JP6463596B2 - Natural cheese - Google Patents

Natural cheese Download PDF

Info

Publication number
JP6463596B2
JP6463596B2 JP2013187470A JP2013187470A JP6463596B2 JP 6463596 B2 JP6463596 B2 JP 6463596B2 JP 2013187470 A JP2013187470 A JP 2013187470A JP 2013187470 A JP2013187470 A JP 2013187470A JP 6463596 B2 JP6463596 B2 JP 6463596B2
Authority
JP
Japan
Prior art keywords
cheese
content
less
analysis
milk
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013187470A
Other languages
Japanese (ja)
Other versions
JP2015053871A (en
Inventor
塩田誠
小杉愛
鈴木愛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Megmilk Snow Brand Co Ltd
Original Assignee
Megmilk Snow Brand Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Megmilk Snow Brand Co Ltd filed Critical Megmilk Snow Brand Co Ltd
Priority to JP2013187470A priority Critical patent/JP6463596B2/en
Publication of JP2015053871A publication Critical patent/JP2015053871A/en
Application granted granted Critical
Publication of JP6463596B2 publication Critical patent/JP6463596B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Dairy Products (AREA)

Description

本発明は、風味食感において優れたナチュラルチーズに関する。 The present invention relates to a natural cheese excellent in flavor texture.

近年、日本におけるナチュラルチーズの消費量は増加傾向にはあるが、それでも欧州の10分の1程度となっている。これは欧州ではナチュラルチーズの歴史が長く、多くのナチュラルチーズが欧州の人々の味覚に合うように発展してきた経緯にあることに起因する。
ナチュラルチーズは、その製造工程により多種多様な風味、食感、組織を有しており、風味発現の要因としては、乳質、乳処理方法、乳酸菌、酵素、細菌、カビ、熟成条件等の作用が大きなものとして挙げられる。近年、ナチュラルチーズの普及とともに多様な風味・食感のナチュラルチーズが市場に出回るようになってきている。例えば、ゴーダチーズ、チェダーチーズ、グラナチーズ、パルメザンチーズ等の硬質系ナチュラルチーズは、主として熟成中に乳酸菌、酵素の作用によるタンパク質及び脂肪分解にともなって生じる呈味成分、芳香成分による特有の風味を有する(非特許文献1)。
チーズ特有の香りは多様な複数の香気成分による複合的な結果であることが知られている。チーズ中の香気成分については、アルコール類、エステル類、アルデヒド類、ケトン類、含流化合物、ラクトン類など、多くの報告がなされており、個別の香気成分の香気質についても知られている。これらは、脂肪、アミノ酸、糖質などから各種微生物中の酵素の作用により、代謝された物質である。各香気は相互の増強効果やマスキング効果、複合効果により多様な香りとしてヒトは認識する。この認識は食経験にも関連することであり、国や地域により、感じ方は異なる場合も多い。チーズの嗜好性には食文化や食経験によるものであり、地域によってもチーズの嗜好性が変化することは報告されている(非特許文献1)。
In recent years, consumption of natural cheese in Japan has been on an increasing trend, but it is still about 1/10 of that in Europe. This is due to the fact that natural cheese has a long history in Europe, and many natural cheeses have been developed to suit the tastes of the European people.
Natural cheese has a wide variety of flavors, textures, and textures depending on the production process, and factors such as milk quality, milk processing methods, lactic acid bacteria, enzymes, bacteria, mold, and aging conditions are factors that contribute to flavor development. Listed as big. In recent years, with the widespread use of natural cheese, natural cheeses with various flavors and textures have come to the market. For example, hard natural cheeses such as gouda cheese, cheddar cheese, grana cheese, and parmesan cheese have characteristic flavors due to lactic acid bacteria, proteins due to the action of enzymes, and flavor components produced by lipolysis and aromatic components during ripening. (Non-Patent Document 1).
It is known that cheese-specific aroma is a complex result of a variety of aroma components. As for the aroma components in cheese, many reports have been made on alcohols, esters, aldehydes, ketones, flow-containing compounds, lactones, etc., and the aroma quality of individual aroma components is also known. These are substances metabolized by the action of enzymes in various microorganisms from fats, amino acids, carbohydrates and the like. Each fragrance is recognized by humans as a variety of scents by mutual enhancement, masking, and composite effects. This perception is also related to eating experience, and the feeling is often different depending on the country or region. The taste of cheese depends on food culture and food experience, and it has been reported that the taste of cheese varies depending on the region (Non-patent Document 1).

これらのナチュラルチーズは、乳に乳酸菌、凝乳酵素を添加し、凝固後、加熱撹拌し、ホエー排除により低水分化したカードを型詰めし、加塩工程を経て熟成する。ナチュラルチーズ特有の風味は熟成中に緩やかに形成され、長期間の熟成条件により風味・食感が大きく変化する。
ナチュラルチーズはそのまま食されることが多いが、チェダーチーズやゴーダチーズはさらにはプロセスチーズの原料として使用され、プロセスチーズとして消費されることが多い。いずれの場合においても熟成のタイミングにより風味が異なるため、熟成中の変化を予測することは、最も望ましい風味を有する商品を提供するためには非常に重要である。
最近では、ガスクロマトグラフィー等の機器分析や多変量解析運用技術の進化や多変量解析ソフトの充実により、チーズから脂肪酸やアミノ酸、香気成分を抽出した後、ガスクロマトグラフィーや液体クロマトグラフィーなどにより、成分の同定と定量を行い、成分と官能評価結果を統合解析することで、チーズの香気成分と官能特性との関係を把握する試みが増えてきた。
ケモメトリクス(計量科学)分野の多変量解析を用いることで、血中成分の分析結果から疾病を予測したり、近赤外領域における分光学的特性やクロマトグラフィーによる成分の分散から、食品の品質を予測することが行われている。主成分分析(PCA, principal component analysis)や部分最小二乗法(PLS, partial least squares analysis)によるスコアプロットやローディングプロットを用いることで、試料間の位置づけや各試料に特徴的な成分、官能項目に関連する成分の特定などを行なうことができる。例えば、チェダーチーズの油分が官能特性と香気成分との関連性を示した報告(非特許文献1)、熟度の違いが官能評価点に与える影響を解析した報告(非特許文献2)が存在する。また、チーズの熟成条件や搾乳時期などが成分に与える影響を評価した報告(非特許文献3)、乳の殺菌条件が官能特性に与える影響を評価した報告(非特許文献4)などが存在する。中でもOPLS-DA(orthogonal partial least squares project to latent structures-discriminant analysis)法は、ガン患者と正常者の血液成分データを用いたマーカー候補の探察や植物代謝物において、それらの群間の差に寄与する成分を特定すること等に用いられ、代謝物解析の進展に貢献してきた(非特許情報5)
ナチュラルチーズの風味に影響する要素としては、香気成分、呈味成分、物性、色調などの複合的な効果によるものと考えられている。各要素である香気成分と官能スコアとの関連性、親水性成分と官能スコアとの関連性等については、多変量解析手法の適用により、様々な知見が公開されている(特許文献1)。
These natural cheeses are prepared by adding lactic acid bacteria and milk coagulation enzyme to milk, coagulating, heating and stirring, filling a curd that has been reduced in water content by eliminating whey, and aging through a salting step. Natural cheese-specific flavor is slowly formed during ripening, and the flavor and texture change greatly depending on long-term aging conditions.
Natural cheese is often eaten as it is, but cheddar cheese and gouda cheese are further used as raw materials for processed cheese and are often consumed as processed cheese. In any case, since the flavor varies depending on the ripening timing, it is very important to predict the change during aging in order to provide a product having the most desirable flavor.
Recently, with the evolution of instrumental analysis such as gas chromatography and multivariate analysis operation technology and the enhancement of multivariate analysis software, fatty acids, amino acids and aroma components are extracted from cheese, and then by gas chromatography and liquid chromatography, Attempts to identify the relationship between the aroma components of cheese and the sensory characteristics have been increasing by identifying and quantifying the components and integrating and analyzing the components and sensory evaluation results.
By using multivariate analysis in the field of chemometrics (econometrics), predicting diseases from the analysis results of blood components, and analyzing the spectral characteristics in the near infrared region and chromatographic component dispersion, the quality of food Is being predicted. By using score plots and loading plots based on PCA (principal component analysis) and partial least squares analysis (PLS), the positioning between samples and the characteristic components and sensory items of each sample It is possible to specify related components. For example, there is a report (non-patent document 1) that the oil content of cheddar cheese shows the relationship between sensory characteristics and aroma components, and a report (non-patent document 2) that analyzes the effect of differences in maturity on sensory evaluation points. To do. In addition, there are reports that evaluate the effects of cheese ripening conditions and milking time on ingredients (Non-Patent Document 3), reports that evaluate the effects of milk sterilization conditions on sensory characteristics (Non-Patent Document 4), and the like. . Among them, the OPLS-DA (orthogonal partial least squares project to latent structures-discriminant analysis) method contributes to the difference between these groups in the search for candidate markers and plant metabolites using blood component data of cancer patients and normal individuals. Has been used to identify components that contribute to the progress of metabolite analysis (Non-patent Information 5)
As an element which influences the flavor of natural cheese, it is thought that it is based on compound effects, such as an aromatic component, a taste component, a physical property, and a color tone. Various knowledge about the relationship between the aromatic component and the sensory score, which is each element, the relationship between the hydrophilic component and the sensory score, and the like has been disclosed by applying a multivariate analysis technique (Patent Document 1).

特開2013−7732公報JP 2013-7732 A

Journal of Dairy Science, 93, 5069-5081 (2010)Journal of Dairy Science, 93, 5069-5081 (2010) Journal of Dairy Science, 87, 11-19 (2004)Journal of Dairy Science, 87, 11-19 (2004) International Dairy Journal, 18, 801-810 (2008)International Dairy Journal, 18, 801-810 (2008) International Dairy Journal, 18, 790-800 (2008)International Dairy Journal, 18, 790-800 (2008) Chemometrics and Intelligent Laboratory System, 84, 82-87 (2006)Chemometrics and Intelligent Laboratory System, 84, 82-87 (2006)

チーズのおいしさは上述のような複合的な効果によるものであるが、上記のそれぞれ文献には、香気成分分析のみ、呈味成分のみといった単独成分に着目している。また、特許文献1は、それらの複合効果の存在を示唆するが、その組合せの最適値は不明である。日本人の嗜好にあったナチュラルチーズの提供するためには、香り成分、呈味成分、テクスチャー、色調などを総合的に解析し、その最適バランスを把握することが求められる。 The deliciousness of cheese is due to the combined effects as described above, but each of the above documents focuses on single components such as only aroma component analysis and only taste components. Moreover, although patent document 1 suggests existence of those compound effects, the optimal value of the combination is unknown. In order to provide natural cheese that meets the tastes of the Japanese, it is necessary to comprehensively analyze fragrance components, taste components, texture, color tone, etc., and grasp the optimum balance.

上記の課題を解決するために、本発明者らは鋭意研究を行ったところ、複数の同種のナチュラルチーズについて、成分分析、物性測定、色調分析を機器分析により実施し、さらに官能評価結果を組合せて多変量解析手法としてPLS回帰分析を適用することで、個別の官能特性に対応する上記要素の最適なバランスを特定することができ、日本人にとって嗜好性の高いナチュラルチーズを得るに至った。
本発明は、アセトインの含有量が1000μg/kg以上、エタノールの含有量が130μg/kg 以下、ブタノイックアシッドの含有量が350μg/kg以下、ヘキサノイックアシッドの含有量が130μg/kg以下、乳酸の含有量が1200 mg/100g以下であり、テクスチャアナライザ分析における硬さが5000gf以下、かつ付着性が4500g・s以上であるナチュラルチーズである。
In order to solve the above-mentioned problems, the present inventors conducted intensive research, and conducted component analysis, physical property measurement, and color tone analysis by instrumental analysis on a plurality of the same type of natural cheese, and combined sensory evaluation results. By applying PLS regression analysis as a multivariate analysis method, it was possible to identify the optimal balance of the above elements corresponding to individual sensory characteristics, leading to natural cheese with high palatability for the Japanese.
The present invention has an acetoin content of 1000 μg / kg or more, an ethanol content of 130 μg / kg or less, a butanoic acid content of 350 μg / kg or less, a hexanoic acid content of 130 μg / kg or less, A natural cheese having a lactic acid content of 1200 mg / 100 g or less, a hardness of 5000 gf or less in texture analyzer analysis, and an adhesion of 4500 g · s or more.

本発明によれば、風味食感において優れた、日本人にとって嗜好性の高いナチュラルチーズを提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the natural cheese excellent in flavor food texture and high palatability for Japanese can be provided.

PLSによる好ましさのスコア予測結果を示す図。The figure which shows the score prediction result of the preference by PLS. 各機器分析データのCoefficientsデータを示す図。The figure which shows Coefficients data of each instrumental analysis data.

本発明のナチュラルチーズは、アセトインの含有量が1000μg/kg以上、エタノールの含有量が130μg/kg 以下、ブタノイックアシッドの含有量が350μg/kg以下、ヘキサノイックアシッドの含有量が130μg/kg以下、乳酸の含有量が1200 mg/100g以下であり、テクスチャアナライザ分析における硬さが5000gf以下、かつ付着性が4500g・s以上であるナチュラルチーズである。
本発明のナチュラルチーズは一般的なナチュラルチーズの製造方法を適用して製造することができるが、(1)搾乳後殺菌処理までの時間を48時間を越えないこと、(2)乳酸菌とレンネットを添加する前の原料乳の乳糖含量を2.0重量%以下にすること、(3)加塩方法としてはブライン加塩を行なうこと、の3つの中で2つ以上の処理を併用することにより、好ましい風味を有するチーズを調製することができる。
Natural cheese of the present invention has an acetoin content of 1000 μg / kg or more, an ethanol content of 130 μg / kg or less, a butanoic acid content of 350 μg / kg or less, and a hexanoic acid content of 130 μg / kg. It is a natural cheese having a lactic acid content of not more than kg, a lactic acid content of not more than 1200 mg / 100 g, a hardness of 5000 gf or less in texture analyzer analysis, and an adhesiveness of not less than 4500 g · s .
The natural cheese of the present invention can be manufactured by applying a general natural cheese manufacturing method. (1) The time until milk pasteurization after milking does not exceed 48 hours, (2) lactic acid bacteria and rennet By using two or more treatments in combination among the following three methods: making the lactose content of raw milk before adding the amount of 2.0% by weight or less, and (3) salting as a salting method, Cheese having a preferred flavor can be prepared.

本発明のナチュラルチーズの種類としては、ゴーダ、チェダー、エダム、サムソー、パルメザン、ミモレット等熟成期間が比較的長いナチュラルチーズが好ましいが、カビ熟成を含むか否かを含め、チーズの種類に限定されるものではない。また、チーズの原料となる乳は牛乳に限定されず、水牛や羊乳、山羊乳を用いて製造したチーズについても適用可能である。 The natural cheese of the present invention is preferably natural cheese with a relatively long ripening period such as gouda, cheddar, edam, samso, parmesan, mimolette, but is limited to the type of cheese, including whether or not it contains mold ripening. It is not something. Moreover, the milk used as a raw material for cheese is not limited to milk, and can be applied to cheese produced using buffalo, sheep milk, and goat milk.

本発明で製造するチーズの「好ましい風味」の条件は、生産者や熟成期間の異なる14種類のゴーダチーズについて、機器分析による香気成分、呈味成分、テクスチャライザによる物性、および色差計による色調評価を行なうことにより決定した。 The conditions of the “preferred flavor” of the cheese produced in the present invention are as follows. For the 14 types of Gouda cheeses with different producers and ripening periods, the aroma components by the instrumental analysis, the taste components, the physical properties by the texturizer, and the color tone evaluation by the color difference meter It was determined by performing.

本発明の香気成分抽出法としては、ヘッドスペース-SPME吸着法およびを用いた。香気成分抽出法は、これらの方法に限らず、Tenax樹脂を用いたダイナミックヘッドスペース吸着法、SAFE(Solvent assisted flavor extraction)法、水蒸気蒸留抽出などの方法を用いることができる。得られた香気成分抽出物をガスクロマトグラフィー(GC)を用いて分離し、質量分析計(MS)、匂い嗅ぎ法、水素イオン化検出器(FID)を用いて定量を行なう。以下、ヘッドスペース-SPME抽出法、水蒸気蒸留抽出法を用いた香気成分測定を、それぞれ、SPME-GC/MS法、SDE-GC/MS法という。 As the aroma component extraction method of the present invention, a headspace-SPME adsorption method and the like were used. The aroma component extraction method is not limited to these methods, and a method such as a dynamic headspace adsorption method using a Tenax resin, a SAFE (Solvent assisted flavor extraction) method, or a steam distillation extraction method can be used. The obtained aroma component extract is separated using gas chromatography (GC), and quantified using a mass spectrometer (MS), smell sniffing method, and hydrogen ionization detector (FID). Hereinafter, aroma component measurement using the headspace-SPME extraction method and the steam distillation extraction method is referred to as SPME-GC / MS method and SDE-GC / MS method, respectively.

SPME-GC/MS法による香気成分測定は下記の方法で行なった。フードプロセッサーにて1〜2mm程度に粉砕したチーズ1gを20mLバイアルビンに秤量、内部標準 (trans-2-methyl-2-butenal、5ppm 70mg)をチーズ上に滴下した。窒素充填後、シリコンシールで密閉し、測定試料とした。内部標準を馴染ませる為、ボルテクスミキサーで10秒程度撹拌し、37℃恒温槽にて10分間平衡、同様に37℃にて60分間SPMEファイバー(50/30 DVB/Carboxen/PDMS (SUPELCO))に吸着した後、GC/MSにて測定した。使用カラムはDB-5ms(60m×0.32mm i.d×0.5μm、J&W社製)、分析機器は Agilent 6890(GC)、5973(MSD)(アジレント・テクノロジー社製)、測定結果の解析は MSDChemiStation (アジレント・テクノロジー社製)を使用した。
SDE-GC/MS法による香気成分測定は下記の方法で行なった。短冊状に細く刻んだチーズを50g用意し、1000mL容丸底フラスコにチーズ、イオン交換水150mL、シリコーン1滴を加えて水蒸気の吹き込みを行い、香気成分を含む凝縮液を500mL得た。得られた凝縮液と食塩10gとジクロロメタン(残留農薬用・PCB試験用5000倍濃縮品 関東化学) 100mLを1000mL容分液ろうとに入れ、香気成分をジクロロメタン層に移行させる。ジクロロメタン層を取り出し無水硫酸ナトリウムにて脱水を行った。この作業を2回繰り返し、得られた溶液を60℃の恒温槽にて加温し、0.3mLまで濃縮した。濃縮液に内部標準(Biphenyl 500ppm)を0.1mL添加し、測定試料とした。測定は各試料2回ずつ行った。使用カラムはDB-WAX(30m×0.25mm i.d×0.25 μm、J&W社製)、分析機器はVarian220-MS イオントラップ型GC/MS/MS(バリアン・テクノロジー社製)を使用した。測定条件を以下に示した。スプリットモード(1:22)、注入口温度250℃、キャリアガスHe、カラム初期流量2.4mL/min、オーブン条件40℃3分保持後、230℃まで3℃/minで昇温後、24分保持した。MS条件を以下に示した。検出器はイオントラップ型(EIモード)、測定はスキャンモード、MSトラップ温度200℃、トランスファー温度250℃、質量範囲35〜500m/z、スキャン速度0.5sec/scanとした。測定結果の解析は GC/MS付属の解析ソフトおよび同定はNIST08を使用した。
The aroma component measurement by SPME-GC / MS method was performed by the following method. 1 g of cheese crushed to about 1 to 2 mm by a food processor was weighed into a 20 mL vial, and an internal standard (trans-2-methyl-2-butenal, 5 ppm 70 mg) was dropped onto the cheese. After filling with nitrogen, it was sealed with a silicon seal and used as a measurement sample. In order to familiarize with the internal standard, stir for about 10 seconds with a vortex mixer, equilibrate for 10 minutes in a 37 ° C constant temperature bath, and likewise with SPME fiber (50/30 DVB / Carboxen / PDMS (SUPELCO)) for 60 minutes at 37 ° C. After adsorption, it was measured by GC / MS. The column used is DB-5ms (60m × 0.32mm id × 0.5μm, manufactured by J & W), the analytical instruments are Agilent 6890 (GC), 5973 (MSD) (Agilent Technology), and the analysis of the measurement results is MSDChemiStation (Agilent)・ Technology Corporation) was used.
The aroma component measurement by SDE-GC / MS method was performed by the following method. 50 g of cheese chopped into strips were prepared, and steam, 150 mL of cheese, ion-exchanged water and 1 drop of silicone were added to a 1000 mL round bottom flask, and 500 mL of condensate containing aroma components was obtained. Place the resulting condensate, 10 g of sodium chloride, and dichloromethane (5000-fold concentrated product for residual agricultural chemicals / PCB test Kanto Chemical) 100 mL into a 1000 mL volume funnel, and transfer the aroma components to the dichloromethane layer. The dichloromethane layer was taken out and dehydrated with anhydrous sodium sulfate. This operation was repeated twice, and the resulting solution was heated in a constant temperature bath at 60 ° C. and concentrated to 0.3 mL. 0.1 mL of an internal standard (Biphenyl 500 ppm) was added to the concentrate to prepare a measurement sample. The measurement was performed twice for each sample. The column used was DB-WAX (30 m × 0.25 mm id × 0.25 μm, manufactured by J & W), and the analytical instrument was a Varian220-MS ion trap GC / MS / MS (manufactured by Varian Technology). The measurement conditions are shown below. Split mode (1:22), inlet temperature 250 ° C, carrier gas He, column initial flow rate 2.4mL / min, oven condition held at 40 ° C for 3 minutes, raised to 230 ° C at 3 ° C / min, then held for 24 minutes did. The MS conditions are shown below. The detector was an ion trap type (EI mode), the measurement was a scan mode, the MS trap temperature was 200 ° C., the transfer temperature was 250 ° C., the mass range was 35 to 500 m / z, and the scan speed was 0.5 sec / scan. The analysis results were analyzed using the analysis software attached to GC / MS and NIST08 for identification.

SPME-GC/MS抽出香気成分としては、Ethanol, Acetone, Dimethyl sulfide, Ethyl acetate, 3-Methyl-butanal, 2-Methyl-butanal, 2-Pentanone, Acetoin, 3-Methyl-1-butanol, Butanoic acid, 2-Heptanone, Hexanoic acid, Limonene, 2-Nonanone, Octanoicacid, Butanoic acid butyl esterの16成分を得た。
SDE-GC/MS抽出香気成分としては、2-Undecanone, 2-Tridecanone, Benzyl alcohol, δ-Octalactone, 2-Pentadecanone, δ-Decalactone, Decanoicacid, γ-Undecalactone, δ-dodecalactone, Dodecanoicacid, δ-Tetradecalactone, Tetradecanoic acid, Hexadecanoicacidの13成分を得た。ここで、SPME-GC/MS法とSDE-GC/MS法のいずれでも検出された香気成分については、SPME-GC/MS法のデータを用いた。
SPME-GC / MS extracted aroma components include Ethanol, Acetone, Dimethyl sulfide, Ethyl acetate, 3-Methyl-butanal, 2-Methyl-butanal, 2-Pentanone, Acetoin, 3-Methyl-1-butanol, Butanoic acid, 16 components of 2-Heptanone, Hexanoic acid, Limonene, 2-Nonanone, Octanoic acid and Butanoic acid butyl ester were obtained.
SDE-GC / MS extracted aroma components include 2-Undecanone, 2-Tridecanone, Benzyl alcohol, δ-Octalactone, 2-Pentadecanone, δ-Decalactone, Decanoicacid, γ-Undecalactone, δ-dodecalactone, Dodecanoicacid, δ-Tetradecalactone, 13 components of Tetradecanoic acid and Hexadecanoic acid were obtained. Here, the SPME-GC / MS method data was used for the aroma components detected by both the SPME-GC / MS method and the SDE-GC / MS method.

チーズ試料の物性は、テクスチャアナライザ(TA-XT2i, Stable Micro Systems Ltd. ドイツ)を用いて測定した。1cm x 1cm x 1cm 立方にチーズ試料を切り出し、10℃にて冷蔵保持したチーズに対して速やかに室温下で直径75mmのプローブを用いて圧縮速度0.5mm/sec、圧縮率80%まで圧縮を行なった。硬さと付着性については、下記の文献記載の方法に基づく。 The physical properties of the cheese samples were measured using a texture analyzer (TA-XT2i, Stable Micro Systems Ltd. Germany). Cut a cheese sample into 1cm x 1cm x 1cm cubes and quickly compress the cheese refrigerated at 10 ° C to a compression rate of 0.5mm / sec and a compression rate of 80% using a 75mm diameter probe at room temperature. It was. About hardness and adhesiveness, it is based on the method of the following literature description.

Saint-Eve A. et al., Food Chemistry, 116, 167-175. (2009) Saint-Eve A. et al., Food Chemistry, 116, 167-175. (2009)

各試料について、「好ましさ」についてSD法による官能評価を実施した。評価者は、30名の26〜54歳までのパネラー(男性17名、女性13名)である。
得られた評価を用いてPLS回帰分析を行うため、全14試料を「好ましさ」のスコアが高い順に並べ、スコアが高い方から2番目(テスト試料1)、8番目(テスト試料2)、13番目(テスト試料3)をテストサンプルとし、残りの11試料をキャリブレーションサンプルとして分けた。機器分析による項目を説明変数とし、官能評価における「好ましさ」を目的変数として、PLS回帰に供した。得られたモデルの潜在因子は5であり、RMSEEが0.080を示すR2が0.994、予測精度を示すQ2が0.865であった。図1に示すように、それぞれのスコアは直線上に配列され、「好ましさ」を予測可能なモデルが得られた。テストサンプルを用いてモデルの検証を行なった結果、RMSEPが0.116と全スコア中の5%以内であり、高い予測精度を示すことが確認できた。
各説明変数について、重回帰分析によるCoefficientsを算出した結果を図2に示す。ここで、VIP値が1以上を示す変数については、黒棒で示した。これにより、「好ましさ」に正に寄与する要素として、アセトイン含量と付着性が選択され、負に寄与する要素としてエタノール含量、ブタノイックアシッド含量、ヘキサノイックアシッド含量、乳酸含量、硬さが選択された。本発明において、日本人に「好ましい」チーズとは、物性面においては、付着性が高く、硬さが低いチーズであり、アセトイン含量、エタノール含量、ブタノイックアシッド含量、ヘキサノイックアシッド含量、乳酸含量が所定の範囲にあるものである。
About each sample, sensory evaluation by SD method was implemented about "preference". The evaluators are 30 panelists aged 26 to 54 (17 men and 13 women).
In order to perform PLS regression analysis using the obtained evaluations, all 14 samples are arranged in descending order of “preferred” score, and the 2nd highest (test sample 1) and 8th (test sample 2) The 13th (test sample 3) was used as a test sample, and the remaining 11 samples were divided as calibration samples. The items from the instrumental analysis were used as explanatory variables, and “preference” in sensory evaluation was used as the objective variable for PLS regression. The resulting model had a latent factor of 5, R2 with an RMSEE of 0.080, 0.994, and Q2 with a prediction accuracy of 0.865. As shown in FIG. 1, the scores are arranged on a straight line, and a model that can predict “preference” is obtained. As a result of verifying the model using the test sample, RMSEP was 0.116, which was within 5% of the total score, and it was confirmed that the prediction accuracy was high.
The results of calculating Coefficients by multiple regression analysis for each explanatory variable are shown in FIG. Here, variables whose VIP value is 1 or more are indicated by black bars. As a result, acetoin content and adhesion are selected as factors that contribute positively to “preference”, and ethanol content, butanoic acid content, hexanoic acid content, lactic acid content, hardness Was selected. In the present invention, "preferred" cheese for Japanese is a cheese having high adhesion and low hardness in terms of physical properties, acetoin content, ethanol content, butanoic acid content, hexanoic acid content, The lactic acid content is in a predetermined range.

表1に、14種の試料の好ましさのスコアを高い順に並べ、それぞれの試料の機器分析結果を示す。表中において下線を施した数字は、正に寄与する項目は好ましさが正の値であった中での最小値を示し、負に寄与する項目は好ましさが負の値であった中での最大値を示す。上記の結果より、香気成分であるアセトインが1000μg/kg以上、エタノールが130μg/kg 以下、ブタノイックアシッドが350μg/kg以下、ヘキサノイックアシッドが130μg/kg以下であり、かつ乳酸が1200 mg/100g以下、かつテクスチャライザにおける硬さが5000gf以下であり、かつ付着性が4500g・s以上であることが好ましさの条件であることが示された。
Table 1 lists the preference scores of the 14 samples in descending order, and shows the instrumental analysis results for each sample. The numbers underlined in the table indicate the minimum value among items that contributed positively, and the items that contributed negatively had negative values. The maximum value is shown. From the above results, the fragrance component acetoin is 1000 μg / kg or more, ethanol is 130 μg / kg or less, butanoic acid is 350 μg / kg or less, hexanoic acid is 130 μg / kg or less, and lactic acid is 1200 mg. / 100g or less, the hardness in the texturer is 5000 gf or less, and the adhesion is 4500 g · s or more.

Figure 0006463596
Figure 0006463596

以下に本発明の実施例を示して詳細に説明する。なお、実施例は本発明の態様の1つであり、本発明は実施例に限定されるものではない。 Examples of the present invention will be described below in detail. In addition, an Example is one of the aspects of this invention, and this invention is not limited to an Example.

本実施例のチーズは以下の方法により製造した。
搾乳後、加水により脂肪分を2.8重量%に調製した原料乳をプレート型殺菌機により75℃で15秒間殺菌した。ここで、搾乳から殺菌までの時間は48時間を越えないように管理を行った。得られた原料乳に対して、40℃にて分画分子量60000Daの膜を用いて限外ろ過処理を行った。膜処理前には3.6重量%であった乳糖が、濃縮液に対して加水を行った状態で脂肪分2.8重量%であり、かつ乳糖含量が1.8重量%となるよう、乳の処理を行なった。この原料乳について、LDスターター添加を行ない、ジャケット付のチーズバット内に静置する。1時間後に仔牛レンネット(クリスチャン・ハンセン社製)を3g添加し、さらに静置した。約30分経過した時点で乳の凝固が起こり、凝固開始から5分後にチーズナイフを使用してチーズカードを10mmの立方体に切断した。切断後、緩やかに撹拌しながらチーズカード中からホエーを流出した。ホエーの流出を促進させるために、カードとホエー混合物を1℃/2分の加熱で38℃まで加温した。撹拌を開始してから2時間後にカードとホエーを分離し、チーズカードの形成を行なった。全カードを10kg容量のチーズモールドに入れ、縦型プレス機にて140kgの荷重をかけて2時間プレスした。プレス後20%食塩水中(10℃)に48時間浸漬して加塩し、加塩後、10℃熟成庫内で熟成し、ゴーダチーズを得たものを実施例1とした。
The cheese of this example was produced by the following method.
After milking, the raw material milk whose fat content was adjusted to 2.8% by weight was sterilized with a plate-type sterilizer at 75 ° C. for 15 seconds. Here, the time from milking to sterilization was controlled so as not to exceed 48 hours. The obtained raw milk was subjected to ultrafiltration treatment at 40 ° C. using a membrane with a molecular weight cut off of 60000 Da. Lactose, which was 3.6% by weight before membrane treatment, had a fat content of 2.8% by weight in a state of being added to the concentrate, and the lactose content was 1.8% by weight. Milk was processed. Add the LD starter to the raw milk and leave it in a cheese vat with a jacket. One hour later, 3 g of calf rennet (manufactured by Christian Hansen) was added and left still. When about 30 minutes passed, milk coagulation occurred, and after 5 minutes from the start of coagulation, the cheese curd was cut into 10 mm cubes using a cheese knife. After cutting, the whey was poured out from the cheese curd while gently stirring. In order to promote the whey spill, the curd and whey mixture was heated to 38 ° C. with 1 ° C./2 minutes heating. Two hours after the start of stirring, the curd and whey were separated to form a cheese curd. All the cards were put into a 10 kg capacity cheese mold and pressed for 2 hours with a load of 140 kg using a vertical press. After pressing, it was immersed in 20% saline (10 ° C.) for 48 hours to salt, and after salting, it was aged in a 10 ° C. aging cabinet to obtain Gouda cheese as Example 1.

(比較例1)
原料乳に対する膜処理の影響を確認するため、実施例1において、膜処理を実施せず、乳糖含量が3.6重量%の乳を用い、その後の工程は実施例1と同じ方法により製造したチーズを比較例1とした。
(Comparative Example 1)
In order to confirm the influence of the membrane treatment on the raw milk, the membrane treatment was not carried out in Example 1, milk having a lactose content of 3.6% by weight was used, and the subsequent steps were produced by the same method as in Example 1. The cheese was Comparative Example 1.

Lactococcus diacetylactis, Lactococcus cremoris を乳酸菌として使用し、乳糖含量1.8重量%の膜処理乳を用いて、実施例1と同様の方法で製造した。 Using Lactococcus diacetylactis and Lactococcus cremoris as lactic acid bacteria, membrane-treated milk having a lactose content of 1.8% by weight was produced in the same manner as in Example 1.

(比較例2)
加塩前の乳糖含量の影響を確認するため、乳糖含量3.6重量%の未膜処理乳を原料乳として用い、他の製造条件は実施例1と同じとしたチーズを比較例2とした。
(Comparative Example 2)
In order to confirm the influence of the lactose content before salting, non-film-treated milk having a lactose content of 3.6% by weight was used as raw material milk, and a cheese whose other production conditions were the same as in Example 1 was used as Comparative Example 2.

乳酸菌としてLactococcus lactis, Streptococcus thermophilus を用い、搾乳から殺菌までの時間が20時間の乳を用いて調製したチーズを実施例3とし、膜処理により乳糖含量を1.8重量%とした後、実施例1と同様な方法でチーズを調製した。 Lactococcus lactis, Streptococcus thermophilus was used as a lactic acid bacterium, cheese prepared using milk having a time from milking to sterilization of 20 hours was set as Example 3, and the lactose content was set to 1.8% by weight by membrane treatment. In the same manner as in No. 1, cheese was prepared.

(比較例3)
搾乳から殺菌までの時間の影響を確認するため、実施例3において、搾乳から殺菌までの時間が55時間の乳を用いて調製したチーズを比較例3とした。
(Comparative Example 3)
In order to confirm the influence of the time from milking to sterilization, in Example 3, the cheese prepared using the milk whose time from milking to sterilization is 55 hours was set as the comparative example 3.

乳酸菌としてLactococcus lactis, Streptococcus thermophilus を用い、搾乳から殺菌までの時間が20時間、膜処理乳を使用せず、乳糖含量は3.6重量%の乳を原料として実施例1と同様の方法でチーズを調製した。 Lactococcus lactis, Streptococcus thermophilus is used as a lactic acid bacterium, the time from milking to sterilization is 20 hours, no membrane-treated milk is used, and milk with a lactose content of 3.6% by weight is used as a raw material in the same manner as in Example 1. Was prepared.

(比較例4)
実施例4と同じく、膜処理乳を使用せず、乳糖含量は3.6重量%の乳を原料として用い、カードとホエーを分離した後、得られたカードに食塩を分散、混合させ、このカードを10kg容量のチーズモールドに入れ、縦型プレス機にて140kgの荷重をかけて2時間プレスして調製したチーズを比較例4とした。
(Comparative Example 4)
As in Example 4, the membrane-treated milk was not used, milk having a lactose content of 3.6% by weight was used as a raw material, curd and whey were separated, and then the obtained curd was dispersed and mixed with salt. The cheese prepared by putting the curd into a cheese mold with a capacity of 10 kg and pressing it with a vertical press machine for 2 hours under a load of 140 kg was used as Comparative Example 4.

(比較例5)
乳酸菌として Lactococcus diacetylactis, Lactococcus cremoris を用い、ホエー分離後のカードにヘキサノイックアシッド単品香料を添加し、十分な攪拌を行なった以外は、実施例1と同じ方法で調整したチーズを比較例5とした。
(Comparative Example 5)
Lactococcus diacetylactis and Lactococcus cremoris were used as lactic acid bacteria, and the cheese prepared in the same manner as in Example 1 was added to Comparative Example 5 except that a single flavor of hexanoic acid was added to the curd after whey separation and the mixture was sufficiently stirred. did.

(比較例6)
乳酸菌として Lactococcus diacetylactis, Lactococcus cremoris を用い、ホエー分離後のカードに希釈乳酸溶液を添加し、十分な攪拌を行なった以外は実施例1と同じ方法で調製したチーズを比較例6とした。
(Comparative Example 6)
Lactococcus diacetylactis and Lactococcus cremoris were used as lactic acid bacteria, a diluted lactic acid solution was added to the curd after whey separation, and the mixture was sufficiently stirred.

(比較例7)
実施例1と比較して硬い物性を持つチーズを調製するため、高温菌であるStreptococcus thermophilus を用い、チーズカードを10mmの立方体に切断し、切断後、緩やかに撹拌しながらチーズカード中からホエーを流出させる工程で、ホエー流出温度を50℃まで上昇させることで、水分の上昇を促した以外は実施例1と同じ方法で調整したチーズを実施例7とした。
(Comparative Example 7)
In order to prepare cheese having hard physical properties as compared with Example 1, using a thermophile, Streptococcus thermophilus, cut the cheese curd into 10 mm cubes and, after cutting, whey from the cheese curd while gently stirring. The cheese adjusted by the same method as Example 1 was made into Example 7 except having promoted the raise of a water | moisture content by raising the whey outflow temperature to 50 degreeC by the process made to flow out.

実施例1〜実施例3のゴーダチーズおよび比較例1〜比較例7の試料について、重回帰分析の結果およびVIP値に基づいて決定した、日本人に「好ましい」チーズに関係するパラメータについて、各チーズの数値を下記に示す。表中下線部は好ましさを示す指標から外れている数値を示す。 About Gouda cheese of Examples 1 to 3 and samples of Comparative Examples 1 to 7, parameters determined on the basis of the results of the multiple regression analysis and VIP values, which are related to “preferred” cheese for Japanese, The numerical value of cheese is shown below. The underlined portion in the table indicates a numerical value that is out of the index indicating preference.

Figure 0006463596
Figure 0006463596

さらに、それぞれのゴーダチーズの官能評価を行い、表2に示した結果との関連性の確認を行った。「好ましさ」は-2, -1, 0, +1, +2 の5段階評価により行った。ここで、-2は好ましくない、+2は好ましいを示す。評価者は30名の26〜54歳までのパネラー(男性17名、女性13名)により実施した。
官能評価の結果は表3に示すとおりであり、実施例1は他の比較例との間には有意差(p<0.05)が存在した。
Furthermore, sensory evaluation of each Gouda cheese was performed, and the relevance with the results shown in Table 2 was confirmed. “Preferences” were evaluated by a five-step evaluation of -2, -1, 0, +1, +2. Here, -2 is not preferred, and +2 is preferred. The evaluators were 30 panelists aged between 26 and 54 years (17 men and 13 women).
The results of sensory evaluation are as shown in Table 3, and Example 1 had a significant difference (p <0.05) from other comparative examples.

Figure 0006463596
Figure 0006463596

これらの結果から、香気成分であるアセトインが1000μg/kg以上、エタノールが130μg/kg 以下、ブタノイックアシッドが350μg/kg以下、ヘキサノイックアシッドが130μg/kg以下、乳酸が1200 mg/100g以下、テクスチャライザ分析における硬さが5000gf以下、かつ付着性が4500g・s以上である実施例1〜4のチーズは、比較例1〜7に比べて有意に好ましいと評価されることが判った。
以上
From these results, aroma component acetoin 1000 μg / kg or more, ethanol 130 μg / kg or less, butanoic acid 350 μg / kg or less, hexanoic acid 130 μg / kg or less, lactic acid 1200 mg / 100 g or less It was found that the cheeses of Examples 1 to 4 having a hardness of 5000 gf or less in the texturer analysis and an adhesion of 4500 g · s or more were evaluated to be significantly preferable as compared with Comparative Examples 1 to 7. .
that's all

Claims (2)

香気成分であるアセトインの含有量が1000〜3200μg/kg、エタノールの含有量が100μg/kg 以下、ブタノイックアシッドの含有量が350μg/kg以下、ヘキサノイックアシッドの含有量が130μg/kg以下、乳酸の含有量が1200 mg/100g以下、テクスチャライザ分析における硬さが5000gf以下、かつ付着性が4500g・s以上であるゴーダチーズThe content of acetoin, an aroma component, is 1000 to 3200 μg / kg, the content of ethanol is 100 μg / kg or less, the content of butanoic acid is 350 μg / kg or less, the content of hexanoic acid is 130 μg / kg or less Gouda cheese with a lactic acid content of 1200 mg / 100 g or less, a hardness in the texturer analysis of 5000 gf or less, and an adhesion of 4500 g · s or more. 搾乳から48時間以内に殺菌処理を行なう工程と、
乳酸菌とレンネット添加をする前の原料乳の乳糖含量を2%以下にする工程と、
カード形成後に、ブライン加塩を行なう工程と、
のうち、少なくとも2つの工程を有し、
アセトインの含有量を1000〜3200μg/kg、エタノールの含有量を100μg/kg 以下、ブタノイックアシッドの含有量を350μg/kg以下、ヘキサノイックアシッドの含有量を130μg/kg以下、乳酸の含有量を1200 mg/100g以下、テクスチャライザ分析における硬さが5000gf以下、かつ付着性が4500g・s以上であるゴーダチーズを製造する方法。
以 上
Sterilizing within 48 hours of milking;
A step of reducing the lactose content of raw milk before adding lactic acid bacteria and rennet to 2% or less;
A step of salting brine after card formation;
And having at least two steps,
Acetoin content of 1000-3200 μg / kg, ethanol content of 100 μg / kg or less, butanoic acid content of 350 μg / kg or less, hexanoic acid content of 130 μg / kg or less, lactic acid content A method for producing gouda cheese having an amount of 1200 mg / 100 g or less, a hardness in a texturer analysis of 5000 gf or less, and an adhesion of 4500 g · s or more.
that's all
JP2013187470A 2013-09-10 2013-09-10 Natural cheese Active JP6463596B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013187470A JP6463596B2 (en) 2013-09-10 2013-09-10 Natural cheese

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013187470A JP6463596B2 (en) 2013-09-10 2013-09-10 Natural cheese

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019000021A Division JP2019047831A (en) 2019-01-04 2019-01-04 Natural cheese

Publications (2)

Publication Number Publication Date
JP2015053871A JP2015053871A (en) 2015-03-23
JP6463596B2 true JP6463596B2 (en) 2019-02-06

Family

ID=52818725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013187470A Active JP6463596B2 (en) 2013-09-10 2013-09-10 Natural cheese

Country Status (1)

Country Link
JP (1) JP6463596B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7294779B2 (en) * 2018-07-31 2023-06-20 株式会社明治 How cheese is made

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5165945A (en) * 1987-07-23 1992-11-24 Schreiber Foods, Inc. Cheese and process and system for making it
JP2514547B2 (en) * 1992-08-31 1996-07-10 雪印乳業株式会社 Cheese using ultrafiltration concentrated milk and method for producing the same
JP3130842B2 (en) * 1997-09-30 2001-01-31 雪印乳業株式会社 Fresh cheese
JP3308914B2 (en) * 1998-10-02 2002-07-29 雪印乳業株式会社 Cheese and method for producing the same
JP3645898B1 (en) * 2004-10-14 2005-05-11 グリコ乳業株式会社 Fermented milk product manufacturing method and product
US7674489B2 (en) * 2005-09-30 2010-03-09 Kraft Foods Global Brands Llc Fresh cheese products containing biogenerated flavor components and methods for producing
US20070172546A1 (en) * 2006-01-23 2007-07-26 Kraft Foods Holdings, Inc. Reduced-fat flavor components
JP2011010564A (en) * 2009-06-30 2011-01-20 Rokko Butter Co Ltd Cheese having glucose tolerance and method for producing the same
JP2012050361A (en) * 2010-08-31 2012-03-15 Snow Brand Milk Products Co Ltd Natural cheese
JP6106090B2 (en) * 2011-09-30 2017-03-29 株式会社明治 Cheese and method for producing the same

Also Published As

Publication number Publication date
JP2015053871A (en) 2015-03-23

Similar Documents

Publication Publication Date Title
Hickey et al. The effect of buttermilk or buttermilk powder addition on functionality, textural, sensory and volatile characteristics of Cheddar-style cheese
Drake et al. Impact of fat reduction on flavor and flavor chemistry of Cheddar cheeses
Karoui et al. A review of the analytical methods coupled with chemometric tools for the determination of the quality and identity of dairy products
Boscaini et al. Gas Chromatography− Olfactometry (GC-O) and proton transfer Reaction− Mass spectrometry (PTR-MS) analysis of the flavor profile of Grana Padano, Parmigiano Reggiano, and Grana trentino cheeses
Guneser et al. Characterisation of aroma‐active compounds, chemical and sensory properties of acid‐coagulated cheese: Circassian cheese
Jeon et al. Comparative study of flavor, texture, and sensory in cream cheese and cholesterol-removed cream cheese
Kavak et al. Quality evaluation of kashar cheese: influence of palm oil and ripening period
Joyner et al. The effect of storage temperature on blue cheese mechanical properties
Kumar et al. Effect of rate of addition of starter culture on textural characteristics of buffalo milk Feta type cheese during ripening
Inácio et al. Serra da Estrela cheese: A review
Poveda et al. Volatile composition and improvement of the aroma of industrial Manchego cheese by using Lactobacillus paracasei subsp. paracasei as adjunct and other autochthonous strains as starters
JP2015055494A (en) Cheese quality prediction method
Guggisberg et al. Influence of chemical and biochemical characteristics on the texture of Appenzeller® cheese
Jung et al. Comparison of physicochemical and sensory properties between cholesterol-removed Gouda cheese and Gouda cheese during ripening
Delgado et al. Free fatty acids and oxidative changes of a Spanish soft cheese (PDO ‘Torta del Casar’) during ripening
JP6463596B2 (en) Natural cheese
Oselu et al. Production and characterisation of camel milk yoghurt containing different types of stabilising agents
Gezmiş et al. Determination of the effects of spices on the ripening of traditional Circassian cheese
Martini et al. Relationship between morphometric characteristics of milk fat globules and the cheese making aptitude of sheep's milk
JP2012050361A (en) Natural cheese
Shahab Lavasani Proteolysis characteristics and aroma development during ripening of functional Iranian Lighvan cheese
Zabaleta et al. Volatile compounds associated with desirable flavour and off-flavour generation in ewe´ s raw milk commercial cheeses
Guizani et al. Ripening profile of semi-hard standard goat cheese made from pasteurized milk
Ozmen Togay et al. Evaluation of physicochemical, microbiological, sensory properties and aroma profiles of goat cheeses provided from Canakkale
Ben Lawlor et al. Swiss‐type and Swiss–Cheddar hybrid‐type cheeses: effects of manufacture on sensory character and relationships between the sensory attributes and volatile compounds and gross compositional constituents

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160819

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170710

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171101

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20171101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190104

R150 Certificate of patent or registration of utility model

Ref document number: 6463596

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250