JP6474052B2 - Manufacturing method of high-pressure tank - Google Patents

Manufacturing method of high-pressure tank Download PDF

Info

Publication number
JP6474052B2
JP6474052B2 JP2016009606A JP2016009606A JP6474052B2 JP 6474052 B2 JP6474052 B2 JP 6474052B2 JP 2016009606 A JP2016009606 A JP 2016009606A JP 2016009606 A JP2016009606 A JP 2016009606A JP 6474052 B2 JP6474052 B2 JP 6474052B2
Authority
JP
Japan
Prior art keywords
prepreg
pressure tank
blow molding
liner
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016009606A
Other languages
Japanese (ja)
Other versions
JP2017129225A (en
Inventor
博敏 加藤
博敏 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2016009606A priority Critical patent/JP6474052B2/en
Publication of JP2017129225A publication Critical patent/JP2017129225A/en
Application granted granted Critical
Publication of JP6474052B2 publication Critical patent/JP6474052B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Pressure Vessels And Lids Thereof (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
  • Fuel Cell (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Description

本発明は、高圧タンクの製造方法に関する。   The present invention relates to a method for manufacturing a high-pressure tank.

高圧タンクは、燃料電池車両などの移動体に搭載される場合があり、その軽量化が要求されている。このような高圧タンクとして、口金を有して中空形状をなすライナーの外周に、補強層(繊維強化樹脂層)が設けられたものが知られている。この高圧タンクは、一般的に、フィラメントワインディング法(以下、「FW法」とも呼ぶ)により製造される。   The high-pressure tank may be mounted on a moving body such as a fuel cell vehicle, and its weight reduction is required. As such a high-pressure tank, there is known a tank in which a reinforcing layer (fiber reinforced resin layer) is provided on the outer periphery of a liner having a base and forming a hollow shape. This high-pressure tank is generally manufactured by a filament winding method (hereinafter also referred to as “FW method”).

FW法では、ライナーの外周に、エポキシ樹脂等の熱硬化性樹脂を含浸させた強化繊維を巻き付け、その強化繊維の熱硬化性樹脂を熱硬化させることにより、繊維強化樹脂層を形成する(例えば下記特許文献1参照)。下記特許文献1には、このFW法において、予め繊維束に樹脂を含浸させたプリプレグを用いて繊維強化樹脂層を形成することが開示されている。   In the FW method, a fiber reinforced resin layer is formed by winding a reinforcing fiber impregnated with a thermosetting resin such as an epoxy resin around the outer periphery of a liner and thermosetting the thermosetting resin of the reinforcing fiber (for example, See Patent Document 1 below). Patent Document 1 below discloses that, in this FW method, a fiber reinforced resin layer is formed using a prepreg in which a fiber bundle is impregnated with a resin in advance.

特開2008−286297号公報JP 2008-286297 A

上記特許文献1に開示されたように、プリプレグを巻き付けて高圧タンクを製造する方法では、高圧タンクの強度を確保するために巻き付け工程が長時間に及んでしまう傾向がある。このような従来の方法で高圧タンクの生産量を増やす場合には、数多くの巻き付け設備が必要となり、高圧タンクの高コスト化を招く虞があった。   As disclosed in Patent Document 1, in the method of manufacturing a high-pressure tank by winding a prepreg, the winding process tends to take a long time to ensure the strength of the high-pressure tank. In the case of increasing the production amount of the high-pressure tank by such a conventional method, many winding facilities are required, which may increase the cost of the high-pressure tank.

本発明はこのような課題に鑑みてなされたものであり、その目的は、製造工程の時間を短縮し、低コスト化を図ることができる高圧タンクの製造方法を提供することにある。   This invention is made | formed in view of such a subject, The objective is to provide the manufacturing method of the high pressure tank which can shorten the time of a manufacturing process and can aim at cost reduction.

上記課題を解決するために本発明に係る高圧タンクの製造方法は、炭素繊維強化樹脂層により補強されたライナーを有する円筒状の高圧タンクの製造方法であって、円筒状に編込まれ、該円筒の軸方向一端側が閉じ、軸方向他端側が開口した開口部を有するプリプレグを準備する準備工程と、前記プリプレグを金型に配置した後、パリソンを前記プリプレグの内部に配置し、ブロー成形により前記ライナーを形成するブロー成形工程と、前記ブロー成形工程後に、前記プリプレグの前記開口部に口金を圧入する圧入工程と、を備え、前記ブロー成形工程では、前記プリプレグの前記開口部を冷却し、前記ブロー成形後のライナーの外径寸法が前記準備された前記プリプレグの内径寸法よりも大きくなるようにブロー成形することを特徴とする。   In order to solve the above problems, a method for producing a high-pressure tank according to the present invention is a method for producing a cylindrical high-pressure tank having a liner reinforced by a carbon fiber reinforced resin layer, which is knitted into a cylindrical shape, A preparation step for preparing a prepreg having an opening in which one end side of the cylinder in the axial direction is closed and the other end side in the axial direction is opened, and after placing the prepreg in the mold, a parison is placed inside the prepreg, and blow molding A blow molding step of forming the liner; and a press-fitting step of press-fitting a base into the opening of the prepreg after the blow molding step, in the blow molding step, cooling the opening of the prepreg, Blow molding so that the outer diameter of the liner after blow molding is larger than the inner diameter of the prepared prepreg.

かかる方法によれば、予め円筒状に編込まれたプリプレグを準備して高圧タンクを製造するため、プリプレグの巻き付け工程が不要になり、高圧タンクの製造工程の時間を短縮することができる。その結果、高圧タンクのコストを低減することができる。また、ブロー成形後のライナーの外径寸法が、準備したプリプレグの内径寸法よりも大きくなるようにプリプレグの内部でブロー成形するため、ブロー成形後の炭素繊維強化樹脂層に必要なテンションをかけることができる。このようなブロー成形工程を採用すると、ライナー及びその外周を覆う炭素繊維強化樹脂層を成形後、口金を圧入する部分(開口部)が温められることによって硬化するおそれがあり、口金を圧入しにくくなるおそれがある。そこで本発明では、ブロー成形時に口金が圧入される開口部を冷却し、当該開口部の硬化を防いでいるため、口金の圧入を容易にすることができる。その結果、高圧タンクの製造工程の時間を短縮することができ、高圧タンクの低コスト化を図ることができる。   According to this method, since the prepreg knitted in advance in a cylindrical shape is prepared and the high-pressure tank is manufactured, the prepreg winding step is not necessary, and the time for the high-pressure tank manufacturing process can be shortened. As a result, the cost of the high pressure tank can be reduced. In addition, the blower is blow-molded inside the prepreg so that the outer diameter of the liner after blow molding is larger than the inner diameter of the prepared prepreg, so the necessary tension is applied to the carbon fiber reinforced resin layer after blow molding. Can do. When such a blow molding process is adopted, there is a risk that the portion (opening) into which the die is press-fitted may be heated after molding the liner and the carbon fiber reinforced resin layer covering the outer periphery thereof, and the die is difficult to press-fit. There is a risk. Therefore, in the present invention, since the opening into which the die is press-fitted at the time of blow molding is cooled and the opening is prevented from being hardened, the die can be easily pressed. As a result, the time for manufacturing the high-pressure tank can be shortened, and the cost of the high-pressure tank can be reduced.

本発明によれば、製造工程の時間を短縮し、低コスト化を図ることができる高圧タンクの製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the high pressure tank which can shorten the time of a manufacturing process and can aim at cost reduction can be provided.

本発明の実施形態の製造方法によって作成される高圧タンクの概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the high pressure tank created by the manufacturing method of embodiment of this invention. 高圧タンクの製造工程の一例を示すフローチャートである。It is a flowchart which shows an example of the manufacturing process of a high pressure tank. 高圧タンクの製造工程を説明する説明図である。It is explanatory drawing explaining the manufacturing process of a high pressure tank.

以下添付図面を参照しながら本発明の実施形態について説明する。尚、以下の好ましい実施形態の説明は、例示に過ぎず、本発明、その適用物或いはその用途を制限することを意図するものではない。   Embodiments of the present invention will be described below with reference to the accompanying drawings. It should be noted that the following description of the preferred embodiment is merely an example, and is not intended to limit the present invention, its application, or its use.

まず、本発明の実施形態の製造方法によって作成される高圧タンクの構成について説明する。図1は、高圧タンクの概略構成を示す断面図である。   First, the structure of the high-pressure tank created by the manufacturing method of the embodiment of the present invention will be described. FIG. 1 is a cross-sectional view showing a schematic configuration of a high-pressure tank.

図1に示す高圧タンク1は、水素或いは天然ガスなどの燃料ガスを高圧で貯蔵する容器であり、例えば自動車等の移動体に搭載される。高圧タンク1は、内筒として用いられるライナー20と、その外側に設けられる繊維強化樹脂層30とを備える。   A high-pressure tank 1 shown in FIG. 1 is a container for storing a fuel gas such as hydrogen or natural gas at a high pressure, and is mounted on a moving body such as an automobile. The high-pressure tank 1 includes a liner 20 used as an inner cylinder and a fiber reinforced resin layer 30 provided on the outside thereof.

ライナー20は、内部にガスを貯留するための貯留空間を有する円筒形状の内殻である。ライナー20は、本実施形態では合成樹脂製の材料で構成される。しかし、この例に限定されず、ライナー20に用いられる材料としては、他の材料を採用することも可能である。   The liner 20 is a cylindrical inner shell having a storage space for storing gas therein. In this embodiment, the liner 20 is made of a synthetic resin material. However, the present invention is not limited to this example, and other materials can be used as the material used for the liner 20.

ライナー20の一端側には口金40が設けられる。口金40は、金属製であって、高圧タンク1の内部に収容された気体又は液体の注排口となる部材である。本実施形態では、口金40がライナー20の一端側のみに形成されるが、この例に限定されず、ライナー20の一端側及び他端側に口金を設けた構成としても良い。   A base 40 is provided on one end side of the liner 20. The base 40 is a member made of metal and serving as a gas or liquid pouring port accommodated in the high-pressure tank 1. In the present embodiment, the base 40 is formed only on one end side of the liner 20. However, the present invention is not limited to this example, and the base may be provided on one end side and the other end side of the liner 20.

繊維強化樹脂層30(炭素繊維強化樹脂層)は、ライナー20の外周を覆うように設けられた、炭素繊維強化プラスチック(CFRP)からなる層である。この繊維強化樹脂層30は、後述するように、プリプレグと呼ばれる半硬化状態の樹脂が含まれたCFRPを用いて作成される。なお、プリプレグは、例えば液状のエポキシ樹脂の含浸を行い、その後の加熱により樹脂を半硬化状態にまで重合させて得られるものである。   The fiber reinforced resin layer 30 (carbon fiber reinforced resin layer) is a layer made of carbon fiber reinforced plastic (CFRP) provided so as to cover the outer periphery of the liner 20. As will be described later, the fiber reinforced resin layer 30 is formed using CFRP containing a semi-cured resin called a prepreg. The prepreg is obtained, for example, by impregnating a liquid epoxy resin and polymerizing the resin to a semi-cured state by subsequent heating.

続いて、本発明の実施形態としての高圧タンクの製造工程について説明する。図2は、高圧タンクの製造工程の一例を示すフローチャートである。図3は、高圧タンクの製造工程を説明する説明図である。   Then, the manufacturing process of the high pressure tank as embodiment of this invention is demonstrated. FIG. 2 is a flowchart showing an example of a manufacturing process of the high-pressure tank. FIG. 3 is an explanatory diagram for explaining the manufacturing process of the high-pressure tank.

(ステップS110)
まず、樹脂が含浸されたプリプレグ3を所定の丸編機(不図示)で袋形状に編込む(図2のステップS110及び図3(A))。このプリプレグ3の内径a(図3(A))は、高圧タンク作成完了時に必要なテンションが得られるように予め設定されており、好適には、後述するブロー成形後のライナー20の外径寸法d(図3(E)参照)より小さく設定されることが好ましい。
(Step S110)
First, the prepreg 3 impregnated with the resin is knitted into a bag shape by a predetermined circular knitting machine (not shown) (step S110 in FIG. 2 and FIG. 3A). The inner diameter a (FIG. 3A) of the prepreg 3 is set in advance so as to obtain a necessary tension when the high-pressure tank is completed. Preferably, the outer diameter of the liner 20 after blow molding described later is used. It is preferably set smaller than d (see FIG. 3E).

(ステップS120)
次いで、高圧タンク成形用の金型90内に、編込んだプリプレグ3をセットする(図2のステップS120及び図3(B))。図3(B)に示すように、プリプレグ3は、円筒の軸方向一端側(図3では下側)が閉じ、軸方向他端側(図3では上側)が開口した開口部3a(後工程で口金が圧入される部分)を有する。なお、金型90の内径bの寸法は、プリプレグ3の外径A(図3(A))の寸法より大きく設定される。また、図3(B)〜(D)では、プリプレグ3の外周面と金型90の内周面との隙間の図示を省略している。
(Step S120)
Next, the knitted prepreg 3 is set in the mold 90 for forming a high-pressure tank (step S120 in FIG. 2 and FIG. 3B). As shown in FIG. 3B, the prepreg 3 has an opening 3a (post-process) in which one end of the cylinder in the axial direction is closed (lower side in FIG. 3) and the other end in the axial direction (upper side in FIG. 3) is opened. And the part into which the base is press-fitted. The dimension of the inner diameter b of the mold 90 is set to be larger than the dimension of the outer diameter A of the prepreg 3 (FIG. 3A). 3B to 3D, the illustration of the gap between the outer peripheral surface of the prepreg 3 and the inner peripheral surface of the mold 90 is omitted.

(ステップS130)
次いで、高圧タンク成形用の円筒状のパリソン2を金型90で挟み込む(図2のステップS130及び図3(C))。なお、プリプレグ3の開口部3aの内径c(図3(C))は、後工程で圧入される口金外周寸法e(図3(E))より大きく設定される。
(Step S130)
Next, the cylindrical parison 2 for molding a high-pressure tank is sandwiched between the molds 90 (step S130 in FIG. 2 and FIG. 3C). The inner diameter c (FIG. 3C) of the opening 3a of the prepreg 3 is set to be larger than the outer periphery dimension e (FIG. 3E) that is press-fitted in a subsequent process.

(ステップS140)
次いで、口金40(図3(E))を圧入できる寸法を確保するため、ガイド付き吹込部材91の吹込口91aからパリソン2内にエアーを吹込み、ブロー成形でライナーを形成する。このブロー成形によりライナーを形成すると同時に、ライナーの外周でプリプレグ3を押し広げることでテンションをかける。このブロー成形工程では、金型90に設けられた冷却部50に冷却水を通すことで、プリプレグ3の開口部3aの温度を下げる。このように開口部3aの温度を下げることにより、開口部3aが温められて硬化することを防ぐことができる。
(Step S140)
Next, air is blown into the parison 2 from the blowing port 91a of the blowing member 91 with guide, and a liner is formed by blow molding in order to secure a dimension capable of press-fitting the base 40 (FIG. 3E). At the same time that the liner is formed by this blow molding, tension is applied by spreading the prepreg 3 around the outer periphery of the liner. In this blow molding process, the temperature of the opening 3 a of the prepreg 3 is lowered by passing cooling water through the cooling unit 50 provided in the mold 90. Thus, by lowering the temperature of the opening 3a, the opening 3a can be prevented from being heated and cured.

なお、円筒形状のプリプレグ3の外径A(図3(A))は、金型90の内径b(図3(B))よりも小さく設定されているため、ブロー成形によって金型90内でプリプレグ3を押し広げることができる。また、図3(D)に示した金型90に設けられる冷却部50としては、冷却水を通すことに限定されず、開口部3aを冷却する機能を有していれば、例えば圧縮エアー(空冷)等の他の方法を選択することも可能である。   Note that the outer diameter A (FIG. 3A) of the cylindrical prepreg 3 is set smaller than the inner diameter b of the mold 90 (FIG. 3B), so that the inside of the mold 90 is blow molded. The prepreg 3 can be expanded. Moreover, as the cooling part 50 provided in the metal mold | die 90 shown in FIG.3 (D), it is not limited to let a cooling water pass, if it has the function to cool the opening part 3a, for example, compressed air ( It is also possible to select other methods such as air cooling.

(ステップS150)
次いで、円筒状のプリプレグ3の開口部3aに口金40を圧入する(図2のステップS150及び図3(E))。このとき、開口部3aの温度が下げられているため、開口部3a周辺の熱硬化性樹脂の硬化が抑えられ、口金40を開口部3aに容易に圧入することができる。そして、口金40の外周を炭素繊維で覆った後に、内径をテーパ形状とした所定のリング部材80で炭素繊維を口金40との間で挟上げ、テンションをかける。このようにリング部材80を用いてテンションをかけた状態で、該リング部材80と口金40を所定の接着剤(不図示)で接着し、リング部材80の上面より出ている口金40の上部をローラパンチ(不図示)で押しつぶし、リング部材80と口金40とを固定する。
(Step S150)
Next, the base 40 is press-fitted into the opening 3a of the cylindrical prepreg 3 (step S150 in FIG. 2 and FIG. 3E). At this time, since the temperature of the opening 3a is lowered, curing of the thermosetting resin around the opening 3a is suppressed, and the base 40 can be easily press-fitted into the opening 3a. Then, after covering the outer periphery of the base 40 with carbon fiber, the carbon fiber is pinched between the base 40 with a predetermined ring member 80 having an inner diameter tapered, and tension is applied. In a state where tension is applied using the ring member 80 in this way, the ring member 80 and the base 40 are bonded with a predetermined adhesive (not shown), and the upper portion of the base 40 protruding from the upper surface of the ring member 80 is attached. The ring member 80 and the base 40 are fixed by crushing with a roller punch (not shown).

(ステップS160)
最後に、タンク本体を加熱し、エポキシ樹脂を硬化させることで、ライナー20の外周を覆う繊維強化樹脂層30を備える高圧タンクが作成される。本実施形態における高圧タンクの製造方法では、ブロー成形後のライナー20の外径寸法d(図3(E))より小さい内径寸法a(図3(A))のプリプレグ3を準備して、その内部にパリソン2を配置してブロー成形するので、プリプレグ3に必要なテンションをかけることができる。
(Step S160)
Finally, the tank body is heated to cure the epoxy resin, thereby creating a high-pressure tank including the fiber reinforced resin layer 30 covering the outer periphery of the liner 20. In the method for manufacturing a high-pressure tank according to the present embodiment, a prepreg 3 having an inner diameter dimension a (FIG. 3 (A)) smaller than the outer diameter dimension d (FIG. 3 (E)) of the liner 20 after blow molding is prepared. Since the parison 2 is placed inside and blow-molded, necessary tension can be applied to the prepreg 3.

以上説明したように、本実施形態における高圧タンク1の製造方法では、円筒状に編込まれ、該円筒の軸方向一端側が閉じ、軸方向他端側が開口した開口部3aを有するプリプレグ3を準備する準備工程と、プリプレグ3を金型90に配置した後、パリソン2をプリプレグ3の内部に配置し、ブロー成形によりライナー20を形成するブロー成形工程と、ブロー成形工程後に、プリプレグ3の開口部3aに口金40を圧入する圧入工程と、を備え、ブロー成形工程では、プリプレグ3の開口部3aを冷却し、ブロー成形後のライナー20の外径寸法dが、準備されたプリプレグ3の内径寸法aよりも大きくなるようにブロー成形する。   As described above, in the method for manufacturing the high-pressure tank 1 according to the present embodiment, the prepreg 3 is prepared that has an opening 3a that is knitted into a cylindrical shape and that is closed at one end in the axial direction of the cylinder and open at the other end in the axial direction. The pre-preg 3 is placed in the mold 90, the parison 2 is placed inside the prepreg 3, and the liner 20 is formed by blow molding. After the blow-molding step, the opening of the prepreg 3 A press-fitting step of press-fitting the cap 40 into 3a. In the blow molding step, the opening 3a of the prepreg 3 is cooled, and the outer diameter d of the liner 20 after blow molding is the inner diameter of the prepared prepreg 3. Blow molding to be larger than a.

以上、具体例を参照しつつ本発明の実施形態について説明した。しかし、本発明はこれらの具体例に限定されるものではない。すなわち、これら具体例に、当業者が適宜設計変更を加えたものも、本発明の特徴を備えている限り、本発明の範囲に包含される。前述した各具体例が備える各要素およびその配置、材料、条件、形状、サイズなどは、例示したものに限定されるわけではなく適宜変更することができる。   The embodiments of the present invention have been described above with reference to specific examples. However, the present invention is not limited to these specific examples. In other words, those specific examples that have been appropriately modified by those skilled in the art are also included in the scope of the present invention as long as they have the characteristics of the present invention. Each element included in each of the specific examples described above and their arrangement, material, condition, shape, size, and the like are not limited to those illustrated, and can be appropriately changed.

1:高圧タンク
2:パリソン
3:プリプレグ
3a:開口部
20:ライナー
30:繊維強化樹脂層
40:口金
50:冷却部
80:リング部材
90:金型
1: high pressure tank 2: parison 3: prepreg 3a: opening 20: liner 30: fiber reinforced resin layer 40: base 50: cooling unit 80: ring member 90: mold

Claims (1)

炭素繊維強化樹脂層により補強されたライナーを有する円筒状の高圧タンクの製造方法であって、
円筒状に編込まれ、該円筒の軸方向一端側が閉じ、軸方向他端側が開口した開口部を有するプリプレグを準備する準備工程と、
前記プリプレグを金型に配置した後、パリソンを前記プリプレグの内部に配置し、ブロー成形により前記ライナーを形成するブロー成形工程と、
前記ブロー成形工程後に、前記プリプレグの前記開口部に口金を圧入する圧入工程と、を備え、
前記ブロー成形工程では、前記プリプレグの前記開口部を冷却し、前記ブロー成形後のライナーの外径寸法が前記準備された前記プリプレグの内径寸法よりも大きくなるようにブロー成形することを特徴とする高圧タンクの製造方法。
A method for producing a cylindrical high-pressure tank having a liner reinforced with a carbon fiber reinforced resin layer,
A preparation step of preparing a prepreg that is knitted into a cylindrical shape and has an opening in which one end in the axial direction of the cylinder is closed and the other end in the axial direction is opened;
After the prepreg is placed in a mold, a parison is placed inside the prepreg, and a blow molding step of forming the liner by blow molding;
A press-fitting step of press-fitting a base into the opening of the prepreg after the blow molding step;
In the blow molding step, the opening of the prepreg is cooled, and blow molding is performed so that the outer diameter of the liner after the blow molding is larger than the inner diameter of the prepared prepreg. Manufacturing method of high-pressure tank.
JP2016009606A 2016-01-21 2016-01-21 Manufacturing method of high-pressure tank Active JP6474052B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016009606A JP6474052B2 (en) 2016-01-21 2016-01-21 Manufacturing method of high-pressure tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016009606A JP6474052B2 (en) 2016-01-21 2016-01-21 Manufacturing method of high-pressure tank

Publications (2)

Publication Number Publication Date
JP2017129225A JP2017129225A (en) 2017-07-27
JP6474052B2 true JP6474052B2 (en) 2019-02-27

Family

ID=59396179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016009606A Active JP6474052B2 (en) 2016-01-21 2016-01-21 Manufacturing method of high-pressure tank

Country Status (1)

Country Link
JP (1) JP6474052B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05162191A (en) * 1991-12-11 1993-06-29 Toyota Motor Corp Production of frp blow molded product
JP5309872B2 (en) * 2008-10-15 2013-10-09 トヨタ自動車株式会社 Tank and tank manufacturing method
US8602250B2 (en) * 2009-05-04 2013-12-10 GM Global Technology Operations LLC Storage vessel and method of forming
JP5528725B2 (en) * 2009-06-01 2014-06-25 北陸エステアール協同組合 Container and container manufacturing method

Also Published As

Publication number Publication date
JP2017129225A (en) 2017-07-27

Similar Documents

Publication Publication Date Title
US7204903B2 (en) Pressure container manufacturing method
US10995909B2 (en) Hydrogen tank body and method of producing the same, and hydrogen tank and method of producing the same
JP2015501235A (en) Method for manufacturing composite pressure vessel and composite pressure vessel
US8932421B2 (en) Method of molding fiber-reinforced plastic hollow part
JP2001524898A (en) Apparatus, method and hollow body associated with forming plastic parts
KR20140021066A (en) High-pressure gas container and production method for high-pressure gas container
US8808480B2 (en) Flanged fiber-reinforced resin hollow part and method of molding the same
KR20200105663A (en) Fiber-reinforced resin bolt manufacturing method and fiber-reinforced resin bolt
JP2016183709A (en) High-pressure gas storage vessel and method of manufacturing the same
JP6915564B2 (en) How to manufacture high pressure tank
JP2019116926A (en) tank
JP6185356B2 (en) FRP molded product manufacturing method and mold
JPWO2021260953A5 (en)
JP2012052588A (en) Method for manufacturing pressure vessel, and pressure vessel
JP6474052B2 (en) Manufacturing method of high-pressure tank
JP5617344B2 (en) Manufacturing method and manufacturing system of resin molded body, resin molded body, pressure vessel
JP2017096308A (en) Manufacturing method of high pressure tank
JP6662283B2 (en) High pressure tank manufacturing method
JP2019108937A (en) Manufacturing method of high-pressure tank
JP6923578B2 (en) Pressure vessel
JP2018083391A (en) Method for manufacturing hydrogen tank
JP2017217787A (en) Manufacturing method of gas tank
US20220010928A1 (en) High pressure tank
US11654607B2 (en) Method for manufacturing high pressure tank
JP2019152310A (en) Method for manufacturing high-pressure tank

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180214

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181227

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190120

R151 Written notification of patent or utility model registration

Ref document number: 6474052

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151