JP6473298B2 - Seawater leak continuous detection method and detection apparatus - Google Patents

Seawater leak continuous detection method and detection apparatus Download PDF

Info

Publication number
JP6473298B2
JP6473298B2 JP2014099999A JP2014099999A JP6473298B2 JP 6473298 B2 JP6473298 B2 JP 6473298B2 JP 2014099999 A JP2014099999 A JP 2014099999A JP 2014099999 A JP2014099999 A JP 2014099999A JP 6473298 B2 JP6473298 B2 JP 6473298B2
Authority
JP
Japan
Prior art keywords
electrical conductivity
condensate
cation exchange
exchange resin
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014099999A
Other languages
Japanese (ja)
Other versions
JP2015219009A (en
Inventor
豪 山地
豪 山地
正徳 難波
正徳 難波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shikoku Research Institute Inc
Shikoku Electric Power Co Inc
Original Assignee
Shikoku Research Institute Inc
Shikoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shikoku Research Institute Inc, Shikoku Electric Power Co Inc filed Critical Shikoku Research Institute Inc
Priority to JP2014099999A priority Critical patent/JP6473298B2/en
Publication of JP2015219009A publication Critical patent/JP2015219009A/en
Application granted granted Critical
Publication of JP6473298B2 publication Critical patent/JP6473298B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

本発明は、海水を利用しているプラントの海水リークの連続検出方法および検出装置に関する。   The present invention relates to a seawater leak continuous detection method and detection apparatus for a plant that uses seawater.

発電プラントでは、復水器等に冷却のため海水を用いている。しかし、海水が復水中に漏洩すると、プラント機器の腐食など重大な影響を及ぼすため、復水器細管を復水検塩装置により常時監視し、海水リークの有確を確認している。代表的な復水検塩装置は、陽イオン交換樹脂(カチオン交換樹脂)と電気伝導率計などから構成されている。復水検塩装置では、従来から海水リークにより復水に混入したNaClのNaを陽イオン交換樹脂によりHにイオン交換して海水塩化物塩をHClに変え、感度がより高い酸性溶液の電気伝導率を連続測定することで高精度に海水リークの連続監視を行っている。 In power plants, seawater is used for cooling in condensers and the like. However, if seawater leaks into the condensate, it has serious effects such as corrosion of plant equipment. Therefore, the condenser capillaries are constantly monitored by a condensate salt detector to confirm the likelihood of seawater leaks. A typical condensate salt analyzer is composed of a cation exchange resin (cation exchange resin) and an electric conductivity meter. In the condensate salt detection device, NaCl + of NaCl that has been mixed into the condensate due to seawater leak is ion-exchanged to H + by cation exchange resin to change the seawater chloride salt to HCl, and a highly sensitive acidic solution By continuously measuring the electrical conductivity, the seawater leak is continuously monitored with high accuracy.

しかし、週末停止などで減圧状態の復水器内を真空破壊する発電プラントの一次停止時には、大気中の二酸化炭素が復水中に溶解して炭酸水素イオン等となり、起動時の復水検塩装置の電気伝導率を上昇させるため、復水検塩装置が誤検出を起こして警報を発信してしまう問題があった。   However, during the primary shutdown of a power plant that breaks the vacuum of the condenser under reduced pressure due to a weekend stoppage, etc., carbon dioxide in the atmosphere dissolves in the condensate and becomes bicarbonate ions, etc. In order to increase the electrical conductivity of the condensate, there is a problem that the condensate salt detection device causes a false detection and issues an alarm.

このような問題に対し、復水検塩装置において、電気伝導率の測定前に脱気処理し、炭酸水素イオンを除去する装置が開発されている(特許文献1、特許文献2)。しかし、炭酸水素イオンの除去により復水検塩装置での警報は早期に解除できるが、電気伝導率は、系内の汚れ成分(硫酸イオン等)によっても上昇してしまうため、再起動操作の全般に渡っての誤検出を抑制することはできない。   In order to solve such a problem, an apparatus for degassing and removing bicarbonate ions in a condensate salt measurement apparatus before measuring electrical conductivity has been developed (Patent Documents 1 and 2). However, although the alarm in the condensate salt analyzer can be released early by removing bicarbonate ions, the electrical conductivity increases due to dirt components (sulfate ions, etc.) in the system. It is impossible to suppress false detection throughout.

また、別の手法として、誤検出そのものを防止するため、手分析によりCl濃度を測定して海水リーク有無を検知する水質管理が従来から行われている。例えば、イオンクロマトグラフを用いて、水質管理操作を自動的に行う装置が開発されている(特許文献3、特許文献4)。しかし、当該装置は5〜10分ごとに試料採取して間欠的に分析を行う技術であり、連続監視を行うことができない。 As another method, in order to prevent false detection itself, water quality management has been conventionally performed in which Cl concentration is measured by manual analysis to detect the presence or absence of seawater leaks. For example, devices that automatically perform water quality management operations using an ion chromatograph have been developed (Patent Documents 3 and 4). However, this apparatus is a technique for collecting samples every 5 to 10 minutes and performing analysis intermittently, and cannot perform continuous monitoring.

特許3100767号公報Japanese Patent No. 3100767 特許3328550号公報Japanese Patent No. 3328550 特開平07−269303号公報JP 07-269303 A 特許3974732号公報Japanese Patent No. 3974732

上記事情に鑑み、本発明は炭酸水素イオンや系内の汚れ成分による誤検出をせず、連続監視できる海水リークの検出方法及びその検出装置を提供することを目的とする。   In view of the above circumstances, an object of the present invention is to provide a seawater leak detection method and a detection apparatus thereof that can continuously monitor without erroneous detection due to hydrogen carbonate ions or dirt components in the system.

上記課題に対して、本発明は復水への海水リークを検知する方法であって、復水の電気伝導率1を測定する工程と、上記電気伝導率1を測定した復水を、Ag、Cu、Hgからなる群から選ばれる少なくとも一種の金属カチオンで置換された強カチオン交換樹脂に通過させる工程と、前記強カチオン交換樹脂を通過した復水の電気伝導率2を測定する工程と、電気伝導率1と電気伝導率2との差を演算する工程とを含む方法を提供する。また、復水への海水リークを検知する装置であって、復水の電気伝導率1を測定する電気伝導率測定手段1と、上記電気伝導率1を測定した復水が通過するAg、Cu、Hgからなる群から選ばれる少なくとも一種の金属カチオンで置換された強カチオン交換樹脂と、前記強カチオン交換樹脂を通過した復水の電気伝導率2を測定する電気伝導率測定手段2と、電気伝導率1と電気伝導率2との差を演算する演算手段とを含む装置を提供する。   In order to solve the above problems, the present invention is a method for detecting seawater leak to condensate, the step of measuring the electrical conductivity 1 of the condensate, and the condensate of which the electrical conductivity 1 is measured are Ag, Passing through a strong cation exchange resin substituted with at least one metal cation selected from the group consisting of Cu and Hg, measuring the electrical conductivity 2 of condensate that has passed through the strong cation exchange resin, And calculating a difference between conductivity 1 and electrical conductivity 2. Moreover, it is a device for detecting seawater leak to condensate, and is an electrical conductivity measuring means 1 for measuring the electrical conductivity 1 of the condensate, and Ag, Cu through which the condensate whose electrical conductivity 1 has been measured passes. A strong cation exchange resin substituted with at least one metal cation selected from the group consisting of Hg, electrical conductivity measuring means 2 for measuring the electrical conductivity 2 of condensate that has passed through the strong cation exchange resin, An apparatus is provided that includes a computing means for computing the difference between conductivity 1 and electrical conductivity 2.

本発明のハロゲン化物イオン濃度を測定する方法及びその測定装置によれば、炭酸水素イオンや系内の汚れ成分による誤検出をしないため、誤った警報を発することがなく、しかも、連続監視をすることができる。   According to the method and apparatus for measuring halide ion concentration according to the present invention, since false detection is not performed due to bicarbonate ions or dirt components in the system, there is no false alarm and continuous monitoring is performed. be able to.

なお、Ag、Cu、Hgからなる群から選ばれる少なくとも一つの金属カチオンで置換された強カチオン交換樹脂、中でも、Ag型カチオン交換樹脂は、ハロゲン化物イオンを除去するのに用いられることは知られているが、本発明では、ハロゲン化物イオンの除去を目的としているのではなく、ハロゲン化物イオン、特に塩化物イオン検知・定量することを目的としている。前記強カチオン交換樹脂と、2回の電気伝導率測定を組み合わせて、直接的にハロゲン化物イオン(塩化物イオン)を検知・測定することに特徴がある。前記強カチオン交換樹脂と、2回の電気伝導率測定とを組み合わせた技術は、炭酸水素イオンや硫酸イオン等の他の酸成分の影響を受けずに、ハロゲン化物イオンの濃度を測定することができ、非常に高い効果を奏するものである。この方法を、発電所の復水の海水リークに利用すれば、発電所の海水リークの誤報の原因となっていた炭酸水素イオンや硫酸イオン等の他の酸成分の影響を受けないため、発電所の一次停止後の再起動時においても誤報がなく、かつ、通常運転の時は連続的に常時監視できる。 It is known that a strong cation exchange resin substituted with at least one metal cation selected from the group consisting of Ag, Cu, and Hg, particularly an Ag + type cation exchange resin, is used to remove halide ions. However, the present invention is not intended to remove halide ions, but to detect and quantify halide ions, particularly chloride ions. The strong cation exchange resin is combined with two electrical conductivity measurements to directly detect and measure halide ions (chloride ions). The technique combining the strong cation exchange resin and the twice electrical conductivity measurement can measure the concentration of halide ions without being affected by other acid components such as bicarbonate ions and sulfate ions. It is possible and has a very high effect. If this method is used for seawater leaks from the condensate of the power plant, it will not be affected by other acid components such as hydrogen carbonate ions or sulfate ions that have caused false reports of seawater leaks at the power plant. There is no false alarm when restarting after a primary stop, and continuous monitoring is possible during normal operation.

塩化物イオン濃度を測定する好ましい方法に関するチャート図である。It is a chart regarding the preferable method of measuring a chloride ion concentration. 塩化物イオン濃度と、電気伝導率の差との相関関係を示す図である。It is a figure which shows the correlation with a chloride ion density | concentration and the difference of electrical conductivity.

[構成]
本発明は、復水への海水リークを検知する方法であって、復水の電気伝導率1を測定する工程と、上記電気伝導率1を測定した復水を、Ag、Cu、Hgからなる群から選ばれる少なくとも一種の金属のカチオンで置換された強カチオン交換樹脂に通過させる工程と、前記強カチオン交換樹脂を通過した復水の電気伝導率2を測定する工程と、電気伝導率1と電気伝導率2との差を演算する工程とを含む方法に関する。ここで復水とは、発電所、特に海水冷却を採用している発電所プラントにおける復水器で冷却により凝縮した水のことである。また、海水リークは、復水になんらかの原因で冷却用海水が混入してしまうことである。
[Constitution]
The present invention is a method for detecting seawater leak to condensate, the step of measuring the electrical conductivity 1 of the condensate, and the condensate of which the electrical conductivity 1 is measured are composed of Ag, Cu, and Hg. Passing through a strong cation exchange resin substituted with at least one metal cation selected from the group, measuring the electrical conductivity 2 of condensate that has passed through the strong cation exchange resin, and electrical conductivity 1; And calculating a difference from electrical conductivity 2. Here, the condensate is water condensed by cooling in a condenser in a power plant, particularly a power plant that employs seawater cooling. In addition, seawater leak is a mixture of cooling seawater for some reason in the condensate.

本発明のハロゲン化物イオン濃度を測定する方法を、海水冷却を採用している発電プラントの復水の塩化物イオン濃度の検知又は測定に利用した態様について説明する。   An embodiment in which the method for measuring the halide ion concentration of the present invention is used to detect or measure the chloride ion concentration of the condensate of a power plant that employs seawater cooling will be described.

まず、発電プラントの復水器からポンプによって運ばれてきた、塩化物イオンを含む復水の電気伝導率を測定する。この時の電気伝導率を電気伝導率1とし、電気伝導率1を測定する手段を電気伝導率測定手段1とする。電気伝導率測定手段1としては、通常の電気伝導率計が用いられる。   First, the electrical conductivity of the condensate containing chloride ions that has been carried by the pump from the condenser of the power plant is measured. The electrical conductivity at this time is defined as electrical conductivity 1, and the means for measuring electrical conductivity 1 is defined as electrical conductivity measuring means 1. As the electrical conductivity measuring means 1, a normal electrical conductivity meter is used.

次に、電気伝導率1を測定した復水を、Ag、Cu、Hgからなる群から選ばれる少なくとも一種の金属のカチオンで置換された強カチオン交換樹脂の一つであるAg型強カチオン交換樹脂に通過させる。この際、Ag型強カチオン交換樹脂には、復水中の塩化物イオンが吸着し、AgClを形成し沈殿するので、復水中の塩化物イオンが取り除かれる。 Next, Ag + type strong cation exchange, which is one of strong cation exchange resins in which the condensate whose electrical conductivity is 1 is replaced with at least one metal cation selected from the group consisting of Ag, Cu, and Hg. Pass through the resin. At this time, chloride ions in the condensate are adsorbed on the Ag + -type strong cation exchange resin to form and precipitate AgCl, so that chloride ions in the condensate are removed.

そして、Ag型強カチオン交換樹脂を通過した復水の電気伝導率を再度測定する。この電気伝導率を電気伝導率2とし、電気伝導率2を測定する手段を電気伝導率測定手段2とする。電気伝導率測定手段2としては、通常の電気伝導率計が用いられる。 And the electrical conductivity of the condensate which passed Ag + type | mold strong cation exchange resin is measured again. This electrical conductivity is designated as electrical conductivity 2, and the means for measuring electrical conductivity 2 is designated as electrical conductivity measuring means 2. As the electrical conductivity measuring means 2, a normal electrical conductivity meter is used.

得られた電気伝導率1と電気伝導率2との差(電気伝導率1−電気伝導率2)は、Ag型強カチオン交換樹脂に吸着した塩化物イオンがもたらしたものであるため、直接的に吸着した塩化物イオンを検知・測定することができる。 The difference between the obtained electric conductivity 1 and electric conductivity 2 (electrical conductivity 1−electric conductivity 2) is caused by chloride ions adsorbed on the Ag + type strong cation exchange resin, Adsorbed chloride ions can be detected and measured.

本発明で使用するAg型強カチオン交換樹脂は、本発明の目的を阻害しない限り、いかなるAg型強カチオン交換樹脂が使用でき、市販のものを利用することもできる。なお、Ag型強カチオン交換樹脂は、強カチオン交換樹脂のHをAgに置換したものである。使用するときは、Ag型強カチオン交換樹脂をカラムに詰めて用いることができる。なお、Cu型、Hg型の強カチオン交換樹脂も使用できるが、コスト、取扱いやすさの観点からAg型強カチオン交換樹脂を用いることが好ましい。 As the Ag + type strong cation exchange resin used in the present invention, any Ag + type strong cation exchange resin can be used as long as the object of the present invention is not impaired, and a commercially available one can also be used. The Ag + type strong cation exchange resin is obtained by replacing H + of the strong cation exchange resin with Ag + . When used, Ag + type strong cation exchange resin can be packed in a column and used. Although Cu + -type and Hg + -type strong cation exchange resins can also be used, Ag + -type strong cation exchange resins are preferably used from the viewpoints of cost and ease of handling.

Ag型強カチオン交換樹脂を得るために用いられる銀イオンは、硝酸銀、過塩素酸銀等のような、水中において銀イオンを生ずることができる種々の銀塩から提供されることが好ましい。例えば、強カチオン交換樹脂を1mol/L−R以上の銀イオン水溶液に通液することによって行う。 The silver ions used to obtain the Ag + type strong cation exchange resin are preferably provided from various silver salts that can generate silver ions in water, such as silver nitrate, silver perchlorate and the like. For example, it is carried out by passing a strong cation exchange resin through an aqueous silver ion solution of 1 mol / LR or more.

Ag型強カチオン交換樹脂の具体例としては、市販されているジーエルサイエンス株式会社製MetaSEP IC−Ag、サーモフィッシャーサイエンティフィック株式会社製オンガードIIカートリッジAgなどが挙げられる。 Specific examples of the Ag + type strong cation exchange resin include commercially available MetaSEP IC-Ag manufactured by GL Sciences Inc., Onguard II cartridge Ag manufactured by Thermo Fisher Scientific Co., Ltd., and the like.

水を別の陽イオン交換樹脂(H型カチオン交換樹脂)に通過させてから電気伝導率1を測定することにより、水中の塩のNa等のカチオンをHに交換することができ、塩化物イオンを正確に測定・検知することができる。なお、本明細書では、電気伝導率1を測定する前に水を通過させるH型カチオン交換樹脂をH型カチオン交換樹脂1とする。 By allowing water to pass through another cation exchange resin (H + type cation exchange resin) and then measuring the electric conductivity 1, cations such as Na + of the salt in water can be exchanged with H + , Chloride ions can be measured and detected accurately. In this specification, the H + type cation exchange resin through which water is allowed to pass before the electrical conductivity 1 is measured is referred to as H + type cation exchange resin 1.

本発明の塩化物イオン濃度を測定する方法では、他の成分によって影響を受けにくいが、精度をより向上させるため、電気伝導率1の測定前に大気中の二酸化炭素の溶解によって生じた炭酸水素イオンを除去することが好ましい。炭酸水素イオンの除去には、例えば、特許文献1及び特許文献2に記載の装置で除去することができる。   In the method for measuring the chloride ion concentration of the present invention, hydrogen carbonate generated by the dissolution of carbon dioxide in the atmosphere before the measurement of the electrical conductivity 1 is more difficult to be influenced by other components, but in order to further improve the accuracy. It is preferable to remove ions. For removal of hydrogen carbonate ions, for example, the apparatus described in Patent Document 1 and Patent Document 2 can be used.

また、本発明の塩化物イオンを海水リークのチェックの利用する場合、リークの量が大きいと(大量リーク)、Ag型強カチオン交換樹脂のすべてのAgイオンに塩素イオンが吸着してしまい、余剰の塩化物イオンを測定できないため、正確に塩化物イオン濃度を測定できない恐れがある。そのような大量リークの場合に備えて、イオン選択性電極、特に塩化物イオン選択性電極を用いて塩化物イオンを測定する工程も更に備えてもよい。塩化物イオン選択性電極を用いることにより、大量リーク時の塩化物イオン濃度、例えば、0.35ppm以上の塩化物イオン濃度を測定することができる。塩化物イオン選択性電極としては、堀場製作所製塩化物イオン電極8002−10C、東亜ディーケーケー株式会社製CL−2021(1ppm以上の塩化物イオン濃度の測定が可能)などが挙げられる。 Further, when the chloride ion of the present invention is used for seawater leak check, if the amount of leak is large (mass leak), chloride ions are adsorbed to all Ag ions of the Ag + type strong cation exchange resin, Since excess chloride ions cannot be measured, the chloride ion concentration may not be measured accurately. In preparation for such a large leak, a step of measuring chloride ions using an ion selective electrode, particularly a chloride ion selective electrode, may be further provided. By using a chloride ion selective electrode, a chloride ion concentration at the time of a large leak, for example, a chloride ion concentration of 0.35 ppm or more can be measured. Examples of the chloride ion selective electrode include a chloride ion electrode 8002-10C manufactured by HORIBA, Ltd., and CL-2021 manufactured by Toa DKK Corporation (a chloride ion concentration of 1 ppm or more can be measured).

任意選択的に、Ag型強カチオン交換樹脂に通過させた後に、H型カチオン交換樹脂を通過させると、溶出したAgイオンを取り込むことができるため、より精度が高くなるため好ましい。ここで使用されるH型カチオン交換樹脂は、本発明の目的を阻害するようなことがなければ、特に限定されるものではなく、市販のH型の強カチオン交換樹脂を使用することができる。なお、本明細書では、電気伝導率1を測定した後、かつ電気伝導率2を測定する前に復水を通過させるH型カチオン交換樹脂をH型カチオン交換樹脂2とする。H型カチオン交換樹脂2と、H型カチオン交換樹脂1は同じであっても、異なるものであってもよい。工程上、H型カチオン交換樹脂1とH型カチオン交換樹脂2とをそれぞれ用意した方が好ましい。 Optionally, it is preferable to pass the H + -type cation exchange resin after passing through the Ag + -type strong cation exchange resin, since the eluted Ag ions can be taken in, and the accuracy becomes higher. The H + type cation exchange resin used here is not particularly limited as long as it does not inhibit the object of the present invention, and a commercially available H + type strong cation exchange resin may be used. it can. In this specification, the H + type cation exchange resin through which condensate passes after measuring the electric conductivity 1 and before measuring the electric conductivity 2 is referred to as an H + type cation exchange resin 2. The H + type cation exchange resin 2 and the H + type cation exchange resin 1 may be the same or different. In the process, it is preferable to prepare H + type cation exchange resin 1 and H + type cation exchange resin 2 respectively.

なお、本発明の測定によって出される排水は、従来の設備を用いて排水処理することができる。   In addition, the waste_water | drain discharged | emitted by the measurement of this invention can be drained using the conventional installation.

また、演算手段を設けて、電気伝導率1と電気伝導率2との差、及びその値から導かれる塩化物イオン濃度を演算することができる。例えば、測定誤差の範囲を大きく逸脱する値(例えば、測定誤差の2倍以上の塩化物イオン濃度値)が記録された場合は、海水リークがあると考えることができる。   Moreover, a calculation means can be provided to calculate the difference between the electric conductivity 1 and the electric conductivity 2 and the chloride ion concentration derived from the value. For example, when a value that greatly deviates from the measurement error range (for example, a chloride ion concentration value that is twice or more the measurement error) is recorded, it can be considered that there is seawater leak.

さらに通信手段を設けて、電気伝導率1、Ag型強カチオン交換樹脂の状態、電気伝導率2の状態を記録・モニタリングすることができ、これらを一括管理することもできる。当該方法は、復水だけでなく、水中のハロゲン化物イオンの検出・測定をすることにも利用できる。 Furthermore, by providing communication means, it is possible to record and monitor the electrical conductivity 1, the state of the Ag + type strong cation exchange resin, and the electrical conductivity 2 state, and these can be managed collectively. This method can be used not only for condensate but also for detection and measurement of halide ions in water.

以下、実施例を用いて本発明をさらに説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, although this invention is further demonstrated using an Example, this invention is not limited to these.

実験に使用した水は、0、0.01、0.05、0.1、0.2、1ppmの濃度の食塩を含有する水(1リットル)であり、流量30ml/分で連続的に流した。当該水は、JCSS認定品のイオンクロマトグラフ用試薬:和光純薬工業社製塩化物イオン標準液Cl1000(Cl:1000mg/L,NaCl in Water)を希釈したものを使用した。温度は23℃〜25℃の範囲であった。
Ag型強カチオン交換樹脂に通水する前に、H型カチオン交換樹脂1としてのオルガノ株式会社製アンバージェット1006N(H)に通し、Naを除去し、さらに、三菱レイヨン製MHF0504MBFを用いて中空糸膜の外側を減圧して、炭酸水素イオンを除去した。
上記のように処理した水の電気伝導率1を測定し、Ag型の強カチオン交換樹脂であるジーエルサイエンス株式会社製MetaSEP IC−Agに通し、その後、電気伝導率2を測定した。
電気伝導率1を測定する電気伝導率手段1である電気伝導率計1及び電気伝導率2を測定する電気伝導率測定手段2である電気伝導率計2は、いずれも東亜ディーケーケー株式会社製の純水用ポータブル電気伝導率計として市販されているCM−31P−Wを使用した。結果を図2の丸のプロットで示す。
また、電気伝導率1を測定した後、上記Ag型の強カチオン交換樹脂を通過させ、その後、新たに配置したH型強カチオン交換樹脂2を通過させてから、電気伝導率2の測定を行った。H型強カチオン交換樹脂2として、ジーエルサイエンス株式会社製MetaSEP IC−MCを使用した。結果を図2の四角のプロットで示す。
The water used in the experiment was water (1 liter) containing sodium chloride having a concentration of 0, 0.01, 0.05, 0.1, 0.2, 1 ppm, and was continuously flown at a flow rate of 30 ml / min. did. The water, ion chromatography reagent JCSS approved: manufactured by Wako Pure Chemical Industries salt production hydride ion standard solution Cl - 1000 (Cl -: 1000mg / L, NaCl in Water) was used after diluting. The temperature ranged from 23 ° C to 25 ° C.
Before passing water through Ag + type strong cation exchange resin, Na + is removed by passing through Amberjet 1006N (H) manufactured by Organo Corporation as H + type cation exchange resin 1, and further, MHF0504MBF manufactured by Mitsubishi Rayon is used. Then, the outside of the hollow fiber membrane was decompressed to remove bicarbonate ions.
The electrical conductivity 1 of the water treated as described above was measured and passed through MetaSEP IC-Ag manufactured by GL Sciences Inc., which is an Ag + type strong cation exchange resin, and then the electrical conductivity 2 was measured.
The electric conductivity meter 1 which is the electric conductivity means 1 for measuring the electric conductivity 1 and the electric conductivity meter 2 which is the electric conductivity measuring means 2 for measuring the electric conductivity 2 are both manufactured by Toa DKK Corporation. Commercially available CM-31P-W was used as a portable electric conductivity meter for pure water. The results are shown as a circle plot in FIG.
In addition, after measuring the electrical conductivity 1, the Ag + type strong cation exchange resin is passed through, and then the newly placed H + type strong cation exchange resin 2 is passed through, and then the electrical conductivity 2 is measured. Went. As the H + type strong cation exchange resin 2, MetaSEP IC-MC manufactured by GL Sciences Inc. was used. The results are shown by the square plots in FIG.

実験結果を示す図2からも明らかなように、塩化物イオン濃度(単位:ppm)と電気伝導率1と電気伝導率2との差(単位:mS/m)は、良好な直線関係があり、海水リーク等による塩化物イオン濃度を正確に測定することができることがわかった。   As is clear from FIG. 2 showing the experimental results, the difference between the chloride ion concentration (unit: ppm) and the electrical conductivity 1 and electrical conductivity 2 (unit: mS / m) has a good linear relationship. It was found that the chloride ion concentration due to seawater leaks can be measured accurately.

そして、Ag型の強カチオン交換樹脂を通過した後、H型強カチオン交換樹脂2を通過させてから、電気伝導率2を測定した場合は、図2の四角のプロットからもわかるように、電気伝導率の差が大きくなり、より正確に検知できることがわかった。 When the electric conductivity 2 is measured after passing through the Ag + type strong cation exchange resin and then passing through the H + type strong cation exchange resin 2, as can be seen from the square plot in FIG. As a result, it was found that the difference in electrical conductivity was increased and the detection could be made more accurately.

なお、図2にように検量線ができれば、得られた電気伝導率の差と、検量線を対比し、塩化物イオンの濃度を決定することができるが、仮に検量線がなくても、塩化物イオンが存在すれば、電気伝導率の差の値が変化するので、海水リークを検知することはできる。   If a calibration curve is made as shown in FIG. 2, the concentration of chloride ions can be determined by comparing the obtained difference in electrical conductivity with the calibration curve. If there is an object ion, the value of the difference in electrical conductivity changes, so seawater leak can be detected.

[効果]
[1] 復水への海水リークを検知する方法であって、復水の電気伝導率1を測定する工程と、上記電気伝導率1を測定した復水を、Ag、Cu、Hgからなる群から選ばれる少なくとも一種の金属のカチオンで置換された強カチオン交換樹脂に通過させる工程と、前記強カチオン交換樹脂を通過した復水の電気伝導率2を測定する工程と、電気伝導率1と電気伝導率2との差を演算する工程とを含む方法は、炭酸水素イオン、硫酸イオン等の他の酸成分に影響されず、復水中のハロゲン化物イオン、特に塩化物イオンを検知することができる。すなわち、発電所の操業方法や系内の汚れ等の影響を受けずに、ハロゲン化物イオン濃度の検知することができる。
[2]上記[1]の発明において、復水をH型カチオン交換樹脂1に通過させた後に、電気伝導率1を測定することにより、復水中の塩のNa等をHに交換することができ、より正確で安定した操業が可能である。
[3]上記[2]の発明において、復水をH型カチオン交換樹脂1に通過させる前又は後に、炭酸水素イオンを除去することにより、正確な塩化物イオン量を検知することができる。
[4]上記[1]〜[3]に記載の発明において、前記強カチオン交換樹脂を通過させる工程の後に、復水をH型カチオン交換樹脂2に通過させ、その後電気伝導率2を測定することにより、Ag、Cu、Hg型の強カチオン交換樹脂から溶出した金属カチオンを取り込み、これらのイオンが電気伝導率へもたらす影響を低下することができる。
[5]上記[1]〜[4]に記載の発明において、イオン選択性電極によりハロゲン化物イオンの濃度を測定する工程を更に含む場合は、微少リークだけでなく、0.35ppm以上のハロゲン化物イオン濃度をもたらす大量リークの検知も行うことができる。
[6]復水への海水リークを検知する装置であって、復水の電気伝導率1を測定する電気伝導率測定手段1と、上記電気伝導率1を測定した復水が通過するAg、Cu、Hgからなる群から選ばれる少なくとも一種の金属のカチオンで置換された強カチオン交換樹脂と、前記強カチオン交換樹脂を通過した復水の電気伝導率2を測定する電気伝導率測定手段2と、電気伝導率1と電気伝導率2との差を演算する演算手段とを含む装置は、炭酸イオン、硫酸イオン等の他の酸成分に影響されず、ハロゲン化物イオンを連続的に測定できる装置である。
[7]水に含まれるハロゲン化物イオン濃度を測定する方法であって、水の電気伝導率1を測定する工程と、上記電気伝導率1を測定した水を、Ag、Cu、Hgからなる群から選ばれる少なくとも一種の金属のカチオンで置換された強カチオン交換樹脂に通過させる工程と、前記強カチオン交換樹脂を通過した水の電気伝導率2を測定する工程と、電気伝導率1と電気伝導率2との差を演算し、電気伝導率の差を演算する工程と、得られた電気伝導率の差及び事前に作成した検量線を対比し、ハロンゲン化物イン濃度を特定する工程とを含む方法は、炭酸イオン、硫酸イオン等の他の酸成分に影響されずに、塩化物イオン濃度を正確に測定することができる。
[8]上記[7]に記載の発明において、前記強カチオン交換樹脂に通過させる工程の後に、水をH型強カチオン交換樹脂2に通過させて電気伝導率2を測定することにより、Ag、Cu、Hg型の強カチオン交換樹脂から溶出した金属カチオンを取り込み、これらのイオンが電気伝導率へもたらす影響を低下することができる。
[effect]
[1] A method for detecting seawater leak to condensate, the step of measuring the electrical conductivity 1 of the condensate, and the condensate of which the electrical conductivity 1 has been measured are made of Ag, Cu, and Hg Passing through a strong cation exchange resin substituted with at least one metal cation selected from: a step of measuring the electrical conductivity 2 of condensate that has passed through the strong cation exchange resin; The method including the step of calculating the difference from the conductivity 2 can detect halide ions, particularly chloride ions in the condensate, without being affected by other acid components such as bicarbonate ions and sulfate ions. . That is, it is possible to detect the halide ion concentration without being affected by the operation method of the power plant or dirt in the system.
[2] In the above invention [1], after passing the condensate through the H + type cation exchange resin 1, the electrical conductivity 1 is measured to exchange Na + or the like of the salt in the condensate with H + . More accurate and stable operation is possible.
[3] In the invention of the above [2], an accurate amount of chloride ions can be detected by removing bicarbonate ions before or after passing the condensate through the H + -type cation exchange resin 1.
[4] In the invention described in [1] to [3] above, after the step of passing the strong cation exchange resin, the condensate is passed through the H + type cation exchange resin 2 and then the electrical conductivity 2 is measured. By doing so, it is possible to take in metal cations eluted from Ag + , Cu + and Hg + type strong cation exchange resins, and to reduce the influence of these ions on electrical conductivity.
[5] In the invention described in [1] to [4] above, when the step of measuring the concentration of halide ions with an ion selective electrode is further included, not only a slight leak but also a halide of 0.35 ppm or more Large leaks that cause ion concentrations can also be detected.
[6] An apparatus for detecting seawater leak to condensate, wherein the electrical conductivity measuring means 1 measures the electrical conductivity 1 of the condensate, and Ag through which the condensate whose electrical conductivity 1 is measured passes. A strong cation exchange resin substituted with a cation of at least one metal selected from the group consisting of Cu and Hg, and electrical conductivity measuring means 2 for measuring the electrical conductivity 2 of condensate that has passed through the strong cation exchange resin; An apparatus including a calculation means for calculating the difference between electric conductivity 1 and electric conductivity 2 is an apparatus capable of continuously measuring halide ions without being affected by other acid components such as carbonate ions and sulfate ions. It is.
[7] A method of measuring the concentration of halide ions contained in water, wherein the step of measuring the electrical conductivity 1 of water and the water of which the electrical conductivity 1 is measured are made of Ag, Cu, and Hg A step of passing through a strong cation exchange resin substituted with a cation of at least one metal selected from: a step of measuring electric conductivity 2 of water that has passed through the strong cation exchange resin; an electric conductivity 1 and an electric conductivity; A step of calculating a difference from the rate 2 and calculating a difference in electrical conductivity, and a step of comparing the obtained difference in electrical conductivity and a calibration curve prepared in advance to specify a halongogen in concentration. The method can accurately measure the chloride ion concentration without being influenced by other acid components such as carbonate ion and sulfate ion.
[8] In the invention described in [7] above, after the step of passing through the strong cation exchange resin, water is passed through the H + type strong cation exchange resin 2 and the electrical conductivity 2 is measured. Metal cations eluted from strong cation exchange resins of + , Cu + and Hg + types can be taken in, and the influence of these ions on electrical conductivity can be reduced.

本発明の、ハロゲン化物イオン濃度を測定する方法、及びその装置は、復水への海水リークを測定することができるため、火力発電所等において利用することができる。

The method and apparatus for measuring halide ion concentration of the present invention can measure seawater leak to condensate, and can be used in thermal power plants and the like.

Claims (6)

復水への海水リークを検知する方法であって、
復水の電気伝導率1を測定する工程と、
上記電気伝導率1を測定した復水を、Ag、Cu、Hgからなる群から選ばれる少なくとも一種の金属のカチオンで置換された強カチオン交換樹脂に通過させる工程と、
前記強カチオン交換樹脂に通過させた復水の電気伝導率2を測定する工程と、
電気伝導率1と電気伝導率2との差を演算し、前記差と復水の塩化物イオンの濃度の相関関係とから海水リークがあるか否かを判定する工程とを含む、方法。
A method for detecting seawater leaks to condensate,
Measuring the condensate electrical conductivity 1;
Passing the condensate having the electrical conductivity 1 measured through a strong cation exchange resin substituted with a cation of at least one metal selected from the group consisting of Ag, Cu, and Hg;
Measuring the electrical conductivity 2 of the condensate passed through the strong cation exchange resin;
Calculating the difference between the electrical conductivity 1 and the electrical conductivity 2 and determining whether there is seawater leak from the correlation between the difference and the concentration of chloride ion in condensate.
復水をH+型カチオン交換樹脂1に通過させた後に、電気伝導率1を測定する、請求項1に記載の方法。   The method according to claim 1, wherein the electrical conductivity 1 is measured after passing the condensate through the H + type cation exchange resin 1. 復水を前記H+型カチオン交換樹脂1に通過させる前又は後に、炭酸水素イオンを除去する、請求項2に記載の方法。   The method according to claim 2, wherein bicarbonate ions are removed before or after passing condensate through the H + type cation exchange resin 1. 前記強カチオン交換樹脂に通過させる工程の後に、復水をH+型カチオン交換樹脂2に通過させ、その後、電気伝導率2を測定する、請求項1〜3のいずれか一項に記載の方法。   The method according to any one of claims 1 to 3, wherein the condensate is passed through the H + type cation exchange resin 2 after the step of passing through the strong cation exchange resin, and then the electrical conductivity 2 is measured. イオン選択性電極により塩化物イオンの濃度を測定する工程を更に含む、請求項1〜4のいずれか一項に記載の方法。   The method as described in any one of Claims 1-4 which further includes the process of measuring the density | concentration of a chloride ion with an ion selective electrode. 復水への海水リークを検知する装置であって、
復水の電気伝導率1を測定する電気伝導率測定手段1と、
上記電気伝導率1を測定した復水が通過するAg、Cu、Hgからなる群から選ばれる少なくとも一種の金属のカチオンで置換された強カチオン交換樹脂と、
前記強カチオン交換樹脂に通過させた復水の電気伝導率2を測定する電気伝導率測定手段2と、
電気伝導率1と電気伝導率2との差を演算し、前記差と復水の塩化物イオンの濃度の相関関係とから海水リークがあるか否かを判定する演算手段とを含む、装置。
A device that detects seawater leaks into condensate,
Electrical conductivity measuring means 1 for measuring the electrical conductivity 1 of the condensate;
A strong cation exchange resin substituted with a cation of at least one metal selected from the group consisting of Ag, Cu, and Hg through which the condensate of which the electrical conductivity 1 is measured passes;
Electrical conductivity measuring means 2 for measuring the electrical conductivity 2 of the condensate passed through the strong cation exchange resin;
An apparatus comprising: calculating means for calculating a difference between the electric conductivity 1 and the electric conductivity 2 and determining whether there is a seawater leak from the correlation between the difference and the concentration of chloride ion in condensate.
JP2014099999A 2014-05-13 2014-05-13 Seawater leak continuous detection method and detection apparatus Active JP6473298B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014099999A JP6473298B2 (en) 2014-05-13 2014-05-13 Seawater leak continuous detection method and detection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014099999A JP6473298B2 (en) 2014-05-13 2014-05-13 Seawater leak continuous detection method and detection apparatus

Publications (2)

Publication Number Publication Date
JP2015219009A JP2015219009A (en) 2015-12-07
JP6473298B2 true JP6473298B2 (en) 2019-02-20

Family

ID=54778520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014099999A Active JP6473298B2 (en) 2014-05-13 2014-05-13 Seawater leak continuous detection method and detection apparatus

Country Status (1)

Country Link
JP (1) JP6473298B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6108021B1 (en) * 2016-09-27 2017-04-05 東亜ディーケーケー株式会社 Anion detection system

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4251219A (en) * 1978-10-30 1981-02-17 Larson Thurston E Apparatus for and method of determining contaminants on low pressure condensate
JPS59190657A (en) * 1983-04-12 1984-10-29 Yokogawa Hokushin Electric Corp Specimen pretreating method and apparatus therefor
JPS60100049A (en) * 1983-11-04 1985-06-03 Yokogawa Hokushin Electric Corp Removal of specific ion and specific ion remover using same
CA1264065A (en) * 1986-01-07 1989-12-27 William A. Byers Differential conductivity sulfate monitor
JPH07269303A (en) * 1994-03-31 1995-10-17 Tohoku Electric Power Co Inc Condenser sea water leakage continuously monitoring method
US6394111B1 (en) * 1997-06-11 2002-05-28 Ethicon, Inc. Detection of cleanliness of a medical device during a washing process
JP3328550B2 (en) * 1997-06-30 2002-09-24 日立協和エンジニアリング株式会社 Seawater leak detector
JP4767064B2 (en) * 2006-03-30 2011-09-07 中国電力株式会社 COD measurement system and chloride ion removal apparatus used therefor

Also Published As

Publication number Publication date
JP2015219009A (en) 2015-12-07

Similar Documents

Publication Publication Date Title
WO2017148114A1 (en) Ammonium ion concentration detection system and method, and application
JP2002048776A (en) Performance evaluation method and device of anion- exchange resin and condensate demineralizer
CN107024620A (en) The measurement apparatus and measuring method of degassing hydrogen conductivity in a kind of Power Plant Water Vapor
KR101813362B1 (en) Method and system for monitoring boron concentration
JP6473298B2 (en) Seawater leak continuous detection method and detection apparatus
US5788828A (en) Apparatus for detecting anions in water
Riché et al. High-purity water and pH
US11940430B2 (en) Suppressor system, and method for determining life of ion exchange resin column
Tomlinson et al. Potentiometric system for the continuous determination of low levels of chloride in high-purity power station waters
JP2012013621A (en) Quantitative determination method for dissolved carbonic acid component
JP7498785B2 (en) Inorganic Carbon (IC) Exclusion Conductivity Measurement of Aqueous Samples
CN103293195A (en) A method of detecting water temporary hardness
JP6578612B2 (en) MONITORING DEVICE, STEAM TURBINE EQUIPMENT HAVING THE SAME, AND METHOD FOR MONITORING STEAM TURBINE EQUIPMENT
JP2013208566A (en) Breakthrough detection method and operation method of ion exchange device
CN110487851B (en) Measurement system and method for conductivity of degassed hydrogen
US3457145A (en) Liquid and gas analysis
RU2168172C1 (en) Method of analysis of quality of condensate and feed water
Ying Extraction and analysis of Strontium in water sample using a Sr2+ selective polymer as the absorbent phase
CN114152692B (en) Method for simultaneously measuring industrial sodium acetate and citric acid by ion chromatography
JP4204712B2 (en) Cation detection device, cation detection method, water treatment device, and ultrapure water production device
KR100627694B1 (en) A highly detective apparatus and method for leaked carbonaceous species form the ion exchange tower in nuclear power plants
JP6349635B2 (en) Calcium hardness measuring device and measuring method
JPS6061656A (en) Measurement of silicate-ion
KR840002375B1 (en) A method of determination of the concentration of free bases in an industrial water
JPS5965250A (en) Electrochemical ion detecting apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190125

R150 Certificate of patent or registration of utility model

Ref document number: 6473298

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250