 that the main determination is performed, the first frequency f1 is updated (S15). That is, when the previous determination is the final determination, the second frequency f2 at the end of the final determination (switching to the temporary determination) is set to the first frequency f1. When the previous preliminary determination is made, the first frequency f1 is set to be the same as the previous temporary determination. Then, the process of S16-S18 is implemented.

次に図4を用いて上記処理の実行例を説明する。なお以下の処理では、仮判定で漏電の可能性があると判定された後、本判定で漏電が生じていないと判定された場合における漏電判定処理を例示している。   Next, an execution example of the above process will be described with reference to FIG. In the following process, the leakage determination process in the case where it is determined in this determination that no leakage has occurred after it is determined that there is a possibility of leakage in the tentative determination is illustrated.

時刻t1で漏電判定条件が成立すると、第1周波数f1の交流信号が出力される。この際、交流信号の波高値が閾値Th以上であるため、本判定フラグがオフとなり、第1周波数f1での仮判定が継続される。   When the leakage determination condition is satisfied at time t1, an AC signal having the first frequency f1 is output. At this time, since the peak value of the AC signal is equal to or greater than the threshold value Th, the determination flag is turned off, and the provisional determination at the first frequency f1 is continued.

時刻t2で交流信号の波高値が閾値Th未満となると、本判定フラグがオンとなり、第2周波数f2で本判定が実施される。そして、本判定で、交流信号の波高値が閾値Th未満と判定されることにより、漏電が生じていると判定される。その後、第2周波数f2が徐々に減少されながら本判定が継続される。そして、本判定の実施中の時刻t3で、交流信号の波高値が閾値Th以上となると、本判定フラグがオフとなり、その際の第2周波数f2を用いて第1周波数f1を更新し、更新後の第1周波数f1で仮判定が実施される。ここでは、交流信号の波高値が閾値Th以上となることで、正常であると判定される。   When the peak value of the AC signal becomes less than the threshold Th at time t2, the main determination flag is turned on, and the main determination is performed at the second frequency f2. In this determination, it is determined that a leakage has occurred by determining that the peak value of the AC signal is less than the threshold Th. Thereafter, this determination is continued while the second frequency f2 is gradually decreased. When the peak value of the AC signal becomes equal to or greater than the threshold Th at time t3 during the actual determination, the determination flag is turned off, and the first frequency f1 is updated using the second frequency f2 at that time. The provisional determination is performed at the later first frequency f1. Here, it is determined that the peak value of the AC signal is equal to or greater than the threshold value Th.

なお図4において、時刻t3以降、交流信号の波高値が閾値Th以上に回復しない場合には、図示の破線に示されるように、第2周波数f2は下限周波数faにまで低下される。そして下限周波数faとなった時刻t4以降、下限周波数faでの本判定が継続されることとなる。   In FIG. 4, when the peak value of the AC signal does not recover above the threshold Th after time t3, the second frequency f2 is lowered to the lower limit frequency fa as indicated by the broken line in the figure. Then, after time t4 when the lower limit frequency fa is reached, the main determination at the lower limit frequency fa is continued.

上記によれば以下の優れた効果を奏することができる。   According to the above, the following excellent effects can be achieved.

(1)漏電判定に使用する交流信号を低周波数とすると、高電圧回路100に含まれるコモン容量Cgによる漏電判定への影響を抑えることができるが、漏電判定にかかる時間を短縮しようとした際の制約となる。一方、漏電判定に使用する交流信号を高周波数とすると、漏電判定にかかる時間を短縮できるが、交流信号の波高値の検出値がコモン容量Cgの影響を受けて変化し、漏電判定の精度が低下しうる。   (1) When the AC signal used for the leakage determination is set to a low frequency, the influence on the leakage determination by the common capacitance Cg included in the high voltage circuit 100 can be suppressed, but when the time required for the leakage determination is to be shortened It becomes a restriction of. On the other hand, if the AC signal used for leakage detection is set to a high frequency, the time required for leakage determination can be shortened. However, the detected value of the peak value of the AC signal changes due to the influence of the common capacitance Cg, and the accuracy of the leakage determination is improved. May fall.

そこで、まずは第1周波数f1の交流信号を用いて波高値が閾値未満か否かを判定し(第1判定)、その状態で波高値が閾値未満であれば、続いて交流信号の周波数を低周波数側の第2周波数f2に変更し、波高値が閾値未満か否かを判定する(第2判定)。つまり、第1判定では、第1周波数f1で漏電の可能性があるか否かを仮判定し、漏電の可能性があると判定した場合には、第1周波数f1よりも低い第2周波数f2で漏電があることを本判定する。   Therefore, first, it is determined whether or not the peak value is less than the threshold using the AC signal having the first frequency f1 (first determination). If the peak value is less than the threshold in this state, the frequency of the AC signal is subsequently lowered. It changes to the 2nd frequency f2 by the side of a frequency, and it is determined whether a crest value is less than a threshold value (2nd determination). That is, in the first determination, it is temporarily determined whether or not there is a possibility of electric leakage at the first frequency f1, and when it is determined that there is a possibility of electric leakage, the second frequency f2 that is lower than the first frequency f1. In this case, it is determined that there is a leak.

この場合、第1判定で漏電の可能性が無いと判定される状態では、第1判定が継続されるため、漏電判定に要する時間を短縮できる。一方、第1判定で漏電の可能性があると判定された場合には、第1周波数f1よりも低い第2周波数f2で第2判定が実施されるため、コモン容量Cgの影響の少ない低周波数で漏電判定を実施でき、漏電判定の精度を向上させることができる。以上により、漏電判定の高速化を図りつつ、漏電判定を精度よく実施できる。   In this case, in the state where it is determined that there is no possibility of electric leakage in the first determination, since the first determination is continued, the time required for the electric leakage determination can be shortened. On the other hand, when it is determined that there is a possibility of electric leakage in the first determination, the second determination is performed at the second frequency f2 lower than the first frequency f1, so that the low frequency with less influence of the common capacitance Cg With this, it is possible to carry out leakage determination and improve the accuracy of leakage determination. As described above, leakage determination can be performed with high accuracy while speeding up leakage determination.

(2)高周波数の交流信号を用いて仮判定を行う場合、コモン容量Cgの影響で交流信号の波高値が低下することによって、漏電の可能性があると判定されることが想定される。この場合、第2周波数f2で本判定を実施した際に、コモン容量Cgの影響が抑えられて、交流信号の波高値が閾値以上に回復しうる。また、一時的に漏電状態が生じていた場合にも、その原因が解消された際に、交流信号の波高値が閾値以上に回復しうる。   (2) When a temporary determination is performed using a high-frequency AC signal, it is assumed that the peak value of the AC signal is lowered due to the influence of the common capacitance Cg, so that it is determined that there is a possibility of electric leakage. In this case, when this determination is performed at the second frequency f2, the influence of the common capacitor Cg is suppressed, and the peak value of the AC signal can be recovered to a threshold value or more. In addition, even when a short circuit has occurred temporarily, the peak value of the AC signal can be restored to a threshold value or more when the cause is eliminated.

そこで、本判定の実施中に交流信号の波高値が閾値以上となり、漏電が無いと判定した場合には、本判定を終了して仮判定を実施する状態に戻すこととした。この場合、漏電が生じていない状況下での漏電判定の時間の短縮化を図ることができる。   Therefore, when the peak value of the AC signal is equal to or greater than the threshold value during execution of the main determination and it is determined that there is no leakage, the main determination is terminated and the state is returned to the state in which the temporary determination is performed. In this case, it is possible to shorten the time for determining leakage in a situation where leakage does not occur.

(3)コモン容量Cgの影響で交流信号の波高値が低下した場合には、本判定で交流信号の周波数fが第2周波数f2に下げられることにより、コモン容量Cgの影響が抑えられて、交流信号の波高値が閾値以上に回復しうる。この場合、交流信号の波高値が閾値以上に回復した際の周波数fで仮判定が実施されれば、コモン容量Cgの影響による波高値の低下を回避した状態で、仮判定を行うことができる。   (3) When the peak value of the AC signal decreases due to the influence of the common capacitor Cg, the influence of the common capacitor Cg is suppressed by lowering the frequency f of the AC signal to the second frequency f2 in this determination. The peak value of the AC signal can recover to a threshold value or more. In this case, if the provisional determination is performed at the frequency f when the peak value of the AC signal is restored to the threshold value or more, the provisional determination can be performed in a state where the decrease of the peak value due to the influence of the common capacitance Cg is avoided. .

そこで、本判定で漏電が無いと判定し、仮判定の状態の戻す場合、本判定を終了した際の交流信号の周波数fを第1周波数f1として更新した状態で仮判定を行うこととした。この場合、コモン容量Cgの影響を抑えつつ、仮判定の実施により漏電判定に係る時間を短縮できる。   Therefore, when it is determined that there is no electric leakage in this determination and the state of the temporary determination is returned, the temporary determination is performed in a state where the frequency f of the AC signal when the determination is finished is updated as the first frequency f1. In this case, it is possible to reduce the time required for the leakage determination by performing the temporary determination while suppressing the influence of the common capacitance Cg.

(4)本判定において、第1周波数f1を段階的に低下させて第2周波数f2を設定するようにしたため、本判定で漏電が無いと判定された後、仮判定で使用する更新後の第1周波数f1をできるだけ高めに設定することができる。   (4) In this determination, since the first frequency f1 is lowered stepwise and the second frequency f2 is set, after it is determined in this determination that there is no leakage, the updated second used in the temporary determination One frequency f1 can be set as high as possible.

(5)仮判定と本判定とで交流信号の周波数fを変化させることを利用して、仮判定の際に取得した第1波高値と、本判定の際に取得した第2波高値との差からコモン容量Cgの推定値を算出する。そして、本判定の際に、コモン容量Cgの推定値を用いて第1波高値又は第2波高値を補正し、補正後の波高値を用いて漏電判定を行うようにしたため、本判定における漏電判定の精度をより高めることができる。   (5) Using the change of the frequency f of the AC signal between the temporary determination and the final determination, the first peak value acquired at the temporary determination and the second peak value acquired at the final determination. An estimated value of the common capacity Cg is calculated from the difference. In this determination, the first peak value or the second peak value is corrected using the estimated value of the common capacitance Cg, and the leakage determination is performed using the corrected peak value. The accuracy of determination can be further increased.

本発明は上記に記載の実施形態に限定されず次のように実施してもよい。なお以下の説明において上記と同様の構成には同じ図番号を付し詳細な説明は省略する。   The present invention is not limited to the embodiment described above, and may be implemented as follows. In the following description, the same components as those described above are denoted by the same reference numerals, and detailed description thereof is omitted.

・上記の図3の処理において、S12で本判定フラグがオンであると判定された場合には、下限周波数faを下限値として、第2周波数f2を徐々に低下させている。これ以外にも、仮判定の場合と本判定の場合の交流信号の周波数fを、n段階で切り替えてもよい。例えば、仮判定の際の交流信号の第1周波数f1と、本判定の交流信号の第2周波数f2とを2段階で切り替えてもよい。   In the processing of FIG. 3 described above, when it is determined in S12 that the main determination flag is ON, the second frequency f2 is gradually decreased with the lower limit frequency fa as the lower limit value. In addition to this, the frequency f of the AC signal in the provisional determination and the main determination may be switched in n stages. For example, the first frequency f1 of the AC signal at the time of provisional determination and the second frequency f2 of the AC signal at the final determination may be switched in two steps.

・上記の図3の処理において、本判定の実施中に、交流信号の波高値が閾値Th以上に回復して仮判定の状態に戻す場合には、漏電判定の閾値Thを高めに設定してもよい。この場合、漏電状態からの復帰状態であるか否かをより正しく判定することができる。   In the process of FIG. 3 described above, when the peak value of the AC signal is restored to the threshold value Th and returned to the temporary determination state during the main determination, the threshold value Th for the electric leakage determination is set higher. Also good. In this case, it is possible to more correctly determine whether or not the state is a return state from the leakage state.

・上記の図3の処理では、本判定の実施中に、交流信号の波高値が閾値Th以上に回復して仮判定の状態の戻す場合には、その後の仮判定において、本判定からの切替時点の周波数fで第1周波数f1を更新し、その更新後の第1周波数f1で仮判定を行うとした。これ以外にも、本判定から仮判定に切り替える場合、元の第1周波数f1に戻してもよい。   In the process of FIG. 3 described above, when the peak value of the AC signal recovers to the threshold value Th and returns to the tentative determination state during the main determination, switching from the main determination is performed in the subsequent tentative determination. The first frequency f1 is updated with the current frequency f, and the provisional determination is performed with the updated first frequency f1. In addition to this, when switching from the main determination to the provisional determination, the original first frequency f1 may be restored.

・上記の図3の処理において、S22では、仮判定で取得した交流信号の波高値と、本判定で取得した交流信号の波高値との差ΔVを用いて、コモン容量Cgの推定値を算出している。これ以外にも、本判定において、異なる周波数fで取得した交流信号の波高値の差ΔVを用いて、コモン容量Cgの推定値を算出してもよい。   In the processing of FIG. 3 above, in S22, the estimated value of the common capacitance Cg is calculated using the difference ΔV between the peak value of the AC signal acquired in the temporary determination and the peak value of the AC signal acquired in the main determination. doing. In addition to this, in this determination, the estimated value of the common capacitance Cg may be calculated using the difference ΔV in the peak values of the AC signals acquired at different frequencies f.

20…漏電判定装置、24…発振器、26…抵抗器、50…マイコン、54…周波数設定部、100…高電圧回路。   DESCRIPTION OF SYMBOLS 20 ... Leakage determination apparatus, 24 ... Oscillator, 26 ... Resistor, 50 ... Microcomputer, 54 ... Frequency setting part, 100 ... High voltage circuit.

Claims (5)

高電圧回路(100)と車体との漏電の有無を判定する漏電判定装置(20)であって、
前記高電圧回路に対して抵抗器(26)を介して交流信号を出力する交流信号出力手段(24)と、
前記交流信号出力手段により前記交流信号が出力された状態で、前記抵抗器と前記高電圧回路の絶縁抵抗成分とで分圧された前記交流信号の波高値を取得する波高値取得手段(50a)と、
前記交流信号の周波数を設定する周波数設定手段(54)と、
前記波高値が閾値未満であるか否かに基づいて、漏電の有無を判定する漏電判定手段(50b)と、を備え、
前記周波数設定手段は、前記交流信号の周波数を、第1周波数とそれよりも低周波数の第2周波数とで切り替え可能であり、
前記漏電判定手段は、
前記周波数設定手段で前記交流信号の周波数を前記第1周波数に設定した状態で、前記波高値が前記閾値未満であるか否かの第1判定を実施し、
前記第1判定で前記波高値が前記閾値未満であると判定した場合に、前記交流信号の周波数を前記第2周波数に設定した状態で、前記波高値が前記閾値未満であるか否かの第2判定を実施し、
前記第2判定で前記波高値が前記閾値未満であると判定した場合に、前記漏電が有ると判定し、前記第2判定で前記波高値が前記閾値以上であると判定した場合に、前記漏電が無いと判定することを特徴とする漏電判定装置。
An electric leakage determination device (20) for determining the presence or absence of electric leakage between the high voltage circuit (100) and the vehicle body,
AC signal output means (24) for outputting an AC signal to the high voltage circuit via a resistor (26);
A peak value acquisition means (50a) for acquiring a peak value of the AC signal divided by the resistor and an insulation resistance component of the high voltage circuit in a state where the AC signal is output by the AC signal output means. When,
Frequency setting means (54) for setting the frequency of the AC signal;
A leakage determining means (50b) for determining whether or not there is a leakage based on whether or not the peak value is less than a threshold value,
The frequency setting means can switch the frequency of the AC signal between a first frequency and a second frequency lower than the first frequency,
The leakage determination means includes
In a state where the frequency of the AC signal is set to the first frequency by the frequency setting means, a first determination is made as to whether the peak value is less than the threshold value,
When it is determined in the first determination that the peak value is less than the threshold value, whether or not the peak value is less than the threshold value in a state where the frequency of the AC signal is set to the second frequency. 2 Make a decision,
When it is determined in the second determination that the peak value is less than the threshold value, it is determined that there is a leakage, and in the second determination, it is determined that the peak value is greater than or equal to the threshold value. It is determined that there is no electric leakage.
前記漏電判定手段は、前記第2判定において前記波高値が前記閾値以上となり、漏電が無いと判定された場合に、前記第2判定を終了し、前記第1判定の状態に戻す請求項1に記載の漏電判定装置。   The said leakage determination means ends said 2nd determination, and returns to the state of said 1st determination, when the said peak value becomes more than the said threshold value in the said 2nd determination, and it determines with there being no leakage. The leakage determination device described. 前記周波数設定手段は、前記第2判定を実施する際に、前記第2周波数を、前記第1周波数から所定の下限値までの範囲で段階的に低下させ、
前記漏電判定手段は、前記第2判定として、前記第2周波数としての各周波数で前記波高値が前記閾値未満であるかの判定を実施する請求項1又は2に記載の漏電判定装置。
The frequency setting means, when performing the second determination, gradually reduces the second frequency in a range from the first frequency to a predetermined lower limit,
3. The leakage determination device according to claim 1, wherein the leakage determination unit determines whether the peak value is less than the threshold at each frequency as the second frequency as the second determination. 4.
前記漏電判定手段は、前記第2判定の実施に際し、前記第2周波数を前記下限値まで低下させるよりも前に漏電が無いと判定された場合に、前記第2判定を終了し、前記第1判定の状態に戻すものであり、
前記周波数設定手段は、前記第2判定において漏電が無いと判定された時の前記第2周波数を、前記第1周波数とする請求項3に記載の漏電判定装置。
The leakage determination means ends the second determination when it is determined that there is no leakage before the second frequency is lowered to the lower limit value when the second determination is performed. To return to the judgment state,
The leakage determination apparatus according to claim 3, wherein the frequency setting means sets the second frequency when it is determined that there is no leakage in the second determination as the first frequency.
前記漏電判定手段は、前記交流信号の周波数を前記第1周波数とした状態で取得した第1波高値と、前記交流信号の周波数を前記第2周波数とした状態で取得した第2波高値との差分からコモン容量の推定値を算出するコモン容量算出手段(55)と、
前記コモン容量の推定値を用いて前記第2波高値を補正する波高値補正手段(50b)と、を備え、
前記漏電判定手段は、前記波高値補正手段による補正後の波高値を用いて前記第2判定を実施する請求項1乃至4のいずれか1項に記載の漏電判定装置。
The leakage determination means includes a first peak value acquired in a state where the frequency of the AC signal is the first frequency, and a second peak value acquired in a state where the frequency of the AC signal is the second frequency. Common capacity calculation means (55) for calculating an estimated value of the common capacity from the difference;
Crest value correcting means (50b) for correcting the second crest value using the estimated value of the common capacity,
5. The leakage determination device according to claim 1, wherein the leakage determination unit performs the second determination using the peak value corrected by the peak value correction unit.
JP2015028825A 2015-02-17 2015-02-17 Leakage determination device Active JP6476972B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015028825A JP6476972B2 (en) 2015-02-17 2015-02-17 Leakage determination device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015028825A JP6476972B2 (en) 2015-02-17 2015-02-17 Leakage determination device

Publications (2)

Publication Number Publication Date
JP2016152688A JP2016152688A (en) 2016-08-22
JP6476972B2 true JP6476972B2 (en) 2019-03-06

Family

ID=56697003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015028825A Active JP6476972B2 (en) 2015-02-17 2015-02-17 Leakage determination device

Country Status (1)

Country Link
JP (1) JP6476972B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111060842B (en) 2018-10-16 2024-06-21 株式会社电装 Leakage judging system
JP7294022B2 (en) * 2019-09-19 2023-06-20 株式会社デンソー Earth leakage detection circuit

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3986823B2 (en) * 2001-12-27 2007-10-03 パナソニック・イーブイ・エナジー株式会社 Earth leakage detector
JP2006322792A (en) * 2005-05-18 2006-11-30 Toyota Motor Corp Apparatus and method for detecting electric leakage
JP4830376B2 (en) * 2005-07-11 2011-12-07 日産自動車株式会社 Ground fault detection device for vehicles
US8847605B2 (en) * 2009-06-12 2014-09-30 Nissan Motor Co., Ltd. Connection diagnostic apparatus for ground fault detector
JP2014155329A (en) * 2013-02-08 2014-08-25 Toyota Motor Corp Insulation resistance deterioration detection device, vehicle equipped with the same, and insulation resistance deterioration detection method

Also Published As

Publication number Publication date
JP2016152688A (en) 2016-08-22

Similar Documents

Publication Publication Date Title
JP5727851B2 (en) Method and apparatus for detecting insulation state of ungrounded power supply
JP6464752B2 (en) Leakage determination device
CN104076184B (en) Voltage check device
JP2017200306A5 (en)
JP6986004B2 (en) Insulation resistance detector
CN111060842B (en) Leakage judging system
JP7243494B2 (en) Insulation resistance detector
US11921138B2 (en) Insulation resistance detection device
JP6229584B2 (en) Ground fault judgment device
JP6476972B2 (en) Leakage determination device
JP6394428B2 (en) Leakage determination device
JP6474188B2 (en) Switch failure determination device, power storage device, and switch failure determination method
JP5871160B2 (en) Earth leakage detector
JP7169935B2 (en) Leakage determination device
JP6229585B2 (en) Ground fault judgment device
JP6145311B2 (en) Battery state detection device
TWI707519B (en) Constant current charging device
JP6438729B2 (en) Insulation performance diagnostic device and method of setting capacitance value of pseudo capacitor
JP6229586B2 (en) Ground fault judgment device
JP5487183B2 (en) Charge capacity parameter estimation device for power storage device
JP7243543B2 (en) Leakage determination device
JP6428448B2 (en) Insulation resistance drop detector
JPWO2019130717A1 (en) Leakage detection circuit
JP2019184484A (en) Estimation device and method for estimation
CN111060812B (en) Detection circuit and detection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190121

R151 Written notification of patent or utility model registration

Ref document number: 6476972

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250