JP6474699B2 - Radio environment estimation method, radio environment estimation apparatus, and radio environment estimation program - Google Patents

Radio environment estimation method, radio environment estimation apparatus, and radio environment estimation program Download PDF

Info

Publication number
JP6474699B2
JP6474699B2 JP2015159173A JP2015159173A JP6474699B2 JP 6474699 B2 JP6474699 B2 JP 6474699B2 JP 2015159173 A JP2015159173 A JP 2015159173A JP 2015159173 A JP2015159173 A JP 2015159173A JP 6474699 B2 JP6474699 B2 JP 6474699B2
Authority
JP
Japan
Prior art keywords
radio wave
interference
information
interference radio
demodulated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015159173A
Other languages
Japanese (ja)
Other versions
JP2017038284A (en
Inventor
裕文 笹木
裕文 笹木
山田 貴之
貴之 山田
淳 増野
淳 増野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2015159173A priority Critical patent/JP6474699B2/en
Publication of JP2017038284A publication Critical patent/JP2017038284A/en
Application granted granted Critical
Publication of JP6474699B2 publication Critical patent/JP6474699B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Mobile Radio Communication Systems (AREA)

Description

本発明は、干渉電波が存在する無線環境において、干渉電波を発する各干渉源から到来する干渉電波の受信状態を示す干渉電波情報を推定する無線環境推定方法、無線環境推定装置および無線環境推定プログラムに関する。   The present invention relates to a radio environment estimation method, a radio environment estimation apparatus, and a radio environment estimation program for estimating interference radio wave information indicating a reception state of an interference radio wave arriving from each interference source that emits the interference radio wave in a radio environment where the interference radio wave exists. About.

近年、無線通信サービスが多様化し、様々な無線通信方式を用いた送信局が増加している。ある一定のエリア内で、同一周波数帯の電波を利用する送信局が増加すると、ある送信局が無線通信を行う際に干渉が発生する確率が高まり、周波数利用効率が劣化する恐れがある。これは、いわゆる隠れ端末などにより干渉回避機能が正常に機能していない場合や、同一周波数帯の電波を利用する送信局がそれぞれ異なるプロトコルで運用されている場合などにさらに顕著となることが考えられる。また、例えばISM(Industry-Science-Medical) バンドで運用されるISM機器等、これらの送信局と同一周波数帯の電波を発する通信用途ではない電子機器がある場合も、干渉が発生する確率が高まり、周波数利用効率が劣化する恐れがある。   In recent years, wireless communication services have been diversified, and the number of transmitting stations using various wireless communication methods has increased. If the number of transmitting stations that use radio waves in the same frequency band increases within a certain area, the probability that interference will occur when a certain transmitting station performs radio communication may increase the frequency utilization efficiency. This may be more noticeable when the interference avoidance function is not functioning normally due to a so-called hidden terminal or when the transmitting stations using radio waves in the same frequency band are operated with different protocols. It is done. In addition, the probability of interference increases even when there are non-communication devices that emit radio waves in the same frequency band as these transmitting stations, such as ISM devices operating in the Industry-Science-Medical (ISM) band. The frequency utilization efficiency may be degraded.

このような同一周波数帯の電波を利用する近隣の送信局や電子機器(以下、干渉源という)が発する電波をすべて干渉電波とすると、この干渉電波が存在する無線環境では、無線通信システムに対して干渉電波を考慮した制御を行うことで周波数利用効率を向上する効果が期待できる。ただし、この制御を効率的に行うためには、各干渉源から到来する干渉電波の受信状態を示す干渉電波情報を高精度に推定する無線環境推定技術が必要である。   If all the radio waves emitted by nearby transmitting stations and electronic devices (hereinafter referred to as interference sources) that use radio waves in the same frequency band are interference radio waves, in a wireless environment where such interference radio waves exist, Therefore, the effect of improving the frequency utilization efficiency can be expected by performing control in consideration of interference radio waves. However, in order to perform this control efficiently, a radio environment estimation technique for accurately estimating the interference radio wave information indicating the reception state of the interference radio wave arriving from each interference source is required.

特許文献1には、停止制御等のアクセス制御可能な各送信局を一定期間停止し、停止期間中に受信した電波を停止制御等のアクセス制御不可能な干渉源から到来する干渉電波として観測することで、干渉源ごとの干渉電波情報を推定する無線環境推定技術が提案されている。   In Patent Document 1, each transmitting station capable of access control such as stop control is stopped for a certain period, and radio waves received during the stop period are observed as interference radio waves arriving from interference sources that cannot be controlled such as stop control. Thus, a wireless environment estimation technique for estimating interference radio wave information for each interference source has been proposed.

また、送信局のアクセス制御方式が符号分割多元接続(CDMA:Code Division Multiple Access)の場合、送信局が事前に拡散符号を用いて拡散処理を行うため、受信した電波から逆拡散処理により分離した干渉電波を観測することで、送信局の停止期間を設けずに干渉源ごとの干渉電波情報を推定する方法も提案されている。   In addition, when the access control method of the transmitting station is code division multiple access (CDMA), the transmitting station performs spreading processing using a spreading code in advance, so that it is separated from received radio waves by despreading processing. There has also been proposed a method of estimating interference radio wave information for each interference source by observing interference radio waves without providing a stop period of the transmitting station.

一方、非特許文献1には、受信する電波に含まれる全ての信号に対する復調機能を備えている無線LANアナライザを用い、復調できた信号から送信局と宛先のMACアドレスやシーケンス番号などのパケット情報を取得し、このパケット情報に基づいて復調できなかった信号を補間することで、停止期間を設けずに干渉源ごとの干渉電波情報を推定する方法が提案されている。   On the other hand, in Non-Patent Document 1, a wireless LAN analyzer having a demodulation function for all signals included in received radio waves is used, and packet information such as a transmission station and a destination MAC address and a sequence number is obtained from the demodulated signal. And interfering a signal that could not be demodulated based on this packet information to estimate interference radio wave information for each interference source without providing a stop period.

また、非特許文献2には、所定のアクセス制御方式で動作する複数の送信局と所定のアクセス制御方式と異なる方式で動作する干渉源とが含まれる電波環境において、復調不可電波のうち送信局から到来する干渉電波間の重畳を除いた復調不可電波を、干渉源からの干渉電波とみなして、干渉源から到来する干渉電波の発生頻度や時間占有率等の干渉電波情報を算出する方法が提案されている。   Further, Non-Patent Document 2 discloses that, in a radio wave environment including a plurality of transmission stations that operate in a predetermined access control scheme and an interference source that operates in a scheme different from the predetermined access control scheme, A method of calculating interference radio wave information such as the frequency of occurrence and time occupancy of interference radio waves arriving from the interference source, assuming that radio waves that cannot be demodulated excluding superposition between interference radio waves arriving from the interference source are interference radio waves from the interference source Proposed.

図7は、非特許文献1に記載の従来方法における無線環境推定手順の一例を示す。   FIG. 7 shows an example of a radio environment estimation procedure in the conventional method described in Non-Patent Document 1.

図7に示すように、従来の方法では、観測期間内に受信した電波を復調して取得したパケット情報を時系列に記録する(ステップS01)。次に、従来の方法では、取得したパケット情報に記載の送信局と宛先のセットごとに、受信できたパケットの占有時間から個別時間占有率を算出し、さらに送信局と宛先のセットごとにシーケンス番号と再送フラグを確認して、受信局に受信できたパケットと受信できなかったパケットの比であるパケット誤り率を算出する(ステップS02)。そして、従来の方法では、算出したパケット誤り率を用いて受信できなかったパケットの占有時間を算出し、個別占有時間を補完する(ステップS03)。   As shown in FIG. 7, in the conventional method, packet information obtained by demodulating radio waves received within an observation period is recorded in time series (step S01). Next, in the conventional method, for each set of transmitting station and destination described in the acquired packet information, an individual time occupancy is calculated from the occupied time of the received packet, and a sequence is set for each set of transmitting station and destination. The number and retransmission flag are confirmed, and a packet error rate, which is a ratio of packets that can be received by the receiving station and packets that cannot be received, is calculated (step S02). In the conventional method, the occupied time of the packet that could not be received is calculated using the calculated packet error rate, and the individual occupied time is complemented (step S03).

特開2013−115503号公報JP 2013-115503 A

福原忠行、「無線LANにおける無線占有率測定手法」、信学技報SR2009-46 (2009)Tadayuki Fukuhara, "Measurement Method of Wireless Occupancy in Wireless LAN", IEICE Technical Report SR2009-46 (2009) 笹木裕文、山田貴之、増野淳、杉山隆利、「周波数共用環境におけるシステム間干渉を考慮した状態遷移モデルに基づく電波環境認識技術の提案」、信学技報 SR2015-06 (2015)Hirofumi Kashiwagi, Takayuki Yamada, Satoshi Masuno, Takatoshi Sugiyama, "Proposal of Radio Environment Recognition Technology Based on State Transition Model Considering Intersystem Interference in Frequency Sharing Environment", IEICE Tech. SR2015-06 (2015)

特許文献1に記載の無線環境推定技術では、送信局の信号を一時停止して干渉電波を観測し、干渉源ごとの干渉電波情報を推定する必要があるため、信号を停止することによって無線通信システムの通信品質が劣化する場合がある。   In the wireless environment estimation technique described in Patent Document 1, it is necessary to temporarily stop a signal from a transmitting station, observe interference radio waves, and estimate interference radio wave information for each interference source. The communication quality of the system may deteriorate.

また、符号分割多元接続方式において逆拡散処理により干渉電波を分離する手法では、全ての送信局において符号化の事前処理が必要であり、符号化などの事前処理を行わない電子機器から到来する干渉電波については、その干渉電波情報を取得することができない。   In the method of separating interference radio waves by despreading in the code division multiple access method, all transmitting stations require pre-coding processing, and interference coming from electronic equipment that does not perform pre-processing such as coding. For radio waves, the interference radio wave information cannot be acquired.

一方、非特許文献1に記載の無線環境推定技術では、時間的に重畳していない全ての信号についてシーケンス番号等のパケット情報が取得できることが前提である。したがって、パケット情報を取得できない干渉電波の影響は考慮されていないため、受信局が対応していない無線規格または通信用途以外の干渉電波が存在し、パケット情報が取得できない場合は干渉源ごとの干渉電波情報を取得できない。   On the other hand, the wireless environment estimation technique described in Non-Patent Document 1 is based on the premise that packet information such as sequence numbers can be acquired for all signals that are not temporally superimposed. Therefore, the influence of interference radio waves that cannot acquire packet information is not considered.Therefore, if there is interference radio waves that are not supported by the receiving station and that are not used for wireless standards or communication purposes, and packet information cannot be acquired, interference for each interference source Unable to get radio wave information.

また、非特許文献2に記載の無線環境推定技術では、送信局から到来する1つの干渉電波に、他の干渉源から到来する複数の干渉電波が重畳したとしても1つの干渉電波の重畳とカウントしてしまう。このため、非特許文献2では、各干渉源から到来する干渉電波の発生頻度を低く見積もってしまい、時間占有率を多く見積もってしまう。   In addition, in the wireless environment estimation technology described in Non-Patent Document 2, even if a plurality of interference radio waves arriving from other interference sources are superimposed on one interference radio wave arriving from a transmission station, one interference radio wave is superimposed and counted. Resulting in. For this reason, in Non-Patent Document 2, the frequency of occurrence of interfering radio waves coming from each interference source is estimated to be low, and the time occupancy rate is estimated to be large.

本発明は、干渉電波が存在する無線環境において、各干渉源から到来する干渉電波の受信状態を示す干渉電波情報を従来と比べて正確に推定できる無線環境推定方法、無線環境推定装置および無線環境推定プログラムを提供することを目的とする。   The present invention relates to a wireless environment estimation method, a wireless environment estimation device, and a wireless environment that can accurately estimate interference radio wave information indicating a reception state of interference radio waves arriving from each interference source in a radio environment in which interference radio waves exist. The purpose is to provide an estimation program.

第1の発明は、互いに同じ周波数帯域の干渉電波を発する1以上の送信局および1以上の干渉源の各々から受信した干渉電波の受信電力を測定し、所定の閾値以上の受信電力の干渉電波を復調して得られるフレーム時間を復調成功フレーム情報として取得するとともに、所定の閾値以上の受信電力で復調できなかった干渉電波である復調不可電波のフレーム時間を復調不可電波情報として取得し、取得した復調成功フレーム情報および復調不可電波情報を干渉電波時系列情報として記録する第1のステップと、干渉電波時系列情報に対して所定の統計処理期間にわたって統計処理を行った干渉電波統計情報を算出する第2のステップと、干渉源からの干渉電波の到来確率到着過程に基づいて定義され、かつ送信局におけるアクセス制御方式の動作を表す状態遷移モデルと、状態遷移モデルが復調不可電波を受信する状態が、干渉源からの干渉電波のみが受信される場合、送信局からの干渉電波に干渉源からの干渉電波が重畳する場合、および2つの送信局からの干渉電波が重畳して受信される場合のいずれであるかを示すパターン情報と、干渉電波統計情報とに基づいて、干渉電波統計情報と干渉電波の受信状態を示す干渉電波情報との関係式を解くことにより、送信局および干渉源ごとの干渉電波情報を算出する第3のステップとを有する。 The first invention measures the received power of interference radio waves received from each of one or more transmission stations and one or more interference sources that emit interference radio waves in the same frequency band, and the interference radio waves of reception power equal to or greater than a predetermined threshold value. The frame time obtained by demodulating the signal is acquired as successful demodulation frame information, and the frame time of the radio wave that cannot be demodulated that cannot be demodulated with the received power exceeding the predetermined threshold is acquired and acquired as the radio wave information that cannot be demodulated. First step of recording the successfully demodulated frame information and non-demodulated radio wave information as interference radio wave time series information, and calculating interference radio wave statistical information obtained by performing statistical processing on the interference radio wave time series information over a predetermined statistical processing period second steps, the arrival of the interference wave from the interference source is defined based on the probability arrival process, and the access control method in the transmitting station And a state transition model representing the operation state of the state transition model receives the demodulation impossible radio waves, if only interference waves from the interference source are received, the interference wave from the interference source to the interference wave from the transmitting station is superimposed The interference radio wave statistics information and the interference radio wave reception state based on the pattern information indicating whether the interference radio waves from the two transmitting stations are received in a superimposed manner and the interference radio wave statistical information. A third step of calculating interference radio wave information for each transmission station and interference source by solving a relational expression with the interference radio wave information shown.

第2の発明は、互いに同じ周波数帯域の干渉電波を発する1以上の送信局および1以上の干渉源の各々から干渉電波を受信する干渉電波受信部と、受信した干渉電波の受信電力を測定し、所定の閾値以上の受信電力の干渉電波を復調して得られるフレーム時間を復調成功フレーム情報として取得するとともに、所定の閾値以上の受信電力で復調できなかった干渉電波である復調不可電波のフレーム時間を復調不可電波情報として取得し、取得した復調成功フレーム情報および復調不可電波情報を干渉電波時系列情報として記録する干渉電波処理部と、干渉電波時系列情報に対して所定の統計処理期間にわたって統計処理を行った干渉電波統計情報を算出する干渉電波統計処理部と、干渉源からの干渉電波の到来確率到着過程に基づいて定義され、かつ送信局におけるアクセス制御方式の動作を表す状態遷移モデルと、状態遷移モデルが復調不可電波を受信する状態が、干渉源からの干渉電波のみが受信される場合、送信局からの干渉電波に干渉源からの干渉電波が重畳する場合、および2つの送信局からの干渉電波が重畳して受信される場合のいずれであるかを示すパターン情報と、干渉電波統計情報とに基づいて、干渉電波統計情報と干渉電波の受信状態を示す干渉電波情報との関係式を解くことにより、送信局および干渉源ごとの干渉電波情報を算出する干渉電波情報算出部とを備える。 According to a second aspect of the present invention, an interference radio wave receiving unit that receives interference radio waves from each of one or more transmission stations and one or more interference sources that emit interference radio waves in the same frequency band, and a received power of the received interference radio waves are measured. The frame time obtained by demodulating the interference radio wave having a reception power equal to or higher than a predetermined threshold is acquired as demodulation successful frame information, and the frame of the radio wave that cannot be demodulated that cannot be demodulated with the reception power higher than the predetermined threshold Interfering radio wave processing unit that acquires time as non-demodulated radio wave information and records the acquired successful demodulation frame information and non-demodulable radio wave information as interference radio time series information, and over a predetermined statistical processing period for the interference radio time series information definition and interfering radio wave statistical processing unit for calculating an interference wave statistics were statistically processed, the arrival of the interference wave from the interference source based on the probability arrival process Is, and if the state transition model representing the operation of the access control method in the transmitting station, the state where the state transition model receives the demodulation impossible radio waves, only the interference wave from the interference source are received, the interference wave from the transmitting station when the interference wave from the interference source is superimposed, the pattern information indicating whether the case of and interference waves from the two transmitting stations are received by superimposing, on the basis of the interference radio wave statistics, interference An interference radio wave information calculation unit that calculates interference radio wave information for each transmission station and interference source by solving a relational expression between the radio wave statistical information and the interference radio wave information indicating the reception state of the interference radio wave is provided.

第3の発明の無線環境推定プログラムは、第1の発明の無線環境推定方法の各ステップをコンピュータに実行させる。   A wireless environment estimation program according to a third aspect causes a computer to execute each step of the wireless environment estimation method according to the first aspect.

本発明は、干渉電波が存在する無線環境において、各干渉源から到来する干渉電波の受信状態を示す干渉電波情報を従来と比べて正確に推定できる。   The present invention can accurately estimate interference radio wave information indicating a reception state of interference radio waves arriving from each interference source in a wireless environment in which interference radio waves exist, as compared with the related art.

無線環境推定装置の一実施形態を示す図である。It is a figure which shows one Embodiment of a radio | wireless environment estimation apparatus. 図1に示した無線環境推定装置における処理手順の一例を示す図である。It is a figure which shows an example of the process sequence in the radio | wireless environment estimation apparatus shown in FIG. IEEE802.11g規格対応の無線LANのアクセス制御方式で動作する送信局の状態遷移モデルの一例を示す図である。It is a figure which shows an example of the state transition model of the transmission station which operate | moves with the wireless LAN access control system corresponding to IEEE802.11g standard. 図3に示した状態遷移モデルが復調不可電波を受信する状態の一例を示す図である。It is a figure which shows an example of the state in which the state transition model shown in FIG. 3 receives a radio wave which cannot be demodulated. 無線環境推定装置の別の実施形態を示す図である。It is a figure which shows another embodiment of a radio | wireless environment estimation apparatus. 図5に示した無線環境推定装置における処理手順の一例を示す図である。It is a figure which shows an example of the process sequence in the radio | wireless environment estimation apparatus shown in FIG. 非特許文献1に記載の時間占有率を推定する処理手順の一例を示す図である。It is a figure which shows an example of the process sequence which estimates the time occupation rate of a nonpatent literature 1.

以下、図面を用いて実施形態について説明する。   Hereinafter, embodiments will be described with reference to the drawings.

図1は、無線環境推定装置の一実施形態を示す。   FIG. 1 shows an embodiment of a wireless environment estimation device.

図1に示した無線環境推定装置100は、複数の無線通信システムによる周波数共用環境、同一周波数帯の電波を利用する複数の送信局が高密度に存在する無線環境、ISM機器等の無線通信用途以外の電波を発する電子機器が存在する環境において設置され、干渉源ごとに干渉電波に関する干渉電波情報を高精度に推定する。   A radio environment estimation apparatus 100 shown in FIG. 1 is a frequency sharing environment using a plurality of radio communication systems, a radio environment where a plurality of transmitting stations using radio waves in the same frequency band exist at a high density, and radio communication applications such as ISM devices. It is installed in an environment where there are electronic devices that emit radio waves other than those, and interference radio wave information related to interference radio waves is estimated with high accuracy for each interference source.

無線環境推定装置100は、干渉電波受信部20と、干渉電波処理部30と、干渉電波統計処理部40と、干渉電波情報算出部50とを有する。なお、これらの要素の全部は、無線通信機能を有する送信局装置に備えられてもよく、その一部が送信局を制御する中央制御局装置に備えられてもよい。すなわち、無線環境推定装置100は、専用のハードウェアにより実現されてもよい。また、無線環境推定装置100は、無線受信部が接続されたコンピュータ装置がメモリ等の記憶装置に記憶された無線環境推定プログラムを実行することにより実現されてもよい。この場合、無線環境推定プログラムは、例えば、CD(Compact Disc)あるいはDVD(Digital Versatile Disc)等の光ディスクに記録して頒布することができる。さらに、無線環境推定装置100は、無線環境推定装置100に含まれるネットワークインタフェースを介して、ネットワークを通じて無線環境推定プログラムをダウンロードし、記憶装置に格納してもよい。   The wireless environment estimation device 100 includes an interference radio wave receiving unit 20, an interference radio wave processing unit 30, an interference radio wave statistical processing unit 40, and an interference radio wave information calculation unit 50. All of these elements may be provided in a transmission station apparatus having a wireless communication function, or a part thereof may be provided in a central control station apparatus that controls the transmission station. That is, the radio environment estimation device 100 may be realized by dedicated hardware. The wireless environment estimation device 100 may be realized by a computer device connected to the wireless reception unit executing a wireless environment estimation program stored in a storage device such as a memory. In this case, the wireless environment estimation program can be recorded and distributed on an optical disc such as a CD (Compact Disc) or a DVD (Digital Versatile Disc). Further, the wireless environment estimation device 100 may download a wireless environment estimation program through a network via a network interface included in the wireless environment estimation device 100 and store it in a storage device.

干渉電波受信部20は、干渉電波を受信し、受信した干渉電波統計を干渉電波処理部30に出力する。   The interference radio wave receiving unit 20 receives the interference radio wave and outputs the received interference radio wave statistics to the interference radio wave processing unit 30.

干渉電波処理部30は、受信した干渉電波の受信電力を測定し、所定の閾値以上の受信電力の干渉電波を復調して得られる干渉電波の送信元である送信局と、その送信局から到来するフレームの有無を表す時系列情報を復調成功フレーム情報として取得する。また、干渉電波処理部30は、所定の閾値以上の受信電力で復調できなかった干渉電波(以下、復調不可電波とも称される)の有無を表す時系列情報を復調不可電波情報として取得する。干渉電波処理部30は、取得した復調成功フレーム情報および復調不可電波情報を干渉電波時系列情報として干渉電波統計処理部40に出力する。なお、干渉電波処理部30は、取得した干渉電波時系列情報を、無線環境推定装置100に含まれるメモリ等の記憶装置に記憶してもよい。   The interference radio wave processing unit 30 measures the received power of the received interference radio wave, and transmits from the transmission station, which is the transmission source of the interference radio wave obtained by demodulating the interference radio wave having a reception power equal to or higher than a predetermined threshold, from the transmission station. Time series information indicating the presence or absence of a frame to be acquired is acquired as successful demodulation frame information. In addition, the interference radio wave processing unit 30 acquires time-series information indicating the presence / absence of an interference radio wave that could not be demodulated with a received power equal to or greater than a predetermined threshold (hereinafter also referred to as a non-demodulable radio wave) as non-demodulable radio wave information. The interference radio wave processing unit 30 outputs the acquired successful demodulation frame information and non-demodulable radio wave information to the interference radio wave statistical processing unit 40 as interference radio wave time series information. The interference radio wave processing unit 30 may store the acquired interference radio wave time series information in a storage device such as a memory included in the wireless environment estimation device 100.

干渉電波統計処理部40は、受信した干渉電波時系列情報に対して所定の統計処理期間にわたって統計処理を行った干渉電波統計情報を算出する。干渉電波統計処理部40の動作については、図2で説明する。   The interference radio wave statistical processing unit 40 calculates interference radio wave statistical information obtained by performing statistical processing on the received interference radio wave time series information over a predetermined statistical processing period. The operation of the interference radio wave statistics processing unit 40 will be described with reference to FIG.

干渉電波情報算出部50は、一部または全ての干渉電波の到来を確率到着過程に基づいて定義される少なくとも1つの干渉源におけるアクセス制御方式の動作を表す状態遷移モデルと、状態遷移モデルが復調不可電波を受信する状態を示すパターン情報と、干渉電波統計情報とを用い、各干渉源から到来する干渉電波の受信状態を示す干渉電波情報を算出する。干渉電波情報算出部50の動作およびパターン情報については、図2から図4で説明する。   The interference radio wave information calculation unit 50 demodulates the state transition model representing the operation of the access control method in at least one interference source that is defined based on the probability arrival process, and the state transition model demodulates the arrival of some or all interference radio waves. Interference radio wave information indicating the reception state of interference radio waves arriving from each interference source is calculated using pattern information indicating the state of reception of unacceptable radio waves and interference radio wave statistical information. The operation and pattern information of the interference radio wave information calculation unit 50 will be described with reference to FIGS.

図2は、図1に示した無線環境推定装置100における処理手順の一例を示す。図2では、例えば、無線環境推定装置100は、IEEE802.11g等の規格に基づいて、互いに同一の周波数帯域の電波を送受信する複数の無線LAN機器(すなわち送信局)と、無線LAN機器と異なるアクセス制御方式で、同じ周波数帯域の無線通信を行う1つの送信局もしくは無線通信用途以外に電波を発する1つの電子機器が存在する無線環境において、干渉源ごとの干渉電波情報を算出する。   FIG. 2 shows an example of a processing procedure in the radio environment estimation apparatus 100 shown in FIG. In FIG. 2, for example, the wireless environment estimation device 100 is different from a plurality of wireless LAN devices (that is, transmitting stations) that transmit and receive radio waves in the same frequency band based on standards such as IEEE 802.11g, and wireless LAN devices. In an access control method, interference radio wave information for each interference source is calculated in a wireless environment where there is one transmission station that performs radio communication in the same frequency band or one electronic device that emits radio waves for purposes other than radio communication applications.

ステップS10では、干渉電波処理部30は、干渉電波受信部20で干渉電波が受信された場合、受信した干渉電波の受信電力を測定し、復調処理を行う。例えば、干渉電波処理部30は、干渉電波の復調に成功し干渉電波の受信電力が所定の閾値以上の場合、復調した干渉電波の送信元である送信局と、その送信局から到来するフレームの有無を表す時系列情報とを示す復調成功フレーム情報を取得する。一方、干渉電波処理部30は、干渉電波の復調に失敗しかつ受信電力が所定の閾値以上の場合、復調不可電波の有無を表す時系列情報を示す復調不可電波情報を取得する。干渉電波処理部30は、受信した干渉電波における受信電力情報、復調成功フレーム情報および復調不可電波情報を含んだ干渉電波時系列情報を干渉電波統計処理部40に出力する。   In step S10, when the interference radio wave receiving unit 20 receives the interference radio wave, the interference radio wave processing unit 30 measures the received power of the received interference radio wave and performs demodulation processing. For example, when the interference radio wave processing unit 30 succeeds in demodulating the interference radio wave and the reception power of the interference radio wave is equal to or higher than a predetermined threshold, the interference radio wave processing unit 30 transmits the demodulated interference radio wave transmission source and the frame arriving from the transmission station. Successful demodulation frame information indicating presence / absence time-series information is acquired. On the other hand, when the interference radio wave processing unit 30 fails to demodulate the interference radio wave and the received power is equal to or greater than a predetermined threshold, the interference radio wave processing unit 30 acquires radio wave information that cannot be demodulated indicating time-series information indicating the presence or absence of radio waves that cannot be demodulated. The interference radio wave processing unit 30 outputs the interference radio wave time series information including the received power information, the demodulation successful frame information, and the undemodulated radio wave information in the received interference radio wave to the interference radio wave statistical processing unit 40.

なお、干渉電波処理部30は、通信を行う上で必要不可欠な待ち時間や応答時間を復調成功フレームの時間として補完してもよい。また、干渉電波処理部30は、2つの復調不可電波の間に一定時間未満の空き時間が存在する場合、当該空き時間を復調不可電波が存在する時間として補完してもよい。   Note that the interference radio wave processing unit 30 may supplement the waiting time and response time that are indispensable for communication as the time of the successful demodulation frame. In addition, when there is an idle time of less than a certain time between two radio waves that cannot be demodulated, the interference radio wave processing unit 30 may supplement the idle time as a time in which radio waves that cannot be demodulated exist.

ステップS20では、干渉電波統計処理部40は、ステップS10で取得された干渉電波時系列情報(受信電力情報、復調成功フレーム情報、復調不可電波情報)を用いて、統計処理期間Tmのうち送信局ごとに復調に成功したフレーム時間を合計した個別復調成功時間Tsuc、送信局ごとに復調成功回数をカウントした個別復調成功回数Nsuc、送信局ごとの平均フレーム時間(平均復調成功時間)Tc、復調不可電波の受信時間を合計した復調不可電波受信時間Tint、連続して復調不可電波を受信した回数をカウントした復調不可電波受信回数Nint、および受信電力が所定の閾値未満であった時間を合計した空き時間Tfを、干渉電波統計情報として算出する。 In step S20, the interference wave statistical processing section 40, the obtained interference wave time series information in step S10 (reception power information, demodulation successful frame information, demodulating not radio wave information) is used to send out the statistical processing period T m Individual demodulation success time T suc totaling frame times successfully demodulated for each station, individual demodulation success number N suc counting the number of successful demodulations for each transmission station, average frame time (average demodulation success time) Tc for each transmission station The non-demodulable radio wave reception time T int that is the sum of the reception times of radio waves that cannot be demodulated, the non-demodulable radio wave reception count N int that counts the number of times radio waves that cannot be demodulated continuously, and the received power are less than a predetermined threshold The free time T f obtained by adding up the times is calculated as interference radio wave statistical information.

また、干渉電波統計処理部40は、上述したように通信を行う上で必要不可欠な待ち時間や応答時間を復調成功フレームの時間として補完した場合や、2つの復調不可電波の間の一定時間未満の空き時間を復調不可電波が存在する時間として補完した場合、補完した時間を空き時間Tfから除外するのが好ましい。 Further, the interference radio wave statistical processing unit 40 supplements a waiting time and a response time which are indispensable for communication as described above as the time of a successful demodulation frame, or less than a certain time between two radio waves that cannot be demodulated. Is supplemented as a time in which radio waves that cannot be demodulated exist, it is preferable to exclude the complemented time from the free time T f .

ステップS30では、干渉電波情報算出部50は、ステップS20で算出された干渉電波統計情報を用い、特定のアクセス制御方式の動作を表した状態遷移モデルの各状態が継続する時間の平均値である平均状態継続時間Esを、式(1)を用いて算出する。   In step S30, the interference radio wave information calculation unit 50 uses the interference radio wave statistical information calculated in step S20, and is an average value of the duration of each state of the state transition model representing the operation of a specific access control method. The average state duration Es is calculated using Equation (1).

Figure 0006474699
Figure 0006474699

ここで、(NsucjはM台(M∈N,N:自然数)の送信局のうち、j番目の送信局(j∈K,K=1,2,3,…,M)の個別復調成功回数を表し、Tsはアクセス制御方式に固有の空き状態の継続時間を表す。 Here, (N suc ) j is an individual number of j-th transmitting stations (jεK, K = 1, 2, 3,..., M) among M transmitting stations (MεN, N: natural number). This represents the number of successful demodulations, and T s represents the duration of the idle state specific to the access control method.

ステップS40では、干渉電波情報算出部50は、ステップS20で算出された干渉電波統計情報と、ステップS30で求めた平均状態継続時間Esと、特定のアクセス制御方式で運用される送信局(すなわち無線LAN機器)の状態遷移モデルとを用い、状態遷移モデルの遷移確率を表す状態遷移パラメータを算出する。   In step S40, the interference radio wave information calculation unit 50 calculates the interference radio wave statistical information calculated in step S20, the average state duration Es obtained in step S30, and a transmission station (that is, a radio station) operated by a specific access control method. The state transition parameter representing the transition probability of the state transition model is calculated using the state transition model of the LAN device.

図3は、IEEE802.11g規格対応の無線LANのアクセス制御方式で動作する送信局i(i∈K,K=1,2,3,…,M)の状態遷移モデルの一例を示す。図3に示した状態遷移パラメータは次の通りである。なお、送信局iの状態遷移パラメータを示す場合は、各記号に添え字iを付して示す。
p:他の送信局が信号を送信する確率(状態遷移パラメータ)
q:1回の状態の継続中に、送信するフレームが新たに発生する確率(状態遷移パラメータ)
r:フレーム送信が成功した際、および再送回数が最大値に達してフレームを破棄した際に、次に送信するフレームを保有している確率(状態遷移パラメータ)
R:再送回数の最大値
s :再送回数がsの場合のコンテンションウィンドウの最大値
ここで、各状態における送信局jの電波送信確率τjを用いて、送信局iの状態遷移パラメータpiは式(2)のように表される。
FIG. 3 shows an example of a state transition model of a transmitting station i (iεK, K = 1, 2, 3,..., M) that operates in a wireless LAN access control method compliant with the IEEE 802.11g standard. The state transition parameters shown in FIG. 3 are as follows. In addition, when showing the state transition parameter of the transmitting station i, the suffix i is attached to each symbol.
p: Probability that another transmitting station transmits a signal (state transition parameter)
q: Probability that a frame to be transmitted will newly occur during the continuation of one state (state transition parameter)
r: Probability of holding the next frame to be transmitted when the frame transmission is successful and when the number of retransmissions reaches the maximum value and the frame is discarded (state transition parameter)
R: Maximum value of the number of retransmissions W s : Maximum value of the contention window when the number of retransmissions is s Here, using the radio wave transmission probability τ j of the transmission station j in each state, the state transition parameter p of the transmission station i i is expressed as shown in Equation (2).

Figure 0006474699
Figure 0006474699

無線LANのアクセス制御方式で運用されるM台の送信局の発する干渉電波が存在する場合、図3に示した状態遷移モデルに基づき、所定の統計時間Tmと、送信局iの個別復調成功時間(Tsuciと、送信局iの平均フレーム時間Tciと、各状態における送信局j(j∈K)の電波送信確率τjと、空き時間Tfと、空き状態の継続時間Tsと、平均状態継続時間Esの関係は、式(3)、(4)のように表される。 When there are interfering radio waves generated by M transmitting stations operated in the wireless LAN access control method, a predetermined statistical time T m and a successful individual demodulation of the transmitting station i based on the state transition model shown in FIG. Time (T suc ) i , average frame time Tc i of transmitting station i, radio wave transmission probability τ j of transmitting station j (jεK) in each state, free time T f, and free time duration T The relationship between s and the average state duration Es is expressed as Equations (3) and (4).

Figure 0006474699
Figure 0006474699

なお、無線LANのアクセス制御方式で運用されるM台の送信局に加えて、無線LAN機器と異なるアクセス制御方式で、同じ周波数帯域の無線通信を行う1つの送信局もしくは電子機器である干渉源l(lはKに含まれない)の発する干渉電波が存在する場合、式(3)、(4)は、状態xにおける干渉源lの電波送信確率τlxを用い式(5)、(6)のように書き換えられる。 In addition to the M transmission stations operated in the wireless LAN access control method, an interference source that is one transmission station or electronic device that performs wireless communication in the same frequency band with an access control method different from the wireless LAN device. When there is an interference radio wave emitted by l (l is not included in K), the equations (3) and (4) are expressed by the equations (5) and (6) using the radio wave transmission probability τ lx of the interference source l in the state x. ).

Figure 0006474699
Figure 0006474699

ここで、干渉源lが発する干渉電波の到来をポアソン到着過程で定義する。すなわち、ある状態xの継続時間をTx とすると、状態xにおける干渉源lの電波送信確率τlxと、干渉電波の単位時間あたりの発生頻度に関する変数λl(状態遷移パラメータ)の関係式は、式(7)のように表される。 Here, the arrival of the interfering radio wave generated by the interference source l is defined by the Poisson arrival process. That is, if the duration of a certain state x is T x , the relational expression between the radio wave transmission probability τ lx of the interference source 1 in the state x and the variable λ l (state transition parameter) related to the frequency of occurrence of the interference radio wave per unit time is , Expressed as equation (7).

Figure 0006474699
Figure 0006474699

式(5)、(6)、(7)より、干渉源lが発する干渉電波の到来をポアソン到着過程で定義した場合における、所定の統計時間Tm と、送信局iの個別復調成功時間(Tsuciと、送信局iの平均フレーム時間Tciと、空き時間Tfと、空き状態の継続時間Tsと、平均状態継続時間Esと、各状態における送信局jの電波送信確率τjと、干渉電波の単位時間あたりの発生頻度に関する変数λlとは、式(8)、(9)のように関係付けられる。 From the equations (5), (6), and (7), when the arrival of the interference radio wave generated by the interference source 1 is defined by the Poisson arrival process, the predetermined demodulating time T m and the individual demodulation success time ( T suc) and i, the average frame period Tc i of the transmission station i, and idle time T f, the duration T s of the free state, the average state duration Es, radio transmission probability τ of the transmission station j in each state j and the variable λ l relating to the frequency of occurrence of the interference radio wave per unit time are related as shown in equations (8) and (9).

Figure 0006474699
Figure 0006474699

そして、干渉電波情報算出部50は、逐次代入法、はさみうち法およびニュートン法等の数値解析法、遺伝アルゴリズム等の多目的最適化手法、あるいはそれらの組み合わせを用いて式(8)、(9)を解き、τjおよびλlの状態遷移パラメータを算出する。 Then, the interference radio wave information calculation unit 50 uses equations (8) and (9) using a sequential substitution method, a numerical analysis method such as the scissors method and Newton method, a multi-objective optimization method such as a genetic algorithm, or a combination thereof. And the state transition parameters of τ j and λ l are calculated.

ステップS50では、干渉電波情報算出部50は、ステップS20で算出された干渉電波統計情報と、ステップS30で求めた平均状態継続時間Esと、ステップS40で算出した状態遷移パラメータを用いて、干渉源lのフレーム時間Tcを算出する。算出される干渉源lのフレーム時間Tcは、統計処理期間Tにおいて受信した各復調不可電波の時間から算出される平均値等の代表値である。あるいは、干渉源lのフレーム時間Tcは、統計処理期間Tにおいて受信した各復調不可電波のフレーム時間の分布における中央値、または分布におけるピークを示すフレーム時間および分散値から算出される値を示す。 In step S50, the interference radio wave information calculation unit 50 uses the interference radio wave statistical information calculated in step S20, the average state duration Es obtained in step S30, and the state transition parameter calculated in step S40 to generate an interference source. The frame time Tcl of l is calculated. Frame time Tc l interferers l calculated are representative of the average value or the like calculated from the demodulation impossible radio wave received time in the statistical processing period T m. Alternatively, the frame time Tc l interferers l is a value calculated from the frame time and the variance value indicating a peak in the central value, or distribution in the frame of the time distribution of each demodulating not the received radio wave in the statistical processing period T m Show.

図4は、図3に示した状態遷移モデルが復調不可電波を受信する状態の一例を示す。図4(a)は、復調不可電波を受信する状態として、網掛けの矩形で示した干渉源lからの干渉電波のみが受信される場合を示す。この場合の復調不可電波のフレーム時間Tcは、時刻t1から時刻t2までの時間となる。 FIG. 4 shows an example of a state in which the state transition model shown in FIG. FIG. 4A shows a case where only the interference radio wave from the interference source 1 indicated by the shaded rectangle is received as a state in which the radio wave that cannot be demodulated is received. Frame time Tc l demodulation Call Telecommunications in this case is the time from time t1 to time t2.

図4(b)および図4(c)は、復調不可電波を受信する状態として、白色の矩形で示した送信局iからの干渉電波に、網掛けの矩形で示した干渉源lからの干渉電波が重畳する場合を示す。この場合、干渉源lの干渉電波が送信局iからの干渉電波の一部に重畳しているため、無線環境推定装置100は、時刻t3から時刻t5および時刻t7から時刻t9の間に受信した送信局iからの干渉電波を復調できない。このため、図4(b)に示した送信局iからの干渉電波より干渉源lからの干渉電波の受信が遅く終了する場合、復調不可電波のフレーム時間Tcは、時刻t3から時刻t6までの時間となる。一方、図4(c)に示した送信局iからの干渉電波より干渉源lからの干渉電波の受信が早く終了する場合、復調不可電波のフレーム時間Tcは、時刻t7から時刻t10までの時間となる。なお、図4(b)および図4(c)は、干渉源lが発した干渉電波は1つとしたが、2つ以上の複数でもよい。 4 (b) and 4 (c) show a state in which a radio wave that cannot be demodulated is received, an interference wave from a transmission station i indicated by a white rectangle, and an interference from an interference source l indicated by a shaded rectangle. A case where radio waves are superimposed is shown. In this case, since the interference radio wave of the interference source l is superimposed on a part of the interference radio wave from the transmission station i, the wireless environment estimation device 100 receives the signal from time t3 to time t5 and from time t7 to time t9. The interfering radio wave from the transmitting station i cannot be demodulated. Therefore, if the reception of the interference wave from the interference source l than the interference wave from the transmission station i that shown in FIG. 4 (b) is completed late, the frame time Tc l demodulation not radio waves, from time t3 to time t6 It will be time. On the other hand, if the reception of the interference wave from the interference source l than the interference wave from the transmission station i shown in FIG. 4 (c) is completed earlier, the frame time Tc l demodulation not radio waves, from time t7 to time t10 It will be time. In FIGS. 4B and 4C, the number of interference radio waves emitted from the interference source 1 is one, but it may be two or more.

図4(d)は、復調不可電波を受信する状態として、白色の矩形で示した2つの送信局からの干渉電波が重畳して受信される場合を示す。この場合、無線環境推定装置100は、重畳して受信した2つの送信局からの干渉電波を分離できないため、2つの送信局からの干渉電波をそれぞれ復調できない。このため、復調不可電波のフレーム時間Tcは、時刻t11から時刻t14までの時間となる。 FIG. 4D shows a case where interference radio waves from two transmission stations indicated by white rectangles are superimposed and received as a state of receiving radio waves that cannot be demodulated. In this case, radio environment estimation apparatus 100 cannot demodulate the interference radio waves from the two transmission stations because it cannot separate the interference radio waves from the two transmission stations received in a superimposed manner. Thus, the frame time Tc l demodulation impossible radio wave, a period from time t11 to time t14.

図4に示した復調不可電波を受信する各状態を考慮することで、干渉源lのフレーム時間Tc、送信局jの電波送信確率τj、干渉源lの干渉電波の単位時間あたりの発生頻度λl、および空き状態の継続時間Tsを用い、平均状態継続時間Esは、式(10)のように表される。 Considering each state of receiving the radio wave that cannot be demodulated shown in FIG. 4, the frame time Tc l of the interference source l, the radio wave transmission probability τ j of the transmission station j, and the generation of the interference radio wave of the interference source l per unit time. Using the frequency λ l and the idle state duration T s , the average state duration Es is expressed as in Equation (10).

Figure 0006474699
Figure 0006474699

ここで、PおよびEsは、状態yをとる確率および状態yにおける状態継続時間の期待値を示し、Yは全ての状態yの集合である。集合Yに含まれる状態yは、干渉電波が受信されない空き状態(y=free)、図4(a)に示した干渉源lからの電波のみが到来する状態(y=int)、および図4(b)から図4(d)に示した送信局iから到来する干渉電波を含む状態(y=sig)を含む。すなわち、干渉電波が受信されない空き状態の場合の平均状態継続時間は、式(11)、(12)のように表される。 Here, P y and Es y indicate the probability of taking the state y and the expected value of the state duration in the state y, and Y is a set of all the states y. The state y included in the set Y includes a free state where no interference radio wave is received (y = free), a state where only the radio wave from the interference source l shown in FIG. 4A arrives (y = int), and FIG. The state (y = sig) including the interference radio wave arriving from the transmission station i shown in FIG. 4D from (b) is included. That is, the average state continuation time when the interfering radio wave is not received is expressed as Equations (11) and (12).

Figure 0006474699
Figure 0006474699

また、干渉源lからの電波のみが到来する状態の場合の平均状態継続時間は、式(13)、(14)のように表される。   Further, the average state duration in the state where only the radio wave from the interference source l arrives is expressed as in the equations (13) and (14).

Figure 0006474699
Figure 0006474699

また、送信局iから到来する干渉電波を含む状態の場合の平均状態継続時間は、式(15)〜(17)のように表される。   Further, the average state duration in the state including the interference radio wave coming from the transmitting station i is expressed as in equations (15) to (17).

Figure 0006474699
Figure 0006474699

ここで、PおよびEsは、送信局から到来する信号を含む状態の中で、送信局jから到来する信号のフレーム時間が、送信局から到来する信号の中で最も長い状態である確率および状態継続時間の期待値である。 Here, P j and Es j are probabilities that the frame time of the signal arriving from the transmission station j is the longest among the signals arriving from the transmission station among the states including the signal arriving from the transmission station. And the expected value of the state duration.

また、PおよびEsは、状態zをとる確率および状態zにおける状態継続時間の期待値であり、Z(j)は、送信局jから到来する信号のフレーム時間が、送信局から到来する信号の中で最も長い場合に取りうるすべての状態zの集合である。 P z and Es z are the probability of taking the state z and the expected value of the state duration in the state z, and Z (j) is the frame time of the signal arriving from the transmitting station j from the transmitting station. It is a set of all states z that can be taken in the longest signal.

なお、状態zについては、送信局jから到来する電波に対して干渉源lから到来する電波の重畳数と終了時刻で分類する。なお、終了時刻による分類とは、送信局jから到来する信号を含む状態において、送信局jおよび干渉源lから到来する電波の終了時刻を時系列に考えた際に、送信局jから到来する電波の終了時刻が最も遅い場合(すなわち図4(c)の場合)と、それ以外(すなわち図4(b)の場合)である。   The state z is classified according to the number of superimposed radio waves coming from the interference source l and the end time with respect to the radio waves coming from the transmission station j. The classification based on the end time comes from the transmission station j when the end times of radio waves arriving from the transmission station j and the interference source l are considered in a time series in a state including a signal arriving from the transmission station j. The case where the end time of the radio wave is the latest (that is, the case of FIG. 4C) and the other case (that is, the case of FIG. 4B).

そして、上記のような分類を行うことで各状態zにおけるPおよびEが一意に定まるため、干渉電波情報算出部50は、ニュートン法等の数値解析法、遺伝アルゴリズム等の多目的最適化手法、あるいはそれらの組み合わせを用いて式(10)〜(17)を解き、復調不可電波のフレーム時間Tcを算出する。 Since uniquely determined is P z and E z in each state z by performing a classification as described above, the interference wave information calculation unit 50, numerical methods such as Newton's method, multi-objective optimization method such as genetic algorithms or solve equation (10) to (17) using a combination of them, calculates the frame time Tc l demodulation impossible waves.

ステップS60では、干渉電波情報算出部50は、ステップS20で算出された干渉電波統計情報と、ステップS30で求めた平均状態継続時間Esと、ステップS40で算出された状態遷移パラメータと、ステップS50で算出した復調不可電波のフレーム時間Tcのうち一部または全てを用いて、干渉電波情報を算出する。例えば、干渉電波情報算出部50は、式(18)、(19)を用いて、送信局iが発する干渉電波の発生頻度Niと時間占有率Tiとを算出することができる。 In step S60, the interference radio wave information calculation unit 50 calculates the interference radio wave statistical information calculated in step S20, the average state duration Es obtained in step S30, the state transition parameter calculated in step S40, and in step S50. using some or all of the frame time of the calculated demodulated Call Telecommunications Tc l, it calculates the interference wave information. For example, the interference radio wave information calculation unit 50 can calculate the frequency N i of occurrence of interference radio waves emitted from the transmission station i and the time occupancy T i using the equations (18) and (19).

Figure 0006474699
Figure 0006474699

さらに、干渉電波情報算出部50は、式(20)、(21)を用いて、干渉源lが発する干渉電波の発生頻度Nと時間占有率Tとを算出することができる。 Further, the interference radio wave information calculation unit 50 can calculate the generation frequency N l of the interference radio wave emitted by the interference source l and the time occupancy T l using the equations (20) and (21).

Figure 0006474699
Figure 0006474699

干渉電波情報算出部50は、他にも送信局iのスループット、遅延時間、干渉発生率、QoS(Quality of Service)等の干渉電波情報を算出することができる。例えば、干渉電波情報算出部50は、式(22)を用いて、送信局iのスループットTP(i)を算出することができる。   The interference radio wave information calculation unit 50 can also calculate interference radio wave information such as the throughput, delay time, interference occurrence rate, QoS (Quality of Service) of the transmission station i. For example, the interference radio wave information calculation unit 50 can calculate the throughput TP (i) of the transmission station i using Expression (22).

Figure 0006474699
Figure 0006474699

ここで、DATAは、1フレーム当たりのデータ量を示す。   Here, DATA indicates the amount of data per frame.

以下に具体的な数値例を示す。   Specific numerical examples are shown below.

無線環境推定装置100を備えるIEEE802.11g規格に対応した送信局の近隣に、IEEE802.11g規格に対応した無線LANのアクセス制御方式に従って運用され、干渉電波を発する送信局1〜5と、無線環境推定装置を備える送信局が復調できない干渉電波を発する干渉源6とが存在するものとする。ここで、無線環境推定装置を備える送信局においてすべての干渉電波が受信される場合、無線環境推定装置の干渉電波処理部30は、干渉電波の受信電力および復調結果に基づいて得られる干渉電波時系列情報を干渉電波統計処理部40に出力する。干渉電波時系列情報の一例を表1に示す。   Transmitting stations 1 to 5 that operate in accordance with a wireless LAN access control method compatible with the IEEE802.11g standard and transmit interference radio waves in the vicinity of a transmission station that supports the IEEE802.11g standard and includes the wireless environment estimation device 100; It is assumed that there is an interference source 6 that emits an interference radio wave that cannot be demodulated by a transmission station equipped with an estimation device. Here, when all the interference radio waves are received at the transmission station equipped with the radio environment estimation device, the interference radio wave processing unit 30 of the radio environment estimation device performs the interference radio wave time obtained based on the received power of the interference radio waves and the demodulation result. The series information is output to the interference radio wave statistical processing unit 40. An example of interference radio wave time series information is shown in Table 1.

Figure 0006474699
Figure 0006474699

次に、干渉電波統計処理部40は、表1の干渉電波時系列情報について統計処理を行い、例えば表2の干渉電波統計情報を干渉電波情報推定部50に出力する。   Next, the interference radio wave statistical processing unit 40 performs statistical processing on the interference radio wave time series information in Table 1, and outputs the interference radio wave statistical information in Table 2 to the interference radio wave information estimation unit 50, for example.

Figure 0006474699
Figure 0006474699

表2は、所定の統計時間Tmを1秒とした場合に、送信局1〜5の個別復調成功時間(Tsuc1〜(Tsuc5がそれぞれ0.107秒、0.093秒、0.093秒、0.093秒、0.076秒、復調不可電波受信時間Tintが0.588秒、空き時間Tfが0.050秒であり、送信局1〜5の個別復調成功回数(Nsuc1〜(Nsuc5がそれぞれ82回、47回、47回、47回、29回、復調不可電波受信回数Nintが 277回であり、送信局1〜5の平均フレーム時間Tc1〜Tc5がそれぞれ1.3×10-3秒、2.0×10-3秒、2.0×10-3秒、2.0×10-3秒、2.6×10-3秒であったことを意味する。なお、復調不可電波は、復調できない干渉電波を発する干渉源からのものに限らず、送信局1〜5からの干渉電波が衝突したときも含む。 Table 2 shows that when the predetermined statistical time T m is 1 second, the individual demodulation success times (T suc ) 1 to (T suc ) 5 of the transmitting stations 1 to 5 are 0.107 seconds, 0.093 seconds, 0.093 seconds, 0.093 seconds, 0.076 seconds, radio wave reception time T int that cannot be demodulated is 0.588 seconds, idle time T f is 0.050 seconds, and the individual demodulation success counts (N suc ) 1 to (N suc ) 5 of transmitting stations 1 to 5 are respectively 82 times, 47 times, 47 times, 47 times, 29 times, the number of reception times N int that cannot be demodulated is 277 times, and the average frame times Tc 1 to Tc 5 of the transmitting stations 1 to 5 are 1.3 × 10 −3 seconds, respectively. 2.0 × 10 −3 seconds, 2.0 × 10 −3 seconds, 2.0 × 10 −3 seconds, and 2.6 × 10 −3 seconds. The radio waves that cannot be demodulated are not limited to those from an interference source that emits an interfering radio wave that cannot be demodulated, but also include when the interference radio waves from the transmitting stations 1 to 5 collide.

表2の干渉電波統計情報と、空き状態の継続時間Tsを用いて、式(1)より平均状態継続時間Esは2.39×10-4秒と求まる。ここでTsは、IEEE802.11g規格に規定されているスロットタイムである9.0×10-6秒を用いた。 Using the interference radio wave statistical information in Table 2 and the idle state duration T s , the average state duration Es is obtained as 2.39 × 10 −4 seconds from Equation (1). Here, T s is 9.0 × 10 −6 seconds, which is the slot time defined in the IEEE 802.11g standard.

次に、表2の干渉電波統計情報と、空き状態の継続時間Tsと、平均状態継続時間Esの値を用いて式(8),(9)より、干渉電波情報算出部50は、送信局jの電波送信確率τj(j=1,2,3,4,5)および干渉源6の干渉電波の単位時間あたりの発生頻度に関する変数λ6について解き、τ1=3.08×10-2、τ2=2.16×10-2、τ3=2.16×10-2、τ4=2.16×10-2,τ5=1.62×10-2を算出し、λ6=2.86×10+2を算出する。 Next, the interference radio wave information calculating unit 50 uses the values of the interference radio wave statistical information, the idle time duration T s, and the average state duration time Es in Table 2 to transmit Solving the radio wave transmission probability τ j (j = 1, 2, 3, 4, 5) of the station j and the variable λ 6 relating to the frequency of occurrence of the interference radio wave of the interference source 6 per unit time, τ 1 = 3.08 × 10 −2 , Τ 2 = 2.16 × 10 −2 , τ 3 = 2.16 × 10 −2 , τ 4 = 2.16 × 10 −2 , τ 5 = 1.62 × 10 −2 and λ 6 = 2.86 × 10 +2 To do.

ここで、式(17)の状態zは、例えば干渉源6のフレーム時間Tc=1.0×10-3秒と仮定する場合、送信局1から到来する干渉電波に対して干渉源6から到来する干渉電波の重畳数と終了時刻の観点で分類すると、4通りある。すなわち、状態zは、図4(b)に示したパターンで干渉源6から到来する干渉電波の重畳数が2の場合、図4(c)に示したパターンで干渉源6から到来する干渉電波の重畳数が1の場合、図4(b)に示したパターンで干渉源6から到来する干渉電波の重畳数が1の場合、および図4(d)に示したパターンで干渉源6から到来する干渉電波の重畳数が0の場合である。このように、干渉源6のフレーム時間に依存して式(17)は一意に定まる。そのため、表2の干渉電波統計情報と、平均状態継続時間Esと、τjおよびλ6の値を用いて式(10)〜(17)を干渉源6のフレーム時間について解くことにより、干渉源6のフレーム時間Tc=1.5×10-3を算出する。 Here, the state z of the equation (17) arrives from the interference source 6 with respect to the interference radio wave coming from the transmission station 1 when, for example, the frame time Tc 6 of the interference source 6 is assumed to be 1.0 × 10 −3 seconds. There are four ways of classification in terms of the number of interference radio waves superimposed and the end time. That is, in the state z, when the number of superimposed interference waves arriving from the interference source 6 is 2 in the pattern shown in FIG. 4B, the interference waves arriving from the interference source 6 in the pattern shown in FIG. When the superposition number of 1 is 1, the superposition number of interference radio waves coming from the interference source 6 in the pattern shown in FIG. 4B is 1, and from the interference source 6 in the pattern shown in FIG. This is a case where the number of superimposed interference radio waves is zero. Thus, the equation (17) is uniquely determined depending on the frame time of the interference source 6. Therefore, by solving the equations (10) to (17) for the frame time of the interference source 6 using the interference radio wave statistical information in Table 2, the average state duration Es, and the values of τ j and λ 6 , the interference source 6 frame time Tc 6 = 1.5 × 10 −3 is calculated.

最後に、干渉源ごとの干渉電波の発生頻度、時間占有率およびスループットの干渉電波情報を推定する。推定された送信局1〜5における干渉電波の発生頻度N1〜N5、時間占有率T1〜T5およびスループットTH1〜TH5と、干渉電波をランダムに発する干渉源6からの干渉電波の発生頻度N6および時間占有率T6を表3に示す。 Finally, the interference radio wave information of the interference radio wave generation frequency, time occupancy, and throughput for each interference source is estimated. Interference radio wave generated in the estimated transmission station 1-5 frequency N 1 to N 5, the time occupancy T 1 through T 5 and throughput TH 1 to TH 5, the interference wave from the interference source 6 which emits interfering radio wave randomly Table 3 shows the occurrence frequency N 6 and the time occupation ratio T 6 .

Figure 0006474699
Figure 0006474699

図5は、無線環境推定装置の別の実施形態を示す。図1で説明した要素と同一または同様の要素については、同一または同様の符号を付し、これ等については、詳細な説明を省略する。   FIG. 5 shows another embodiment of the wireless environment estimation device. The same or similar elements as those described in FIG. 1 are denoted by the same or similar reference numerals, and detailed description thereof will be omitted.

図5に示した無線環境推定装置100Aは、干渉電波受信部20と、干渉電波処理部30aと、干渉電波統計処理部40と、干渉電波情報算出部50aとを有する。   The radio environment estimation apparatus 100A illustrated in FIG. 5 includes an interference radio wave receiving unit 20, an interference radio wave processing unit 30a, an interference radio wave statistical processing unit 40, and an interference radio wave information calculation unit 50a.

干渉電波処理部30aは、受信した干渉電波の受信電力を測定する。例えば、干渉電波処理部30aは、所定の閾値以上の受信電力の干渉電波が示す帯域幅、変調方式または振幅の変動と、送信局iおよび干渉源lのアクセス制御方式ごとに予め設定された帯域幅、変調方式または振幅の変動とを比較し、受信した干渉電波が送信局iから到来したものか、図4に示した復調不可電波かを識別する。このとき、受信した復調不可電波が図4に示したいずれの状態かを複数のアンテナ素子を用いた信号分離技術によって識別してもよい。すなわち、干渉電波処理部30aは、受信した復調不可電波が図4に示したいずれの状態かを識別する。   The interference radio wave processing unit 30a measures the received power of the received interference radio wave. For example, the interference radio wave processing unit 30a may change the bandwidth, modulation method, or amplitude variation indicated by the interference radio wave having a reception power equal to or greater than a predetermined threshold, and a preset band for each access control method of the transmission station i and the interference source l. By comparing the fluctuation of the width, the modulation method or the amplitude, it is determined whether the received interference radio wave has arrived from the transmission station i or the radio wave that cannot be demodulated shown in FIG. At this time, the received radio waves that cannot be demodulated may be identified by a signal separation technique using a plurality of antenna elements. That is, the interference radio wave processing unit 30a identifies the state in which the received radio wave that cannot be demodulated is shown in FIG.

そして、干渉電波処理部30aは、識別の結果に基づいて、送信局iから到来したフレームの有無を表す時系列情報を復調成功フレーム情報として取得し、復調不可電波の有無を表す時系列情報を復調不可電波情報として取得する。干渉電波処理部30aは、取得した復調成功フレーム情報および復調不可電波情報を干渉電波時系列情報として干渉電波統計処理部40に出力する。なお、干渉電波処理部30aは、取得した干渉電波時系列情報を、無線環境推定装置100Aに含まれるメモリ等の記憶装置に記憶してもよい。   Then, based on the identification result, the interference radio wave processing unit 30a acquires time series information indicating the presence / absence of a frame arriving from the transmission station i as demodulation successful frame information, and sets time series information indicating the presence / absence of a radio wave that cannot be demodulated. Acquired as radio wave information that cannot be demodulated. The interference radio wave processing unit 30a outputs the acquired successful demodulation frame information and non-demodulable radio wave information to the interference radio wave statistical processing unit 40 as interference radio wave time series information. The interference radio wave processing unit 30a may store the acquired interference radio wave time series information in a storage device such as a memory included in the wireless environment estimation device 100A.

また、無線環境推定装置100Aの記憶装置は、送信局iおよび干渉源lごとに予め設定された帯域幅、変調方式または振幅の変動を示す情報を予め記憶する。あるいは、送信局iおよび干渉源lごとに予め設定された帯域幅、変調方式または振幅の変動を示す情報は、例えば、無線環境推定装置100Aの外部に配置されるメモリ等の記憶装置に格納されてもよい。この場合、無線環境推定装置100Aは、送信局iおよび干渉源lごとに予め設定された帯域幅、変調方式または振幅の変動を示す情報を外部の記憶装置から読み込む。   In addition, the storage device of the wireless environment estimation device 100A stores in advance information indicating a change in bandwidth, modulation scheme, or amplitude set in advance for each transmission station i and interference source l. Alternatively, information indicating a change in bandwidth, modulation scheme, or amplitude set in advance for each of the transmission station i and the interference source l is stored in a storage device such as a memory arranged outside the radio environment estimation device 100A, for example. May be. In this case, the radio environment estimation device 100A reads information indicating a change in bandwidth, modulation scheme, or amplitude preset for each of the transmission station i and the interference source l from an external storage device.

干渉電波情報算出部50aは、干渉電波統計処理部40により算出された干渉電波統計情報を用いて、送信局iが発する干渉電波の干渉電波情報を算出する。   The interference radio wave information calculation unit 50a uses the interference radio wave statistical information calculated by the interference radio wave statistics processing unit 40 to calculate interference radio wave information of the interference radio wave emitted from the transmission station i.

また、干渉電波情報算出部50aは、例えば、干渉電波処理部30aが算出した干渉電波時系列情報に含まれる受信した復調不可電波のフレーム時間に対して平均処理等を実行し、復調不可電波(すなわち干渉源lが発した干渉電波)のフレーム時間の代表値(すなわちフレーム時間Tc)を算出することもできる。すなわち、干渉電波情報算出部50aは、式(10)〜(17)を解くことなく干渉源lから受信した干渉電波のフレーム時間Tcを算出する。 In addition, the interference radio wave information calculation unit 50a performs, for example, an averaging process on the frame time of the received non-demodulable radio wave included in the interference radio wave time series information calculated by the interference radio wave processing unit 30a, and the non-demodulation radio wave ( That is, the representative value of the frame time of the interference radio wave emitted from the interference source l (that is, the frame time Tc l ) can be calculated. That is, the interference radio wave information calculating unit 50a calculates the frame time Tc l of the interference radio wave received from the interference source l without solving the equation (10) to (17).

図6は、図5に示した無線環境推定装置100Aにおける処理手順の一例を示す。   FIG. 6 shows an example of a processing procedure in the radio environment estimation apparatus 100A shown in FIG.

ステップS100では、干渉電波処理部30aは、測定し受信電力が所定の閾値以上の干渉電波が示す帯域幅、変調方式または振幅の変動と、送信局iおよび干渉源lのアクセス制御方式ごとに設定された帯域幅、変調方式または振幅の変動とを比較する。例えば、干渉電波処理部30aは、受信した干渉電波が送信局iから到来したものと識別した場合、干渉電波の送信元である送信局iと、送信局iのフレームの有無を表す時系列情報とを示す復調成功フレーム情報を取得する。一方、干渉電波処理部30aは、受信した干渉電波が干渉源lから到来したものと識別した場合、復調不可電波の重畳状態および復調不可電波の有無を表す時系列情報を示す復調不可電波情報を取得する。干渉電波処理部30aは、受信した干渉電波における受信電力情報、復調成功フレーム情報および復調不可電波情報を含んだ干渉電波時系列情報を干渉電波統計処理部40に出力する。   In step S100, the interference radio wave processing unit 30a sets the bandwidth, modulation scheme, or amplitude variation indicated by the interference radio waves whose measured received power is equal to or greater than a predetermined threshold, and the access control scheme of the transmission station i and the interference source l. Compare the measured bandwidth, modulation scheme, or amplitude variation. For example, when the interference radio wave processing unit 30a identifies that the received interference radio wave has arrived from the transmission station i, the time series information indicating the transmission station i that is the transmission source of the interference radio wave and the presence or absence of the frame of the transmission station i Successful demodulation frame information indicating that is acquired. On the other hand, when the interference radio wave processing unit 30a identifies that the received interference radio wave has arrived from the interference source l, the radio wave non-demodulation information indicating the time series information indicating the superimposed state of the radio wave that cannot be demodulated and the presence or absence of the radio wave that cannot be demodulated. get. The interference radio wave processing unit 30a outputs to the interference radio wave statistical processing unit 40 the interference radio wave time series information including the received power information, the successful demodulation frame information, and the undemodulated radio wave information in the received interference radio wave.

ステップS110では、干渉電波統計処理部40は、ステップS100で取得された干渉電波時系列情報(受信電力情報、復調成功フレーム情報、復調不可電波情報)を用いて、統計処理期間Tmのうち送信局ごとに受信電波のフレーム時間を合計した個別復調成功時間Tsuc、送信局ごとに復調成功回数をカウントした個別復調成功回数Nsuc、復調不可電波の受信時間を合計した復調不可電波受信時間Tint、連続して復調不可電波を受信した回数をカウントした復調不可電波受信回数Nint、および受信電力が所定の閾値未満であった時間を合計した空き時間Tfを、干渉電波統計情報として算出する。 In step S110, the interference wave statistical processing section 40, the obtained interference wave time series information in step S100 (reception power information, demodulation successful frame information, demodulating not radio wave information) is used to send out the statistical processing period T m Individual demodulation success time T suc obtained by summing frame times of received radio waves for each station, individual demodulation success frequency N suc counted by the number of successful demodulations for each transmission station, non-demodulation radio wave reception time T obtained by summing reception times of radio waves which cannot be demodulated int , non-demodulable radio wave reception count N int that counts the number of times radio waves that could not be demodulated continuously, and free time T f that totals the time when the received power was less than a predetermined threshold are calculated as interference radio wave statistical information To do.

ステップS120では、干渉電波情報算出部50aは、ステップS110で算出された干渉電波統計情報を用いて、干渉電波情報を算出する。例えば、干渉電波情報算出部50は、個別復調成功時間Tsuc と個別復調成功回数Nsuc とを所定の統計時間Tmで除算することによって、送信局iが発する干渉電波の発生頻度Niと時間占有率Tiの干渉電波情報を算出することができる。また、干渉電波情報算出部50は、復調不可電波受信時間Tintと復調不可電波受信回数Nintとを所定の統計時間Tmで除算することによって、干渉源lが発する干渉電波の発生頻度Nと時間占有率Tとを算出することができる。 In step S120, the interference radio wave information calculation unit 50a calculates interference radio wave information using the interference radio wave statistical information calculated in step S110. For example, the interference radio wave information calculation unit 50 divides the individual demodulation success time T suc and the individual demodulation success frequency N suc by a predetermined statistical time T m , thereby generating an interference radio wave generation frequency N i generated by the transmitting station i and Interference radio wave information of the time occupation rate T i can be calculated. The interference radio wave information calculation unit 50 divides the radio wave reception time T int that cannot be demodulated and the frequency N int that cannot be demodulated by a predetermined statistical time T m , thereby generating the frequency N of the interference radio wave emitted by the interference source l. l and the time occupancy T l can be calculated.

以上、図5および図6に示した実施形態では、干渉電波処理部30aは、所定の閾値以上の受信電力の干渉電波が示す帯域幅、変調方式または振幅の変動と、送信局iおよび干渉源lのアクセス制御方式ごとに予め設定された帯域幅、変調方式または振幅の変動とを比較し、干渉源lから到来した復調不可電波のパターン情報を識別する。干渉電波情報算出部50aは、干渉電波処理部30aにより算出された干渉電波時系列情報を用いて、送信局iおよび干渉源lが発する干渉電波の干渉電波情報を算出する。   As described above, in the embodiment shown in FIGS. 5 and 6, the interference radio wave processing unit 30 a performs the change in the bandwidth, modulation method, or amplitude indicated by the interference radio wave having the received power equal to or higher than the predetermined threshold, the transmission station i, and the interference source. By comparing the preset bandwidth, modulation method or amplitude variation for each access control method of l, pattern information of non-demodulable radio waves coming from the interference source l is identified. The interference radio wave information calculation unit 50a calculates the interference radio wave information of the interference radio waves emitted from the transmission station i and the interference source 1 using the interference radio wave time series information calculated by the interference radio wave processing unit 30a.

これにより、無線環境推定装置100は、干渉電波が存在する無線環境において、干渉源から到来する干渉電波の受信状態を示す干渉電波情報を従来と比べて正確に推定できる。   Thereby, the radio environment estimation apparatus 100 can accurately estimate the interference radio wave information indicating the reception state of the interference radio wave arriving from the interference source in a radio environment where the interference radio wave exists.

以上の詳細な説明により、実施形態の特徴点および利点は明らかになるであろう。これは、特許請求の範囲がその精神および権利範囲を逸脱しない範囲で前述のような実施形態の特徴点および利点にまで及ぶことを意図するものである。また、当該技術分野において通常の知識を有する者であれば、あらゆる改良および変更に容易に想到できるはずである。したがって、発明性を有する実施形態の範囲を前述したものに限定する意図はなく、実施形態に開示された範囲に含まれる適当な改良物および均等物に拠ることも可能である。   From the above detailed description, features and advantages of the embodiments will become apparent. This is intended to cover the features and advantages of the embodiments described above without departing from the spirit and scope of the claims. Also, any improvement and modification should be readily conceivable by those having ordinary knowledge in the art. Therefore, there is no intention to limit the scope of the inventive embodiments to those described above, and appropriate modifications and equivalents included in the scope disclosed in the embodiments can be used.

20…干渉電波受信部;30,30a…干渉電波処理部;40…干渉電波統計処理部;50,50a…干渉電波情報算出部;100,100A…無線環境推定装置 DESCRIPTION OF SYMBOLS 20 ... Interference radio wave reception part; 30, 30a ... Interference radio wave processing part; 40 ... Interference radio wave statistical processing part; 50, 50a ... Interference radio wave information calculation part; 100, 100A ... Wireless environment estimation apparatus

Claims (7)

互いに同じ周波数帯域の干渉電波を発する1以上の送信局および1以上の干渉源の各々から受信した干渉電波の受信電力を測定し、所定の閾値以上の受信電力の干渉電波を復調して得られるフレーム時間を復調成功フレーム情報として取得するとともに、前記所定の閾値以上の受信電力で復調できなかった干渉電波である復調不可電波のフレーム時間を復調不可電波情報として取得し、取得した前記復調成功フレーム情報および前記復調不可電波情報を干渉電波時系列情報として記録する第1のステップと、
前記干渉電波時系列情報に対して所定の統計処理期間にわたって統計処理を行った干渉電波統計情報を算出する第2のステップと、
前記干渉源からの前記干渉電波の到来確率到着過程に基づいて定義され、かつ前記送信局におけるアクセス制御方式の動作を表す状態遷移モデルと、前記状態遷移モデルが前記復調不可電波を受信する状態が、前記干渉源からの干渉電波のみが受信される場合、前記送信局からの干渉電波に前記干渉源からの干渉電波が重畳する場合、および2つの前記送信局からの干渉電波が重畳して受信される場合のいずれであるかを示すパターン情報と、前記干渉電波統計情報とに基づいて、前記干渉電波統計情報と前記干渉電波の受信状態を示す干渉電波情報との関係式を解くことにより、前記送信局および干渉源ごとの前記干渉電波情報を算出する第3のステップと
を有することを特徴とする無線環境推定方法。
Obtained by measuring the received power of interference radio waves received from each of one or more transmission stations and one or more interference sources that emit interference radio waves in the same frequency band, and demodulating the interference radio waves having a reception power equal to or greater than a predetermined threshold. Obtaining the frame time as demodulation successful frame information, obtaining the frame time of a radio wave that cannot be demodulated, which is an interference radio wave that could not be demodulated with the received power equal to or greater than the predetermined threshold, as radio wave information that cannot be demodulated, and acquiring the successful demodulation frame A first step of recording information and the non-demodulable radio wave information as interference radio wave time series information;
A second step of calculating interference radio wave statistical information obtained by performing statistical processing on the interference radio wave time series information over a predetermined statistical processing period;
A state transition model in which the arrival of the interfering radio wave from the interference source is defined based on a probability arrival process , and represents an operation of an access control method in the transmitting station, and a state in which the state transition model receives the radio wave that cannot be demodulated However, when only the interference radio wave from the interference source is received, the interference radio wave from the interference source is superimposed on the interference radio wave from the transmission station, and the interference radio waves from the two transmission stations are superimposed. By solving the relational expression between the interference radio wave statistical information and the interference radio wave information indicating the reception state of the interference radio wave based on the pattern information indicating which is received and the interference radio wave statistical information And a third step of calculating the interference radio wave information for each of the transmitting station and the interference source .
請求項1に記載の無線環境推定方法において、
前記第3のステップは、前記状態遷移モデルの各状態が継続する時間の平均値を示す平均状態継続時間と前記パターン情報との関係に基づいて、前記復調不可電波のフレーム時間の代表値を算出し、算出した前記代表値を用いて前記送信局および干渉源ごとの前記干渉電波情報を算出することを特徴とする無線環境推定方法。
The radio environment estimation method according to claim 1,
In the third step , based on the relationship between the average state duration indicating the average duration of each state of the state transition model and the pattern information, a representative value of the frame time of the non-demodulable radio wave is obtained. A radio environment estimation method comprising: calculating and calculating the interference radio wave information for each of the transmission station and the interference source using the calculated representative value.
請求項1に記載の無線環境推定方法において、
前記第1のステップは、受信した前記干渉電波が示す特徴量と前記アクセス制御方式に応じて設定された特徴量との比較から、受信した前記復調不可電波における前記パターン情報を識別し、識別した前記パターン情報を前記復調不可電波情報として取得し、
前記第3のステップは、取得された前記復調不可電波情報を用いて、前記復調不可電波のフレーム時間の代表値を算出し、算出した前記代表値を用いて前記送信局および干渉源ごとの前記干渉電波情報を算出する
ことを特徴とする無線環境推定方法。
The radio environment estimation method according to claim 1,
In the first step, from a comparison of the set feature amount according to the access control method wherein the amount indicated by the interference radio waves received, to identify the pattern information in the demodulation not the received radio wave, the identification Obtaining the pattern information as the non-demodulable radio wave information,
In the third step , using the acquired non-demodulable radio wave information, a representative value of the frame time of the non-demodulable radio wave is calculated, and using the calculated representative value, the transmission station and the interference source The wireless environment estimation method, wherein the interference radio wave information is calculated.
互いに同じ周波数帯域の干渉電波を発する1以上の送信局および1以上の干渉源の各々から前記干渉電波を受信する干渉電波受信部と、
受信した干渉電波の受信電力を測定し、所定の閾値以上の受信電力の干渉電波を復調して得られるフレーム時間を復調成功フレーム情報として取得するとともに、前記所定の閾値以上の受信電力で復調できなかった干渉電波である復調不可電波のフレーム時間を復調不可電波情報として取得し、取得した前記復調成功フレーム情報および前記復調不可電波情報を干渉電波時系列情報として記録する干渉電波処理部と、
前記干渉電波時系列情報に対して所定の統計処理期間にわたって統計処理を行った干渉電波統計情報を算出する干渉電波統計処理部と、
前記干渉源からの前記干渉電波の到来確率到着過程に基づいて定義され、かつ前記送信局におけるアクセス制御方式の動作を表す状態遷移モデルと、前記状態遷移モデルが前記復調不可電波を受信する状態が、前記干渉源からの干渉電波のみが受信される場合、前記送信局からの干渉電波に前記干渉源からの干渉電波が重畳する場合、および2つの前記送信局からの干渉電波が重畳して受信される場合のいずれであるかを示すパターン情報と、前記干渉電波統計情報とに基づいて、前記干渉電波統計情報と前記干渉電波の受信状態を示す干渉電波情報との関係式を解くことにより、前記送信局および干渉源ごとの前記干渉電波情報を算出する干渉電波情報算出部と
を備えることを特徴とする無線環境推定装置。
An interference radio wave receiver that receives the interference radio waves from each of one or more transmission stations and one or more interference sources that emit interference radio waves in the same frequency band;
The received power of the received interference radio wave is measured, and the frame time obtained by demodulating the interference radio wave of the received power equal to or higher than a predetermined threshold is acquired as demodulation successful frame information, and demodulated with the received power equal to or higher than the predetermined threshold. An interference radio wave processing unit that acquires a frame time of a radio wave that cannot be demodulated as non-demodulable radio wave information as non-demodulable radio wave information, and records the acquired demodulation successful frame information and the radio wave information that cannot be demodulated as interference radio wave time series information;
An interference radio wave statistical processing unit for calculating interference radio wave statistical information obtained by performing statistical processing on the interference radio wave time series information over a predetermined statistical processing period;
A state transition model in which the arrival of the interfering radio wave from the interference source is defined based on a probability arrival process , and represents an operation of an access control method in the transmitting station, and a state in which the state transition model receives the radio wave that cannot be demodulated However, when only the interference radio wave from the interference source is received, the interference radio wave from the interference source is superimposed on the interference radio wave from the transmission station, and the interference radio waves from the two transmission stations are superimposed. By solving the relational expression between the interference radio wave statistical information and the interference radio wave information indicating the reception state of the interference radio wave based on the pattern information indicating which is received and the interference radio wave statistical information An interference radio wave information calculating unit that calculates the interference radio wave information for each of the transmitting station and the interference source .
請求項4に記載の無線環境推定装置において、
前記干渉電波情報算出部は、前記状態遷移モデルの各状態が継続する時間の平均値を示す平均状態継続時間と前記パターン情報との関係に基づいて、前記復調不可電波のフレーム時間の代表値を算出し、算出した前記代表値を用いて前記送信局および干渉源ごとの前記干渉電波情報を算出することを特徴とする無線環境推定装置。
In the radio | wireless environment estimation apparatus of Claim 4,
The interference radio wave information calculation unit obtains a representative value of the frame time of the radio waves that cannot be demodulated based on the relationship between the average state duration indicating the average value of the duration of each state of the state transition model and the pattern information. calculated, the radio environment estimation unit and calculates the interference radio wave information of each of the transmitting station and interference source by using the calculated the representative value.
請求項4に記載の無線環境推定装置において、
前記干渉電波処理部は、受信した前記干渉電波が示す特徴量と前記アクセス制御方式に応じて設定された特徴量との比較から、受信した前記復調不可電波における前記パターン情報を識別し、識別した前記パターン情報を前記復調不可電波情報として取得し、
前記干渉電波情報算出部は、取得された前記復調不可電波情報を用いて、前記復調不可電波のフレーム時間の代表値を算出し、算出した前記代表値を用いて前記送信局および干渉源ごとの前記干渉電波情報を算出する
ことを特徴とする無線環境推定装置。
In the radio | wireless environment estimation apparatus of Claim 4,
The interference wave processing unit, from the comparison between the set feature amount according to the access control method wherein the amount indicated by the interference radio waves received, to identify the pattern information in the demodulation not the received radio wave, and identifies The pattern information is acquired as the non-demodulable radio wave information,
The interference radio wave information calculation unit calculates a representative value of the frame time of the radio wave that cannot be demodulated using the acquired radio wave information that cannot be demodulated, and uses the calculated representative value for each of the transmitting station and the interference source. The radio environment estimation apparatus characterized by calculating the interference radio wave information.
請求項1に記載の無線環境推定方法の各ステップをコンピュータに実行させることを特徴とする無線環境推定プログラム。   A wireless environment estimation program for causing a computer to execute each step of the wireless environment estimation method according to claim 1.
JP2015159173A 2015-08-11 2015-08-11 Radio environment estimation method, radio environment estimation apparatus, and radio environment estimation program Active JP6474699B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015159173A JP6474699B2 (en) 2015-08-11 2015-08-11 Radio environment estimation method, radio environment estimation apparatus, and radio environment estimation program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015159173A JP6474699B2 (en) 2015-08-11 2015-08-11 Radio environment estimation method, radio environment estimation apparatus, and radio environment estimation program

Publications (2)

Publication Number Publication Date
JP2017038284A JP2017038284A (en) 2017-02-16
JP6474699B2 true JP6474699B2 (en) 2019-02-27

Family

ID=58048036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015159173A Active JP6474699B2 (en) 2015-08-11 2015-08-11 Radio environment estimation method, radio environment estimation apparatus, and radio environment estimation program

Country Status (1)

Country Link
JP (1) JP6474699B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6319521B1 (en) * 2017-02-27 2018-05-09 三菱電機株式会社 Interference detection device
CN108235364B (en) * 2018-01-05 2021-04-13 湘潭大学 WLAN average electromagnetic radiation prediction method based on user
CN108282239B (en) * 2018-01-25 2021-04-23 湘潭大学 Average electromagnetic radiation prediction method for WLAN
CN108260156B (en) * 2018-01-25 2021-04-23 湘潭大学 Service-based WLAN average electromagnetic radiation prediction method
CN108173609B (en) * 2018-02-02 2021-04-23 湘潭大学 Method for predicting electromagnetic radiation of WLAN video service

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008085719A (en) * 2006-09-28 2008-04-10 Matsushita Electric Ind Co Ltd Radio communication device, and semiconductor integrated circuit for radio communication device
US20120164950A1 (en) * 2009-06-05 2012-06-28 Nokia Corporation Cognitive Radio Transmission
JP5715537B2 (en) * 2011-09-30 2015-05-07 株式会社Kddi研究所 Wireless LAN sensing device, wireless LAN station, and program
JP5761802B2 (en) * 2011-11-25 2015-08-12 日本電信電話株式会社 Wireless communication system

Also Published As

Publication number Publication date
JP2017038284A (en) 2017-02-16

Similar Documents

Publication Publication Date Title
JP6474699B2 (en) Radio environment estimation method, radio environment estimation apparatus, and radio environment estimation program
US8503944B2 (en) Signal detection apparatus and signal detection method for use in radio station of radio communication system
US8311165B2 (en) Interference suppression method and interference suppression device
CN104427632B (en) Data transmission scheduling method, device and system
JP5445152B2 (en) Wireless communication device, remote station device, base station device
KR102316996B1 (en) Method for interference cancellation and apparatus thereof
CN110352607B (en) Adaptive allocation of time resources for massive multiple-input multiple-output (MIMO) in unlicensed bands
KR102628043B1 (en) Methods and apparatus for cancellation of self interference signal in full duplex commuication system
KR20140074068A (en) Method and apparatus for scheduling in device to device communication system
JP7147049B2 (en) Interference source identification methods, associated devices, and computer storage media
Choi et al. Activity probability-based performance analysis and contention control for IEEE 802.11 WLANs
Zhao et al. Leveraging SDN and OpenFlow to mitigate interference in enterprise WLAN
CN106879018B (en) Positioning method and device
Abdellah et al. Enhanced slotted aloha mechanism by introducing ZigZag decoding
JP6293696B2 (en) Radio environment estimation method, radio environment estimation apparatus, and radio environment estimation program
JP4974366B2 (en) Wireless environment monitoring apparatus and program for monitoring time occupation ratio of wireless environment
US20150318936A1 (en) Bursty-interference-aware interference management utilizing conditional metric
Gau Tree/stack splitting with remainder for distributed wireless medium access control with multipacket reception
US8050195B2 (en) Traffic performance evaluation system in wireless network and method thereof
EP3085018B1 (en) Distributed saturation detection method for wireless network nodes
US20120134438A1 (en) Method and apparatus for detecting received signal in wireless communication system
KR20110113864A (en) Method and apparatus for estimating delay about buffer data of terminal in mobile communication system
CN112601249A (en) Interference source identification method and device, network equipment and storage medium
US10194449B2 (en) Base station, signal synthesis method, and signal forwarding method
US20070220153A1 (en) Wireless traffic prioritization

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20170201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170203

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170206

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180814

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190130

R150 Certificate of patent or registration of utility model

Ref document number: 6474699

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150