JP6473935B2 - Dry sterilization method for processed fishery products - Google Patents

Dry sterilization method for processed fishery products Download PDF

Info

Publication number
JP6473935B2
JP6473935B2 JP2016132032A JP2016132032A JP6473935B2 JP 6473935 B2 JP6473935 B2 JP 6473935B2 JP 2016132032 A JP2016132032 A JP 2016132032A JP 2016132032 A JP2016132032 A JP 2016132032A JP 6473935 B2 JP6473935 B2 JP 6473935B2
Authority
JP
Japan
Prior art keywords
irradiation
boiled
dried
oysters
drying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016132032A
Other languages
Japanese (ja)
Other versions
JP2017000145A (en
Inventor
青木 秀敏
秀敏 青木
Original Assignee
青木 秀敏
秀敏 青木
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青木 秀敏, 秀敏 青木 filed Critical 青木 秀敏
Publication of JP2017000145A publication Critical patent/JP2017000145A/en
Application granted granted Critical
Publication of JP6473935B2 publication Critical patent/JP6473935B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Edible Seaweed (AREA)
  • General Preparation And Processing Of Foods (AREA)
  • Meat, Egg Or Seafood Products (AREA)

Description

本発明は、生の魚介類に光照射乾燥法を適用し、従来のボイル後乾燥したものに比べて、乾燥品の表面が飴色に変色し、呈味成分が1.1倍以上増加されて、かつ保存性も保たれた水産乾燥品に関するものである。  In the present invention, the light irradiation drying method is applied to raw fish and shellfish, and the surface of the dried product is changed to amber color and the taste component is increased by 1.1 times or more compared to the conventional dried product after boiling. Further, the present invention relates to a dried marine product that has been preserved.

カキ乾燥品として、むき身カキを原料にボイル後乾燥した蒸しカキ、ボイル・乾燥・燻製・乾燥工程を経た燻りかき、コンベクション調理器で炙って乾燥した炙りかきがある。しかし、ボイル時にカキの旨み成分が煮汁に溶出し、生カキに比べて美味しさにかけるという課題があった。  As dried oysters, there are steamed oysters that have been boiled and dried using raw oysters, boiled, dried, smoked, and dried after being boiled in a convection cooker. However, there was a problem that the umami component of oysters was eluted in the broth during boiling, and it was more delicious than fresh oysters.

むき身カキをボイルする目的は、洗浄だけでなく殺菌も兼ねており、ボイルしないで菌の増殖を抑えながらアミノ酸成分を大幅に増大させた乾燥法が開発されれば、美味しい牡蠣乾燥品を消費者に提供することができる。  The purpose of boiling boiled oysters is not only for cleaning but also for sterilization. If a drying method is developed that significantly increases the amino acid component while suppressing the growth of bacteria without boiling, consumers can produce delicious dried oysters. Can be provided.

牡蠣だけでなく同様なことが、ホタテ、アワビ,ホヤを含む貝類、ワカメ、昆布を含む海藻類、ナマコを含む棘皮動物(きょくひどうぶつ)、ホヤを含む脊椎動物(せきついどうぶつ)等にもあてはまり、これらはボイル後乾燥されている。一方、海中を泳ぐ魚、例えばイカ、アジ、サンマ等はボイルしないで乾燥している。水産加工する際の原材料の汚れ、貝むき加工のしやすさ、殺菌、見栄え等を考慮して、ボイルしてから乾燥するか、水洗だけですぐ乾燥するかのいずれかの方法がとられている。  The same applies not only to oysters, but also to shellfish including scallops, abalone, sea squirts, seaweed including seaweed, kelp, echinoderms including sea cucumbers, vertebrates including sea squirts, etc. These are dried after boiling. On the other hand, fish swimming in the sea, such as squid, horse mackerel, saury, etc., are dried without boiling. Taking into account the contamination of raw materials when processing fishery products, ease of shelling, sterilization, appearance, etc., either boil and dry, or just dry with water only. Yes.

発明者は水産物または農産物の乾燥時もしくは加温時にUV−A域の紫外線を照射してアミノ酸量を増大させる方法を提案している。実施例として、イカ、カツオ、アワビ、椎茸、米菓に照射してアミノ酸量が増大したことを報告している。(例えば、特許文献1参照)  The inventor has proposed a method for increasing the amount of amino acids by irradiating ultraviolet rays in the UV-A region during drying or warming of marine products or agricultural products. As an example, squid, skipjack, abalone, shiitake mushrooms and rice crackers were irradiated and reported to have increased amino acid content. (For example, see Patent Document 1)

発明者は青緑色光(波長域450〜560nm)を海藻に照射することにより、アミノ酸の前駆物質であるペプチドやグルタミン酸が増加して旨みが増強され、さらに緑色を保ち、風味と栄養価に優れた乾燥海藻の製造法を提案している。(例えば、特許文献2参照)  The inventor irradiates seaweed with blue-green light (wavelength range 450 to 560 nm) to increase the peptide and glutamic acid precursors of amino acids to enhance the umami, further maintain the green color, and have excellent flavor and nutritional value. A method for producing dried seaweed is proposed. (For example, see Patent Document 2)

発明者は農産物または水産物または畜産物のいずれかの食材の乾燥もしくは加工工程で、中心波長域450nmの青LEDもしくは中心波長域350nmのUV−A・LEDの光を照射し、抗酸化性物質含量もしくはGABA含量もしくはカテキン含量もしくはヌクレオチド含量を増大させる方法を提案している。(例えば、特許文献3参照)  The inventor irradiates a blue LED having a central wavelength range of 450 nm or a UV-A / LED having a central wavelength range of 350 nm in the drying or processing process of any food product of agricultural products, fishery products or livestock products, and has an antioxidant content. Alternatively, a method for increasing the GABA content, catechin content or nucleotide content is proposed. (For example, see Patent Document 3)

UV−A、UV−B、UV−Cの3種類の紫外線の中でUV−Cに殺菌効果があることは知られている。殺菌光源として、中心波長域254nmの殺菌線を放射する殺菌灯が販売されている。水産加工の場合、一度に大量の魚介類を処理しなければならず、洗浄も兼ねて魚介類を沸騰水中に入れて殺菌するか蒸気で魚介類を殺菌するかのいずれかで、殺菌灯を用いている場合はほとんどない。  It is known that UV-C has a bactericidal effect among the three types of UV-A, UV-B, and UV-C. As a sterilization light source, a sterilization lamp that emits a sterilization line having a central wavelength range of 254 nm is sold. In the case of aquatic processing, a large amount of seafood must be processed at once, and the sterilization lamp must be turned on either by sterilizing the seafood in boiling water or by sterilizing the seafood with steam. It is rarely used.

殺菌効果が極めて低いと考えられているUV−A域の紫外線殺菌に関して、360〜380nmの波長領域で、300mW/cm以上の強いUV−Aを照射すると、空気が優れた殺菌力を有する状態となり、この空気がUV−Aの直接照射されない部分においても、殺菌効果を有することを示し,大腸菌の殺菌率は30分後で100%と優れているという報告もある。(例えば、特許文献4参照)Regarding UV sterilization in the UV-A region, which is considered to have a very low sterilizing effect, the state where air has an excellent sterilizing power when irradiated with a strong UV-A of 300 mW / cm 2 or more in a wavelength region of 360 to 380 nm. Thus, even in a portion where this air is not directly irradiated with UV-A, it shows that it has a bactericidal effect, and there is a report that the bactericidal rate of Escherichia coli is excellent at 100% after 30 minutes. (For example, see Patent Document 4)

特許文献4の殺菌装置は、大容量のUV−Aを照射する大量のLED光源からなる。サンプルとの照射距離がわずか2cmであり、しかも300mW/cm以上と屋外の太陽光の350倍以上の強いUV−Aを照射するためのLED素子を必要とするが、広い面積にこのような強力なUV−A照射する光源は実現不可能であり、実験室で少量のサンプルに照射するアイデアとしては良いが、現実的には水産加工の現場に適用するのには不可能である。そのため、それに代わる大量の魚介類を殺菌できる新しい方法が望まれる。The sterilization apparatus of Patent Document 4 includes a large amount of LED light sources that irradiate a large volume of UV-A. Although the irradiation distance with the sample is only 2 cm and more than 300 mW / cm 2 , it requires an LED element for irradiating UV-A that is 350 times stronger than outdoor sunlight, A light source for irradiating a powerful UV-A is not feasible, and it is an idea to irradiate a small amount of sample in a laboratory, but it is practically impossible to apply to a field of fishery processing. Therefore, a new method capable of sterilizing a large amount of seafood instead of it is desired.

特開2002−142665公報JP 2002-142665 A 特開2005−245292公報JP 2005-245292 A 特許第5707623号Japanese Patent No. 5707623 特許第4771402号Japanese Patent No. 4771402

なしNone

牡蠣やホタテを含む魚介乾燥品を製造する際、まず洗浄と殺菌を兼ねてボイルしている。しかしボイル時に旨み成分が煮汁に溶出し、生鮮物に比べて美味しさにかけるという課題があった。北海道の干し貝柱製造に発生する煮汁は濃縮され、ラーメン等の調味液に利用されている程、煮汁には大量の旨み成分が含まれている。そこで、発明者のUV−A照射乾燥法(特許文献1)を採用し、「ボイル工程」をなくすことにより、「魚介類の旨みを損なうことなく製品化」が出来るだけでなく、UV−A照射により魚介類に含まれている「アミノ酸」が増加し、ボイル魚介乾燥品より、旨味成分が格段に増加したノンボイル魚介乾燥品が製造できれば、様々な食材に利用できる。  When producing dried seafood containing oysters and scallops, they are first boiled for both cleaning and sterilization. However, there is a problem that the umami component is dissolved in the broth during boiling and is more delicious than fresh food. The boiled soup produced in the production of dried scallops in Hokkaido is concentrated, and so much is used in seasoning liquids such as ramen. Therefore, by adopting the inventor's UV-A irradiation drying method (Patent Document 1) and eliminating the “boil process”, not only can “commercialize without losing the taste of seafood” but also UV-A. If the “amino acids” contained in the seafood are increased by the irradiation and the dried non-boiled seafood with significantly increased umami components can be produced from the dried boiled seafood, it can be used for various foods.

魚介類の乾燥の際にUV−A照射する温度は酵素活性を考え、25〜35℃と考えられる。その状態は含水率が高く、水分活性値も高く、菌が増殖する可能性が高い。そこで、どの程度のUV−A照射条件であれば、菌が増殖しないか、最適UV−A照射条件を求める必要がある。The temperature at which UV-A is irradiated during drying of seafood is considered to be 25 to 35 ° C. in consideration of enzyme activity. In this state, the moisture content is high, the water activity value is also high, and there is a high possibility that the bacteria will grow. Therefore, it is necessary to determine the optimum UV-A irradiation condition to determine how much UV-A irradiation condition the bacteria will not grow.

魚介類のボイル時に旨み成分が煮汁に溶出するだけでなく、例えば牡蠣の場合表面の色も退色し、生鮮品に比べて見栄えが悪くなる課題があった。ホタテの場合は色の退色と肉質の膨潤が生じ、食感が悪くなる課題があった。  Not only does the umami component elute into the broth when boiling seafood, but the surface color of the oysters, for example, fades, resulting in a poorer appearance than fresh products. In the case of scallops, there has been a problem that the color fading and the fleshy swelling occur and the texture becomes worse.

本発明はこのような課題に着目してなされたもので、殺菌効果が十分に発現されるUV−A照射乾燥条件を見つけ、ボイル工程を不要とすることにより、ボイル前の成分が保持され、見栄えと食感が向上したノンボイル乾燥品を製造することである。The present invention has been made paying attention to such problems, find the UV-A irradiation drying conditions that sufficiently exhibit the bactericidal effect, by eliminating the boil process, the component before boil is retained, It is to produce a non-boiled dry product with improved appearance and texture .

発明者は上記課題を解決するために、鋭意研究を重ねた結果、ボイルしない生の魚介類の乾燥工程にUV−Aの紫外線を照射することで、牡蠣の場合は得られる乾燥物の色調を濃く飴色にすることができること、ホタテの場合は肉質構造が平たい平滑状となることを見いだした。しかも、屋外の太陽光と同程度の弱いUV−A照射強度でも、得られた乾燥物の保存性が増し、殺菌しないノンボイルでもUV−A照射を行うことで十分保存性が保たれることも見いだした。本発明者は、これらの予想外の新知見に基づき、さらに鋭意研究を重ね、本発明を完成させるに至った。  As a result of intensive studies to solve the above problems, the inventor irradiates UV-A ultraviolet rays in the drying process of raw fish and shellfish that are not boiled. It was found that it can be darkened and darkened, and in the case of scallops, the flesh structure is flat and smooth. Moreover, even when the UV-A irradiation intensity is as weak as that of outdoor sunlight, the storage stability of the obtained dried product is increased, and even when the non-boil that is not sterilized is irradiated with UV-A, the storage stability can be sufficiently maintained. I found it. Based on these unexpected new findings, the present inventor has further conducted intensive studies and completed the present invention.

本発明は、上記の課題を解決するために以下の発明を包含する。
(1)ボイル工程に代えて、波長域315nm〜430nmで照射強度1.05mW/cm 以上のUV−Aを照射しながら、0.37m/s以上の風速で水分活性値が所望の値まで乾燥した水産乾燥品であって、色彩色差計による測定で、従来のボイル乾燥品に比べて、表面の色調において、明度Lの平均値L=14.84、色度aの平均値a=3.53、色度bの平均値b=12.07で規定される範囲の濃い黄褐色の飴色に変色していることを特徴とするノンボイル牡蠣乾燥物。
(2)ボイル工程に代えて、波長域315nm〜430nmで照射強度1.05mW/cm 以上のUV−Aを照射しながら、0.37m/s以上の風速で水分活性値が所望の値まで乾燥した水産乾燥品であって、レオメーターによる測定で、従来のボイル乾燥品に比べて、もろさ、凝集性、弾力性およびガム性が減少し、もろさと凝集性と弾力性から求まるそしゃく性が小さいことを特徴とする水産乾燥品。
The present invention includes the following inventions in order to solve the above problems.
(1) Instead of the boil process , the water activity value reaches a desired value at a wind speed of 0.37 m / s or more while irradiating UV-A having an irradiation intensity of 1.05 mW / cm 2 or more in a wavelength range of 315 nm to 430 nm. It is a dried marine product , and as measured by a color difference meter, the average value L of lightness L = 14.84 and the average value a of chromaticity a = 3 in the color tone of the surface compared to the conventional boiled product. .53, a non-boiled oyster dried product, which is discolored into a dark yellowish brown amber color in a range defined by an average value b of chromaticity b = 12.07 .
(2) In place of the boil process , the water activity value reaches a desired value at a wind speed of 0.37 m / s or more while irradiating UV-A having an irradiation intensity of 1.05 mW / cm 2 or more in a wavelength range of 315 nm to 430 nm. It is a dried marine product that has less brittleness, agglomeration, elasticity and gum than conventional boiled products, as measured by a rheometer, and has a chewy property determined from brittleness, agglomeration and elasticity. Marine dried product characterized by being small .

(3)水産物がホタテ、牡蠣、あわびを含む貝類、ワカメ、昆布を含む海藻類、ナマコを含む棘皮動物(きょくひどうぶつ)、ホヤを含む脊椎動物(せきついどうぶつ)、いか、たこを含む頭足類、えび、かにを含む甲殻類、あじ、いわしを含む魚類であることを特徴とする請求項2に記載の水産乾燥品。
(4)乾燥機に水産物を入れる工程と、
水産物の表面に0.37m/s以上の風を送風する工程と、
水産物の表面に波長域315nm〜430nmで照射強度1.05mW/cm 以上のUV−Aを照射する工程と、
水分活性値が所望の値までUV−A照射乾燥する工程と、
を含み、ボイル工程を不要としたことを特徴とする水産加工品の乾燥殺菌方法。
(3) Shellfish including scallops, oysters, abalone, seaweed including seaweed, seaweed including seaweed, echinoderms including sea cucumbers, vertebrates including sea squirts, squids, crests including octopus The dried marine product according to claim 2, which is a crustacean including shrimp, shrimp, crab, and fish including horse mackerel and sardine .
(4) a step of putting marine products into the dryer;
Blowing air of 0.37 m / s or more on the surface of the seafood;
Irradiating the surface of the seafood with UV-A having an irradiation intensity of 1.05 mW / cm 2 or more in a wavelength range of 315 nm to 430 nm;
A step of drying by UV-A irradiation until the water activity value reaches a desired value;
A method for drying and sterilizing processed fishery products, characterized in that it does not require a boil process.

本発明により、従来のボイル後乾燥したものに比べて、牡蠣の場合は表面の色調の濃い飴色の乾燥物が、ホタテの場合は肉質構造が平たい平滑状の乾燥物が得ることができる。また、水産物をボイルすることにより、魚肉は硬く収縮し、収縮することによりアミノ酸等の呈味成分が含まれるエキス分が流出する現象が起きるが、本方式のボイルを行わないで直接乾燥する際に光照射を行うことにより、煮汁に呈味成分が流出しないのでボイル前の成分が保持され、かつ従来のボイル後乾燥したものに比べて呈味成分が1.1倍以上増加されている乾燥物が得ることができる。ボイルしないことにより、乾燥しても肉質が柔らかく、そしゃく性等の食感の評価も高く、官能評価でも本来の味がして、おいしいと言われる水産加工品ができる。さらに乾燥過程でUV−A照射を行うことにより殺菌効果が発現され、乾燥後も菌が増殖しなく保存性が保たれた水産加工品ができる。  According to the present invention, an amber-colored dried product having a dark surface color can be obtained in the case of oysters, and a smooth dried product having a flat meat structure can be obtained in the case of scallops, as compared with a conventional product dried after boiling. In addition, the fish meat contracts hard by boiling the fishery product, and the phenomenon that the extract containing the taste components such as amino acids flows out by contraction occurs, but when drying directly without boiling this method By irradiating with light, the taste component does not flow out into the broth so that the component before boiling is retained, and the taste component is increased by 1.1 times or more compared to the conventional dried product after boiling Things can be obtained. By not boiling, the meat quality is soft even after drying, and the texture such as mastication is highly evaluated. Furthermore, by performing UV-A irradiation in the drying process, a bactericidal effect is expressed, and after the drying, a processed fishery product in which the bacteria do not grow and the storability is maintained can be obtained.

本発明は、ボイルしない生の魚介類の乾燥工程にUV−Aの紫外線を照射することで煮汁に呈味成分が流出せず、呈味成分が保持され、かつ殺菌効果で保存性も良い乾燥物を得ることができる。  The present invention does not boil the raw fish and shellfish that are not boiled by irradiating UV-A ultraviolet rays, so that the taste components do not flow out to the broth, the taste components are retained, and the sterilization effect is good and the storability is good. You can get things.

本発明で用いられる魚介類としては、乾燥前にボイルする魚介類であれば特に制限はない。例えば、あさり、はまぐり、しじみ、ほたて、かき、あわび、さざえなどの貝類、いか、たこなどの頭足類、えび、かに、おきあみなどの甲殻類、なまこなどの棘皮動物、ホヤなどの脊椎動物、わかめ、昆布、もずく、海苔、ひじき、まつもなどの海藻類、あじ、いわし、かつお、こまい、さば、たら、にしん、まぐろ、はたはたなどの魚類が挙げられる。  The seafood used in the present invention is not particularly limited as long as it is boiled before drying. For example, clams such as clams, clams, shijimi, scallops, oysters, abalone, and horsetails, craniopods such as squid, octopus, crustaceans such as shrimp, crab, octopus, etc. Examples include seaweed such as animals, seaweed, kelp, mozuku, seaweed, hijiki, and pine, fish such as horse mackerel, sardine, bonito, sweet potato, mackerel, tara, herring, tuna, and sea bream.

本発明では、従来乾燥工程前にボイル・煮沸工程をとる魚介類が対象であるが、ボイル工程には、沸騰水に入れる方式や蒸気を吹きかけるスチーム方式などがあるが、ボイル工程に特に制限はない。一般にボイルすると酵素が失活しUV−A照射効果は消滅すると言われるが、ボイルしない状態で乾燥過程中にUV−A照射することにより、色調を良くし、旨みを増加させ、肉質を柔らかくして、さらに殺菌効果により保存性を上げることが本発明の根幹であるので、その乾燥工程を経た乾燥物にマイナーなボイル工程をとった乾燥物も本発明の対象となる。  In the present invention, fish and shellfish that have been boiled and boiled before the conventional drying process are targets, but the boil process includes a method of putting in boiling water and a steam method of spraying steam, but there are no particular restrictions on the boil process. Absent. In general, it is said that when boiled, the enzyme is deactivated and the UV-A irradiation effect disappears. However, irradiation with UV-A during the drying process without boiling improves the color tone, increases umami, and softens the meat quality. Further, since it is the basis of the present invention to further improve the storage stability due to the bactericidal effect, a dried product obtained by taking a minor boil process on the dried product that has undergone the drying process is also an object of the present invention.

本発明では、水産乾燥品製造工程において、ボイルしない魚介類にUV−A域の紫外線を照射する。本発明で用いられるUV−A域の紫外線の波長の範囲としては、300〜430nmであり、好ましくは315〜380nmに中心波長があるのが望ましい。UV−A域の紫外線の照射強度は特に制限はなく、好ましくは0.2mW/cm以上、より好ましくは0.6mW/cm以上、さらに好ましくは1.0mW/cm以上である。乾燥温度は低温の方が望ましく、好ましくは30℃以下、より好ましくは25℃以下である。本発明のUV−A域の紫外線では、UV−A域の紫外線以外の他の波長の光線、例えば、UV−A以外の紫外線又は各波長の可視光線との併用でも良い。In the present invention, in the marine dry product manufacturing process, the seafood that is not boiled is irradiated with ultraviolet rays in the UV-A region. The wavelength range of the ultraviolet light in the UV-A region used in the present invention is 300 to 430 nm, preferably a center wavelength of 315 to 380 nm. There is no restriction | limiting in particular in the irradiation intensity | strength of the ultraviolet-ray of a UV-A area, Preferably it is 0.2 mW / cm < 2 > or more, More preferably, it is 0.6 mW / cm < 2 > or more, More preferably, it is 1.0 mW / cm < 2 > or more. The drying temperature is desirably lower, preferably 30 ° C. or lower, more preferably 25 ° C. or lower. The ultraviolet ray in the UV-A region of the present invention may be used in combination with a light beam having a wavelength other than the ultraviolet ray in the UV-A region, for example, an ultraviolet ray other than UV-A or a visible light having each wavelength.

本発明における照射とは、UV−A域の紫外線を発生する装置を用い、魚介類の表面に照射することを指す。UV−A域の紫外線の発生装置は、UV−A域の紫外線を発生する装置であれば特に制限はないが、例えば、UV−A域の紫外線を発生する蛍光管やLEDなどが挙げられる。  Irradiation in the present invention refers to irradiating the surface of fish and shellfish using an apparatus that generates ultraviolet rays in the UV-A range. The UV-A range ultraviolet ray generator is not particularly limited as long as it is a device that generates UV-A range ultraviolet rays, and examples thereof include fluorescent tubes and LEDs that generate UV-A range ultraviolet rays.

以下に本発明を実施例で説明するが、これは本発明を単に説明するだけのものであって、本発明を限定するものではない。  The present invention will now be described by way of examples, which are merely illustrative of the invention and do not limit the invention.

<ノンボイルホタテの評価>
生ホタテを蒸し器で10分間ボイルした後に、取り出して冷却する。冷却されたボイルホタテを木製の乾燥機(縦650mm,横940mm、長さ1500mm)に入れ、25℃の設定温度で15時間乾燥を行い、ボイルホタテ非照射乾燥物を製造した。もう一方のサンプルとして、ホタテをボイルせず、そのまま同じ木製の乾燥機に入れてUV−A域の紫外線を照射する光源により同様な25℃の設定温度で15時間UV−A照射乾燥を行い、ノンボイルUV−A照射ホタテ乾燥物を製造した。UV−A照射強度は1.05mW/cmである。図1はボイルしたホタテおよびボイルしないホタテを実験材料にして、UV−Aを照射しない非照射の場合、UV−Aを照射した場合の17種類の遊離アミノ酸総量を示し、アミノ酸量に及ぼす光照射の影響を示した結果である。ボイルさせたホタテに紫外線UV−Aを照射しても紫外線UV−Aを照射しない場合と比べてアミノ酸総量はほとんど増えていない。これは沸騰により酵素が失活したためではないかと考えられる。
<Evaluation of non-boiled scallops>
Boil raw scallops in a steamer for 10 minutes, then remove and cool. The cooled boiled scallop was placed in a wooden dryer (length: 650 mm, width: 940 mm, length: 1500 mm) and dried at a set temperature of 25 ° C. for 15 hours to produce a non-irradiated dried boiled scallop. As another sample, do not boil the scallop, put it in the same wooden dryer as it is, and perform UV-A irradiation drying at the same setting temperature of 25 ° C. for 15 hours with a light source that irradiates UV-A region ultraviolet rays, A non-boiled UV-A irradiated scallop dried product was produced. The UV-A irradiation intensity is 1.05 mW / cm 2 . FIG. 1 shows the total amount of 17 kinds of free amino acids when boiled scallops and non-boiled scallops are used as experimental materials, when UV-A is not irradiated, and when UV-A is irradiated. It is the result which showed the influence of. The total amino acid amount is hardly increased when the boiled scallop is irradiated with the ultraviolet ray UV-A as compared with the case where the ultraviolet ray UV-A is not irradiated. This may be because the enzyme was deactivated by boiling.

非照射乾燥の条件でボイルとノンボイルを比較すると、ボイルすることによりホタテの旨味成分が煮汁に溶出し、ノンボイルホタテの65%程度しかアミノ酸量が含まれていない。このように、ボイルすることにより35%とかなりの量のアミノ酸が流出していることが明らかになった。  When boil and non-boil are compared under non-irradiation drying conditions, the scallop umami component is eluted in the broth by boiling, and only about 65% of the non-boiled scallop contains amino acid. As described above, it was revealed that a considerable amount of amino acid of 35% was discharged by boiling.

ホタテをボイルせず、生のまま(ノンボイル)のホタテに1.05mw/cmのUV−Aを照射したホタテのアミノ酸含量はUV−Aを照射しないホタテの場合に比べて1.26倍増加した。このようなUV−A照射によるホタテのアミノ酸増加については、発明者の特許文献にも書かれていることである。The amino acid content of scallops irradiated with 1.05 mw / cm 2 of UV-A on raw (non-boiled) scallops without boiling scallops increased by 1.26 times compared to scallops without UV-A irradiation did. Such an increase in scallop amino acids by UV-A irradiation is also described in Patent Document 1 of the inventor.

図2と図3はボイルしたホタテにUV−A照射乾燥した乾燥物とUV−A照射しない非照射乾燥した乾燥物の表面性状を写真で表したものである。色彩色度計で測定した彩度a(+赤色 → ―緑色)b(+黄色 → ―青)明度Lの平均値はUV−A照射乾燥の場合、L=1.53、a=0.306、b=0.703,非照射乾燥の場合 L=2.12、a=0.08、b=0.59である。識別できる色の差いわゆる色差はΔE=0.64の値で、肉眼で識別出来る色差ΔEは1.5以上と言われており、UV−A照射によって、見栄えの変化はほとんどわからない。  2 and 3 are photographs showing the surface properties of a dried product obtained by UV-A irradiation drying on a boiled scallop and a non-irradiation dried product which is not irradiated with UV-A. Saturation a (+ red → -green) b (+ yellow → -blue) average values of brightness L measured with a colorimeter are L = 1.53 and a = 0.306 in the case of UV-A irradiation drying. , B = 0.703, non-irradiation drying L = 2.12, a = 0.08, b = 0.59. The color difference that can be discriminated is a value of ΔE = 0.64, and the color difference ΔE that can be discerned with the naked eye is said to be 1.5 or more, and the change in appearance is hardly recognized by UV-A irradiation.

図4と図5はボイルしないノンボイルホタテにUV−A照射乾燥した乾燥物とUV−A照射しない非照射乾燥した乾燥物の表面性状を同様に写真で表したものである。色彩色度計で測定した彩度a(+赤色 → ―緑色)b(+黄色 → ―青) 明度Lの平均値はUV−A照射乾燥の場合、L=2.4、a=0.173、b=0.406非照射乾燥の場合、L=1.73、a=0.196、b=0.346である。識別できる色の差いわゆる色差はΔE=0.67の値で、肉眼で識別出来る色差 ΔEは 1.5以上と言われており、UV−A照射によって、見栄えの変化はほとんどわからない値であるが、UV−A照射の方が、透明感のある黄褐色から濃い黄褐色へと、飴色が濃くなっている。  4 and 5 are photographs showing the surface properties of a dried product obtained by UV-A irradiation drying on a non-boiled scallop that is not boiled and a dried product obtained by non-irradiation drying without UV-A irradiation. Saturation a (+ red->-green) b (+ yellow->-blue) measured with a color chromaticity meter The average value of the brightness L is L = 2.4, a = 0.173 in the case of UV-A irradiation drying. In the case of non-irradiation drying, b = 0.406, L = 1.73, a = 0.196, and b = 0.346. Color difference that can be discriminated The so-called color difference is a value of ΔE = 0.67, and the color difference ΔE that can be discerned with the naked eye is said to be 1.5 or more, and the change in appearance by UV-A irradiation is almost unknown. In the UV-A irradiation, the amber color is darker from a transparent yellowish brown color to a deep yellowish brown color.

図6と図7はボイルホタテとノンボイルホタテの表面を光学顕微鏡で写した写真である。また図8と図9は、サンプル表面からの反射光を検出器で受光する方式の白色光共焦点顕微鏡を用いてボイルホタテとノンボイルホタテの表面をより高倍率で写した写真である。ボイルホタテ乾燥品とノンボイルホタテ乾燥品を比べると、UV−A照射の有無に係わらず、ボイルしたホタテの場合、ボイルすることにより肉質が膨張し、乾燥することによりその形状で固まり、空隙があり、ふっくらした構造であることが図6と図8から読み取れる。そのため噛んだ際に口の中でサクサクと噛み砕かれる。一方、ノンンボイルホタテ乾燥品の場合、乾燥するにつれて生肉が収縮するだけであるので、薄く平滑状構造であることが図7と図9から読み取れる。このようにボイルとノンボイルとでは、肉質構造がかなり異なっている。しかしボイル、ノンボイルいずれの場合もUV−A照射と非照射のUV−A照射方法の違いによる肉質構造の変化はみられない。  6 and 7 are photographs obtained by copying the surface of boiled scallop and non-boiled scallop with an optical microscope. FIGS. 8 and 9 are photographs showing the surface of boiled scallop and non-boiled scallop at a higher magnification using a white light confocal microscope in which reflected light from the sample surface is received by a detector. Comparing the dried boiled scallops and the dried non-boiled scallops, with or without UV-A irradiation, in the case of boiled scallops, the boiled scallop expands the meat quality, and when dried, it solidifies in its shape and voids It can be seen from FIGS. 6 and 8 that there is a plump structure. Therefore, when it bites, it is chewed in the mouth. On the other hand, in the case of dried non-boiled scallops, the raw meat only shrinks as it dries, so it can be seen from FIGS. 7 and 9 that the structure is thin and smooth. Thus, the meat structure is quite different between voile and non-boil. However, in both the boiled and non-boiled cases, there is no change in the flesh structure due to the difference between the UV-A irradiation method and the non-irradiation UV-A irradiation method.

<ノンボイル牡蠣の評価>
(1)色調の評価
従来品の蒸し牡蠣は、牡蠣をスチームコンベクションオーブン(蒸気加熱器)により蒸気で蒸すことにより製造される。そこで、生牡蠣を蒸し器で10分間ボイルした後に、取り出して冷却する。冷却されたボイルホ牡蠣を電気食品乾燥機(大紀産業(株)製:MiniII)に入れ、ダンパー▲5▼の状態で25℃の設定温度で15時間乾燥を行い、ボイル牡蠣非照射乾燥物を製造した。もう一方のサンプルとして、牡蠣をボイルせず、そのまま電気食品乾燥機に入れてUV−A域の紫外線を照射する光源により同様な条件のダンパー▲5▼の状態で25℃の設定温度で15時間UV−A照射乾燥を行い、ノンボイルUV−A照射牡蠣乾燥物を製造した。UV−A照射強度は1.05mW/cmである。
図10はボイルしない生牡蠣をUV−A照射乾燥したノンボイル牡蠣乾燥物表面形状を、ボイル後乾燥した従来品の蒸し牡蠣を比較して示したものである。従来品の蒸し牡蠣に比べてノンボイルUV−A照射乾燥牡蠣の方が、薄い黄褐色から濃い黄褐色へと飴色が濃くなっている。約3週間天日干しした牡蠣の表面性状を図11に示す。UV−A照射乾燥牡蠣は天日干し程濃くなく、見栄えが良くなっている。飴色に変色するのは紫外線による影響と考えられる。
<Evaluation of non-boiled oysters>
(1) Evaluation of color tone Conventional steamed oysters are produced by steaming oysters with steam in a steam convection oven (steam heater). Therefore, the raw oysters are boiled for 10 minutes with a steamer and then taken out and cooled. The cooled boiled oysters are put into an electric food dryer (manufactured by Daiki Sangyo Co., Ltd .: Mini 2 II) and dried at a set temperature of 25 ° C. for 15 hours in the state of a damper (5). Manufactured. As another sample, do not boil the oyster, put it in an electric food dryer as it is, and irradiate ultraviolet rays in the UV-A range with the same condition of damper (5) at a set temperature of 25 ° C. for 15 hours. UV-A irradiation drying was performed to produce a dried non-boiled UV-A irradiated oyster. The UV-A irradiation intensity is 1.05 mW / cm 2 .
FIG. 10 shows the surface shape of a dried non-boiled oyster obtained by drying a non-boiled raw oyster by UV-A irradiation and a comparison with a conventional steamed oyster dried after boiling. Compared with the conventional steamed oyster, the non-boiled UV-A irradiated dry oyster has a darker color from light tan to dark tan. FIG. 11 shows the surface properties of the oysters sun-dried for about 3 weeks. UV-A-irradiated dried oysters are not as thick as sun-dried and look good. The discoloration is considered to be due to ultraviolet rays.

図10に示したボイルしない生牡蠣をUV−A照射乾燥したノンボイル牡蠣乾燥物表面形状とボイル後乾燥した従来品の蒸し牡蠣の色調を色彩色度計で測定した結果を図12に示す。色彩色度計で測定した彩度a(+赤色 → ―緑色)、b(+黄色 → ―青) 明度Lの23カ所の平均値は、U UV−A照射乾燥の場合、L=14.84、a=3.53、b=12.07で、一方のボイル蒸し牡蠣の場合、L=12.91、a=4.09、b=9.91である。識別できる色の差いわゆる色差はΔE=2.95の値ある。肉眼で識別出来る色差ΔEは 1.5以上、著しく異なると識別できる色差ΔEは3.0以上と言われており、従来品の蒸し牡蠣に比べて、ノンボイルUV−A照射乾燥牡蠣の方が、薄い黄褐色から濃い黄褐色へと飴色が濃くなっていると誰の目にも識別できることは明白である。  FIG. 12 shows the results of measuring the surface shape of a dried non-boiled oyster obtained by UV-A irradiation drying of the unboiled raw oyster shown in FIG. 10 and the color tone of a conventional steamed oyster dried after boiling with a colorimeter. Saturation a (+ red → -green), b (+ yellow → -blue) measured with a color chromatometer The average value of 23 brightness L points is L = 14.84 in the case of U UV-A irradiation drying. A = 3.53, b = 12.07, and in the case of one boiled steamed oyster, L = 12.91, a = 4.09, b = 9.91. The color difference that can be discriminated, the so-called color difference has a value of ΔE = 2.95. The color difference ΔE that can be identified with the naked eye is 1.5 or more, and the color difference ΔE that can be identified as being significantly different is said to be 3.0 or more. Compared to the conventional steamed oyster, the non-boiled UV-A irradiated dry oyster is It is clear that anyone can distinguish a dark blue color from light tan to dark tan.

牡蠣が飴色に変色したことは、褐変反応をUV−A照射が促進させたと考えられる。農産物の褐変については、りんごの切り口がりんごに含まれる酵素ポリフェノールオキシダーゼによって、ポリフェノールが酸化し、褐色物質ができる酵素的褐変が知られている。一方水産物の褐変については、魚肉の結合肉や赤身魚の普通肉に含まれる色素タンパク質ミオグロビンが酸素の結合によりメトミオグロビンになることで褐色になるメト化が知られている。メト化は鮮度低下や−20℃のような温度帯で保存した場合に魚肉の色調が鮮やかな赤色から褐色に変化する現象である。
牡蠣が飴色に変色したことは、鮮魚のメト化も考えられないこともないが、アミノ酸由来のアミノ基と糖由来のカルボニル基の共存で起こる非酵素的褐変であるメイラード反応が紫外線によって促進されたと考えられる。図11に示した約3週間天日干しした牡蠣の表面がUV−A照射乾燥物以上に濃い飴色に変色していることが、その現象を裏付けている。
The fact that the oysters turned dark blue is considered to have promoted the browning reaction by UV-A irradiation. Regarding browning of agricultural products, enzymatic browning is known in which polyphenols are oxidized by the enzyme polyphenol oxidase contained in apples at the cut end of apples to produce brown substances. On the other hand, with regard to browning of marine products, it is known that chromogenic protein myoglobin contained in fish-bound meat and red fish normal meat becomes brown as a result of oxygen-binding to metmyoglobin. Methification is a phenomenon in which the color of fish meat changes from bright red to brown when stored in a temperature range such as a decrease in freshness or at −20 ° C.
The fact that oysters changed to amber color is not unlikely to be a viable fish, but the Maillard reaction, which is a non-enzymatic browning caused by the coexistence of amino groups derived from amino acids and carbonyl groups derived from sugars, was promoted by ultraviolet rays. It is thought. The fact that the surface of the oysters sun-dried for about 3 weeks shown in FIG. 11 has turned darker than the UV-A-irradiated dry matter supports the phenomenon.

(2)呈味成分の評価
生牡蠣を原料に製作したノンボイルUV−A照射乾燥牡蠣の15種類のアミノ酸含量を、ボイルした牡蠣を乾燥しただけのボイル非照射乾燥牡蠣と比較した結果を図13に示す。図中、ASPはアスパラギン酸、SERはセリン、GLUはグルタミン酸、GLYはグリシン、HISはヒスチジン、ARGはアルギニン、ALAはアラニン、PROはプロリン、TYRチロシン、VALバリンは、METはメチオニン、LYSはリジン、ILEはイソロイシン、LEUはロイシン、PHEはフェニルアラニンの各アミノ酸の略称である。牡蠣には苦味成分のアルギニンが一番多く含まれ、次いで旨味成分のグルタミン酸、甘味成分のアラニン、プロリンである。ボイルしないでUV−A照射を行うことにより、各アミノ酸含量がボイル乾燥牡蠣より0.6〜5.1倍増大していることがわかる。各アミノ酸の増加倍率は牡蠣の収穫時期および鮮度によって変動する。
(2) Evaluation of Taste Components The results of comparing the amino acid content of 15 types of non-boiled UV-A irradiated dry oysters made from raw oysters with boiled non-irradiated dry oysters obtained by simply drying boiled oysters are shown in FIG. Shown in In the figure, ASP is aspartic acid, SER is serine, GLU is glutamic acid, GLY is glycine, HIS is histidine, ARG is arginine, ALA is alanine, PRO is proline, TYR tyrosine, VAL valine, MET is methionine, LYS is lysine , ILE is an abbreviation for isoleucine, LEU is a leucine, and PHE is an abbreviation for each amino acid of phenylalanine. Oysters contain the most bitter component arginine, followed by umami components glutamic acid, sweet components alanine and proline. By performing UV-A irradiation without boiling, it can be seen that the content of each amino acid is increased by 0.6 to 5.1 times that of the dried boiled oysters. The increase rate of each amino acid varies depending on the harvest time and freshness of oysters.

牡蠣をUV−A照射、非照射の2パターンで乾燥し、測定した乾燥物の15種類のアミノ酸含量の総量を2週間天日干しした牡蠣および煮汁のアミノ酸総量と比較して図14に示す。この乾燥実験では、アミノ酸総量が1.1倍増大する。その値は2週間天日干しした牡蠣より多い。ボイルした際に発生する牡蠣の煮汁のアミノ酸を分析すると、アミノ酸総量が1700mg含まれており、ボイルすることにより、多量のアミノ酸が流出していることがわかる。UV−A照射牡蠣は、ボイルしない生の牡蠣にUV−A照射して乾燥するので、煮汁によるアミノ酸の流出がないので、呈味成分が保持される。このようにボイルすることにより、牡蠣の呈味成分のアミノ酸含量が20〜35%流出し、UV−A照射乾燥ノンボイル牡蠣のアミノ酸含量は従来品のボイル後乾燥した乾燥物に比べて大幅に増加することが明らかになった。  The oysters were dried in two patterns of UV-A irradiation and non-irradiation, and the total amount of 15 kinds of amino acid contents of the measured dried product is shown in FIG. In this drying experiment, the total amount of amino acids is increased 1.1-fold. Its value is higher than that of oysters dried in the sun for 2 weeks. Analysis of the amino acids in the oyster broth generated when boiled reveals that the total amount of amino acids is 1700 mg, and that a large amount of amino acids are flowing out by boiling. UV-A irradiated oysters are dried by irradiating UV-A to raw oysters that are not boiled, so that there is no outflow of amino acids due to the broth, so that the taste components are retained. By boiling in this way, the amino acid content of the oyster flavoring component flows out by 20 to 35%, and the amino acid content of non-boiled oysters dried by UV-A irradiation is greatly increased compared to the dried product dried after boiling. It became clear to do.

(3)糖類の評価
ボイルしない生の牡蠣にUV−A照射乾燥したノンボイル牡蠣乾燥物に含まれる牡蠣の主要な成分である多糖類のグリコーゲン量の変化を図15に示した。グリコーゲンは単独では無味無臭だが、ほかの味と一緒になるとコクと旨味が出ると言われている。疲労回復と脳の活性化、血糖値の調節に大きく関与している物質である。UV−A照射することにより、乾燥カキのグリコーゲン量は1.27倍増加する。
(3) Evaluation of saccharides FIG. 15 shows changes in glycogen content of polysaccharides which are main components of oysters contained in dried non-boiled oysters obtained by UV-A irradiation drying on non-boiled raw oysters. Glycogen is tasteless and odorless on its own, but it is said that when combined with other flavors, it produces a rich and delicious taste. It is a substance that is greatly involved in recovery from fatigue, brain activation, and regulation of blood glucose levels. By irradiating with UV-A, the amount of glycogen in dried oysters increases 1.27 times.

(4)殺菌効果の評価
UV−Cは殺菌に用いられる紫外線である。UV−AはUV−Cより波長が長く、エネルギー的にも小さい光である。光照射乾燥法は酵素活性を高めることにより、呈味成分等を増加させるので、UV−A照射強度を強くすると酵素も失活されるので、UV−A照射強度を強くできない。光照射乾燥法に用いられるUV−A照射強度下での殺菌効果は不明であった。
そこで、ボイルしない生牡蠣を非照射、UV−A照射の2通りの照射方法で乾燥された牡蠣の一般生菌数を比較して図16に示す。一般生菌数は、6時間乾燥した牡蠣を10℃の恒温器で20日間保管し、標準寒天培地培養法で測定したものである。UV−A照射は非照射に比べて、生菌数が1/55に減少し、殺菌効果があり、保存性が増すことが初めて明らかになった。6時間乾燥した直後の牡蠣の一般生菌数は、非照射、UV−A照射ともに300以下であるので、乾燥中でなく、10℃の貯蔵中に菌が増殖したことを示している。
(4) Evaluation of bactericidal effect UV-C is an ultraviolet ray used for sterilization. UV-A is light that has a longer wavelength than UV-C and is smaller in energy. The light irradiation drying method increases the taste components and the like by increasing the enzyme activity, so that the enzyme is also deactivated when the UV-A irradiation intensity is increased, and therefore the UV-A irradiation intensity cannot be increased. The bactericidal effect under the UV-A irradiation intensity used in the light irradiation drying method was unknown.
Therefore, FIG. 16 shows a comparison of the number of viable oysters that had been dried by two irradiation methods of non-irradiated and non-irradiated raw oysters and UV-A irradiation. The number of viable bacteria was measured by standard agar medium culture method after storing oysters dried for 6 hours in a thermostat at 10 ° C. for 20 days. It has been clarified for the first time that the number of viable bacteria is reduced to 1/55, UV-A irradiation has a bactericidal effect, and preservability increases. The number of viable oysters immediately after drying for 6 hours is 300 or less for both non-irradiation and UV-A irradiation, indicating that the bacteria grew during storage at 10 ° C., not during drying.

(5)官能評価
ノンボイルUV−A照射乾燥牡蠣のアミノ酸含量とグリコーゲン含量が増大することが分析結果から明らかになった。実際に食べてみる官能評価結果を図17に示す。ノンボイル非照射乾燥の牡蠣乾燥物を基準に、ノンボイルUV−A照射牡蠣乾燥物を色、牡蠣の香り、味、食感、総合の5項目につき、7段階(−3,−2、−1、0,1,2,3)で10名のパネラーで評価した。外観は好ましくないという評価があったものの、「ノンボイルUV−A照射乾燥牡蠣は牡蠣の味が強く出ている。牡蠣フライのような生牡蠣を食べている感じがする。」に代表されるように、牡蠣の香り、味、旨みと甘味、歯ごたえや弾力や硬さを示す食感および全体評価ともUV−A照射した牡蠣の方の評価が高かった。
(5) Sensory evaluation The analytical results revealed that the amino acid content and glycogen content of non-boiled UV-A irradiated dry oysters increased. The sensory evaluation results actually eaten are shown in FIG. Based on non-boiled non-irradiated oyster dried product, non-boiled UV-A irradiated oyster dried product is classified into 7 steps (-3, -2, -1, 0, 1, 2, 3) and evaluated by 10 panelists. Although the appearance was evaluated to be unfavorable, “non-boiled UV-A irradiated dry oysters have a strong oyster taste. I feel like eating raw oysters like fried oysters”. Furthermore, the oysters irradiated with UV-A were highly evaluated in terms of oyster aroma, taste, umami and sweetness, texture and crunchiness, and overall evaluation.

図17はボイルしない牡蠣を乾燥したノンボイル非照射乾燥を基準とした比較であるが、ボイル後乾燥した従来品の蒸し牡蠣を基準とした官能評価も同様に行った。その結果、「従来品の蒸し牡蠣は、牡蠣の味があまりしなくて、食感が硬いのに対して、牡蠣の味がしている。」「ノンボイルUV−A照射乾燥牡蠣は、従来品の蒸し牡蠣に比べて、格段に美味しい。」等のような評価が得られ、ボイル後乾燥した従来品の蒸し牡蠣に比べ格段に旨さが違う結果となった。  FIG. 17 is a comparison based on non-boiled and non-irradiated dried oysters that have not been boiled, but sensory evaluations based on steamed oysters that have been dried after boiling are also performed. As a result, “conventional steamed oysters do not taste much oysters and have a hard texture, but taste like oysters.” “Non-boiled UV-A irradiated dry oysters are conventional products. It was much more delicious than the steamed oysters in the past, and the results were much different from the conventional steamed oysters dried after boiling.

様々な調理用食材としての可能性を探るため、ノンボイルUV−A照射乾燥牡蠣をオリーブオイルでにんにくとトマトと一緒にソテーした味付け牡蠣の場合の官能評価結果を図18に示す。基準はノンボイル非照射乾燥牡蠣で、評価方法は図17と同じ7段階評価で、パネラーも同じ方である。
図17に示した乾燥物と同様に色と食感は余り差が出なかったが、「ノンボイルUV−A照射乾燥牡蠣の味が、にんにくの香りとトマトの旨みにマッチして、地中海料理としてふさわしい」「従来品の蒸し牡蠣は、牡蠣の味があまりしないのに対し、本来の牡蠣の味がして美味しい。」「基準物と比べて調味液にマッチしている。」「基準物に比べて味が濃い。」等のような評価が得られ、味付け牡蠣の場合でも、総合で、+1が4名、+2が6名で、UV−A照射した牡蠣の評価が高かった。
FIG. 18 shows the sensory evaluation results in the case of seasoned oysters in which non-boiled UV-A irradiated dried oysters are sauteed with olive oil and garlic and tomatoes in order to explore the possibilities as various cooking ingredients. The standard is non-boiled non-irradiated dry oysters, the evaluation method is the same seven-stage evaluation as in FIG. 17, and the panel is the same.
As with the dried product shown in FIG. 17, the color and texture did not differ much, but the taste of “non-boiled UV-A irradiated dried oysters matched the garlic aroma and tomato flavor, “Suitable” “Conventional steamed oysters do not taste much like oysters, but taste better with the original oysters.” “It matches the seasoning liquid compared to the standard.” The taste was deeper than that. "Even in the case of seasoned oysters, overall, +1 was 4 and +2 was 6, and the evaluation of UV-A irradiated oysters was high.

<ノンボイルホヤ乾燥物の評価>
ホタテ、牡蠣以外の魚介類として、貝類以外の魚介類として脊椎動物であるホヤを選び、同様な効果が現れるか検証した。生ホヤを蒸し器で10分間ボイルした後に、取り出して冷却する。冷却されたボイルホヤを電気食品乾燥機(大紀産業(株)製:MiniII)に入れ、ダンパー▲5▼の状態で25℃の設定温度で15時間乾燥を行い、ボイルホヤ非照射乾燥物を製造した。もう一方のサンプルとして、ホヤをボイルせず、そのまま電気食品乾燥機に入れてUV−A域の紫外線を照射する光源により同様な条件のダンパー▲5▼状態で25℃の設定温度で15時間UV−A照射乾燥を行い、ノンボイルUV−A照射ホヤ乾燥物を製造した。UV−A照射強度は1.05mW/cmである。
図19に乾燥前の生ホヤとボイルした直後のホヤの写真を比較して示す。ボイルすることにより、ホヤは硬く収縮し、小さくなっていることがわかる。身が収縮するということは、アミノ酸等の呈味成分が含まれるエキス分が流出する現象が起きる。
<Evaluation of dried non-boiled squirts>
As seafood other than scallops and oysters, we selected squirts that are vertebrates as seafood other than shellfish, and verified whether similar effects appeared. Boil the fresh sea squirts in a steamer for 10 minutes, then remove and cool. The cooled boiled squirt is put in an electric food dryer (manufactured by Daiki Sangyo Co., Ltd .: Mini 2 II) and dried at a set temperature of 25 ° C. for 15 hours in the state of damper (5) to produce a non-irradiated dried product of boiled squirts. did. As another sample, do not boil the sea squirt, put it in an electric food dryer as it is, and use a light source that irradiates ultraviolet rays in the UV-A region. -A irradiation drying was performed and the non-boil UV-A irradiation dried product was manufactured. The UV-A irradiation intensity is 1.05 mW / cm 2 .
FIG. 19 shows a comparison of a photograph of a raw squirt before drying and a squirt immediately after boiling. It can be seen that by boiling, the sea squirts contract hard and shrink. When the body contracts, a phenomenon occurs in which an extract containing a taste component such as an amino acid flows out.

ノンボイルUV−A照射ホヤ乾燥物の表面性状を図20に、ボイルホヤ非照射乾燥物を図21にそれぞれ写真で示す。ボイルせずにUV−A照射乾燥することにより、ホヤ特有の赤褐色の色は、メイラード反応のせいできれいな飴色に変色している。一方のボイルホヤ非照射乾燥物は小さく硬化した肉質は変わらず、色について乾燥前は赤い部分も見られたが、全体的に黒っぽい濃い飴色になっている。このように牡蠣に限らず、ホヤでもボイルせずにUV−A照射乾燥を行うと、飴色に変色している。  The surface properties of the non-boiled UV-A irradiated dried product are shown in FIG. 20, and the non-irradiated dried product is shown in FIG. By drying with UV-A irradiation without boiling, the reddish brown color peculiar to sea squirts is changed to a beautiful amber color due to the Maillard reaction. One non-irradiated dried boiled squirt is small and does not change the quality of the meat, and the color is red before drying, but it has a dark dark blue overall. As described above, when UV-A irradiation drying is performed without boiling not only oysters but also sea squirts, the color changes to dark blue.

ホヤに含まれる呈味成分のアミノ酸の中で、3種類のアミノ酸(苦み成分のアルギニン、甘味成分のプロリン、苦み成分のフェニルアラニン)の含量を分析し、ノンボイルUV−A照射することにより、ボイルホヤ乾燥物に比べて呈味成分がどのように変化するかを図22に示した。ノンボイル非照射ホヤ乾燥物の3種類のアミノ酸含量はボイルホヤ乾燥物に比べて1.48倍増加しており、ホヤについても、ボイルを行わないで乾燥することにより、呈味成分であるアミノ酸含量の流出を阻止して成分が保持されることを示す。図中のノンボイルホヤ乾燥物について、ノンボイルUV−A照射ホヤ乾燥物のアミノ酸含量はノンボイル非照射ホヤ乾燥物より1.18倍増加しており、UV−A照射効果によるものと思われる。ノンボイルによるアミノ酸量の流出の阻止効果とUV−A照射によるアミノ酸量増加の二つの効果で、ノンボイルUV−A照射ホヤ乾燥物の3種類のアミノ酸含量は1.74倍増加した。  Boiled squirt is dried by analyzing the content of 3 kinds of amino acids (bitter component arginine, sweetening component proline, bittering component phenylalanine) in non-boiled UV-A irradiation among the amino acids of taste components contained in squirts FIG. 22 shows how the taste component changes as compared with the product. The content of the three amino acids in the non-boiled non-irradiated dried sea squirts is 1.48 times higher than that in the dried boiled sea squirts. This indicates that the component is retained by preventing outflow. In the non-boiled squirt dried product in the figure, the amino acid content of the non-boiled UV-A irradiated squirted dried product is 1.18 times higher than that of the non-boiled non-irradiated squirted dried product, which is considered to be due to the UV-A irradiation effect. The two amino acid contents of non-boiled UV-A-irradiated dried squirts increased 1.74 times due to the two effects of preventing the amino acid from flowing out by non-boiling and increasing the amount of amino acid by UV-A irradiation.

<ノンボイルあわび乾燥物の評価>
ホタテ、牡蠣と同じ貝類であるあわびを材料に同様な効果が現れるか検証した。生あわびを蒸し器で10分間ボイルした後に、取り出して冷却する。冷却されたボイルあわびを電気食品乾燥(大紀産業(株)製:MiniII)に入れ、ダンパー▲5▼の状態で25℃の設定温度で15時間乾燥を行い、ボイルあわび非照射乾燥物を製造した。もう一方のサンプルとして、あわびをボイルせず、そのまま電気食品乾燥機に入れてUV−A域の紫外線を照射する光源により同様な条件のダンパー▲5▼の状態で25℃の設定温度で15時間UV−A照射乾燥を行い、ノンボイルUV−A照射あわび乾燥物を製造した。UV−A照射強度は1.05mW/cmである。
図23に乾燥前の生あわびの表面性状を、図24にボイルした直後のあわびの表面性状を比較して写真で示す。ボイルすることにより、あわびのみずみずしさは薄れ、肉質が収縮しているが、肉質が硬いのでホヤほど小さくなってはいない。また、ボイルすることによって外側の表面の褐変が進んでいる。
<Evaluation of dried non-boiled abalone>
We examined whether abalone, which is the same shellfish as scallops and oysters, has the same effect. Boil raw abalone for 10 minutes with a steamer, then remove and cool. Place the cooled boiled abalone in an electric food drying (manufactured by Daiki Sangyo Co., Ltd .: Mini 2 II) and dry at a set temperature of 25 ° C. for 15 hours in the state of the damper (5). Manufactured. As another sample, do not boil the abalone, put it in an electric food dryer as it is, and irradiate the UV-A range of ultraviolet light with the same condition of damper (5) at a set temperature of 25 ° C. for 15 hours. UV-A irradiation drying was performed to produce a non-boiled UV-A irradiation abalone and dried product. The UV-A irradiation intensity is 1.05 mW / cm 2 .
FIG. 23 is a photograph showing the surface properties of raw abalone before drying, and FIG. 24 is a photograph comparing the surface properties of abalone immediately after boiling. By boiling, the freshness of abalone has faded and the meat quality has shrunk, but since the meat quality is hard, it is not as small as squirts. Moreover, the browning of the outer surface is progressing by boiling.

ノンボイルUV−A照射あわび乾燥物の表面性状を図25に、ボイルあわび非照射乾燥物の表面性状をを図26にそれぞれ写真で示す。UV−A照射乾燥することにより、あわび特有の黄白色の色は、メイラード反応のせいできれいな飴色に変色している。一方のボイルホヤ非照射乾燥物は小さく硬化した肉質は変わらず、色について乾燥前の黄白色は全体的濃くなっている。このように牡蠣に限らず、あわびでもボイルせずにUV−A照射乾燥を行うと、飴色に変色している。  FIG. 25 shows the surface properties of the non-boiled UV-A irradiated dry product and FIG. 26 shows the surface properties of the non-irradiated dry product. By the UV-A irradiation drying, the yellowish white color peculiar to abalone is changed to a beautiful amber color due to the Maillard reaction. One non-irradiated dried product of boiled squirts is small and the cured meat quality is not changed, and the yellowish white color before drying is dark overall. Thus, not only oysters, but also UV-A irradiation drying without boiling even with abalone, the color changes to dark blue.

あわびに含まれる呈味成分のアミノ酸の中で、11種類のアミノ酸(セリン、グルタミン酸、グリシン、アルギニン、アラニン、チロシン、バリン、リジン、イソロイシン、ロイシン、フェニルアラニン)の含量を分析し、ノンボイルのあわびにUV−A照射することにより、ボイルあわび乾燥物に比べて呈味成分がどのように変化するかを図27に示した。ノンボイルUV−A照射あわび乾燥物の11種類のアミノ酸含量はボイルあわび乾燥物に比べてほとんど変わらない。各アミノ酸含量をみると、ボイルに比べて増加しているアミノ酸、逆に減少しているアミノ酸もあり、変化がないという結果になった。これは、ホヤ、牡蠣、ホタテと異なり、あわびの肉質はコリコリと硬く、ボイルによる肉質の硬化による呈味成分の流出が少ないことによるものと思われる。  Analyzing the content of 11 kinds of amino acids (serine, glutamic acid, glycine, arginine, alanine, tyrosine, valine, lysine, isoleucine, leucine, phenylalanine) among the amino acids of taste components contained in abalone FIG. 27 shows how the taste components change as a result of UV-A irradiation as compared with the dried boiled abalone. The content of 11 amino acids in the non-boiled UV-A irradiated abalone dried product is almost the same as that of the boiled abalone dried product. Looking at the content of each amino acid, there were amino acids that were increasing compared to voile, and conversely, some amino acids were decreasing. This seems to be because, unlike squirts, oysters, and scallops, the abalone meat is hard and crisp, and there is little outflow of taste components due to the hardening of the meat by boiling.

<ノンボイル乾燥物のテクスチャー評価>
ボイル乾燥物とノンボイル乾燥物のかたさ、凝集性(もろさ、咀嚼性、ガム性)、粘性、弾性、付着性等の力学的特性の違いを検証するために、ホタテと牡蠣を材料に、レオメーター((株)サン科学製:CR−3000EH−S)で波形解析を行った。円柱系プランジャーを用い、進入距離10.0mm、テーブル移動速度は50mm/min、ロードセル最大応力は200Nの条件で行った。プランジャーは一度サンプルを押して進入したのち、上昇し元に戻り、再度サンプルに進入する反復回数2回の条件で行った。サンプルとして、ホタテと牡蠣を選び、非照射乾燥機とUV−A照射乾燥機で、一方はボイルした後非照射乾燥機に、もう一方はそのままの状態でUV−A照射乾燥機に入れ、同一の乾燥時間、乾燥温度でボイルホタテ非照射乾燥物とノンボイルUV−A照射ホタテ乾燥物、およびボイル牡蠣非照射乾燥物とノンボイルUV−A照射牡蠣乾燥物を作成した。UV−A照射強度は実施例1および実施例2の場合と同じである。
<Texture evaluation of non-boiled dried product>
A rheometer using scallops and oysters as materials to verify differences in mechanical properties such as hardness, cohesiveness (friability, chewability, gumming), viscosity, elasticity, adhesion, etc. Waveform analysis was performed using (San Kagaku Co., Ltd .: CR-3000EH-S). Using a cylindrical plunger, the approach distance was 10.0 mm, the table moving speed was 50 mm / min, and the load cell maximum stress was 200 N. The plunger was pushed under the condition that the sample was once pushed and then moved up, returned to its original position, and entered the sample again twice. Select scallops and oysters as samples, and use non-irradiation dryer and UV-A irradiation dryer, one is boiled and then put into non-irradiation dryer, and the other is left as it is in UV-A irradiation dryer. A non-boiled scallop and non-boiled UV-A irradiated scallop dried product, and a non-boiled oyster non-irradiated product and a non-boiled UV-A irradiated oyster product were prepared at the drying time and temperature. The UV-A irradiation intensity is the same as in Examples 1 and 2.

ボイルホタテ非照射乾燥物とノンボイルUV−A照射ホタテ乾燥物を比較したレオメーターの波形図を図28に示す。縦軸は荷重[Kgf]で、横軸は進入距離すなわちテーブルが移動してからの時間である。ボイルホタテの方が硬いため、1回目の進入時には、最大1.2[Kgf]の荷重を要し、2回目に進入する際の距離は48mmである。一方のノンボイルホタテの場合は1回目の進入時には、最大1.0[Kgf]と肉質が柔らかく、2回目に進入する際の距離が52mmとボイルホタテに比べて進入距離が長い。これはノンボイルホタテの場合、押しに対する弾力性が小さく、へこみが大きいことを示している。  FIG. 28 shows a waveform diagram of a rheometer comparing a non-boiled scallop dried product and a non-boiled UV-A irradiated scallop dried product. The vertical axis is the load [Kgf], and the horizontal axis is the approach distance, that is, the time after the table moves. Since the boiled scallop is harder, a load of 1.2 [Kgf] is required at the time of the first entry, and the distance at the second entry is 48 mm. In the case of one non-boiled scallop, at the time of the first entry, the meat quality is soft at a maximum of 1.0 [Kgf], and the distance when entering the second time is 52 mm, which is longer than that of the boiled scallop. This indicates that in the case of non-boiled scallops, the elasticity to push is small and the dent is large.

波形解析から求めたもろさ(N)、弾力性(%)、変形に対する力学的特性の凝集性(%)、ゴム状であるかをみるガム性(N)、そしゃく性(N)を比較して図29に示す。ここで、そしゃく性は硬さ×凝集性×弾力性から求まる。ノンボイルUV−A照射ホタテ乾燥物の方がボイルホタテ非照射乾燥物比べて、もろさが87%と小さく、弾力性が25%と低く、凝集性が93%とわずかに小さく、ガム性も78%と少なく、結果としてそしゃく性が1/5とかなり小さい、つまり噛み砕きやすいことを示している。Comparing brittleness (N), elasticity (%), cohesiveness of mechanical properties against deformation (%), gum properties (N) and chewing properties (N) to see if they are rubbery, obtained from waveform analysis It shows in FIG. Here, the mastication property is obtained from hardness × cohesiveness × elasticity. Nonboiru towards UV-A radiation scallops dried product as compared to the boiled scallop unirradiated dry matter, friability is as small as 87%, elasticity is as low as 25%, is slightly smaller and 93% cohesive, even gums of 78 %, And as a result, the chewing property is as small as 1/5 , that is, it is easy to chew.

ボイル牡蠣非照射乾燥物とノンボイルUV−A照射牡蠣乾燥物を比較したレオメーターの波形図を図30に示す。縦軸は荷重[Kgf]で、横軸は進入距離すなわちテーブルが移動してからの時間である。ボイル牡蠣の方が硬いため、1回目の進入時には、最大0.96[Kgf]の荷重を要し、2回目に進入する際の距離は62mmである。一方のノンボイル牡蠣の場合は1回目の進入時には、最大0.7[Kgf]と肉質が柔らかく、一度荷重が下がって再び上昇する2回のピークが表れる。これは肉質がもろいことを示す。2回目に進入する際の距離が70mmとボイル牡蠣に比べて進入距離が長い。これはノンボイル牡蠣の場合、押しに対する弾力性が小さく、へこみが大きいことを示している。  FIG. 30 shows a waveform diagram of a rheometer comparing a non-irradiated dried boiled oyster and a dried non-boiled UV-A irradiated oyster. The vertical axis is the load [Kgf], and the horizontal axis is the approach distance, that is, the time after the table moves. Since the boiled oyster is stiffer, a load of 0.96 [Kgf] is required at the first entry, and the distance at the second entry is 62 mm. On the other hand, in the case of one non-boiled oyster, at the time of the first entry, the meat quality is as soft as a maximum of 0.7 [Kgf], and the peak appears twice when the load decreases once and rises again. This indicates that the meat quality is brittle. The distance for entering the second time is 70 mm, which is longer than the distance for the boiled oysters. This indicates that in the case of non-boiled oysters, elasticity against pushing is small and dents are large.

波形解析から求めたもろさ(N)、弾力性(%)、変形に対する力学的特性の凝集性(%)、ゴム状であるかをみるガム性(N)、そしゃく性(N)を比較して図31に示す。ここで、そしゃく性は硬さ×凝集性×弾力性から求まる。ノンボイルUV−A照射牡蠣乾燥物の方がボイル牡蠣非照射乾燥物比べて、もろさが75%と小さく、弾力性が71%と小さく、凝集性が50%と小さく、ガム性も40%と小さく、結果としてそしゃく性が1/3と小さく、つまり噛み砕きやすいことを示している。Comparing brittleness (N), elasticity (%), cohesiveness of mechanical properties against deformation (%), gum properties (N) and chewing properties (N) to see if they are rubbery, obtained from waveform analysis As shown in FIG. Here, the mastication property is obtained from hardness × cohesiveness × elasticity. Non-boiled UV-A-irradiated dried oysters are 75 % less fragile, 71 % less fragile, 50 % less cohesive, and 40 % less gumming than non-irradiated dried oysters. As a result, the chewing property is as small as 1/3 , that is, it is easy to chew.

<UV−A照射の殺菌効果の検証>
(1)保存性試験
図10に示したように、牡蠣を乾燥する際にUV−A照射すると、非照射乾燥に比べて一般生菌数は1/55に減少する。その殺菌効果は、UV−A照射によるものなのか?乾燥による含水率の減少によるものなのか?を詳しく検証するために、水産物をサンプルとして実験を行った。非照射乾燥機とUV−A照射乾燥機の2台の乾燥機を用い、生牡蠣を非照射乾燥機とUV−A照射乾燥機にそれぞれ入れ、同一の乾燥時間、乾燥温度で乾燥を行った。得られた両方の乾燥物を蒸し器で軽く数分間蒸して、ノンボイル非照射乾燥牡蠣とノンボイルUV−A照射乾燥牡蠣を作成した。UV−A照射強度は実施例2の場合と同じである。
<Verification of bactericidal effect of UV-A irradiation>
(1) Preservability test As shown in FIG. 10, when UV-A irradiation is performed when drying oysters, the number of general viable bacteria is reduced to 1/55 compared to non-irradiation drying. Is the bactericidal effect due to UV-A irradiation? Is it due to a decrease in moisture content due to drying? In order to verify this in detail, experiments were conducted using marine products as samples. Using two dryers, a non-irradiation dryer and a UV-A irradiation dryer, raw oysters were put into the non-irradiation dryer and the UV-A irradiation dryer, respectively, and dried at the same drying time and drying temperature. . Both dried products thus obtained were steamed with a steamer for a few minutes to prepare non-boiled non-irradiated dried oysters and non-boiled UV-A irradiated dried oysters. The UV-A irradiation intensity is the same as in Example 2.

非照射、UV−A照射の2通りの照射方法で乾燥された牡蠣の一般生菌数を比較して図32に示す。一般生菌数は、10℃の恒温器で20日間保管し、標準寒天培地培養法で測定したものである。非照射乾燥牡蠣の一般生菌数が2億(10)とかなり多いのに対し、UV−A照射は300以下のかなり少ない。食品衛生法では、生食用魚介類、魚介加工品も一般生菌数は10万(10)、50万以下とも言われており、非照射乾燥牡蠣の一般生菌数の2億(10)と言う数字は腐敗し、食品として扱えないことを意味している。このことは、乾燥過程の中でUV−A照射せず、得られた乾燥物を蒸し器で軽く蒸気加熱しても殺菌されず、乾燥過程の中でUV−Aを照射することにより殺菌できたことを示している。FIG. 32 shows a comparison of the number of general viable bacteria of oysters dried by two irradiation methods of non-irradiation and UV-A irradiation. The number of general viable bacteria was measured by a standard agar medium culture method after storing for 20 days in a 10 ° C. incubator. The number of non-irradiated dry oysters is generally as large as 200 million (10 8 ), whereas UV-A irradiation is considerably less than 300. According to the Food Sanitation Law, it is said that the number of general viable bacteria of raw edible seafood and processed fish products is 100,000 (10 5 ) and 500,000 or less, and that of non-irradiated dried oysters is 200 million (10 8 ) Means that it will rot and cannot be treated as food. This was not irradiated with UV-A during the drying process, and the resulting dried product was not sterilized by light steam heating with a steamer, but could be sterilized by irradiating with UV-A during the drying process. It is shown that.

(2)水分活性値測定
食品中の水分は大きく、結合水と自由水の2種類の形で存在する。結合水とは、食品中の炭水化物やタンパク質に存在する官能基と水素結合によって結合して束縛された水で、微生物の生育や酵素反応には利用されない水を示す。一方の自由水とは食品成分と束縛されずに存在し、蒸発や氷結にかかわり移動する水を示し、微生物もよく利用でき、食品の保蔵性に直接関係する水である。食品の水分と保蔵性との関係を判断する上で、有効な指標が水分活性値Aw(water activity)である。水分活性値とは、食品中に含まれる全水分量に対する自由水の指標であり、水分活性が高い食品は、自由水が多く、微生物が繁殖しやすい食品群である。水分活性が、0.9以上で普通細菌が、0.8以上で普通カビが生育可能であり、果実の水分活性は0.985〜0.990で常温だと腐敗やカビが生える。水分活性を低くして、食品の保存性を高めるために、果実ジャムは、スクロースや自由水を結合水に変えて水分活性の値を低くして保存性をあげている。
(2) Measurement of water activity value Water in foods is large and exists in two forms: bound water and free water. The bound water refers to water that is bound and bound by a hydrogen bond with a functional group present in a carbohydrate or protein in food and is not used for the growth of a microorganism or an enzyme reaction. On the other hand, free water refers to water that is present without being bound to food components and moves in connection with evaporation and freezing. Microorganisms are also often used, and are directly related to food preservation. A water activity value Aw (water activity) is an effective index for judging the relationship between the moisture and storability of food. The water activity value is an index of free water with respect to the total amount of water contained in the food, and the food with high water activity is a food group that has a lot of free water and microorganisms are easy to propagate. When the water activity is 0.9 or more, normal bacteria can grow, and when the water activity is 0.8 or more, normal fungi can grow. The water activity of the fruit is 0.985 to 0.990, and rot and fungus grow at room temperature. In order to reduce water activity and improve the shelf life of foods, fruit jams increase sucrose and free water to bound water to lower the water activity value and increase the shelf life.

乾燥中のUV−A照射によって水分活性値が上昇し、食品が腐敗しにくくなることも考えられる。そこで、乾燥しやすい材料であるりんごとイチゴをサンプルとして、非照射乾燥の場合とUV−A照射乾燥の場合で、水分活性計により水分活性値Awを測定し、UV−A照射によって水分活性値Awに変化が見られるか検討した。乾燥機は、これまでの実施例2で使ったのと同じ乾燥機である。イチゴの場合、30℃で18時間乾燥の場合、非照射乾燥:Aw=0.95、UV−A照射乾燥:Aw=0.95、40℃で36時間乾燥の場合、乾燥が進行して含水率が減少するため、非照射乾燥:Aw=0.53、UV−A照射乾燥Aw=0.49と水分活性値Awが下がるが、非照射、UV−A照射ともに水分活性値Awに変化が見られない。一方りんごの場合、30℃で18時間乾燥の場合、非照射乾燥:Aw=0.98、UV−A照射乾燥:Aw=1.0、40℃と変わらない。24時間乾燥の場合、乾燥が進行して含水率が減少するため、非照射乾燥:Aw=0.71、UV−A照射乾燥:Aw=0.70と水分活性値Awが下がる。40℃で36時間乾燥の場合、非照射乾燥:Aw=0.44、UV−A照射乾燥:Aw=0.41と非照射、UV−A照射ともに水分活性値Awに変化が見られない。なお、乾燥が進行するにつれてUV−A照射乾燥の水分活性値の方が若干小さいのは、食品の表面が光源からの放射伝熱で加熱されるためと考えられるが、微生物の成育に関係し保存性に影響を与えるほどの差ではない。  It is also conceivable that the water activity value is increased by UV-A irradiation during drying, and the food is not easily spoiled. Therefore, the water activity value Aw was measured with a water activity meter in the case of non-irradiation drying and UV-A irradiation drying, using apples and strawberries, which are easy to dry, as samples, and the water activity value by UV-A irradiation. It was examined whether a change was seen in Aw. The dryer is the same dryer used in Example 2 so far. In the case of strawberry, when drying at 30 ° C. for 18 hours, non-irradiation drying: Aw = 0.95, UV-A irradiation drying: Aw = 0.95, and drying at 40 ° C. for 36 hours, the drying proceeds and water content Since the rate decreases, non-irradiation drying: Aw = 0.53, UV-A irradiation drying Aw = 0.49 and the water activity value Aw decreases, but both the non-irradiation and UV-A irradiation have changes in the water activity value Aw. can not see. On the other hand, in the case of apples, when drying at 30 ° C. for 18 hours, non-irradiation drying: Aw = 0.98, UV-A irradiation drying: Aw = 1.0, 40 ° C. In the case of drying for 24 hours, since the water content decreases as drying proceeds, the water activity value Aw decreases with non-irradiation drying: Aw = 0.71 and UV-A irradiation drying: Aw = 0.70. In the case of drying at 40 ° C. for 36 hours, non-irradiation drying: Aw = 0.44, UV-A irradiation drying: Aw = 0.41, no change is observed in the water activity value Aw for both non-irradiation and UV-A irradiation. In addition, it is thought that the water activity value of UV-A irradiation drying is slightly smaller as drying progresses because the surface of the food is heated by radiant heat transfer from the light source, but is related to the growth of microorganisms. It is not a difference that affects storage stability.

(3)天日干しスルメの細菌検査
塩の香りがする風速1.0〜3.0m/sの潮風が常に吹く、海に面した南向きの高台の干し場で、晴天の日が続く10月中旬にイカを4日間天日干しした。昼間の外気温は最高気温20℃である。早朝に市場に水揚げされたイカをさばいて干し場に干し、夕方になると一旦、軽く通風している部屋に入れ室内干しを行う。翌朝再び干し場に干し、夕方室内干しを行う。この操作を4日間繰り返して、天日干しスルメを作成した。比較例として4日間ずっと室内干ししたスルメも作成した。天日干しスルメと室内干しスルメの一般生菌数をCPC法で測定した。天日干しするめの一般生菌数は2.3×10(2,300万個)とかなり多く、室内干しの生菌数は1.1×10(1,100万個)の2倍以上ある。晴天の日の太陽のUV−Aの照射強度が最大0.80mW/cm程度ある。室内干しに比べ、天日干しは直射日光で品温が高くなる傾向があるが、0.80mW/cm程度のUV−Aを照射しただけでは、殺菌効果は表れないことを意味している。なお、得られた乾物スルメの水分活性値Awは0.528と小さく、2.3×10(2,300万個)の生菌数でも腐敗はしない。
(3) Bacteriological examination of sun-dried dolphins October with a sunny day in the south-facing hills facing the sea, where a sea breeze with a scent of salt blows at a constant speed of 1.0-3.0 m / s. In the middle, the squid was sun-dried for 4 days. The daytime outside temperature is 20 ° C. In the early morning, the squid landed in the market is handled and dried in the drying area. In the evening, the squid is placed in a lightly ventilated room and air-dried. The next morning, it is dried again in the drying area and the room is aired in the evening. This operation was repeated for 4 days to prepare sun-dried squid. As a comparative example, a swordfish that was dried indoors for 4 days was also prepared. The number of general viable bacteria of sun-dried and dried-in-air squid was measured by the CPC method. The number of general viable bacteria for sun-drying is 2.3 × 10 7 (23 million), and the number of viable cells for indoor drying is more than double that of 1.1 × 10 7 (11 million). is there. The maximum UV-A irradiation intensity of the sun on a sunny day is about 0.80 mW / cm 2 . Compared to indoor drying, sun drying tends to increase the product temperature in direct sunlight, but it means that the sterilizing effect does not appear only by irradiation with UV-A of about 0.80 mW / cm 2 . In addition, the water activity value Aw of the obtained dry matter plum is as small as 0.528, and even if the number of viable bacteria is 2.3 × 10 7 (23 million), it does not rot.

(4)UV−A照射乾燥物の細菌検査
UV−A照射乾燥機を用いて、生イカをサンプルとして非照射乾燥とUV−A照射乾燥を行い、得られた一夜干しイカの細菌検査を行った。乾燥時間は4時間、16時間および60時間であり、通風温度は22.0℃である。UV−A照射強度は、場所により異なるが0.26〜0.65mW/cmの領域下にサンプルを置いて実験を行った。一般生菌数、含水率、水分活性値、pH、大腸菌類の5項目について、非照射乾燥とUV−A照射乾燥とを比較して図33に示す。図には(3)の天日干しスルメの細菌検査のデータも同時に示す。22℃と温風温度が低い場合、乾燥時間16時間の水分活性値が0.9までは、一般生菌数の値にそれ程の差はみられない。それが、乾燥時間60時間、含水率19%、水分活性値が0.62と乾燥が進むにつれて、UV−A照射の殺菌効果が現れ、一般生菌数は1/26と大幅に減少する。乾燥の進行につれても、UV−A照射によって含水率、水分活性値、pH、大腸菌類に変化は見られない。一般生菌数だけがUV−A照射によって減少し、乾燥の進行につれてUV−A照射による殺菌効果が顕著に発現されることが明らかになった。
(4) Bacteria inspection of UV-A irradiated dried product Using UV-A irradiation dryer, non-irradiated drying and UV-A irradiation drying were performed using raw squid as a sample, and the resulting dried squid was tested for bacteria overnight. It was. The drying time is 4 hours, 16 hours and 60 hours, and the ventilation temperature is 22.0 ° C. Although UV-A irradiation intensity | strength changes with places, it experimented by putting a sample under the area | region of 0.26-0.65 mW / cm < 2 >. FIG. 33 shows comparison between non-irradiation drying and UV-A irradiation drying for five items of general viable cell count, water content, water activity value, pH, and E. coli. The figure also shows the data of the bacterial test of sun-dried squid in (3). When the hot air temperature is as low as 22 ° C., there is no significant difference in the value of the general viable count until the water activity value at the drying time of 16 hours is 0.9. However, as the drying progresses with a drying time of 60 hours, a moisture content of 19%, and a water activity value of 0.62, the germicidal effect of UV-A irradiation appears, and the number of viable bacteria is greatly reduced to 1/26. As the drying progresses, the water content, water activity value, pH, and E. coli are not changed by UV-A irradiation. Only the number of general viable bacteria decreased by UV-A irradiation, and it became clear that the bactericidal effect by UV-A irradiation was remarkably expressed as the drying progressed.

天日干しスルメの細菌検査、UV−A照射乾燥物の細菌検査および牡蠣の保存性試験の結果を総合的に考えると、UV−A照射による殺菌効果に関して、含水率が高く水分活性値が高い乾燥初期、生の魚介類にUV−A照射を行っても殺菌効果は現れない。それが乾燥の進行につれて含水率が減少し水分活性値が少なくなると、殺菌効果が現れる。天日干し程度の紫外線照射量でも水分が減少し、UV−Aのエネルギーが水分に吸収されることなく、肉質に効率的に照射できるようになるので、殺菌効果が発現すると考えられる。水産物の乾燥過程における殺菌に関しては、乾燥するだけでは殺菌効果は弱く、UV−A照射効果と乾燥効果の二つを併せ持つUV−A照射と乾燥を併用すること、すなわちUV−A照射乾燥法が有効と考えられる。  Taking into account the results of the bacteria test of sun-dried squid, the bacteria test of UV-A-irradiated dried products, and the preservation test of oysters, the moisture content is high and the water activity value is high with regard to the bactericidal effect of UV-A irradiation. Initially, even if raw fish and shellfish are irradiated with UV-A, the bactericidal effect does not appear. If the water content decreases as the drying progresses and the water activity value decreases, a bactericidal effect appears. Even when the amount of UV irradiation is about the sun, the water content is reduced, and the energy of UV-A is not absorbed by the water content, so that the meat can be efficiently irradiated. Regarding sterilization in the drying process of marine products, sterilization effect is weak just by drying, and UV-A irradiation and drying having both UV-A irradiation effect and drying effect are combined, that is, UV-A irradiation drying method is used. It is considered effective.

図32に示した保存性試験の結果では、ノンボイル非照射乾燥牡蠣の一般生菌数が2億(10)とかなり多いのに対し、UV−A照射は300以下のかなり少ない。牡蠣の乾燥中では生菌数の300以下で両者の差はない。10℃保存中に非照射乾燥の場合菌が増殖し、UV−A照射乾燥の場合はほとんど増加しない。これは、UV−A照射がUV−C照射のように菌を殺菌させるほどのダメージを与えず、動かさない程度の刺激で、生き返らせないというUV−A独自の殺菌効果によるものと思われる。In the results of the storage stability test shown in FIG. 32, the number of non-boiled and non-irradiated dry oysters is generally as large as 200 million (10 8 ), whereas the UV-A irradiation is as low as 300 or less. During the drying of oysters, the number of viable bacteria is less than 300 and there is no difference between them. During non-irradiation drying during storage at 10 ° C., bacteria grow, and in the case of UV-A irradiation drying, there is little increase. This is considered to be due to UV-A's unique sterilization effect that UV-A irradiation does not cause damage to the extent that bacteria are sterilized like UV-C irradiation, and cannot be revived by stimulation that does not move.

前述の実験結果から、水分活性値が高い生の牡蠣やホタテにノンボイル非照射乾燥を行っても殺菌効果はあまり期待できない。そのため水分活性値が0.9以上と高く腐敗しやすい牡蠣やほたて等の水産物はボイルすることにより殺菌されていた。UV−A照射乾燥法により、ボイルすることなく、殺菌もできることにより保存性の高い乾燥物が製造できる。  From the above experimental results, even if non-boiled non-irradiation drying is performed on raw oysters and scallops having a high water activity value, the bactericidal effect cannot be expected. For this reason, marine products such as oysters and scallops, which have a high water activity value of 0.9 or more and are susceptible to spoilage, have been sterilized by boiling. By the UV-A irradiation drying method, sterilization can be performed without boiling, whereby a dry product having high storage stability can be produced.

<UV−A照射によるアミノ酸増大効果の検証>
発明者は特許文献1において、UV−A照射により農水産物に含まれるアミノ酸含量が増大することを提示した。また、特許文献3では、UV−A照射により水産物に含まれるイノシン酸等の核酸系物質であるヌクレオチド含量が増大すること、あるいは農産物に含まれる抗酸化性物質含量等が増大することを提示した。本出願特許においても、ボイルしない牡蠣やホタテの水産物のアミノ酸含量が増大すえることを提示している。アミノ酸含量が増大する理由として、農水産物に含まれる各種酵素がUV−A照射によって活性化されるのではと説明してきた。そこで、UV−A照射がタンパク質分解酵素活性に影響を及ぼしていることを確認するため、試験管スケールで、基質として標準たんぱく質(カゼイン)と酵素(キモトリプシン)を用い、基質量Sと酵素量Eの混合比(S/E),反応時間および照射強度を変化させ、UV−Aを照射することによりアミノ酸含量がどのように増加することを確認し、UV−A照射によるアミノ酸増大効果の検証を行った。UV−A照射強度は0.70mW/cmである。
<Verification of amino acid increasing effect by UV-A irradiation>
Inventor showed in patent document 1 that the amino acid content contained in agricultural and marine products increases by UV-A irradiation. Patent Document 3 suggested that UV-A irradiation increases the content of nucleotides that are nucleic acid substances such as inosinic acid contained in marine products, or increases the content of antioxidant substances contained in agricultural products. . This patent also shows that the amino acid content of non-boiled oysters and scallops can be increased. It has been explained that the reason why the amino acid content increases is that various enzymes contained in agricultural and marine products are activated by UV-A irradiation. Therefore, in order to confirm that UV-A irradiation has an effect on the proteolytic enzyme activity, a standard protein (casein) and an enzyme (chymotrypsin) are used as substrates on a test tube scale, and a base mass S and an enzyme amount E The mixing ratio (S / E), reaction time and irradiation intensity were changed, and it was confirmed how the amino acid content increased by irradiation with UV-A, and the effect of increasing amino acid by UV-A irradiation was verified. went. The UV-A irradiation intensity is 0.70 mW / cm 2 .

図34は基質として標準たんぱく質(カゼイン)と酵素(キモトリプシン)を用い、基質量Sと酵素量Eの混合比S/E=4000の場合、各種条件での反応後6時間経過したアミノ酸含量を示し、図35はS/E=4000の場合、各種条件での反応後12時間経過したアミノ酸含量を示し、酵素とUV−A照射の影響を検討したものである。両者の図とも、図の左から酵素をいれてUV−A照射した場合、酵素無添加でUV−A照射のみの場合、酵素を入れて照射なしの場合、酵素無添加で光照射なしの場合である。酵素を添加しただけでは、1.3倍しかアミノ酸含量は増加しないが、酵素を添加してUV−A照射を行うと3.0倍もアミノ酸含量が増大することがわかる。このように酵素を添加してUV−A照射を行うと、アミノ酸含量が格段に増えることを確認した。  FIG. 34 shows the amino acid content after 6 hours of reaction under various conditions when a standard protein (casein) and an enzyme (chymotrypsin) are used as substrates and the mixing ratio S / E = 4000 of the base mass S and the enzyme amount E. FIG. 35 shows the amino acid content 12 hours after the reaction under various conditions when S / E = 4000, and the influence of the enzyme and UV-A irradiation was examined. In both figures, when an enzyme is added from the left of the figure and UV-A irradiation is performed, no enzyme is added and only UV-A irradiation is performed, no enzyme is added and irradiation is not performed, no enzyme is added and no light irradiation is performed It is. It can be seen that the amino acid content increases only 1.3 times when the enzyme is added, but the amino acid content increases 3.0 times when the enzyme is added and UV-A irradiation is performed. It was confirmed that when the enzyme was added in this way and UV-A irradiation was performed, the amino acid content increased markedly.

図36は基質として標準たんぱく質(カゼイン)と酵素(キモトリプシン)を用い、基質量Sと酵素量Eの混合比(S/E)を10,100,1000と変えて反応後3時間経過したアミノ酸含量を、図37は同条件で反応後5時間経過したアミノ酸含量を示し、酵素とUV−A照射の影響を検討したものである。両者の図とも、左から光を照射しないで基質であるカゼイン(タンパク質)に酵素を添加した場合、カゼイン(タンパク質)に酵素を添加すると同時に光照射を行った場合、基質であるカゼイン(タンパク質)にUV−A照射した後に酵素を添加した場合の3通りの条件の場合で、酵素により分解されて生成するアミノ酸含量の変化を、基質量Sと酵素量Eの混合比(S/E)を変えて求めたものである。一番右の基質にUV−A照射した後に酵素を添加した場合が、一番アミノ酸含量が増大している。これらの結果から、UV−A照射によってタンパク質酵素活性が高まるのは、酵素が光によって影響されるのではなく、基質であるタンパク質の構造が光のエネルギーによって揺らぐ、すなわち光変性が起こり、そのため酵素がタンパク質の構造内部まで行き渡り、結果としてアミノ酸が多くできたと考えられる。  FIG. 36 shows a standard protein (casein) and an enzyme (chymotrypsin) as substrates, and the amino acid content after 3 hours from the reaction with the mixing ratio (S / E) of the base mass S and the enzyme amount E changed to 10,100,1000. FIG. 37 shows the amino acid content after 5 hours of reaction under the same conditions, and examines the influence of the enzyme and UV-A irradiation. In both figures, when the enzyme is added to the substrate casein (protein) without irradiating light from the left, the casein (protein) is the substrate when the enzyme is added to the casein (protein) and simultaneously irradiated with light. In the case of three conditions where an enzyme is added after UV-A irradiation, the change in the amino acid content produced by degradation by the enzyme is expressed as the mixing ratio (S / E) of the base mass S and the enzyme amount E. It is what I asked for by changing. When the enzyme is added after UV-A irradiation on the rightmost substrate, the amino acid content increases most. From these results, the protein-enzyme activity is increased by UV-A irradiation because the enzyme is not affected by light, but the structure of the protein as a substrate is fluctuated by the energy of light, that is, photodenaturation occurs. It is considered that the amino acids were produced as a result of spreading to the inside of the protein structure.

<波長の異なる光照射によるアミノ酸増大効果の検証>
UV−Aを照射する光源には蛍光管やLEDが挙げられる。UV−A域の紫外線の波長としては、ピーク波長が約350nmであり、可視光の青域の波長としてはピーク波長が約450nmである。UV−A域と青域の中間領域のピーク波長が405nmのLED光源を用いて牡蠣のノンボイル光照射乾燥物を製作し、色調とアミノ酸含量がどのように変化するのかを分析し、波長の異なる光照射効果の検証を行った。
乾燥方法・装置は実施例2と同じであり、生牡蠣をボイルせず、そのまま電気食品乾燥機(大紀産業(株)製:MiniII)に入れ、ダンパー▲5▼の状態で25℃の設定温度で15時間乾燥を行い、ノンボイル光照射牡蠣乾燥物を製造し、非照射の場合およびUV−A照射の場合と比較検討した。
<Verification of amino acid increase effect by light irradiation with different wavelengths>
Examples of the light source for irradiating UV-A include fluorescent tubes and LEDs. The wavelength of ultraviolet light in the UV-A region is about 350 nm, and the wavelength of visible light in the blue region is about 450 nm. Using an LED light source with a peak wavelength of 405 nm between the UV-A range and the blue range, a non-boiled oyster-dried dried product of oysters was produced, and the color and amino acid content were analyzed, and the wavelengths were different. The light irradiation effect was verified.
The drying method and apparatus are the same as those in Example 2, and the raw oysters are not boiled but directly put into an electric food dryer (manufactured by Daiki Sangyo Co., Ltd .: Mini 2 II). Drying was performed at a set temperature for 15 hours to produce a non-boiled light-irradiated oyster dried product, which was compared with non-irradiation and UV-A irradiation.

牡蠣に含まれる呈味成分のアミノ酸の中で、15種類のアミノ酸(セリン、グルタミン酸、グリシン、ヒスチジン、アルギニン、アラニン、チロシン、プロリン、チロシン、バリン、メチオニン、リジン、イソロイシン、ロイシン、フェニルアラニン)の含量を分析し、ノンボイルの牡蠣にUV−A域の紫外線および405nmの光を照射することにより、非照射乾燥物に比べて呈味成分がどのように変化するかを図38に示した。UV−A照射乾燥の場合、アミノ酸総量は非照射乾燥の1.13倍増加する。UV−A域と青域の中間波長域である405nmの光を照射すると、1.30倍増加した。発明者の特許文献1および特許文献2によると、農水産物に含まれるアミノ酸含量増加はUV−A域の紫外線が最大であり、波長の長い青域の可視光線は、農産物のカテキン等の抗酸化性物質を最大に増加させることが知られている。UV−A域と青域の中間波長域である405nmの光がアミノ酸含量をUV−A以上に増加させることは、中間波長域の光照射についての新たな知見である。  Contents of 15 kinds of amino acids (serine, glutamic acid, glycine, histidine, arginine, alanine, tyrosine, proline, tyrosine, valine, methionine, lysine, isoleucine, leucine, phenylalanine) among the amino acids of taste components contained in oysters FIG. 38 shows how the taste components change as compared to the non-irradiated dried product by irradiating non-boiled oysters with UV-A ultraviolet light and 405 nm light. In the case of UV-A irradiation drying, the total amount of amino acids increases 1.13 times that of non-irradiation drying. When light of 405 nm, which is an intermediate wavelength region between the UV-A region and the blue region, was irradiated, it increased 1.30 times. According to the patent document 1 and patent document 2 of the inventor, the increase in the amino acid content contained in agricultural and fishery products is greatest in the UV-A region, and the visible light in the blue region having a long wavelength is an antioxidant such as catechins in agricultural products. It is known to maximize the amount of sex substances. The fact that light at 405 nm, which is an intermediate wavelength region between the UV-A region and the blue region, increases the amino acid content beyond UV-A is a new finding regarding light irradiation in the intermediate wavelength region.

ホタテや牡蠣に限らずノンボイル水産加工品はこれまで日本では販売されてなく、旨みを溶出させない新製法によるノンボイル乾燥物は全国の消費者に受け入れられることが期待できる。家庭で気軽に味わえる地中海料理や各種鍋料理食材として、あるいはレストランでの地中海料理食材として、郷土食豊かな駅弁食材として、おつまみとして、お土産として期待できる。  Processed non-boiled marine products, not limited to scallops and oysters, have not been sold in Japan so far, and dried non-boiled products with a new manufacturing method that does not elute umami can be expected to be accepted by consumers nationwide. It can be expected as Mediterranean food and various pot food ingredients that can be easily tasted at home, as a Mediterranean food ingredient in restaurants, as a station lunch food rich in local food, as a snack, and as a souvenir.

ホタテや牡蠣に限らず魚介類は水揚げ後の鮮度低下が速く、鮮度低下を避けるためにボイルしている。しかしボイル時に旨み成分が煮汁に溶出し、生鮮物に比べて美味しさにかけるという課題があった。干し貝柱製造に発生する煮汁は濃縮されラーメン等の調味液に、牡蠣エキスはオイスター調味液として利用されている程、優良な呈味成分が煮汁に含まれている。本発明のノンボイル光照射乾燥法は、乾燥時に殺菌効果が発現し、ボイルをせずに乾燥物を製造することができることから貝類、海藻類、脊椎動物、甲殻類、魚類等、様々な水産物に応用できる。  Not only scallops and oysters, seafood has a rapid decline in freshness after landing, and is boiled to avoid a decline in freshness. However, there is a problem that the umami component is dissolved in the broth during boiling and is more delicious than fresh food. The boiled soup generated in the production of dried scallops is concentrated and contained in seasoning liquids such as ramen, and the more oyster extract is used as the oyster seasoning liquid, the more excellent flavor components are contained in the boiled soup. The non-boiled light irradiation drying method of the present invention exhibits a bactericidal effect when dried, and can produce a dried product without boiling, so it can be applied to various marine products such as shellfish, seaweeds, vertebrates, crustaceans and fishes. Can be applied.

図1はホタテのアミノ酸総量変化に及ぼす光照射条件の影響を示した図である。(実施例1)FIG. 1 is a graph showing the effect of light irradiation conditions on changes in the total amino acid content of scallops. (Example 1) 図2はUV−A照射したボイルホタテの表面性状を表した写真である。(実施例1)FIG. 2 is a photograph showing the surface properties of boiled scallops irradiated with UV-A. (Example 1) 図3はUV−A照射しない非照射の場合のボイルホタテの表面性状を表した写真である。(実施例1)FIG. 3 is a photograph showing the surface properties of boiled scallops when not irradiated with UV-A. (Example 1) 図4はUV−A照射したノンボイルホタテの表面性状を表した写真である。(実施例1)FIG. 4 is a photograph showing the surface properties of non-boiled scallops irradiated with UV-A. (Example 1) 図5はUV−A照射しない非照射の場合のノンボイルホタテの表面性状を表した写真である。(実施例1)FIG. 5 is a photograph showing the surface properties of the non-boiled scallop when not irradiated with UV-A. (Example 1) 図6はノンボイルホタテの表面を光学顕微鏡で写した写真である。(実施例1)FIG. 6 is a photograph of the surface of a non-boiled scallop taken with an optical microscope. (Example 1) 図7はボイルホタテとの表面を光学顕微鏡で写した写真である。(実施例1)FIG. 7 is a photograph of the surface of the boiled scallop taken with an optical microscope. (Example 1) 図8はノンボイルホタテの表面を白色光共焦点顕微鏡で写した写真である。(実施例1)FIG. 8 is a photograph of the surface of a non-boiled scallop taken with a white light confocal microscope. (Example 1) 図9はボイルホタテとの表面を白色光共焦点顕微鏡で写した写真である。(実施例1)FIG. 9 is a photograph of the surface of the boiled scallop taken with a white light confocal microscope. (Example 1) 図10はボイル牡蠣とノンボイル牡蠣との表面性状を表した写真である。(実施例2)FIG. 10 is a photograph showing the surface properties of boiled oysters and non-boiled oysters. (Example 2) 図11は約3週間天日干しした牡蠣の表面性状を表した写真である。(実施例2)FIG. 11 is a photograph showing the surface properties of oysters sun-dried for about 3 weeks. (Example 2) 図12はノンボイル牡蠣とボイル牡蠣の色調を色彩色度計で測定した結果である。FIG. 12 shows the results of measuring the color tone of non-boiled oysters and boiled oysters with a chromaticity meter. 図13はUV−A照射乾燥牡蠣の15種類のアミノ酸含量をボイル非照射乾燥牡蠣と比較した結果である。(実施例2)FIG. 13 shows the results of comparing the content of 15 kinds of amino acids in UV-A irradiated dry oysters with non-irradiated dry oysters. (Example 2) 図14はUV−A照射したノンボイル牡蠣のアミノ酸含量をボイル牡蠣と比較したものである。(実施例2)FIG. 14 compares the amino acid content of non-boiled oysters irradiated with UV-A with that of boiled oysters. (Example 2) 図15はUV−A照射したノンボイル牡蠣のグリコーゲン含量に及ぼす光照射の影響を表した図である。(実施例2)FIG. 15 is a diagram showing the effect of light irradiation on the glycogen content of UV-A irradiated non-boiled oysters. (Example 2) 図16は非照射、UV−A照射の2通りの照射方法で乾燥された牡蠣の一般生菌数を表した図である。(実施例2)FIG. 16 is a diagram showing the number of viable bacteria of oysters dried by two irradiation methods, non-irradiation and UV-A irradiation. (Example 2) 図17はノンボイルUV−A照射乾燥牡蠣の官能評価結果を表した表である。(実施例2)FIG. 17 is a table showing sensory evaluation results of non-boiled UV-A irradiated dry oysters. (Example 2) 図18はノンボイルUV−A照射乾燥味付け牡蠣の官能評価結果を表した表である。(実施例2)FIG. 18 is a table showing the sensory evaluation results of non-boiled UV-A irradiated dried seasoned oysters. (Example 2) 図19は生ホヤとボイルした直後のホヤの表面性状を表した写真である。(実施例3)FIG. 19 is a photograph showing the surface properties of sea squirts immediately after boiling with fresh sea squirts. Example 3 図20はノンボイルUV−A照射ホヤ乾燥物の表面性状を表した写真である。(実施例3)FIG. 20 is a photograph showing the surface properties of dried non-boiled UV-A irradiated sea squirts. Example 3 図21はボイルホヤ非照射乾燥物の表面性状を表した写真である。(実施例3)FIG. 21 is a photograph showing the surface properties of a non-irradiated dried product of boiled squirts. Example 3 図22はノンボイルUV−A照射ホヤに含まれる3種類のアミノ酸含量を表した図である。(実施例3)FIG. 22 is a diagram showing the contents of three types of amino acids contained in a non-boiled UV-A irradiation squirt. Example 3 図23は乾燥前の生あわびの表面性状を表した写真である。(実施例4)FIG. 23 is a photograph showing the surface properties of raw abalone before drying. (Example 4) 図24はボイルした直後のあわびの表面性状を表した写真である。(実施例4)FIG. 24 is a photograph showing the surface properties of abalone immediately after boiling. (Example 4) 図25はノンボイルUV−A照射あわび乾燥物の表面性状を表した写真である。(実施例4)FIG. 25 is a photograph showing the surface properties of non-boiled UV-A irradiated abalone and dried product. (Example 4) 図26はボイルあわび非照射乾燥物の表面性状を表した写真である。(実施例4)FIG. 26 is a photograph showing the surface properties of the dried product of boiled abalone and non-irradiated material. (Example 4) 図27はノンボイルUV−A照射あわびに含まれる11種類のアミノ酸含量を表した図である。(実施例4)FIG. 27 shows the contents of 11 types of amino acids contained in non-boiled UV-A irradiated abalone. (Example 4) 図28はノンボイルUV−A照射ホタテ乾燥物のレオメーターの波形図をボイルホタテと比較して表した図である。(実施例5)FIG. 28 is a diagram showing a waveform diagram of a rheometer of dried non-boiled UV-A irradiated scallops in comparison with boiled scallops. (Example 5) 図29はノンボイルUV−A照射ホタテ乾燥物のもろさ、弾力性、凝集性、ガム性、そしゃくをボイルホタテと比較して表した表である。(実施例5)FIG. 29 is a table showing the brittleness, elasticity, cohesiveness, gumming, and chewing of dried non-boiled UV-A irradiated scallops in comparison with boiled scallops. (Example 5) 図30はノンボイルUV−A照射牡蠣乾燥物のレオメーターの波形図をボイル牡蠣と比較して表した図である。(実施例5)FIG. 30 is a diagram showing a waveform diagram of a rheometer of a dried non-boiled UV-A irradiated oyster in comparison with a boiled oyster. (Example 5) 図31はノンボイルUV−A照射牡蠣乾燥物のもろさ、弾力性、凝集性、ガム性、そしゃくをボイル牡蠣と比較して表した表である。(実施例5)FIG. 31 is a table showing the brittleness, elasticity, cohesiveness, gumming and chewing of dried non-boiled UV-A-irradiated oysters in comparison with boiled oysters. (Example 5) 図32は非照射、UV−A照射の2通りの照射方法で乾燥された牡蠣の一般生菌数を比較して表した図である。(実施例6)FIG. 32 is a diagram showing a comparison of the number of general viable bacteria of oysters dried by two irradiation methods of non-irradiation and UV-A irradiation. (Example 6) 図33は一般生菌数、含水率、水分活性値、pH、大腸菌類の5項目について、非照射乾燥とUV−A照射乾燥とを比較して表した図である。(実施例6)FIG. 33 is a diagram comparing non-irradiation drying and UV-A irradiation drying for five items of general viable cell count, water content, water activity value, pH, and E. coli. (Example 6) 図34はS/E=4000の場合、各種条件での反応後6時間経過したアミノ酸含量を表した図である。(実施例7)FIG. 34 shows the amino acid content after 6 hours of reaction under various conditions when S / E = 4000. (Example 7) 図35はS/E=4000の場合、各種条件での反応後12時間経過したアミノ酸含量を表した図である。(実施例7)FIG. 35 shows the amino acid content after 12 hours from the reaction under various conditions when S / E = 4000. (Example 7) 図36はS/E=10,100,1000の場合、反応後3時間経過したアミノ酸含量を表した図である。(実施例7)FIG. 36 shows the amino acid content after 3 hours of reaction when S / E = 10,100,1000. (Example 7) 図37はS/E=10,100,1000の場合、反応後5時間経過したアミノ酸含量を表した図である。(実施例7)FIG. 37 shows the amino acid content after 5 hours from the reaction when S / E = 10,100,1000. (Example 7) 図38はノンボイル牡蠣に405nmの光を照射した場合の乾燥物のアミノ酸含量を示した図である。(実施例8)FIG. 38 is a view showing the amino acid content of the dried product when non-boiled oysters are irradiated with light of 405 nm. (Example 8)

Claims (4)

ボイル工程に代えて、波長域315nm〜430nmで照射強度1.05mW/cm 以上のUV−Aを照射しながら、0.37m/s以上の風速で水分活性値が所望の値まで乾燥した水産乾燥品であって、色彩色差計による測定で、従来のボイル乾燥品に比べて、表面の色調において、明度Lの平均値L=14.84、色度aの平均値a=3.53、色度bの平均値b=12.07で規定される範囲の濃い黄褐色の飴色に変色していることを特徴とするノンボイル牡蠣乾燥物。In place of the boil process, fisheries dried to a desired water activity value at a wind speed of 0.37 m / s or more while irradiating UV-A with an irradiation intensity of 1.05 mW / cm 2 or more in a wavelength range of 315 nm to 430 nm. a dry product, as measured by color difference meter, compared to the conventional boil dry goods, the color of the surface, the mean value L = 14.84 lightness L, mean a = 3.53 in the chromaticity a, A non-boiled oyster dried product, characterized by being discolored into a dark yellowish brown color in a range defined by an average value b of chromaticity b = 12.07 . ボイル工程に代えて、波長域315nm〜430nmで照射強度1.05mW/cm 以上のUV−Aを照射しながら、0.37m/s以上の風速で水分活性値が所望の値まで乾燥した水産乾燥品であって、レオメーターによる測定で、従来のボイル乾燥品に比べて、もろさ、凝集性、弾力性およびガム性が減少し、もろさと凝集性と弾力性から求まるそしゃく性が小さいことを特徴とする水産乾燥品。 In place of the boil process, fisheries dried to a desired water activity value at a wind speed of 0.37 m / s or more while irradiating UV-A with an irradiation intensity of 1.05 mW / cm 2 or more in a wavelength range of 315 nm to 430 nm. It is a dry product , and it is measured by a rheometer to reduce brittleness, cohesiveness, elasticity and gum as compared with conventional boiled dry products, and less chewyness determined from brittleness, cohesion and elasticity. A characteristic dry marine product. 水産物がホタテ、牡蠣、あわびを含む貝類、ワカメ、昆布を含む海藻類、ナマコを含む棘皮動物(きょくひどうぶつ)、ホヤを含む脊椎動物(せきついどうぶつ)、いか、たこを含む頭足類、えび、かにを含む甲殻類、あじ、いわしを含む魚類であることを特徴とする請求項2に記載の水産乾燥品。 Marine products include scallops, oysters, shellfish including abalone, seaweed including seaweed, kelp, echinoderms including sea cucumbers, vertebrates including sea squirts, squid, cephalopods including octopus, shrimp The dried marine product according to claim 2, which is a crustacean containing crab, a fish containing horse mackerel or sardine . 乾燥機に水産物を入れる工程と、
水産物の表面に0.37m/s以上の風を送風する工程と、
水産物の表面に波長域315nm〜430nmで照射強度1.05mW/cm 以上のUV−Aを照射する工程と、
水分活性値が所望の値までUV−A照射乾燥する工程と、
を含み、ボイル工程を不要としたことを特徴とする水産加工品の乾燥殺菌方法。
The process of putting marine products into the dryer;
Blowing air of 0.37 m / s or more on the surface of the seafood;
Irradiating the surface of the seafood with UV-A having an irradiation intensity of 1.05 mW / cm 2 or more in a wavelength range of 315 nm to 430 nm;
A step of drying by UV-A irradiation until the water activity value reaches a desired value;
A method for drying and sterilizing processed fishery products, characterized in that it does not require a boil process.
JP2016132032A 2015-06-14 2016-06-14 Dry sterilization method for processed fishery products Active JP6473935B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015131957 2015-06-14
JP2015131957 2015-06-14

Publications (2)

Publication Number Publication Date
JP2017000145A JP2017000145A (en) 2017-01-05
JP6473935B2 true JP6473935B2 (en) 2019-02-27

Family

ID=57753083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016132032A Active JP6473935B2 (en) 2015-06-14 2016-06-14 Dry sterilization method for processed fishery products

Country Status (1)

Country Link
JP (1) JP6473935B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3727560B2 (en) * 2000-08-28 2005-12-14 独立行政法人科学技術振興機構 Light processing method for seafood or agricultural products
JPWO2012060450A1 (en) * 2010-11-05 2014-05-12 国立大学法人徳島大学 Sterilization method of fruits and vegetables
JP2014233712A (en) * 2013-06-05 2014-12-15 Ckd株式会社 Ultraviolet sterilization device

Also Published As

Publication number Publication date
JP2017000145A (en) 2017-01-05

Similar Documents

Publication Publication Date Title
Abraha et al. Effect of processing methods on nutritional and physico-chemical composition of fish: a review
Qin et al. Effects of microwave time on quality of grass carp fillets processed through microwave combined with hot‐air drying
JP5707623B2 (en) Method and apparatus for increasing the antioxidant content or GABA content or catechin content or nucleotide content of agricultural or marine products or livestock products
KR102160763B1 (en) Making Method of Canned Seasoned Oyster and the Same Made Thereby
JP6473935B2 (en) Dry sterilization method for processed fishery products
JP2011067200A5 (en)
KR101235159B1 (en) Processed Food of Pleurotus eryngii and Preocessing Method Thereof
KR100778271B1 (en) Methods for preparing seasoned semi-dried oyster product
Şengör et al. Determination of the amino acid and chemical composition of canned smoked mussels (Mytilus galloprovincialis, L.)
JP2002142665A (en) Method for treating marine product and farm product with light
KR20190082412A (en) A method for preparing a smoking grilled comb pen shell
Mardiah et al. Protein quality of stingray (Himantura gerrardi) fish flakes
KR101530079B1 (en) IQF half-shelled roasted sea mussel and method for making the same
KR102137434B1 (en) Thawing method of frozen pollack
KR102251313B1 (en) Manufacture methods for processed foods using separate packaging and mild heating steriliaztion
RU2481003C2 (en) Preserving agents free liquid culinary base stable during storage, base production method and food composition containing base
KR100917682B1 (en) Method for preparing seasoned and smoked shrimp, and the product obtained therefrom
JP7093948B2 (en) Powder seasoning for rice cooking and rice cooking method using it
KR20210039027A (en) Method for preparing seasoned and smoked shrimp, and the Product obtained therefrom
KR20200065128A (en) Manufacturing Poultry jerky using ultrasonics wave curing and superheated steam method
Jakhar et al. Organoleptic, physiochemical and microbiological qualities of dried fish, tengra (Mystus tengara) with different levels of salt and turmeric powder
KR102486327B1 (en) Chitosan seasoning method
KR102053150B1 (en) Method for production of smoked trout with red ginseng seasoning
Suryaningrum et al. The nutritional value and sensory properties of shredded fish processed using by product of catfish (Pangasius Sp.) fillet
KR101742100B1 (en) A method of drying herbs by using super heated steam

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20170405

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170405

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20170718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170801

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180220

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180414

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180814

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20181001

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190115

R150 Certificate of patent or registration of utility model

Ref document number: 6473935

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150