JP6473882B1 - How to determine the shooting time - Google Patents

How to determine the shooting time Download PDF

Info

Publication number
JP6473882B1
JP6473882B1 JP2018070494A JP2018070494A JP6473882B1 JP 6473882 B1 JP6473882 B1 JP 6473882B1 JP 2018070494 A JP2018070494 A JP 2018070494A JP 2018070494 A JP2018070494 A JP 2018070494A JP 6473882 B1 JP6473882 B1 JP 6473882B1
Authority
JP
Japan
Prior art keywords
time
aorta
imaging
shooting
moving speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018070494A
Other languages
Japanese (ja)
Other versions
JP2019180444A (en
Inventor
富澤信夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nemoto Kyorindo Co Ltd
Original Assignee
Nemoto Kyorindo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nemoto Kyorindo Co Ltd filed Critical Nemoto Kyorindo Co Ltd
Priority to JP2018070494A priority Critical patent/JP6473882B1/en
Application granted granted Critical
Publication of JP6473882B1 publication Critical patent/JP6473882B1/en
Publication of JP2019180444A publication Critical patent/JP2019180444A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

【課題】大動脈における造影剤の移動速度を算出することにより、必要最小限の造影剤で大動脈造影CTを行うことを可能にする。
【解決手段】上行大動脈基部のレベルでタイミングボーラス法の撮影を行い、上行大動脈と下行大動脈の2ヶ所の時間濃度曲線を描く。このピーク時間の差から大動脈における造影剤の移動速度を算出し、本番の撮影にかける時間を決定する。この方法により、大動脈造影CTを必要最小限の造影剤で撮影できるようになる。
【選択図】図2
By calculating a moving speed of a contrast medium in an aorta, it is possible to perform an aortic contrast CT with a minimum necessary contrast medium.
Timing bolus imaging is performed at the level of the base of the ascending aorta, and two time density curves are drawn for the ascending aorta and the descending aorta. The moving speed of the contrast medium in the aorta is calculated from the difference in peak time, and the time taken for actual imaging is determined. With this method, aortic contrast CT can be imaged with the minimum necessary contrast medium.
[Selection] Figure 2

Description

本発明は、大動脈造影CTを撮影する際に、必要最小限の造影剤で撮影するための手法である。 The present invention is a technique for imaging with a minimum necessary contrast agent when imaging an aortic contrast CT.

大動脈瘤や解離の診断において、大動脈造影CTは最も一般的に使われている診断法である。撮影範囲が胸部から骨盤部と広いため、従来は70-100mL程度の造影剤を20秒程度かけて注入して撮影することが定石であった。 In the diagnosis of aortic aneurysm and dissection, aortic CT is the most commonly used diagnostic method. Since the imaging range is wide from the chest to the pelvis, it has been the usual practice to inject a 70-100 mL contrast medium over about 20 seconds.

ところが、造影剤は腎臓から体外に排泄されるため、造影剤使用量が増えると、腎機能の低下を引き起こす、いわゆる造影剤腎症の原因となる。大動脈疾患を抱える患者の多くは腎機能が低下していることが多いため、検査で使用する造影剤量を減らすことができれば、造影剤腎症のリスクを減らすことにつながる。 However, since the contrast agent is excreted from the kidney to the outside of the body, when the amount of contrast agent used increases, it causes so-called contrast nephropathy that causes a decrease in renal function. Many patients with aortic disease often have impaired renal function. Therefore, if the amount of contrast medium used in the test can be reduced, the risk of contrast medium nephropathy will be reduced.

従来の撮影で造影剤の使用量を減らせなかった理由は、大動脈全体を均一に造影剤で満たした状態で撮影を行うという考え方に基づいていたからである。ところが、実際のCT撮影は約4cmの検出器を用いて胸部から骨盤部にかけてらせん状に撮影していくため、撮影している部分のみに造影剤が満たされていれば大動脈が造影された画像を作成できる。ところが、大動脈の血流は患者ごとに異なる。従って、造影剤が大動脈に到着する時間と大動脈を通過する速度を計測する方法が確立すれば、最小限の造影剤でCT撮影が行えるようになる。 The reason why the amount of contrast medium used in conventional imaging could not be reduced is based on the idea that imaging is performed in a state where the entire aorta is uniformly filled with the contrast medium. However, since actual CT imaging uses a detector of about 4 cm to take a spiral from the chest to the pelvis, an image of the aorta contrasted if only the part being imaged is filled with contrast medium Can be created. However, the blood flow in the aorta varies from patient to patient. Therefore, if a method for measuring the time at which the contrast medium arrives at the aorta and the speed at which it passes through the aorta is established, CT imaging can be performed with a minimum of contrast medium.

造影剤を注射してから大動脈に造影剤が到着する時間を推測する方法としてタイミングボーラス法という手法が一般的に用いられている。これは、少量造影剤(約10mL)を注射して、大動脈を1秒間隔で連続撮影し、造影剤がピークを迎える時間を推測する方法である(図1)。従来では、1か所のみの時間濃度曲線を計測し、ピークを迎える時間のみを記録していた(図1)。 A method called a timing bolus method is generally used as a method for estimating the time at which a contrast medium arrives at the aorta after the contrast medium is injected. In this method, a small amount of contrast medium (approximately 10 mL) is injected, the aorta is continuously photographed at 1-second intervals, and the time when the contrast medium reaches its peak is estimated (Figure 1). In the past, only one time concentration curve was measured and only the time to reach the peak was recorded (Fig. 1).

本発明では、上行大動脈基部の高さでタイミングボーラス撮影を行い、上行大動脈と下行大動脈の2ヶ所の時間濃度曲線を計測する(図2)。それぞれの時間濃度曲線のピーク時間の差を記録する(T1)。次に、胸部大動脈の長さ(L0×2)、胸部の撮影範囲長(L1)、腹部の撮影範囲長(L2)も記録する。これらの値を用いて、下記の式で撮影にかける時間を計算する。ただし、今回の計測法では腹部大動脈での血流までは正確に計測できないため、以下の方法を用いて撮影時間を決定する。まず、腹部大動脈では胸部大動脈と比較して流速が低下するため、速度を6割とする。さらに、腹部大動脈瘤がある場合やステント治療後では所定の時間(C)を追加する。これらの仮定の元、最終的な撮影時間を決定する。ただし、血流が非常に速い場合(撮影時間が短く計算される場合)と遅い場合(撮影時間が長く計算される場合)は経験的にこの推測式が実態と乖離するため、撮影時間の下限は10秒、上限は20秒として撮影する。 In the present invention, timing bolus imaging is performed at the height of the base of the ascending aorta, and two time density curves of the ascending aorta and the descending aorta are measured (FIG. 2). Record the difference in peak time for each time concentration curve (T1). Next, the length of the thoracic aorta (L0 × 2), the imaging range length of the chest (L1), and the imaging range length of the abdomen (L2) are also recorded. Using these values, the time taken for photographing is calculated by the following formula. However, since the current measurement method cannot accurately measure blood flow in the abdominal aorta, the imaging time is determined using the following method. First, since the flow velocity is lower in the abdominal aorta than in the thoracic aorta, the speed is 60%. Furthermore, when there is an abdominal aortic aneurysm or after stent treatment, a predetermined time (C) is added. Based on these assumptions, the final shooting time is determined. However, if the blood flow is very fast (when the shooting time is calculated short) and slow (when the shooting time is calculated long), this estimation formula empirically deviates from the actual situation, so the lower limit of the shooting time Shoot for 10 seconds and the upper limit is 20 seconds.

実際の撮影では約40mLの造影剤を9秒注入し、タイミングボーラス撮影で下行大動脈がピークを迎える時間から撮影を開始し、上述で計算した撮影時間(T)で撮影する。この方法を用いることで、従来の撮影法と比較して造影剤使用量を半分以下にすることが可能となる。
In actual imaging, approximately 40 mL of contrast medium is injected for 9 seconds, and imaging is started from the time when the descending aorta reaches its peak in timing bolus imaging, and imaging is performed at the imaging time (T) calculated above. By using this method, it is possible to reduce the amount of contrast medium used by half or less compared to conventional imaging methods.

Bae KT. Intravenous Contrast Medium Administration and Scan Timing at CT: Considerations and Approaches. Radiology 2010;256(1):32-61.Bae KT. Intravenous Contrast Medium Administration and Scan Timing at CT: Considerations and Approaches. Radiology 2010; 256 (1): 32-61.

解決しようとする課題は、大動脈造影CTで使用する造影剤量を必要最小限に減らすことである。 The problem to be solved is to reduce the amount of contrast agent used in aortic contrast CT to the minimum necessary.

本発明では、造影剤の大動脈におけるピークを追跡して撮影できるため、撮影に必要な造影剤が最小限で済む。 In the present invention, since the peak of the contrast medium in the aorta can be tracked and imaged, the contrast medium required for imaging can be minimized.

本発明では、大動脈全体を造影剤で満たす必要がなく、撮影している部位のみが造影されていればよいため、撮影に必要な造影剤は約40mL程度でよく、従来の使用量の半分以下となる。 In the present invention, it is not necessary to fill the entire aorta with the contrast medium, and only the site being imaged needs to be imaged. Therefore, the contrast medium required for imaging may be about 40 mL, which is less than half of the conventional usage. It becomes.

従来のタイミングボーラス法を説明した図である。It is a figure explaining the conventional timing bolus method. 患者ごとに大動脈における造影剤の移動速度を算出するための手法を説明した図である。It is the figure explaining the method for calculating the moving speed of the contrast agent in an aorta for every patient. 本発明における手法を利用して、40mLの造影剤で撮影した大動脈の3次元画像を示した図である。It is the figure which showed the three-dimensional image of the aorta image | photographed with the 40 mL contrast agent using the method in this invention.

タイミングボーラス法で2ヶ所の時間濃度曲線を描くことで、造影剤の移動速度を算出できた。 The moving speed of the contrast agent was calculated by drawing two time density curves using the timing bolus method.

図2は本発明の手法を用いて、大動脈の撮影にかける時間を決定する過程を示している。 FIG. 2 shows a process of determining the time taken for imaging the aorta using the method of the present invention.

上行大動脈と下行大動脈のピーク差(T1)は3秒である。胸部大動脈長(L0×2)は140mmであるため、胸部大動脈は47mm/s (V1)で撮影すればよい。したがって、腹部大動脈を撮影する速度(V2)は28mm/sとなる。胸部撮影長(L1)は125mm、腹部撮影長(L2)は435mmであり、さらに45mmの腹部大動脈瘤があるため、撮影時間(T)は2.7+15.5+1 = 19.2秒と計算される。 The peak difference (T1) between the ascending aorta and descending aorta is 3 seconds. Since the thoracic aorta length (L0 × 2) is 140 mm, the thoracic aorta may be imaged at 47 mm / s (V1). Therefore, the speed (V2) for imaging the abdominal aorta is 28 mm / s. Since the chest imaging length (L1) is 125 mm, the abdominal imaging length (L2) is 435 mm, and there is a 45 mm abdominal aortic aneurysm, the imaging time (T) is calculated as 2.7 + 15.5 + 1 = 19.2 seconds.

図3は本発明の方法で計算した19.2秒の時間をかけて、40mLの造影剤で大動脈を撮影した際の大動脈3次元画像である。 FIG. 3 is a three-dimensional image of the aorta when the aorta is imaged with 40 mL of contrast medium over a period of 19.2 seconds calculated by the method of the present invention.

大動脈造影CTにおける造影剤使用量を従来の半分以下にできるため、造影CTによる造影剤腎症の合併症を引き起こすリスクを減らすことが可能である。また、腎機能が低下している患者でも大動脈造影CT検査が行えるようになるため、この検査の適応が広がる。 Since the amount of contrast medium used in aortic contrast CT can be reduced to less than half of the conventional level, the risk of causing complications of contrast medium nephropathy due to contrast CT can be reduced. In addition, aortic contrast CT can be performed even in patients with impaired renal function, so the indication of this test is expanded.

1 下行大動脈
2 上行大動脈
1 descending aorta
2 Ascending aorta

Claims (4)

大動脈CT撮影における撮影時間の決定方法であって、
上行大動脈基部を通る断面を連続撮影して得られた画像から、上行大動脈と下行大動脈の時間濃度曲線を作成するステップと、
上行大動脈の時間濃度曲線のピーク時間と下行大動脈の時間濃度曲線のピーク時間の時間差と、胸部大動脈の長さとを取得するステップと、
前記時間差と、前記胸部大動脈の長さとに基づいて胸部大動脈造影剤移動速度を算出するステップと、
胸部の撮影範囲長を取得し、前記胸部の撮影範囲長と前記胸部大動脈造影剤移動速度とに基づいて、胸部の撮影時間を算出するステップと、
を備える、撮影時間の決定方法。
A method for determining imaging time in aorta CT imaging,
Creating a time-concentration curve of the ascending aorta and descending aorta from images obtained by continuously photographing a cross section passing through the base of the ascending aorta;
Obtaining the time difference between the peak time of the time density curve of the ascending aorta and the peak time of the time density curve of the descending aorta, and the length of the thoracic aorta;
Calculating a thoracic aorta contrast agent moving speed based on the time difference and the length of the thoracic aorta;
Obtaining an imaging range length of the chest, and calculating an imaging time of the chest based on the imaging range length of the chest and the thoracic aorta contrast medium moving speed;
A method for determining a shooting time.
前記胸部大動脈造影剤移動速度と所定の係数とに基づいて、前記胸部大動脈造影剤移動速度よりも低速である腹部大動脈造影剤移動速度を算出するステップと、
腹部の撮影範囲長を取得し、前記腹部の撮影範囲長と前記腹部大動脈造影剤移動速度とに基づいて、腹部の撮影時間を算出するステップと、を備える、請求項1に記載の撮影時間の決定方法。
Calculating an abdominal aorta contrast agent moving speed that is slower than the thoracic aorta contrast agent moving speed based on the thoracic aorta contrast agent moving speed and a predetermined coefficient;
The method includes: obtaining an abdominal imaging range length, and calculating an abdominal imaging time based on the abdominal imaging range length and the abdominal aorta contrast medium moving speed. Decision method.
前記胸部の撮影時間と前記腹部の撮影時間とに基づいて、大動脈CT撮影における撮影開始からの撮影時間を算出するステップを備え、
前記胸部大動脈造影剤移動速度は、以下の式に基づいて算出され、
V1=L0/T1
前記腹部大動脈造影剤移動速度は、以下の式に基づいて算出され、
V2=0.6×V1
前記撮影開始からの撮影時間は、以下の式に基づいて算出され、
T=(L1/V1)+(L2/V2)+C
V1は、前記胸部大動脈造影剤移動速度であり、
L0は、前記胸部大動脈の長さであり、
T1は、前記時間差であり、
V2は、前記腹部大動脈造影剤移動速度であり、
Tは、前記撮影開始からの撮影時間であり、
L1は、前記胸部の撮影範囲長であり、
L2は、前記腹部の撮影範囲長であり、
Cは補正値であって、腹部大動脈の径が40から49mmの条件では1秒であり、腹部大動脈の径が50mm以上の条件では2秒であり、腹部大動脈ステント治療後という条件では1秒であり、いずれの条件も満たさない場合は0秒である、請求項2に記載の撮影時間の決定方法。
Based on the imaging time of the chest and the imaging time of the abdomen, the step of calculating the imaging time from the start of imaging in aortic CT imaging,
The thoracic aorta contrast agent moving speed is calculated based on the following formula:
V1 = L0 / T1
The abdominal aorta contrast agent moving speed is calculated based on the following formula:
V2 = 0.6 × V1
The shooting time from the start of shooting is calculated based on the following formula:
T = (L1 / V1) + (L2 / V2) + C
V1 is the thoracic aorta contrast agent moving speed,
L0 is the length of the thoracic aorta,
T1 is the time difference,
V2 is the abdominal aorta contrast agent moving speed,
T is the shooting time from the start of shooting,
L1 is the imaging range length of the chest,
L2 is the imaging range length of the abdomen,
C is a correction value, which is 1 second when the diameter of the abdominal aorta is 40 to 49 mm, 2 seconds when the diameter of the abdominal aorta is 50 mm or more, and 1 second after the abdominal aortic stent treatment. The method of determining an imaging time according to claim 2, wherein the time is 0 second when none of the conditions is satisfied.
算出された前記撮影開始からの撮影時間が10秒より短い場合は、前記撮影開始からの撮影時間を10秒とし、
算出された前記撮影開始からの撮影時間が20秒より長い場合は、前記撮影開始からの撮影時間を20秒とする、請求項3に記載の撮影時間の決定方法。
When the calculated shooting time from the start of shooting is shorter than 10 seconds, the shooting time from the start of shooting is set to 10 seconds,
The method of determining a shooting time according to claim 3, wherein when the calculated shooting time from the start of shooting is longer than 20 seconds, the shooting time from the start of shooting is set to 20 seconds.
JP2018070494A 2018-03-31 2018-03-31 How to determine the shooting time Active JP6473882B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018070494A JP6473882B1 (en) 2018-03-31 2018-03-31 How to determine the shooting time

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018070494A JP6473882B1 (en) 2018-03-31 2018-03-31 How to determine the shooting time

Publications (2)

Publication Number Publication Date
JP6473882B1 true JP6473882B1 (en) 2019-02-27
JP2019180444A JP2019180444A (en) 2019-10-24

Family

ID=65516884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018070494A Active JP6473882B1 (en) 2018-03-31 2018-03-31 How to determine the shooting time

Country Status (1)

Country Link
JP (1) JP6473882B1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62268535A (en) * 1986-05-15 1987-11-21 株式会社東芝 Radiation image processing apparatus
JPH0413381A (en) * 1990-04-30 1992-01-17 Shimadzu Corp Digital angiotensin device
WO2005046478A1 (en) * 2003-11-12 2005-05-26 Hitachi Medical Corporation Image processing method, image processing device, medical image diagnosis support system, and time-axis direction filtering method
JP2006223862A (en) * 2005-02-14 2006-08-31 Siemens Ag Method of estimating flow of contrast agent in vivo
JP2010240275A (en) * 2009-04-09 2010-10-28 Toshiba Corp X-ray ct imaging apparatus, method and program
WO2011096421A1 (en) * 2010-02-05 2011-08-11 株式会社根本杏林堂 Medical fluid administration device, and radiographic imaging system
WO2016084373A1 (en) * 2014-11-27 2016-06-02 国立大学法人広島大学 Simulator, injection device or imaging system provided with simulator, and simulation program

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62268535A (en) * 1986-05-15 1987-11-21 株式会社東芝 Radiation image processing apparatus
JPH0413381A (en) * 1990-04-30 1992-01-17 Shimadzu Corp Digital angiotensin device
WO2005046478A1 (en) * 2003-11-12 2005-05-26 Hitachi Medical Corporation Image processing method, image processing device, medical image diagnosis support system, and time-axis direction filtering method
JP2006223862A (en) * 2005-02-14 2006-08-31 Siemens Ag Method of estimating flow of contrast agent in vivo
JP2010240275A (en) * 2009-04-09 2010-10-28 Toshiba Corp X-ray ct imaging apparatus, method and program
WO2011096421A1 (en) * 2010-02-05 2011-08-11 株式会社根本杏林堂 Medical fluid administration device, and radiographic imaging system
WO2016084373A1 (en) * 2014-11-27 2016-06-02 国立大学法人広島大学 Simulator, injection device or imaging system provided with simulator, and simulation program

Also Published As

Publication number Publication date
JP2019180444A (en) 2019-10-24

Similar Documents

Publication Publication Date Title
Giusti et al. Dynamic MRI of the small bowel: usefulness of quantitative contrast-enhancement parameters and time–signal intensity curves for differentiating between active and inactive Crohn’s disease
US8103076B2 (en) Method for transcatheter intra-arterial perfusion magnetic resonance imaging
Ba‐Ssalamah et al. Hepatic gadoxetic acid uptake as a measure of diffuse liver disease: Where are we?
WO2017097074A1 (en) Method for calculating blood flow volume of blood vessel per unit time and blood flow velocity
CN111166317B (en) Method for calculating contrast fractional flow reserve and resting state pressure ratio based on contrast image
CN108703764A (en) Angiographic method, device, system, equipment and storage medium
Kogan et al. Validation of dynamic contrast-enhanced ultrasound in rodent kidneys as an absolute quantitative method for measuring blood perfusion
JP2018188448A5 (en)
CN110312475B (en) Method and system for modeling a human heart and atrium
JP5660607B2 (en) Image processing apparatus and program
Grenier et al. Measurement of glomerular filtration rate with magnetic resonance imaging: principles, limitations, and expectations
Prokop Protocols and future directions in imaging of renal artery stenosis: CT angiography
KR20210010880A (en) Dynamic angiography imaging
JP6473882B1 (en) How to determine the shooting time
EA037889B1 (en) Method of predetermining the time profile of contrast agent concentration in diagnostic imaging using a magnetic resonance system
JP2014128633A (en) X-ray diagnostic device and injector
CN111166315B (en) Method for calculating instantaneous mode-free ratio and resting state diastolic pressure ratio based on contrast image
Zhang et al. Feasibility study of high-resolution DCE-MRI for glomerular filtration rate (GFR) measurement in a routine clinical modal
JP2005073764A (en) System and method for angiographic measuring and imaging obtained by combining x-ray ct apparatus and ultrasonography
Hansch et al. Quantitative evaluation of MR perfusion imaging using blood pool contrast agent in subjects without pulmonary diseases and in patients with pulmonary embolism
KR20170098643A (en) Hemodynamics simulation method using partition of coronary artery volume
Irie et al. Prediction of the time to peak hepatic enhancement to optimize contrast-enhanced spiral CT
Lee et al. Impact of ventricular contrast medium attenuation on the accuracy of left and right ventricular function analysis at cardiac multi detector-row CT compared with cardiac MRI
JP2009098131A (en) Device and method for analyzing examination image by cardiac nuclear medicine examination method
Groth et al. Clinical study of model-based blood flow quantification on cerebrovascular data

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20180415

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20180702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180731

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180830

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181009

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20181009

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181211

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20181226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20181226

R150 Certificate of patent or registration of utility model

Ref document number: 6473882

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250