JP6463987B2 - Superconducting electromagnet device - Google Patents

Superconducting electromagnet device Download PDF

Info

Publication number
JP6463987B2
JP6463987B2 JP2015034703A JP2015034703A JP6463987B2 JP 6463987 B2 JP6463987 B2 JP 6463987B2 JP 2015034703 A JP2015034703 A JP 2015034703A JP 2015034703 A JP2015034703 A JP 2015034703A JP 6463987 B2 JP6463987 B2 JP 6463987B2
Authority
JP
Japan
Prior art keywords
superconducting
coil
current
heater
superconducting coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015034703A
Other languages
Japanese (ja)
Other versions
JP2016157825A (en
Inventor
村田 幸弘
幸弘 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2015034703A priority Critical patent/JP6463987B2/en
Publication of JP2016157825A publication Critical patent/JP2016157825A/en
Application granted granted Critical
Publication of JP6463987B2 publication Critical patent/JP6463987B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Description

本発明は、超伝導コイルで構成される超伝導電磁石装置に関する。   The present invention relates to a superconducting electromagnet device composed of a superconducting coil.

超伝導コイルを有する磁石装置(超伝導磁石装置)においては、クエンチを意図的に誘発するために超伝導コイルに対して熱を与えることができるヒータ(以下ヒータと記す)が設けられることがある。このヒータは、例えば複数の超伝導コイルが存在する場合において、ある超伝導コイルにクエンチが発生しこれが検出されると、その超伝導コイルを流れる電流をヒータへ転流し、そのジュール発熱によって意図的に他のコイル群を連鎖的にクエンチさせるために利用される。   In a magnet device having a superconducting coil (superconducting magnet device), a heater (hereinafter referred to as a heater) capable of applying heat to the superconducting coil may be provided to intentionally induce quenching. . In this heater, for example, when a plurality of superconducting coils exist, when a quench occurs in a superconducting coil and this is detected, the current flowing through the superconducting coil is commutated to the heater and intentionally generated by the Joule heat generation. Is used to chain quench other coils.

そのような技術について、例えば、特許文献1は「超電導コイルのクエンチ時の高信頼性の受動的動作とともに超電導コイルのクエンチと永久電流スイッチのクエンチを互いに独立に実現するクエンチ保護回路を提供する」として「直列に接続した抵抗ヒータおよび双方向ダイオードを超電導コイル保護回路へ設置し、永久電流スイッチ保護回路にダイオードを設置する。」ことを開示している。
Regarding such technology, for example, Patent Document 1 “provides a quench protection circuit that realizes quenching of a superconducting coil and quenching of a permanent current switch independently of each other together with highly reliable passive operation at the time of quenching of the superconducting coil”. "A resistance heater and a bidirectional diode connected in series are installed in the superconducting coil protection circuit, and a diode is installed in the permanent current switch protection circuit."

特開2006−73571号公報JP 2006-73571 A

従来の超伝導コイルのクエンチ保護は、前述したように、コイル電流をヒータに転流して行われていた。しかしながら、ヒータ自体を過渡的に電流が流れ続けることによる継続した発熱で焼損させないように通電電流、つまりヒータ発熱量が制限されていた。   Conventional quench protection of a superconducting coil is performed by commutating a coil current to a heater as described above. However, the energization current, that is, the amount of heat generated by the heater, is limited so that the heater itself is not burned by the continuous heat generation caused by the continuous current flow.

そこで、本発明が解決しようとする課題は、超伝導コイルの一部で常電導転移が発生した初期は出来る限りヒータへの通電電流値を高くし、過渡的には急峻に電流が減衰する電気回路構成を提供することである。
Therefore, the problem to be solved by the present invention is to increase the value of the energizing current to the heater as much as possible at the initial stage when the normal conducting transition occurs in a part of the superconducting coil, and the electric current that attenuates the current transiently It is to provide a circuit configuration.

前記課題を解決するために、本発明に係る超伝導磁石装置は様々な実施形態が存在するが、その一例として、電流電源と、前記電流電源に接続される複数の超伝導コイルと、前記電流電源に並列に接続されるダイオードと、前記ダイオードに直列接続される複数のクエンチ誘発手段と、を備え、前記クエンチ誘発手段は、ヒータ抵抗と、前記ヒータ抵抗に直列され、かつ前記超伝導コイルと磁気結合するコイルと、を備える。   In order to solve the above problems, there are various embodiments of the superconducting magnet device according to the present invention. As an example, a current power source, a plurality of superconducting coils connected to the current power source, and the current A diode connected in parallel to a power source; and a plurality of quench inducing means connected in series to the diode, the quench inducing means being in series with the heater resistance, the heater resistance, and the superconducting coil A magnetically coupled coil.

また、前記超伝導磁石装置の遮断器が遮断された際に、前記超伝導コイルと、前記超伝導コイルと磁気結合するコイルと、が作る磁束の向きがそれぞれ逆向きになるように巻き線されていることを特徴とする超伝導磁石装置である。   In addition, when the breaker of the superconducting magnet device is cut off, the magnetic fluxes formed by the superconducting coil and the coil magnetically coupled to the superconducting coil are wound in opposite directions. This is a superconducting magnet device.

本発明に係る超伝導磁石の保護方法は、超伝導コイルの一部が常電導転移した場合にクエンチ検出器を介して遮断器を遮断し、コイル電流が減衰する過渡期において、遮断に伴うコイル電流変化に相当する磁束変化で発生する、超伝導コイルと磁気結合したコイル両端の誘導起電力を使ってヒータ両端電圧を低減し、ヒータに流れる電流を抑制する手段を特徴とする方法である。
The method for protecting a superconducting magnet according to the present invention cuts off the circuit breaker via the quench detector when a part of the superconducting coil undergoes normal conduction transition, and the coil accompanying the interruption in the transient period in which the coil current attenuates. This is a method characterized by means for suppressing the current flowing through the heater by reducing the voltage across the heater using the induced electromotive force across the coil magnetically coupled to the superconducting coil, which is generated by the magnetic flux change corresponding to the current change.

本発明によれば、超伝導コイルの一部が常電導転移した場合に、遮断器が開状態となり、超伝導コイル電流がヒータに転流してジュール発熱を発生し、他の健全なコイルを熱的にクエンチ誘発して、蓄積エネルギーの全てを常電導転移したコイルで単一に消費することなく、磁石を保護する。なお、前記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。   According to the present invention, when a part of the superconducting coil undergoes normal conduction transition, the circuit breaker is opened, the superconducting coil current is commutated to the heater, generating Joule heat, and other healthy coils are heated. Induced quenching protects the magnet without consuming all of the stored energy in a normal conducting transition. Problems, configurations, and effects other than those described above will be clarified by the following description of embodiments.

また、他の健全な超伝導コイルをクエンチ誘発するためのヒータに流入する電流を、遮断器開動作直後は大きく、遮断後のコイル電流減衰の過渡期には小さく抑制できるため、ヒータに許容される総発熱量(ヒータが焼損するまでにヒータで消費される発熱の時間積分量)が固定値であるとすれば、初期の発熱量を公知例で示したヒータでの発熱量よりも高い値に設定可能である。つまり、他の健全な超伝導コイルをクエンチ誘発されるまでの時間を短縮することができるため、より確実な超伝導磁石保護動作を可能とする。
In addition, the current flowing into the heater for inducing the quenching of other healthy superconducting coils can be suppressed to a large value immediately after the circuit breaker opening operation and small during the transient period of coil current attenuation after the circuit breaker. If the total heat generation amount (time integration amount of heat consumed by the heater before the heater burns out) is a fixed value, the initial heat generation amount is higher than the heat generation amount in the heater shown in the known example Can be set. That is, since it is possible to shorten the time until quenching is induced for another healthy superconducting coil, a more reliable superconducting magnet protection operation is possible.

公知例で示された実施形態に係る超伝導磁石装置の電気回路図である。It is an electric circuit diagram of the superconducting magnet device according to the embodiment shown in the known example. 公知例で示された実施形態に係る超伝導磁石装置の電気回路図である。It is an electric circuit diagram of the superconducting magnet device according to the embodiment shown in the known example. 本発明の第1の実施形態に係る超伝導電磁石装置の電気回路図である。1 is an electric circuit diagram of a superconducting electromagnet device according to a first embodiment of the present invention. 公知例で示された実施形態に係る超伝導電磁石装置の電気回路を用いた電流の時間推移図である。It is a time transition diagram of the electric current using the electric circuit of the superconducting electromagnet apparatus which concerns on embodiment shown by the well-known example. 本発明の第1の実施形態に係る超伝導電磁石装置の電気回路を用いた電流の時間推移図である。It is a time transition diagram of the electric current using the electric circuit of the superconducting electromagnet apparatus which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態の効果を確認するために用いた電気回路図である。It is the electric circuit diagram used in order to confirm the effect of the 1st Embodiment of this invention. 本発明の第1の実施形態の効果を確認するために用いた電気回路での電流の時間推移図である。It is a time transition diagram of the electric current in the electric circuit used in order to confirm the effect of the 1st Embodiment of this invention. 本発明の第1の実施形態の効果を確認するために用いた電気回路図である。It is the electric circuit diagram used in order to confirm the effect of the 1st Embodiment of this invention. 本発明の第1の実施形態の効果を確認するために用いた電気回路での電流の時間推移図であるIt is a time transition diagram of the electric current in the electric circuit used in order to confirm the effect of the 1st Embodiment of this invention. 本発明の第1の実施形態に係る超伝導コイルの具体的な構成図であるIt is a concrete block diagram of the superconducting coil which concerns on the 1st Embodiment of this invention. 本発明の第3の実施形態に係る超伝導コイルの具体的な構成図である。It is a specific block diagram of the superconducting coil which concerns on the 3rd Embodiment of this invention.

本発明の第1の実施形態に係る計算に用いた超伝導コイルのインダクタンスマトリクスである。
It is the inductance matrix of the superconducting coil used for the calculation which concerns on the 1st Embodiment of this invention.

超伝導電磁石装置は、超伝導コイルを基本構成に備える。この超伝導コイルは超伝導線材を巻き線することで形成されるが、その一部が超伝導状態から常電導状態へと転移(常電導転移)し磁場が消滅する現象(クエンチ)が発生する場合がある。このクエンチ発生時には、超伝導線が常電導転移することにより、超伝導コイルに電気抵抗が発生する。この電気抵抗にコイル電流が流れてジュール発熱し、コイル電流を迅速に減衰させ、超伝導コイルに蓄積された磁気エネルギが迅速に消費される。ただし、超伝導コイルのクエンチした箇所で局所的に磁気エネルギーが消費されると、クエンチしたコイルが致命的なダメージを被る恐れがある。   The superconducting electromagnet apparatus includes a superconducting coil in a basic configuration. This superconducting coil is formed by winding a superconducting wire, but a part of it transitions from the superconducting state to the normal conducting state (normal conducting transition) and the phenomenon that the magnetic field disappears (quenching) occurs. There is a case. When this quench occurs, an electrical resistance is generated in the superconducting coil due to the normal conducting transition of the superconducting wire. A coil current flows through this electrical resistance and Joule heat is generated, the coil current is quickly attenuated, and the magnetic energy stored in the superconducting coil is quickly consumed. However, if magnetic energy is consumed locally at the quenched portion of the superconducting coil, the quenched coil may suffer fatal damage.

したがって、超伝導磁石装置の健全性を確保するために、NbTiやNb3Snなどの金属を利用した超伝導コイルの保護を図る。例えば、クエンチが発生した場合に、クエンチした単一のコイルで全磁気エネルギーを消費することを避けるために、超伝導コイルを複数の小さな閉回路に分割し、各閉回路で磁気エネルギーを分散消費させる。   Therefore, in order to ensure the soundness of the superconducting magnet device, the superconducting coil using metal such as NbTi or Nb3Sn is protected. For example, if a quench occurs, to avoid consuming the entire magnetic energy with a single quenched coil, the superconducting coil is split into multiple small closed circuits, and the magnetic energy is distributed and consumed in each closed circuit Let

また、クエンチ発生時に、超伝導コイルのクエンチの発生していない箇所にも意図的にクエンチを発生させて、ある特定の超伝導コイルへの電力流入の集中を防止し、蓄積された磁気エネルギーを他の意図的にクエンチさせた超伝導(ただしこの時点では既に超伝導状態ではなくなっている)コイルでも迅速に消費するためのクエンチ保護回路を設ける。   In addition, when a quench occurs, the superconducting coil is intentionally generated at a location where no quench occurs, preventing concentration of power inflow to a specific superconducting coil, and the accumulated magnetic energy can be reduced. A quench protection circuit is provided to quickly consume even other intentionally quenched superconducting coils (but no longer superconducting at this point).

このクエンチ保護で用いられる方法としては、(a)超伝導コイルと、クエンチを意図的に誘発するために超伝導コイルと熱的に接触したヒータ(以下ヒータと記す)が電気的に接続され、超伝導コイルのクエンチが検出されたときに超伝導コイルを流れる電流をヒーターへ転流し、そのジュール発熱によって意図的に他のコイル群を連鎖的にクエンチ誘発させる方法と、(b)ヒータに別途専用電源を設置し、クエンチ検出時に専用電源をONとすることでヒータに通電する方法とがある。   As a method used in this quench protection, (a) a superconducting coil and a heater (hereinafter referred to as a heater) that is in thermal contact with the superconducting coil in order to intentionally induce quenching are electrically connected, A method in which the current flowing through the superconducting coil is commutated to the heater when quenching of the superconducting coil is detected, and another coil group is intentionally chain-induced by the Joule heat generation, and (b) a separate heater is provided. There is a method of energizing the heater by installing a dedicated power supply and turning on the dedicated power supply when quenching is detected.

(a)の方法では、コイル電流がヒータに流入するので、ヒータが焼損しないようにヒータへの通電量を適切に設計する必要がある。(b)の方法では、ヒータへの通電電流を専用電源で調整できるので焼損の可能性は低いが、専用電源の信頼性が要求される。ヒータとしては、例えばステンレスや銅を材質としたシート状導線を用いることができる。   In the method (a), since the coil current flows into the heater, it is necessary to appropriately design the energization amount to the heater so that the heater does not burn out. In the method (b), since the energization current to the heater can be adjusted by a dedicated power source, the possibility of burning is low, but the reliability of the dedicated power source is required. As the heater, for example, a sheet-like conductor made of stainless steel or copper can be used.

方法(a)を用いた保護回路において、ヒータを焼損させることを回避する方法として、ヒータと並列に抵抗を設置してコイル電流を分流し、ヒータへの電流量を抑制する方法が示されており、特許文献1に開示されている。この回路概念図を図1に示す。   In the protection circuit using the method (a), as a method for avoiding burning the heater, a method is shown in which a resistor is installed in parallel with the heater to shunt the coil current and suppress the current amount to the heater. And disclosed in Patent Document 1. A conceptual diagram of this circuit is shown in FIG.

図1は、公知例である前記方法(a)に係る超伝導磁石装置の回路図である。電流電源11と遮断器12と、それに並列に接続された電流電源11の保護抵抗R0が、超伝導コイルL1、L2、L3と直列に接続されている。さらに、電流電源11に並列に接続されるダイオードD1と、ダイオードD1に直列接続されるクエンチ誘発手段とを有している。クエンチ誘発手段は、ヒータR1、R2、R3とから構成されている。   FIG. 1 is a circuit diagram of a superconducting magnet device according to the method (a), which is a known example. The current power source 11, the circuit breaker 12, and the protective resistor R0 of the current power source 11 connected in parallel thereto are connected in series with the superconducting coils L1, L2, and L3. Furthermore, it has a diode D1 connected in parallel to the current power source 11, and quench inducing means connected in series to the diode D1. The quench inducing means is composed of heaters R1, R2, and R3.

図1において、例えば超伝導コイルL1の一部で常電導転移が生じた後に、明示していないクエンチ検出器からの信号を受けて、遮断器12が開動作される。この結果、電流電源11から遮断器12を経て超伝導コイルL1、L2、L3に流れていた電流は、超伝導コイルL1、L2、L3から、ダイオードD1を経てヒータR1、R2、R3へ流れる流路および電流電源に備えられた保護抵抗R0に流れる流路に分流する。   In FIG. 1, for example, after a normal conduction transition occurs in a part of the superconducting coil L <b> 1, the circuit breaker 12 is opened in response to a signal from a quench detector that is not explicitly shown. As a result, the current flowing from the current power source 11 through the circuit breaker 12 to the superconducting coils L1, L2, and L3 flows from the superconducting coils L1, L2, and L3 through the diode D1 to the heaters R1, R2, and R3. The current is diverted to the flow path that flows to the protective resistance R0 provided in the path and the current power source.

これに引き続き、ヒータR1、R2、R3に通電されることで、ヒータがジュール発熱してその熱が伝播し、クエンチしていない健全な超伝導コイルL2、L3が加熱され、強制的にクエンチ誘発され、超伝導コイルL1、L2、L3で蓄積磁気エネルギーを分散消費するため、超伝導磁石の健全性を確保することができる。   Subsequently, when the heaters R1, R2, and R3 are energized, the heaters generate Joule heat and the heat propagates, and the unquenched healthy superconducting coils L2 and L3 are heated to forcibly induce quenching. In addition, since the stored magnetic energy is distributed and consumed by the superconducting coils L1, L2, and L3, the soundness of the superconducting magnet can be ensured.

しかしながら、R0>>R1、R2、R3であるときは、超伝導コイルL1、L2、L3に流れていた電流は電流電源の保護抵抗R0側にはほとんど流れず、ヒータR1、R2、R3側に流れる。このため、ヒータR1、R2、R3の熱容量が十分でない場合は、上記電流によるジュール発熱が過大となってヒータに致命的なダメージを与える恐れが考えられる。   However, when R0 >> R1, R2, and R3, the current flowing through the superconducting coils L1, L2, and L3 hardly flows to the protection resistor R0 side of the current power supply, and to the heaters R1, R2, and R3 sides. Flowing. For this reason, when the heat capacities of the heaters R1, R2, and R3 are not sufficient, there is a possibility that Joule heat generation due to the current becomes excessive and may cause fatal damage to the heater.

また、特許文献1では、ヒータR1、R2、R3それぞれに並列にヒータ電流調整用抵抗R10、R20、R30を備えている例も示されている。この方式を方式(c)とする。   Patent Document 1 also shows an example in which heater current adjustment resistors R10, R20, and R30 are provided in parallel with the heaters R1, R2, and R3, respectively. This method is referred to as a method (c).

図2は、方法(c)に係る超伝導磁石装置の回路図である。電流電源11と遮断器12と、それに並列に接続された電流電源11の保護抵抗R0が、超伝導コイルL1、L2、L3と直列に接続されている。さらに、電流電源11に並列に接続されるダイオードD1と、ダイオードD1に直列接続されるクエンチ誘発手段とを有している。クエンチ誘発手段は、ヒータR1、R2、R3およびそれらに流れる電流値を調整するためにヒータR1、R2、R3それぞれに並列に接続されたヒータ通電電流調整用抵抗R10、R20、R30とから構成されている。   FIG. 2 is a circuit diagram of the superconducting magnet device according to the method (c). The current power source 11, the circuit breaker 12, and the protective resistor R0 of the current power source 11 connected in parallel thereto are connected in series with the superconducting coils L1, L2, and L3. Furthermore, it has a diode D1 connected in parallel to the current power source 11, and quench inducing means connected in series to the diode D1. The quench inducing means is composed of heaters R1, R2, R3 and heater energizing current adjusting resistors R10, R20, R30 connected in parallel to the heaters R1, R2, R3 in order to adjust the current value flowing through them. ing.

図2において、例えば超伝導コイルL1の一部で常電導転移が生じた後に、明示していないクエンチ検出器からの信号を受けて、遮断器12が開動作される。この結果、電流電源11から遮断器12を経て超伝導コイルL1、L2、L3に流れていた電流は、超伝導コイルL1、L2、L3からダイオードD1を経てヒータR1、R2、R3および上記したヒータ通電電流調整用抵抗R10、R20、R30および電流電源11に備えられた保護抵抗R0に転流する。   In FIG. 2, for example, after a normal conduction transition occurs in a part of the superconducting coil L <b> 1, the circuit breaker 12 is opened in response to a signal from a quench detector that is not explicitly shown. As a result, the current flowing from the current source 11 through the circuit breaker 12 to the superconducting coils L1, L2, and L3 passes from the superconducting coils L1, L2, and L3 through the diode D1 to the heaters R1, R2, and R3 and the heaters described above. The commutation current commutates to the resistances R10, R20, R30 and the protective resistor R0 provided in the current power source 11.

これに引き続き、ヒータR1、R2、R3に通電されることで、ヒータがジュール発熱し、クエンチしていない健全な超伝導コイルL2、L3が加熱されて強制的にクエンチ誘発される。これにより、超伝導コイルL1、L2、L3でのコイル抵抗が増大し、超伝導コイルL1、L2、L3に流れる電流が減衰して、つまり超伝導コイルL1、L2、L3に蓄積されていた磁気エネルギーをそれぞれのコイルで消費して、常電導転移が最初に発生したコイルL1の損傷を回避するクエンチ保護が行われる。   Subsequently, when the heaters R1, R2, and R3 are energized, the heaters generate Joule heat, and the healthy superconducting coils L2 and L3 that have not been quenched are heated to forcibly induce quenching. As a result, the coil resistance in the superconducting coils L1, L2, and L3 is increased, and the current flowing in the superconducting coils L1, L2, and L3 is attenuated, that is, the magnetism accumulated in the superconducting coils L1, L2, and L3. Quench protection is performed to dissipate energy in each coil and avoid damage to the coil L1 where the normal conduction transition first occurred.

ここで、ヒータR1、R2、R3に流れるコイル電流は、ヒータ通電電流調整用抵抗R10、R20、R30に分流する電流分が差し引かれるため、超伝導コイルL1、L2、L3をクエンチ誘発させるためにヒータから投入される熱量は、方式(a)のヒータR1、R2、R3のみで構成される回路と比べて小さくなる。   Here, the coil current flowing through the heaters R1, R2, and R3 is subtracted from the current that flows through the heater energizing current adjustment resistors R10, R20, and R30, so that the superconducting coils L1, L2, and L3 are quenched. The amount of heat input from the heater is smaller than that of a circuit composed only of the heaters R1, R2, and R3 of the method (a).

超伝導コイルL1,L2、L3をクエンチ誘発させるために最低限必要な熱量は、超伝導コイルの温度を、超伝導線材内部の安定化銅に分流開始する温度(分流開始温度)にまで上昇させるのに必要な熱量として与えられる。安定化銅に分流を始めると、安定化銅で生じるジュール発熱によって雪崩式に常電導転移が拡散し、超伝導コイルはクエンチする。ただし、超伝導コイルとヒータとの間には電気絶縁を確保するためのカプトンなどの絶縁シートが介在するため、これが熱抵抗となって超伝導コイルのクエンチ誘発までに時間遅れが発生すると考えられる。   The minimum amount of heat required for quench-inducing the superconducting coils L1, L2, and L3 raises the temperature of the superconducting coil to a temperature at which diversion starts to the stabilized copper inside the superconducting wire (diversion start temperature). It is given as the amount of heat necessary for this. When diversion starts to the stabilized copper, the normal conduction transition diffuses in an avalanche manner due to Joule heat generated by the stabilized copper, and the superconducting coil is quenched. However, since an insulating sheet such as kapton is provided between the superconducting coil and the heater to ensure electrical insulation, it becomes a thermal resistance and it is considered that a time delay occurs until the quenching of the superconducting coil occurs. .

超伝導コイルを雪崩式に常電導転移させてクエンチさせるために必要な温度は超伝導コイルを流れる電流および経験する磁場の強度によって決まるが、上記時間遅れを考慮すると、出来る限りヒータでの発熱量を高くして、超伝導コイルの温度を急峻に上記温度まで立ち上げることが、健全な他の超伝導コイルをすばやくクエンチ誘発させるために必要となる。   The temperature required to quench the superconducting coil by a normal conduction transition to the avalanche type depends on the current flowing through the superconducting coil and the strength of the magnetic field experienced, but considering the time delay, the amount of heat generated by the heater as much as possible And raising the temperature of the superconducting coil sharply to the above temperature is necessary to quickly quench another healthy superconducting coil.

しかしながら、ヒータでの発熱量を過剰に大きくすると、過渡的にヒータの温度が高くなりすぎて焼損に至る可能性が高まる。したがって、ヒータへの通電量調整用抵抗R10、R20、R30の抵抗値は、ヒータの過渡的な昇温の上限によって決定される。   However, if the amount of heat generated by the heater is excessively increased, the heater temperature becomes excessively high and the possibility of burnout increases. Therefore, the resistance values of the energization amount adjustment resistors R10, R20, and R30 to the heater are determined by the upper limit of the transient temperature rise of the heater.

超伝導コイルおよびヒータ抵抗、電流電源の保護抵抗からなる電気回路の電流減衰時定数はインダクタンス値および抵抗値で決まる。この電流減衰よりも素早く電流を減衰させることができれば、(ヒータの抵抗値をより小さく設計して)ヒータでの初期発熱量を更に増大させることができ、その場合は超伝導コイルの温度上昇を更に急峻にできるために、クエンチ誘発したい他の健全な超伝導コイルをより素早く常電導転移させることができる。これにより、最初に常電導転移を始めた超伝導コイルの温度をより低く抑制でき、更に超伝導コイル間の発生電圧も抑制できる。これにより磁石装置の保護を更に確実に実施できる。   The current decay time constant of the electric circuit composed of the superconducting coil, the heater resistance, and the protection resistance of the current power source is determined by the inductance value and the resistance value. If the current can be attenuated more quickly than this current decay (by designing the heater resistance value to be smaller), the initial heat generation at the heater can be further increased, in which case the temperature of the superconducting coil can be increased. Because it can be steeper, other healthy superconducting coils that are to be quenched can be transferred to normal conduction more quickly. Thereby, the temperature of the superconducting coil which started the normal conducting transition first can be suppressed to be lower, and the generated voltage between the superconducting coils can be further suppressed. Thereby, protection of a magnet apparatus can be implemented still more reliably.

次に、本発明の実施形態について、適宜図面を参照しながら詳細に説明する。なお、各図において、共通する部分には同一の符号を付し重複した説明を省略する。また、以下の実施例では超伝導コイルを3個としているが、これに限定しない。   Next, embodiments of the present invention will be described in detail with reference to the drawings as appropriate. In each figure, common portions are denoted by the same reference numerals, and redundant description is omitted. In the following embodiments, three superconducting coils are used, but the present invention is not limited to this.

(第1の実施形態)
図3は、本発明に係る超伝導磁石装置1の第1の実施形態を示す電気回路図である。図3に示す超伝導磁石装置1は、超伝導コイルL1、L2、L3と、超伝導コイルと磁気結合したコイルL11、L21、L31と、ヒータR11、R21、R31(ヒータ抵抗)と、ダイオードD1とが図示しないクライオスタット内に収容され、電流電源11の保護抵抗R0と、遮断器12と、を備えた電流電源11と接続されて構成される。
(First embodiment)
FIG. 3 is an electric circuit diagram showing the first embodiment of the superconducting magnet device 1 according to the present invention. The superconducting magnet device 1 shown in FIG. 3 includes superconducting coils L1, L2, and L3, coils L11, L21, and L31 magnetically coupled to the superconducting coil, heaters R11, R21, and R31 (heater resistance), and a diode D1. Are housed in a cryostat (not shown), and are connected to a current power source 11 including a protective resistor R0 of the current power source 11 and a circuit breaker 12.

本実施例の超伝導コイルL1、L2、L3と超伝導コイルと磁気結合したコイルL11、L21、L31は、巻き数にしておよそ10:1となるコイルであり、インダクタンス比はおよそ100:1である。後述する実施例での計算結果で示すが、超伝導コイルL1、L2、L3の電流変化によってコイルL11、L21、L31の両端に発生する誘導起電力は、自己インダクタンスによる誘導起電力よりも、相互インダクタンスによる誘導起電力の方が顕著に現れるコイルジオメトリである。このため、超伝導コイルL1に誘導される起電力をVab、超伝導コイルL1と磁気結合したコイルL11に誘導される起電力をVcdとすれば、VabとVcdは同符号となる誘導起電力が発生する。   The superconducting coils L1, L2, and L3 of this embodiment and the coils L11, L21, and L31 magnetically coupled to the superconducting coil are coils having a winding number of about 10: 1 and an inductance ratio of about 100: 1. is there. As shown in the calculation results in Examples described later, the induced electromotive force generated at both ends of the coils L11, L21, and L31 due to the current change of the superconducting coils L1, L2, and L3 is more than the induced electromotive force due to the self-inductance. This is a coil geometry in which the induced electromotive force due to inductance appears more prominently. Therefore, if the electromotive force induced in the superconducting coil L1 is Vab and the electromotive force induced in the coil L11 magnetically coupled to the superconducting coil L1 is Vcd, Vab and Vcd have induced electromotive forces having the same sign. Occur.

図3に示す電気回路において、電流電源11を用いた励磁時は、電流電源11から遮断器12を経て超伝導コイルL1、L2、L3に流れる電流路を形成する。ヒータを含む線路には逆流防止用ダイオードD1が設置されているため、ダイオードD1のターンオン電圧(例えば5V)を超越しない限り電流は流れ込むことは無い。したがって励磁時は、電流変化に伴う超伝導コイルL1、L2、L3に誘導される起電力がこのターンオン電圧を超越しないように励磁速度を設定する。   In the electric circuit shown in FIG. 3, during excitation using the current power supply 11, a current path is formed that flows from the current power supply 11 to the superconducting coils L <b> 1, L <b> 2, L <b> 3 through the circuit breaker 12. Since the backflow prevention diode D1 is installed in the line including the heater, no current flows unless the turn-on voltage (for example, 5 V) of the diode D1 is exceeded. Therefore, at the time of excitation, the excitation speed is set so that the electromotive force induced in the superconducting coils L1, L2, and L3 accompanying the current change does not exceed the turn-on voltage.

例えば超伝導コイルL1の一部で常電導転移が生じた後に、明示していないクエンチ検出器からの信号を受けて、遮断器12が開動作される。この結果、電流電源11から遮断器12を経て超伝導コイルL1、L2、L3に流れていた電流は、超伝導コイルL1、L2、L3からダイオードD1を経てヒータR1、R2、R3および超伝導コイルと磁気結合したコイルL11、L21、L31および電流電源11に備えられた保護抵抗R0に転流、分流する。遮断器12が開動作した直後の初期過程では、超伝導コイルL1で生じる常電導転移部がまだ小さいために抵抗値も小さく、電流減衰量も少ないことから、前記超伝導コイルと磁気結合したコイルL11に誘導される誘導起電力も小さい。電流電源11の保護抵抗R0はヒータ抵抗R11、R21、R31と比べて十分に大きいため、ヒータに流れる電流はほぼコイル電流に等しい。   For example, after a normal conducting transition occurs in a part of the superconducting coil L1, the circuit breaker 12 is opened in response to a signal from a quench detector which is not clearly shown. As a result, the current flowing from the current power source 11 through the circuit breaker 12 to the superconducting coils L1, L2, and L3 is transferred from the superconducting coils L1, L2, and L3 through the diode D1 to the heaters R1, R2, and R3 and the superconducting coils. Are commutated and shunted to coils L11, L21, L31 magnetically coupled to the protection resistor R0 provided in the current power source 11. In the initial process immediately after the circuit breaker 12 is opened, since the normal conducting transition portion generated in the superconducting coil L1 is still small, the resistance value is small and the amount of current attenuation is small. The induced electromotive force induced by L11 is also small. Since the protection resistance R0 of the current power supply 11 is sufficiently larger than the heater resistances R11, R21, and R31, the current flowing through the heater is substantially equal to the coil current.

遮断器12が開動作して超伝導コイル電流が減衰する過渡期においては、超伝導コイルL1,L2、L3の両端電圧をそれぞれVL1、VL2、VL3、超伝導コイルと磁気結合したコイルL11、L21、L31およびヒータR11、R21、R31のそれぞれ両端電圧をVL11,VL21,VL31,VR11,VR21,VR31とすれば、
VL1+VL2+VL3=VL11+VL21+VL31+VR11+VR21+VR31>VR11+VR21+VR31 (1)
と書き表され、ヒータ両端電圧は超伝導コイルと磁気結合したコイルL11、L21、L31がない場合(方式(a)の場合)と比べて小さくなる。つまり、遮断器12が開動作して超伝導コイル電流が減衰する過渡期においては、ヒータを流れる電流が小さくなるため、ヒータ発熱量は小さくなる。
In the transition period in which the breaker 12 is opened and the superconducting coil current is attenuated, the voltages at both ends of the superconducting coils L1, L2, and L3 are VL1, VL2, VL3, and coils L11, L21 magnetically coupled to the superconducting coil, respectively. , L31 and heaters R11, R21, R31, respectively, the voltages at both ends are VL11, VL21, VL31, VR11, VR21, VR31,
VL1 + VL2 + VL3 = VL11 + VL21 + VL31 + VR11 + VR21 + VR31> VR11 + VR21 + VR31 (1)
The voltage across the heater is smaller than when there is no coil L11, L21, L31 magnetically coupled to the superconducting coil (in the case of method (a)). That is, in the transition period in which the circuit breaker 12 is opened and the superconducting coil current is attenuated, the current flowing through the heater is small, so the heater heat generation is small.

つまり、遮断器12が開動作して超伝導コイル電流が減衰する初期においては、超伝導コイルL1、L2、L3に流れていた電流のほぼ全てがダイオードD1を経てヒータR11、R22、R33に流入するが、過渡期においてはヒータを流れる電流が抑制される。   That is, in the initial stage when the breaker 12 is opened and the superconducting coil current is attenuated, almost all of the current flowing through the superconducting coils L1, L2, and L3 flows into the heaters R11, R22, and R33 via the diode D1. However, in the transition period, the current flowing through the heater is suppressed.

次に、具体的な数値計算結果を示す。電流電源11に設置されている保護抵抗R0を1Ω、超伝導コイルL1,L2,L3のインダクタンスを1.8H、超伝導コイルと磁気結合したコイルL11、L12、L13のインダクタンスを0.02H(ターン数は超伝導コイルターン数の約1/10)とし、ヒータの抵抗値は材質SUS304の温度に依存した値とする。超伝導コイルL1,L2,L3は同軸上に配置されており、超伝導コイルおよび超伝導コイルと磁気結合したコイルL11、L12、L13との自己インダクタンスおよび相互インダクタンスは表1を用いた。また、超伝導コイルの定格電流値を410Aとした。   Next, specific numerical calculation results are shown. The protective resistance R0 installed in the current power source 11 is 1Ω, the inductances of the superconducting coils L1, L2, and L3 are 1.8H, and the inductances of the coils L11, L12, and L13 magnetically coupled to the superconducting coils are 0.02H (turn The number is about 1/10 of the number of superconducting coil turns, and the resistance value of the heater is a value depending on the temperature of the material SUS304. The superconducting coils L1, L2, and L3 are arranged on the same axis, and Table 1 is used for the self-inductance and mutual inductance of the superconducting coil and the coils L11, L12, and L13 magnetically coupled to the superconducting coil. The rated current value of the superconducting coil was 410A.

超伝導コイルの一部が常電導転移すると、その部分のジュール発熱により温度が上昇し、温度に依存した抵抗を発生する。また、この抵抗により電流減衰が生じ、これに起因する磁場変化で超伝導線材内に交流損失が発生し抵抗値が上昇する。超伝導線材の安定化銅には、残留抵抗比(RRR)が60の銅の温度に依存した比抵抗値を用いた。   When a part of the superconducting coil undergoes normal conduction transition, the temperature rises due to Joule heat generation in that part, and a resistance depending on the temperature is generated. Moreover, current attenuation occurs due to this resistance, and an AC loss is generated in the superconducting wire due to a magnetic field change caused by this, and the resistance value increases. For the stabilized copper of the superconducting wire, a specific resistance value depending on the temperature of copper having a residual resistance ratio (RRR) of 60 was used.

図4に、レファレンスとして、公知例である図1に示す、ヒータとしての抵抗のみを接続した場合の、遮断器12開動作以降の電流推移を示す。この電気回路は超伝導コイルと抵抗によるLR回路の指数関数に従った電流減衰波形となる。   FIG. 4 shows a current transition after the circuit breaker 12 opening operation when only a resistor as a heater shown in FIG. 1, which is a known example, is connected as a reference. This electric circuit has a current decay waveform according to the exponential function of the LR circuit due to the superconducting coil and resistance.

これに対して、図3の本実施例による電気回路を用いた場合の、遮断器12開動作以降の電流推移を図5に示す。遮断器12開動作直後の時刻t=0付近では、図4の場合とほぼ同じ電流がヒータに流れている。その後、超伝導コイルと磁気結合したコイルの両端に誘起される起電力により、ヒータ両端電圧が低下し、ヒータに流れる電流が急峻に低下している。すなわち、本実施形態で説明した回路を有する超伝導磁石では、クエンチ発生直後はクエンチを誘発させるためのヒータR11、R21、R31に、超伝導コイルに流れていた電流が略そのまま流れ込み、クエンチしていない超伝導コイルにクエンチを誘発させるために十分な発熱を生じさせる。一方で、超伝導コイルの電流減衰を受け、これと磁気結合しているこいつL11,L21,L31に誘導起電力が生じることで、すぐに保護抵抗側へ電流が分流する。特にL11,L21,L31における誘導起電力が大きくなれば、ヒータR11、R21、R31へ流れ込む電流量よりも、保護抵抗R0へ流れ込む電流量の方が大きくなる。本結果は、公知例で示した、ヒータとしての抵抗のみを接続した場合の結果と比較して、明らかに異なる。   On the other hand, FIG. 5 shows a current transition after the circuit breaker 12 is opened when the electric circuit according to this embodiment of FIG. 3 is used. Near the time t = 0 immediately after the circuit breaker 12 is opened, substantially the same current flows in the heater as in FIG. Thereafter, due to the electromotive force induced at both ends of the coil magnetically coupled to the superconducting coil, the voltage across the heater is lowered, and the current flowing through the heater is sharply reduced. That is, in the superconducting magnet having the circuit described in the present embodiment, the current flowing in the superconducting coil flows almost as it is into the heaters R11, R21, and R31 for inducing quenching immediately after the occurrence of quenching. Not enough superconducting coils generate enough heat to induce quench. On the other hand, when an induced electromotive force is generated in the coils L11, L21, and L31 magnetically coupled with the current attenuation of the superconducting coil, the current is immediately diverted to the protective resistance side. In particular, if the induced electromotive force in L11, L21, and L31 is increased, the amount of current flowing into the protective resistor R0 is greater than the amount of current flowing into the heaters R11, R21, and R31. This result is clearly different from the result obtained by connecting only the resistance as the heater shown in the known example.

次に、超伝導コイルと、超伝導コイルと磁気結合したコイルとの相互インダクタンスの寄与が大きいことは、図6および図7から明らかである。図6は、コイルL11、L211、L31を、図3に示した場合と比較して超伝導コイルL1,L2,L3の遠方に設置した例を示している。この場合の計算結果を図7に示す。この場合、コイルL11,L21,L31と超伝導コイル間の磁気結合は無視できるため、すなわちコイルL11、L21、L31の自己インダクタンスのみが考慮される。このような条件下において、遮断器12の開動作以降の電流推移を図7に示す。各電流減衰波形は、上記したヒータとしての抵抗のみを接続した場合の波形と酷似している。この結果は、自己インダクタンスの影響は本電気回路では寄与が小さく、相互インダクタンスの寄与が大きいことを示している。   Next, it is clear from FIGS. 6 and 7 that the contribution of mutual inductance between the superconducting coil and the coil magnetically coupled to the superconducting coil is large. FIG. 6 shows an example in which the coils L11, L211, and L31 are installed far from the superconducting coils L1, L2, and L3 as compared to the case shown in FIG. The calculation result in this case is shown in FIG. In this case, since the magnetic coupling between the coils L11, L21, L31 and the superconducting coil can be ignored, only the self-inductance of the coils L11, L21, L31 is taken into account. Under such conditions, the current transition after the opening operation of the circuit breaker 12 is shown in FIG. Each current decay waveform is very similar to the waveform when only the resistor as the heater is connected. This result shows that the influence of the self-inductance has a small contribution in this electric circuit, and the contribution of the mutual inductance is large.

更に、相互インダクタンスの寄与を確認するために、図8に示すように、前記コイルL11、L21、L31の巻き方向を逆向きにした電気回路を用いた。遮断器12開動作以降の電流推移を図9に示す。コイルL11、L21、L31の両端に発生する電圧が逆向きとなるため、ヒータ両端の電圧が逆に上昇し、ヒータに流れる電流が上昇している。この結果も、相互インダクタンスの寄与でこの傾向が決定されていることを裏付けている。   Further, in order to confirm the contribution of mutual inductance, an electric circuit in which the winding directions of the coils L11, L21, and L31 were reversed as shown in FIG. 8 was used. The current transition after the breaker 12 opening operation is shown in FIG. Since the voltages generated at both ends of the coils L11, L21, and L31 are in opposite directions, the voltage at both ends of the heater is increased in reverse, and the current flowing through the heater is increased. This result also confirms that this tendency is determined by the contribution of mutual inductance.

以上説明したように、本実施例の超伝導磁石装置は、超伝導コイルと、この超伝導コイルと磁気結合しているコイルと、このコイルと直列接続させた抵抗(ヒータ)と、を有するクエンチ発生手段を備える。この構成を有することによって、クエンチ直後は、超伝導コイルに発生する電流変化が微小であるため、コイルL11,L21,L31と超伝導コイルとの相互インダクタンスによって誘起される電圧は小さく、コイルL11,L21,L31は短絡していると近似できる。一方で、保護抵抗R0と比較してヒータR11,R21,R31の抵抗値の和は小さいため、遮断器12が開となった場合、ダイオードD1がターンオンすると、超伝導コイルを流れていた電流はヒータR11,R21,R31に流れ込む。換言すると、図5に示すように、超伝導コイルにクエンチが発生した瞬間にあっては、ヒータR11,R21,R31の発熱(電流)が急進して、超伝導コイルに対して熱を付与する。   As described above, the superconducting magnet device of the present embodiment includes a superconducting coil, a coil magnetically coupled to the superconducting coil, and a resistor (heater) connected in series with the coil. A generating means is provided. By having this configuration, immediately after quenching, since the current change generated in the superconducting coil is minute, the voltage induced by the mutual inductance between the coils L11, L21, L31 and the superconducting coil is small, and the coil L11, It can be approximated that L21 and L31 are short-circuited. On the other hand, since the sum of the resistance values of the heaters R11, R21, R31 is small compared to the protective resistance R0, when the circuit breaker 12 is opened, when the diode D1 is turned on, the current flowing through the superconducting coil is It flows into the heaters R11, R21, R31. In other words, as shown in FIG. 5, at the moment when quenching occurs in the superconducting coil, the heat generation (current) of the heaters R11, R21, and R31 advances rapidly, and heat is applied to the superconducting coil. .

ヒータR11,R21,R31では、従来と異なり、超伝導コイルに流れていた電流が分流せずに流れ込むため、発熱量は従来よりも大きくなる。したがって、この熱を付与される超伝導コイルでは従来よりも速く雪崩式の常伝導転移が生じる。常伝導転移が加速度的に生じることで超伝導コイルにおける電流変化は、微小なものから急速に大きなものへ遷移するため、この超伝導コイルと磁気結合しているコイルL11,L21,L31には相互インダクタンスによって誘導起電力が発生する。結果、ヒータ部に流れる電流は急速に低下するとともに、保護抵抗R0に流れる電流が急速に増大し、磁気エネルギを保護抵抗R0にて解放することができる。   In the heaters R11, R21, and R31, unlike the conventional case, the current flowing in the superconducting coil flows without being shunted, so the amount of heat generated is larger than in the conventional case. Therefore, in the superconducting coil to which this heat is applied, an avalanche-type normal conduction transition occurs faster than before. Since the normal conduction transition occurs at an accelerated rate, the current change in the superconducting coil transitions from a very small one to a large one, so the coils L11, L21, and L31 that are magnetically coupled to this superconducting coil are mutually connected. An induced electromotive force is generated by the inductance. As a result, the current flowing through the heater portion rapidly decreases, the current flowing through the protective resistor R0 increases rapidly, and the magnetic energy can be released by the protective resistor R0.

すなわち本実施例の超伝導磁石装置によれば、超伝導コイルの一部が常電導転移した場合に、遮断器が開状態となり、超伝導コイル電流がヒータに転流してジュール発熱を発生し、他の健全なコイルを熱的にクエンチ誘発して、蓄積エネルギーの全てを常電導転移したコイルで単一に消費することなく、磁石を保護する。   That is, according to the superconducting magnet device of the present embodiment, when a part of the superconducting coil has a normal conducting transition, the circuit breaker is opened, and the superconducting coil current is commutated to the heater to generate Joule heat, Other healthy coils are thermally quenched to protect the magnet without consuming all of the stored energy in a normally conducting transition coil.

また、他の健全な超伝導コイルをクエンチ誘発するためのヒータに流入する電流を、遮断器開動作直後は大きく、遮断後のコイル電流減衰の過渡期には小さく抑制できるため、ヒータに許容される総発熱量(ヒータが焼損するまでにヒータで消費される発熱の時間積分量)のうち、初期の発熱量を公知例で示したヒータでの発熱量よりも高い値に設定可能である。つまり、他の健全な超伝導コイルをクエンチ誘発されるまでの時間を短縮することができるため、より確実な超伝導磁石保護動作を可能とする。

図10に、本発明の第1の実施形態に係る超伝導コイルの具体的な構成を示す。超伝導コイル22は中心対称軸と同軸のボビン21に沿って巻き線され、図示しないボビン側面の穴などを利用して巻き線端部を固定する。巻き線した超伝導コイル22の外側側面を樹脂23などで固定し、その上から超伝導コイル22と磁気結合したコイル24を巻き線する。これらのコイル22およびコイル24はほぼ同軸のコイルとなる。その外側側面にコイル24の巻き崩れを防止するためのガラス編組絶縁25などを巻きつける。また、超伝導コイル内側にはヒータ26を設置できるように、ボビンの一部がくりぬかれ、絶縁シート27を介してヒータ26が設置されて構成される。
(第2の実施形態)
本発明の第2の実施形態に関わる、前記超伝導コイルと磁気結合するコイルの巻き線方法を示す。超伝導磁石装置1において、漏洩磁場を抑制する目的で、磁路を形成するための図示しない鉄芯を備えることもできる。前記超伝導コイルと磁気結合するコイルを超伝導コイルと同軸に巻き線した場合よりも結合係数が小さくなるが、本発明の第1の実施形態と同様の効果を得ることができる。
(第3の実施形態)
図11に、本発明の第3の実施形態に関わる、前記超伝導線31と磁気結合するコイルを形成するための銅線32の巻き線方法を示す。当該コイルに用いる導体、例えば銅線32を超伝導線31と共巻きして、超伝導コイルL1、L2、L3を形成する。銅線32は抵抗値をもっているため、遮断器12が開動作して超伝導コイル電流が流れることでジュール発熱を生じる。超伝導コイル内に発熱体である銅線32が存在するため、ヒータ発熱の伝熱により、他の健全な超伝導コイルを常電導転移させる場合よりもさらに早く超伝導コイル全体を常電導転移させることができる。
In addition, the current flowing into the heater for inducing the quenching of other healthy superconducting coils can be suppressed to a large value immediately after the circuit breaker opening operation and small during the transient period of coil current attenuation after the circuit breaker. The total heat generation amount (time integrated amount of heat consumed by the heater before the heater burns out) can be set to a value higher than the heat generation amount of the heater shown in the known example. That is, since it is possible to shorten the time until quenching is induced for another healthy superconducting coil, a more reliable superconducting magnet protection operation is possible.

FIG. 10 shows a specific configuration of the superconducting coil according to the first embodiment of the present invention. The superconducting coil 22 is wound along a bobbin 21 coaxial with the central axis of symmetry, and the winding end is fixed using a hole on the side surface of the bobbin (not shown). The outer side surface of the wound superconducting coil 22 is fixed with a resin 23 or the like, and a coil 24 magnetically coupled to the superconducting coil 22 is wound thereon. These coils 22 and 24 are substantially coaxial coils. A glass braid insulation 25 or the like for preventing the coil 24 from collapsing is wound around the outer side surface. Further, a part of the bobbin is hollowed out and a heater 26 is installed via an insulating sheet 27 so that the heater 26 can be installed inside the superconducting coil.
(Second Embodiment)
The winding method of the coil which magnetically couples with the said superconducting coil in connection with the 2nd Embodiment of this invention is shown. The superconducting magnet device 1 may include an iron core (not shown) for forming a magnetic path for the purpose of suppressing a leakage magnetic field. Although the coupling coefficient is smaller than when the coil magnetically coupled to the superconducting coil is coaxially wound with the superconducting coil, the same effect as in the first embodiment of the present invention can be obtained.
(Third embodiment)
FIG. 11 shows a winding method of the copper wire 32 for forming a coil magnetically coupled to the superconducting wire 31 according to the third embodiment of the present invention. A conductor used for the coil, for example, a copper wire 32 is wound together with the superconducting wire 31 to form superconducting coils L1, L2, and L3. Since the copper wire 32 has a resistance value, Joule heat is generated when the breaker 12 opens and the superconducting coil current flows. Since the copper wire 32, which is a heating element, is present in the superconducting coil, the entire superconducting coil is transferred to the normal conducting state faster than the case where other healthy superconducting coils are transferred to the normal conducting state due to heat transfer from the heater. be able to.

1 超伝導磁石装置1
11 電流電源11
L1、L2、L3 超伝導コイル
L11、L21、L31 超伝導コイルと磁気結合したコイル
R0 保護抵抗
D1 ダイオード
R11、R21、R31 ヒータ抵抗
R10、R20、R30 ヒータ電流調整用抵抗
12 遮断器12
21 ボビン
22 超伝導コイル
23 樹脂
24 超伝導コイルと磁気結合したコイル
25 ガラス編組絶縁シート
26 ヒータ
27 絶縁シート
31 超伝導線
32 銅線
1 Superconducting magnet device 1
11 Current supply 11
L1, L2, L3 Superconducting coils L11, L21, L31 Coils magnetically coupled to the superconducting coils R0 Protection resistance D1 Diodes R11, R21, R31 Heater resistance R10, R20, R30 Heater current adjustment resistance 12 Breaker 12
21 Bobbin 22 Superconducting coil 23 Resin 24 Coil magnetically coupled to the superconducting coil 25 Glass braided insulating sheet 26 Heater 27 Insulating sheet 31 Superconducting wire 32 Copper wire

Claims (5)

電流電源と、 前記電流電源に並列に接続される保護抵抗と、
前記電流電源に並列に接続される複数の超伝導コイルと、
前記電流電源に並列に接続されるダイオードと、
前記ダイオードに直列接続される複数のクエンチ誘発手段と、
前記電流電源に直列に接続される遮断器と、を備え、
前記クエンチ誘発手段は、
ヒータ抵抗と、
前記ヒータ抵抗に直列され、かつ前記超伝導コイルと磁気結合するコイルと、を備え
前記遮断器が開動作し、前記超伝導コイルと前記クエンチ誘発手段および前記ダイオードとで閉じた電気回路に電流が流れる際に、前記超伝導コイルと、前記超伝導コイルと磁気結合するコイルと、が作る磁束の向きがそれぞれ逆向きになるように巻き線されている超伝導磁石装置。
A current source; and a protective resistor connected in parallel to the current source;
A plurality of superconducting coils connected in parallel to the current source;
A diode connected in parallel to the current source;
A plurality of quench inducing means connected in series to the diode;
A circuit breaker connected in series to the current power source ,
The quench inducing means is
Heater resistance,
A coil in series with the heater resistor and magnetically coupled to the superconducting coil ,
When the circuit breaker is opened, and a current flows through an electric circuit closed by the superconducting coil, the quench inducing means, and the diode, the superconducting coil and a coil magnetically coupled to the superconducting coil; superconducting magnet apparatus the direction of the magnetic flux is that is winding to be opposite each make it.
前記クエンチ誘発手段が、複数の超伝導コイルに対して設置されたことを特徴とする請求項1に記載の超伝導磁石装置。   The superconducting magnet apparatus according to claim 1, wherein the quench inducing means is installed for a plurality of superconducting coils. 前記クエンチ誘発手段がそれぞれ直列に接続されてクエンチ誘発手段群を形成し、前記クエンチ誘発手段群が前記電流電源に並列に接続されて構成されることを特徴とする請求項1に記載の超伝導磁石装置。   The superconducting device according to claim 1, wherein the quench inducing means are connected in series to form a quench inducing means group, and the quench inducing means group is connected in parallel to the current power source. Magnet device. 前記超伝導コイルと磁気結合するコイルが、前記超伝導コイルとほぼ同軸に巻き線されたことを特徴とする請求項1に記載の超伝導磁石装置。   The superconducting magnet device according to claim 1, wherein a coil magnetically coupled to the superconducting coil is wound substantially coaxially with the superconducting coil. 請求項1に記載の超伝導磁石装置、磁路を形成するための鉄芯を備え、
前記超伝導コイルと磁気結合するコイルが、前記鉄芯に巻き線されたことを特徴とする請求項1に記載の超伝導磁石装置。
Superconducting magnet apparatus according to claim 1 is provided with an iron core for forming a magnetic path,
The superconducting magnet device according to claim 1 , wherein a coil magnetically coupled to the superconducting coil is wound around the iron core.
JP2015034703A 2015-02-25 2015-02-25 Superconducting electromagnet device Active JP6463987B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015034703A JP6463987B2 (en) 2015-02-25 2015-02-25 Superconducting electromagnet device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015034703A JP6463987B2 (en) 2015-02-25 2015-02-25 Superconducting electromagnet device

Publications (2)

Publication Number Publication Date
JP2016157825A JP2016157825A (en) 2016-09-01
JP6463987B2 true JP6463987B2 (en) 2019-02-06

Family

ID=56826326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015034703A Active JP6463987B2 (en) 2015-02-25 2015-02-25 Superconducting electromagnet device

Country Status (1)

Country Link
JP (1) JP6463987B2 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04125021A (en) * 1990-09-17 1992-04-24 Furukawa Electric Co Ltd:The Superconducting magnet protector
JPH07235412A (en) * 1994-02-24 1995-09-05 Mitsubishi Electric Corp Superconducting magnet device
JP4319602B2 (en) * 2004-08-31 2009-08-26 株式会社日立製作所 Superconducting magnet device with quench protection circuit
US8780510B2 (en) * 2009-09-23 2014-07-15 General Electric Company Passive quench protection circuit for superconducting magnets
JP5525810B2 (en) * 2009-12-28 2014-06-18 株式会社東芝 Superconducting magnet device and quench protection method thereof
CN102412047B (en) * 2010-09-21 2014-07-30 通用电气公司 Superconducting magnet and superconducting magnet system
JP2013208188A (en) * 2012-03-30 2013-10-10 Hitachi Medical Corp Superconducting magnet apparatus, method for protecting superconducting coil, and magnetic resonance imaging apparatus
GB2510410B (en) * 2013-02-04 2016-03-09 Siemens Plc Quench pressure reduction for superconducting magnet

Also Published As

Publication number Publication date
JP2016157825A (en) 2016-09-01

Similar Documents

Publication Publication Date Title
JP5829801B2 (en) Passive quench protection circuit for superconducting magnets.
US7477492B2 (en) Superconducting magnet system
JP5911686B2 (en) Quench protection circuit for superconducting magnet coils
KR101233003B1 (en) Fault current limiter
JP2012023040A (en) Contact protection circuit and high voltage relay comprising the same
KR20160090237A (en) Electric switch for protection of an over current using critical-temperature device
US4812796A (en) Quench propagation device for a superconducting magnet
JP2006073571A (en) Superconducting magnet device with quenching protective circuit
JP2005353777A (en) Protective device for superconducting coil
GB2370360A (en) Shielded superconductive NMR apparatus with quench protection
EP0399481B1 (en) Current limiting device
JP2007059920A (en) Superconducting magnet structure comprising connectable resistor element
JP6463987B2 (en) Superconducting electromagnet device
JP5255425B2 (en) Electromagnet device
JPS61114509A (en) Superconductive coil device
JPS6115565B2 (en)
JP4074046B2 (en) Current limiter using superconducting transformer
GB2540623A (en) Superconducting winding arrangements
JP7428515B2 (en) Persistent current switch, superconducting electromagnet device, and persistent current operation method of superconducting electromagnet device
KR20190002864A (en) Magnetic coupling type sfcl with current limiting and circuit breaking function
JP2016119431A (en) Superconducting magnet device
JP6794146B2 (en) High-temperature superconducting magnet device
JPH10270234A (en) Superconducting coil device
JPH04125021A (en) Superconducting magnet protector
JP2006319139A (en) Superconducting apparatus and quenching protecting method of superconducting portion

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170110

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170112

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190107

R150 Certificate of patent or registration of utility model

Ref document number: 6463987

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150