JP6457884B2 - Vehicle drive device - Google Patents

Vehicle drive device Download PDF

Info

Publication number
JP6457884B2
JP6457884B2 JP2015101490A JP2015101490A JP6457884B2 JP 6457884 B2 JP6457884 B2 JP 6457884B2 JP 2015101490 A JP2015101490 A JP 2015101490A JP 2015101490 A JP2015101490 A JP 2015101490A JP 6457884 B2 JP6457884 B2 JP 6457884B2
Authority
JP
Japan
Prior art keywords
drive device
vehicle drive
switching element
motor
semiconductor module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015101490A
Other languages
Japanese (ja)
Other versions
JP2016220357A (en
Inventor
正登 安東
正登 安東
和俊 小川
和俊 小川
直希 國廣
直希 國廣
石川 勝美
勝美 石川
仲田 清
清 仲田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2015101490A priority Critical patent/JP6457884B2/en
Priority to GB1607385.0A priority patent/GB2540009B/en
Priority to CN201610302669.5A priority patent/CN106169835B/en
Priority to DE102016208555.7A priority patent/DE102016208555A1/en
Publication of JP2016220357A publication Critical patent/JP2016220357A/en
Application granted granted Critical
Publication of JP6457884B2 publication Critical patent/JP6457884B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L9/00Electric propulsion with power supply external to the vehicle
    • B60L9/16Electric propulsion with power supply external to the vehicle using ac induction motors
    • B60L9/18Electric propulsion with power supply external to the vehicle using ac induction motors fed from dc supply lines
    • B60L9/22Electric propulsion with power supply external to the vehicle using ac induction motors fed from dc supply lines polyphase motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K11/00Arrangement in connection with cooling of propulsion units
    • B60K11/02Arrangement in connection with cooling of propulsion units with liquid cooling
    • B60K11/04Arrangement or mounting of radiators, radiator shutters, or radiator blinds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K11/00Arrangement in connection with cooling of propulsion units
    • B60K11/06Arrangement in connection with cooling of propulsion units with air cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/007Physical arrangements or structures of drive train converters specially adapted for the propulsion motors of electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0061Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electrical machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L9/00Electric propulsion with power supply external to the vehicle
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/20Stationary parts of the magnetic circuit with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • H02K11/33Drive circuits, e.g. power electronics
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/02Arrangements for cooling or ventilating by ambient air flowing through the machine
    • H02K9/04Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium
    • H02K9/06Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium with fans or impellers driven by the machine shaft
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/10Arrangements for cooling or ventilating by gaseous cooling medium flowing in closed circuit, a part of which is external to the machine casing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K2001/003Arrangement or mounting of electrical propulsion units with means for cooling the electrical propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/12Induction machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/14Synchronous machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/50Structural details of electrical machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/425Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/525Temperature of converter or components thereof
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/16Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields
    • H02K5/161Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields radially supporting the rotary shaft at both ends of the rotor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Description

本発明は電力変換装置を用いた車両用駆動装置に関する。
The present invention relates to a vehicle drive device using a power conversion device.

直流電力を交流電力に変換するインバータや交流電力を直流電力に変換するコンバータに代表される電力変換装置は、損失を低減するためにスイッチング素子としてIGBT(Insulated Gate Bipolar Transistor)やMOSFET(Metal Oxcide Semiconductor Field Effect Transistor)を搭載した半導体モジュールが適用されている。   In order to reduce loss, power converters represented by inverters that convert DC power into AC power and converters that convert AC power into DC power use IGBTs (Insulated Gate Bipolar Transistors) and MOSFETs (Metal Oxide Semiconductors) as switching elements. A semiconductor module equipped with a field effect transistor is applied.

スイッチング素子を構成する半導体チップはSi(Silicon)を中心に発展してきたが、さらなる損失の低減に向けて、近年ではSiC(Silicon Carbide)やGaN(Gallium Nitride)などのワイドバンドギャップ半導体の適用が検討されている。例えば、SiCはSiに比べて絶縁破壊電圧が高いため、半導体チップを薄くすることができ、導通損失を低減できる。さらに、SiCはSiに比べてスイッチング速度を高速化することができ、スイッチング損失を低減することで電力変換装置の小型化に寄与することができる。   The semiconductor chip constituting the switching element has been developed centering on Si (Silicon), but in recent years, wide band gap semiconductors such as SiC (Silicon Carbide) and GaN (Gallium Nitride) have been applied to further reduce the loss. It is being considered. For example, since SiC has a higher dielectric breakdown voltage than Si, the semiconductor chip can be made thinner and conduction loss can be reduced. Furthermore, SiC can increase the switching speed compared with Si, and can contribute to size reduction of a power converter by reducing switching loss.

また、鉄道や自動車などに搭載されたモータ駆動用の電力変換装置は、モータと電力変換装置を一体構成とした機電一体により、様々な利点がある。例えば、モータと電力変換装置を別々に備える鉄道車両の駆動装置において、従来の駆動装置では、電力変換装置の出力する電力がモータケーブルを介してモータに送電されている。ここで、鉄道用のモータケーブルは10mから20mと長いため、艤装の簡略化や低コスト化の弊害となっていた。これに対して機電一体はモータケーブルを最短にできるため、部品点数の削減による低コスト化や省メンテナンス性を実現できる。さらにはモータケーブルから放射される電磁ノイズを発生しないため、車両走行の安全性を確保するための信号機器へのノイズの影響が無くなる。   In addition, a power conversion device for driving a motor mounted on a railway or an automobile has various advantages due to the mechanical and electrical integration in which the motor and the power conversion device are integrated. For example, in a railway vehicle drive device that includes a motor and a power converter separately, in a conventional drive device, power output from the power converter is transmitted to the motor via a motor cable. Here, since the motor cable for railways is as long as 10 to 20 m, it has been an adverse effect of simplification of fitting and cost reduction. On the other hand, since the electromechanical integration can make the motor cable as short as possible, the cost can be reduced and the maintenance can be saved by reducing the number of parts. Furthermore, since electromagnetic noise radiated from the motor cable is not generated, the influence of noise on the signal device for ensuring the safety of vehicle traveling is eliminated.

一方、機電一体構成を実現するためにはモータと電力変換装置を小型化する必要があり、両者の冷却系を簡素化した上で冷却性能を向上することが課題となる。例えば、鉄道車両の駆動装置であるモータや電力変換装置は車両の走行風を用いて冷却する方法があるが、機電一体とした場合には高密度な実装となるため走行風を十分に得ることができず、駆動装置の焼損や故障の原因となる。   On the other hand, it is necessary to reduce the size of the motor and the power conversion device in order to realize an integrated electromechanical configuration, and it becomes an issue to improve the cooling performance after simplifying the cooling system of both. For example, a motor or power conversion device that is a driving device for a railway vehicle has a method of cooling by using the traveling wind of the vehicle. This can cause burnout and failure of the drive device.

本技術分野の背景技術として特開2008−271730号公報(特許文献1)がある。この特許文献1には、「電動機は密閉されたケースとケースに軸受けを介して回転自在に支持さされているとともに、ケースの外側に突出した端部を有する回転軸と、ケース内で回転軸に設けられたロータと、ケース内に設けられたステータとを有する電動機本体と、ケースの外方で回転軸の端部に取り付けられ、回転軸と一体に回転可能な冷却ファンと、冷却ファンを覆ってケースに取り付けられたファンカバーであって、冷却ファンに対向して設けられた誘導口とケースの外周側に位置した吐出口とを有し、誘導口から吸い込まれた空気を吐出口から吹き出しケースの外周に導くファンカバーと、冷却ファンの回転数に応じて吐出口の開口面積を変化させる風量調整機構とを備えている」及び「ファンカバーに分配して取り付けられた複数のインバータを備えている」と記載されている。
As a background art of this technical field, there is JP-A-2008-271730 (Patent Document 1). This Patent Document 1 states that “an electric motor is rotatably supported by a sealed case and a case via a bearing and has a rotating shaft having an end protruding outside the case, and a rotating shaft within the case. An electric motor main body having a rotor provided in the case, a stator provided in the case, a cooling fan attached to an end of the rotary shaft outside the case and rotatable integrally with the rotary shaft, and a cooling fan A fan cover that covers and is attached to the case, and has a guide port provided facing the cooling fan and a discharge port located on the outer peripheral side of the case, and air sucked from the guide port is discharged from the discharge port. It has a fan cover that leads to the outer periphery of the blowout case and an air volume adjustment mechanism that changes the opening area of the discharge port according to the number of rotations of the cooling fan. It is described as being provided with inverter ".

特開2008−271730号公報JP 2008-271730 A

上記のようにモータと電力変換装置を効率よく冷却する方法として、上記の特許文献1のように、密閉されたモータケースの外部でモータの回転軸に外扇ファンを設けて、モータの回転により外扇ファン回転させてモータケースの外周表面と電力変換装置に送風し、モータと電力変換装置を冷却する構成が提案されている。しかしながら、このような機電一体の駆動装置を鉄道車両や自動車や産業用等の大容量の用途に利用する場合、電力変換装置の冷却性能を更に向上させることが求められる。
本発明は、モータと電力変換装置を一体構成とした機電一体において、冷却性能の向上を目的とする。
As described above, as a method of efficiently cooling the motor and the power conversion device as described above, an external fan fan is provided on the rotating shaft of the motor outside the sealed motor case, and the motor is rotated. An arrangement has been proposed in which an external fan is rotated to blow air to the outer peripheral surface of the motor case and the power converter, thereby cooling the motor and the power converter. However, when such an electromechanically integrated drive device is used for large capacity applications such as railway vehicles, automobiles, and industrial use, it is required to further improve the cooling performance of the power conversion device.
An object of the present invention is to improve cooling performance in an electromechanical integration in which a motor and a power converter are integrated.

上記課題を解決するために、例えば特許請求の範囲に記載の構成を採用する。本願は上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、回転軸を支える軸受けを冷却する冷却風を発生させるファンを備え、車輪を駆動するモータと、複数のスイッチング素子をスイッチング動作させることにより直流電力から変換した交流電力をモータに供給する電力変換装置と、を有する車両用駆動装置において、スイッチング素子を内部に備えた半導体モジュールから発生した熱を放熱する放熱器の一部を軸受けよりも風上側の吸気流路上に配置し、放熱器の他の一部を軸受けよりも風下側の排気流路上に配置することを特徴とする車両用駆動装置である。
In order to solve the above problems, for example, the configuration described in the claims is adopted. The present application includes a plurality of means for solving the above-described problems. For example, a motor that generates a cooling air that cools a bearing that supports a rotating shaft, a motor that drives a wheel, and a plurality of switching elements. And a power converter for supplying AC power converted from DC power to a motor by switching operation of the vehicle, and a radiator for radiating heat generated from a semiconductor module having a switching element therein A vehicle drive device characterized in that a part of the radiator is disposed on the intake passage on the windward side of the bearing and the other part of the radiator is disposed on the exhaust passage on the leeward side of the bearing.

本発明によると、モータと電力変換装置を一体化した機電一体構成の冷却性能を向上させることができる。
ADVANTAGE OF THE INVENTION According to this invention, the cooling performance of the electromechanical integrated structure which integrated the motor and the power converter device can be improved.

本発明の実施例1に記載の適用例である鉄道車両の駆動装置の概略図である。It is the schematic of the drive device of the rail vehicle which is an application example described in Example 1 of this invention. 本発明の実施例1に記載の適用例である鉄道車両の駆動装置の上面図である。It is a top view of the drive device of the railway vehicle which is an application example described in Example 1 of the present invention. 本発明の実施例1に記載の駆動装置の回路図である。It is a circuit diagram of the drive device described in Example 1 of the present invention. 本発明の実施例1に記載の駆動装置の正面断面図である。It is front sectional drawing of the drive device as described in Example 1 of this invention. 本発明の実施例1に記載の駆動装置の側面図である。It is a side view of the drive device described in Example 1 of the present invention. 本発明の実施例2に記載の駆動装置の正面断面図である。It is front sectional drawing of the drive device as described in Example 2 of this invention. 本発明の実施例3に記載の駆動装置の正面断面図である。It is front sectional drawing of the drive device as described in Example 3 of this invention. 本発明の実施例4に記載の駆動装置の回路図の一例である。It is an example of the circuit diagram of the drive device as described in Example 4 of this invention. 本発明の実施例4に記載の駆動装置の回路図の他の一例である。It is another example of the circuit diagram of the drive device as described in Example 4 of this invention. 本発明の実施例4に記載の駆動装置の側面図である。It is a side view of the drive device described in Example 4 of the present invention.

以下、図面を用いて実施例を説明する。なお、図面及び実施例ではスイッチング素子としてMOSFETを取り上げるが、本発明はIGBTにも適用可能である。   Embodiments will be described below with reference to the drawings. In the drawings and examples, MOSFETs are taken up as switching elements, but the present invention can also be applied to IGBTs.

図1は、本発明を鉄道車両に適用した場合の鉄道車両の駆動装置の概略図である。電力は電力源である架線1又は導電レールから集電装置7を介して車両8の駆動装置に供給される。供給された電力は電力変換装置を介してモータ5で消費され、モータにより車輪3が駆動されることで車体8が前進または後進する。なお、電気的なグランドとして、電力変換装置の負電圧側は車輪3を介してレール2に接続されている。ここで、架線1の電圧は直流および交流のどちらでも良いが、以下では一例として直流1500Vの架線1を電源とした実施例を説明する。また、モータ5は台車4に搭載されており、台車4は車体8を支えている。   FIG. 1 is a schematic diagram of a railway vehicle drive device when the present invention is applied to a railway vehicle. Electric power is supplied to the drive device of the vehicle 8 through the current collector 7 from the overhead line 1 or the conductive rail as a power source. The supplied electric power is consumed by the motor 5 via the power converter, and the vehicle body 8 moves forward or backward by driving the wheels 3 by the motor. As an electrical ground, the negative voltage side of the power converter is connected to the rail 2 via the wheel 3. Here, although the voltage of the overhead line 1 may be either DC or AC, an example in which the overhead line 1 of 1500 V DC is used as a power source will be described below as an example. Further, the motor 5 is mounted on the carriage 4, and the carriage 4 supports the vehicle body 8.

図2は本発明の実施例1に示す駆動装置の上面図である。台車4に駆動装置が搭載されており、モータ5は電力変換装置6から供給された電力を元に車輪3を駆動し、車体8を前進または更新する。ここで,機電一体構成はモータ5の直近に電力変換装置6が配置されているため、モータケーブルを最短にでき、艤装の簡略化によって低コスト化を実現できる。   FIG. 2 is a top view of the driving apparatus shown in Embodiment 1 of the present invention. A drive device is mounted on the carriage 4, and the motor 5 drives the wheel 3 based on the electric power supplied from the power conversion device 6 to advance or update the vehicle body 8. Here, since the power conversion device 6 is disposed in the immediate vicinity of the motor 5 in the electromechanical integrated configuration, the motor cable can be shortened, and the cost can be reduced by simplifying the fitting.

図3は本発明の実施例1に示す駆動装置の回路図である。U相、V相、W相の三相を備える電力変換装置6は、架線1等の直流電源101を平滑するコンデンサ102a〜102cと、スイッチング素子Q1〜Q6を備え、スイッチング素子Q1とQ2は直列接続されてU相を、Q3とQ4は直列接続されてV相、Q5とQ6は直列接続されてW相をそれぞれ構成する。各スイッチング素子Q1〜Q6には、通流方向が逆方向となる向きにダイオードD1〜D6が並列接続される。ここで、スイッチング素子Q1〜Q6がIGBTである場合にはダイオードD1〜D6を接続する必要があるが、スイッチング素子Q1〜Q6がMOSFETである場合には、ダイオードD1〜D6を接続せずにMOSFETの寄生ダイオードを利用することができる。また、各相を構成するスイッチング素子Q1〜Q6の直列接続点は、モータ5と接続されて、モータに交流電力を供給する。   FIG. 3 is a circuit diagram of the driving apparatus shown in Embodiment 1 of the present invention. The power conversion device 6 having three phases of U phase, V phase, and W phase includes capacitors 102a to 102c that smooth the DC power source 101 such as the overhead wire 1 and switching elements Q1 to Q6, and the switching elements Q1 and Q2 are in series. Connected to form a U phase, Q3 and Q4 are connected in series to form a V phase, and Q5 and Q6 are connected in series to form a W phase. Diodes D1 to D6 are connected in parallel to the switching elements Q1 to Q6 in a direction in which the flow direction is opposite. Here, when the switching elements Q1 to Q6 are IGBTs, it is necessary to connect the diodes D1 to D6. However, when the switching elements Q1 to Q6 are MOSFETs, the MOSFETs are not connected without connecting the diodes D1 to D6. The parasitic diode can be used. The series connection points of the switching elements Q1 to Q6 constituting each phase are connected to the motor 5 and supply AC power to the motor.

また、電力変換装置6の上下アームのスイッチング素子、例えばU相のスイッチング素子Q1、Q2が同一のパッケージに格納された2in1の半導体モジュールを使用した場合、電力変換装置6は半導体モジュール103〜105で構成することができる。なお、キャパシタ102a〜102cは電解コンデンサ、フィルムキャパシタのどちらでもよく、複数のキャパシタが一つのパッケージに格納されていても良い。スイッチング素子Q1〜Q6の各ゲート端子にゲート駆動回路107a〜107cからオン信号およびオフ信号に応じたゲート電圧が印加されることで、スイッチング素子Q1〜Q6はスイッチング動作する。オン信号およびオフ信号は例えばPWM(Pulse Width Modulation)によって制御される。なお、Q1〜Q6は、それぞれ一つのスイッチング素子で構成されても良いが、並列接続された複数のスイッチング素子で構成されてもよい。   Further, when a 2-in-1 semiconductor module in which switching elements of the upper and lower arms of the power converter 6, for example, U-phase switching elements Q 1 and Q 2 are stored in the same package, is used, the power converter 6 is a semiconductor module 103 to 105. Can be configured. The capacitors 102a to 102c may be either electrolytic capacitors or film capacitors, and a plurality of capacitors may be stored in one package. The switching elements Q1 to Q6 perform a switching operation by applying gate voltages corresponding to the ON signal and the OFF signal from the gate drive circuits 107a to 107c to the gate terminals of the switching elements Q1 to Q6. The on signal and the off signal are controlled by, for example, PWM (Pulse Width Modulation). In addition, although Q1-Q6 may each be comprised by one switching element, you may be comprised by the some switching element connected in parallel.

図4は本発明の実施例1に記載の駆動装置の正面断面図である。モータ5はモータフレーム205の中に密閉室を備え、また回転軸204と回転軸204を支える軸受け203を備える。この回転軸204の周囲にはロータ210が形成されており、ロータ210の外周部にはエアギャップを介してステータ211が設けられている。ここで、ステータ211にはステータコイル202が設けられており、ステータコイル202に電流を流すことで磁界を発生し、ロータ210に回転する力が生じる。また、モータは誘導モータもしくは永久磁石モータのどちらでもよく、永久磁石モータの場合にはロータ210に永久磁石が用いられる。   FIG. 4 is a front sectional view of the drive device according to the first embodiment of the present invention. The motor 5 includes a sealed chamber in a motor frame 205, and includes a rotating shaft 204 and a bearing 203 that supports the rotating shaft 204. A rotor 210 is formed around the rotating shaft 204, and a stator 211 is provided on the outer periphery of the rotor 210 via an air gap. Here, the stator 211 is provided with a stator coil 202, and when a current flows through the stator coil 202, a magnetic field is generated, and a rotating force is generated in the rotor 210. The motor may be either an induction motor or a permanent magnet motor. In the case of a permanent magnet motor, a permanent magnet is used for the rotor 210.

ロータ210とステータ211はそれぞれ密閉室内に設けられ、ロータ210とステータ211には渦電流に起因する損失が発生し、ロータ210とステータ211は熱を帯びるため、冷却する必要がある。そこで、ロータ210には通気用のロータダクト201が設けられており、密閉室内に設けられ回転軸204に固定されて回転軸204と共に回転するファン206によって空気がモータの密閉室内を循環し、フレームダクト212でモータフレーム205を介して外気と熱交換する。   The rotor 210 and the stator 211 are respectively provided in sealed chambers, and losses due to eddy currents are generated in the rotor 210 and the stator 211. Since the rotor 210 and the stator 211 are heated, it is necessary to cool them. Therefore, the rotor 210 is provided with a rotor duct 201 for ventilation. Air is circulated in the sealed chamber of the motor by a fan 206 which is provided in the sealed chamber and is fixed to the rotating shaft 204 and rotates together with the rotating shaft 204. In 212, heat is exchanged with the outside air via the motor frame 205.

また、回転軸204が回転することで摩擦熱により軸受け203が発熱する。この軸受け203はモータ5のギアや駆動対象である車輪が接続される駆動側とその反対面の反駆動側にそれぞれ設けられ、駆動側と反駆動側にそれぞれ設けられた補助ファン209を用いて冷却される。図4では左側が駆動側、右側が反駆動側となっている。補助ファン209はモータケース205の駆動側及び反駆動側にそれぞれ設けられた吸気孔213から外気をそれぞれ吸気して軸受け203を冷却し、駆動側及び反駆動側に設けられた排気孔214から排気される。ここで、吸気孔213と排気孔214は同一面に設けられている。また、モータ機内に粉塵が入り込むことを防ぐため、吸気孔213と排気孔214には通気性のシールが設けられている。ここで、ファン206および補助ファン209は吸気した冷気の方向を変えるため、ラジアルファンやシロッコファンを用いる。   Further, as the rotating shaft 204 rotates, the bearing 203 generates heat due to frictional heat. The bearings 203 are provided on the driving side to which the gear of the motor 5 and the wheels to be driven are connected and on the opposite side of the driving side, respectively, and by using auxiliary fans 209 provided on the driving side and the non-driving side, respectively. To be cooled. In FIG. 4, the left side is the driving side and the right side is the non-driving side. The auxiliary fan 209 sucks outside air from the intake holes 213 provided on the drive side and the non-drive side of the motor case 205 to cool the bearing 203, and exhausts from the exhaust holes 214 provided on the drive side and the non-drive side. Is done. Here, the intake hole 213 and the exhaust hole 214 are provided on the same surface. Further, in order to prevent dust from entering the motor machine, the air intake holes 213 and the exhaust holes 214 are provided with air-permeable seals. Here, a radial fan or a sirocco fan is used for the fan 206 and the auxiliary fan 209 in order to change the direction of the cool air taken in.

モータ5を駆動する電力変換装置6は半導体モジュールがスイッチング動作することで電力を直流から交流に変換している。スイッチング時に半導体モジュールにはスイッチング損失や導通損失が発生するため、半導体モジュールと固定される冷却ブロックと、冷却ブロックの熱を大気に放熱する冷却フィンを備える放熱器207で冷却する必要がある。なお、スイッチング素子Q1〜Q6やダイオードD1〜D6にSiCなどのワイドバンドギャップ半導体を用いることで、半導体モジュールの損失を低減することができ、冷却器の小型化を実現することができる。   The power converter 6 that drives the motor 5 converts power from direct current to alternating current by the semiconductor module performing a switching operation. Since switching loss and conduction loss occur in the semiconductor module at the time of switching, it is necessary to cool with a radiator 207 including a cooling block fixed to the semiconductor module and a cooling fin for radiating the heat of the cooling block to the atmosphere. In addition, the loss of a semiconductor module can be reduced and size reduction of a cooler can be implement | achieved by using wide band gap semiconductors, such as SiC, for switching element Q1-Q6 and diode D1-D6.

本実施形態では、モータ5と電力変換装置6の冷却系を簡素化し冷却性能を向上するために、冷却風をモータケース内に取り込む吸気を反駆動側から行い、軸受けから熱を奪った後の冷却風をモータケースから反駆動側へ排出し、放熱器207の冷却フィンをモータケースの反駆動側の吸気と排気の両方の流路状に配置し、電力変換装置6を冷却することを特徴とする。モータ5の反駆動側の軸受け203を冷却する流路上であって軸受け203の上流側(吸気側)及び上流側(排気側)に放熱器207の冷却フィンを配置することで、モータ5と共に補助ファン209が回転するときにモータ5の吸気と排気を用いて電力変換装置6を冷却できるため、電力変換装置6は冷却性能を向上させることができる。   In the present embodiment, in order to simplify the cooling system of the motor 5 and the power converter 6 and improve the cooling performance, the intake air for taking cooling air into the motor case is performed from the non-driving side and the heat is taken from the bearing. The cooling air is discharged from the motor case to the non-driving side, and the cooling fins of the radiator 207 are arranged in both the intake and exhaust flow paths on the non-driving side of the motor case to cool the power converter 6. And The cooling fins of the radiator 207 are disposed on the upstream side (intake side) and upstream side (exhaust side) of the bearing 203 on the flow path for cooling the bearing 203 on the counter drive side of the motor 5, thereby assisting with the motor 5. Since the power converter 6 can be cooled using the intake and exhaust of the motor 5 when the fan 209 rotates, the power converter 6 can improve the cooling performance.

本発明は、半導体モジュールの一方側に冷却ブロックと冷却フィンを備え、冷却フィンの一部分を吸気の流路上に配置し、冷却フィンの他の一部分を排気の流路上に配置して、吸気と排気の双方を利用して電力変換装置6を冷却することも可能であるが、図4に示すように半導体モジュールの両面に冷却フィンを設けた両面冷却半導体モジュールを利用する場合、吸気を用いて半導体モジュールの片面を冷却し、排気を用いて半導体モジュールの反対の面を冷却することで、吸気のみや排気のみによる半導体モジュールの一方向の冷却に比べて電力変換装置6の冷却性能を向上することができる。ここで、さらに冷却性能を高めるために、吸気流路と排気流路の間に配置されて吸気と排気の流路を隔てるガイド208と、排気流路の側面を覆う排気流路カバー215と、吸気流路の側面を覆う吸気流路カバー216を備えている。ガイド208により吸気と排気が混ざって軸受け203を冷やす冷却風の流量が低下することを防止し、排気流路カバー215と吸気流路カバー216を備えることにより各流路から冷却風が冷却フィンの間から外側に漏れて冷却性能が低下することを防止する。また、図4で示した実施形態では、半導体モジュールよりも内周側(回転軸204側)に吸気孔213を、外周側に排気孔214を設ける構成としているが、吸気孔213と排気孔214を設ける場所は逆でもよく、また冷却風の流れる方向を逆方向としても良い。   The present invention includes a cooling block and a cooling fin on one side of a semiconductor module, and a part of the cooling fin is disposed on the intake flow path, and the other part of the cooling fin is disposed on the exhaust flow path. It is also possible to cool the power conversion device 6 using both of them, but when using a double-sided cooling semiconductor module in which cooling fins are provided on both sides of the semiconductor module as shown in FIG. By cooling one side of the module and cooling the opposite surface of the semiconductor module using exhaust, the cooling performance of the power conversion device 6 is improved as compared to the one-way cooling of the semiconductor module by only intake or exhaust. Can do. Here, in order to further improve the cooling performance, a guide 208 that is disposed between the intake flow path and the exhaust flow path and separates the intake and exhaust flow paths, an exhaust flow path cover 215 that covers a side surface of the exhaust flow path, An intake passage cover 216 is provided to cover the side surface of the intake passage. The guide 208 prevents a mixture of intake air and exhaust air from cooling and reduces the flow rate of the cooling air that cools the bearing 203. By providing the exhaust air channel cover 215 and the intake air flow channel cover 216, the cooling air flows from each flow channel to the cooling fins. Prevents cooling performance from leaking from the outside to the outside. In the embodiment shown in FIG. 4, the intake hole 213 is provided on the inner peripheral side (rotation shaft 204 side) and the exhaust hole 214 is provided on the outer peripheral side with respect to the semiconductor module, but the intake hole 213 and the exhaust hole 214 are provided. May be reversed, and the direction in which the cooling air flows may be reversed.

図5は本発明の実施例1に記載の駆動装置における図3のA方向から見た側面図である。図5では一例として、電力変換装置6が図3に示す三相電力変換装置の場合を説明する。U相、V相、W相はそれぞれキャパシタ102a〜102cと半導体モジュール103〜105で構成されている。また各相において、キャパシタ102a〜102cと半導体モジュール103〜105は主回路バスバー106a〜106cを用いて電気的かつ構造的に接続される。   FIG. 5 is a side view of the driving apparatus according to the first embodiment of the present invention as viewed from the direction A in FIG. In FIG. 5, the case where the power converter device 6 is the three-phase power converter device shown in FIG. 3 will be described as an example. The U phase, V phase, and W phase are composed of capacitors 102a to 102c and semiconductor modules 103 to 105, respectively. In each phase, capacitors 102a-102c and semiconductor modules 103-105 are electrically and structurally connected using main circuit bus bars 106a-106c.

モータケース205の吸気孔213と排気孔214の流路上に各半導体モジュール103〜105の放熱器の冷却フィンを配置し、キャパシタ102a〜102cやゲート駆動回路107a〜107cは吸気孔213と排気孔214の無いスペースに実装される。誘導モータを用いた鉄道車両の駆動システムでは、一般的に電力変換装置1台に対して複数台、例えば4台の誘導モータが接続され、1台の電力変換装置の交流出力電力により4台のモータが駆動される。一方、モータと電力変換装置を一体構成とした機電一体の場合には、電力変換装置1台に対してモータ1台が接続され、1台の電力変換装置の交流出力電力により1台のモータが駆動される。すなわち、機電一体とした電力変換装置は複数台のモータを駆動する電力変換装置と比較して、半導体モジュール103〜105の電流容量を小さくできるため小型化できる。同様の理由でキャパシタ102a〜102cは複数台のモータを駆動する電力変換装置よりも小さくなるため、電力変換装置を小型化でき、本発明のモータ側面に電力変換装置を実装することが可能である。   Cooling fins of the radiators of the semiconductor modules 103 to 105 are arranged on the flow path between the intake hole 213 and the exhaust hole 214 of the motor case 205, and the capacitors 102 a to 102 c and the gate drive circuits 107 a to 107 c have the intake hole 213 and the exhaust hole 214. Mounted in a space without In a railway vehicle drive system using an induction motor, generally, a plurality of, for example, four induction motors are connected to one power converter, and four inverter motors are connected by the AC output power of one power converter. The motor is driven. On the other hand, in the case of mechanical and electrical integration in which the motor and the power converter are integrated, one motor is connected to one power converter, and one motor is connected by the AC output power of one power converter. Driven. That is, the power conversion device integrated with electromechanical power can be downsized because the current capacity of the semiconductor modules 103 to 105 can be reduced as compared with the power conversion device that drives a plurality of motors. For the same reason, since the capacitors 102a to 102c are smaller than the power converter that drives a plurality of motors, the power converter can be reduced in size, and the power converter can be mounted on the side of the motor of the present invention. .

このようにして本発明の実施例1は、モータ5の吸気と排気の双方を用いて電力変換装置6を冷却することによって冷却性能を高めることができる。または、より小型の冷却器により同等の冷却性能を確保して、電力変換装置6を小型化することができる。
In this way, the first embodiment of the present invention can enhance the cooling performance by cooling the power conversion device 6 using both the intake and exhaust of the motor 5. Alternatively, the power converter 6 can be reduced in size by securing the same cooling performance with a smaller cooler.

図6は本発明における実施例2の駆動装置の正面断面図である。電力変換装置6を構成する半導体モジュール103の上面はカバー215に構造的に接続され、下面は放熱器207の受熱ブロックに接続される。放熱器207の冷却フィンは実施例1と同様に、吸気孔213近傍の吸気流路上および排気孔214近傍の排気流路上に配置される。また、吸気流路と排気流路の間には吸気と排気の流路を隔てるガイド208が配置されて、吸気と排気が混ざって軸受け203を冷やす冷却風の流量が低下することを防止する。   FIG. 6 is a front sectional view of the driving apparatus according to the second embodiment of the present invention. The upper surface of the semiconductor module 103 constituting the power conversion device 6 is structurally connected to the cover 215, and the lower surface is connected to the heat receiving block of the radiator 207. As in the first embodiment, the cooling fins of the radiator 207 are arranged on the intake passage near the intake hole 213 and on the exhaust passage near the exhaust hole 214. In addition, a guide 208 that separates the intake and exhaust flow paths is disposed between the intake flow path and the exhaust flow path to prevent a reduction in the flow rate of cooling air that cools the bearing 203 due to a mixture of intake and exhaust.

半導体モジュール103に接続された放熱器207は、半導体モジュール103から遠い部分の冷却フィンがモータ5の吸気を用いて冷却され、半導体モジュール103に近い部分の冷却フィンがモータ5の排気を用いて冷却される。すなわち、実施例1と同様に、吸気と排気の双方を用いることで、電力変換装置の冷却性能を向上することができる。また、片面冷却の構成であるため、汎用の半導体モジュールを使用することがで、低コストに電力変換装置を構成できる。それ以外の構成は実施例1と同様である。また、本実施例2では、半導体モジュールを回転軸204から遠い外周側に配置し、内周側に放熱器207を構成した例を示した。しかし、内周側に半導体モジュールを配置し、外周側に冷却器207を配置する構造としても良い。この場合、冷却フィンの半導体モジュールに近い部分が吸気流路上に配置されるため、電力変換装置の冷却性能を向上させることができる。
In the radiator 207 connected to the semiconductor module 103, the cooling fins in the part far from the semiconductor module 103 are cooled using the intake air of the motor 5, and the cooling fins in the part near the semiconductor module 103 are cooled using the exhaust of the motor 5. Is done. That is, similarly to the first embodiment, the cooling performance of the power conversion device can be improved by using both intake and exhaust. Moreover, since it is the structure of single-sided cooling, a power converter device can be comprised at low cost by using a general purpose semiconductor module. Other configurations are the same as those in the first embodiment. Further, in the second embodiment, an example in which the semiconductor module is arranged on the outer peripheral side far from the rotating shaft 204 and the radiator 207 is configured on the inner peripheral side is shown. However, the semiconductor module may be disposed on the inner peripheral side and the cooler 207 may be disposed on the outer peripheral side. In this case, since the portion of the cooling fin close to the semiconductor module is disposed on the intake flow path, the cooling performance of the power conversion device can be improved.

図7は本発明における実施例3の駆動装置の正面断面図である。電力変換装置6を構成する半導体モジュール103はカバー215の外側に配置され、半導体モジュール103の上面は外気と接しており、下面はカバー215と一体化した放熱器207に接続されている。放熱器207は実施例1と同様に、モータ5の吸気孔213近傍の吸気流路上および排気孔214近傍の排気流路上に配置される。また、吸気流路と排気流路の間には吸気と排気の流路を隔てるガイド208が配置されて、吸気と排気が混ざって軸受け203を冷やす冷却風の流量が低下することを防止する。   FIG. 7 is a front sectional view of the driving apparatus according to the third embodiment of the present invention. The semiconductor module 103 constituting the power conversion device 6 is disposed outside the cover 215, the upper surface of the semiconductor module 103 is in contact with the outside air, and the lower surface is connected to a radiator 207 integrated with the cover 215. Similarly to the first embodiment, the radiator 207 is disposed on the intake passage near the intake hole 213 of the motor 5 and on the exhaust passage near the exhaust hole 214. In addition, a guide 208 that separates the intake and exhaust flow paths is disposed between the intake flow path and the exhaust flow path to prevent a reduction in the flow rate of cooling air that cools the bearing 203 due to a mixture of intake and exhaust.

半導体モジュール103の放熱器207は、モータ5の吸気を用いて半導体モジュール103から遠いガイド208の内周側の部分が冷却され、モータ5の排気を用いて半導体モジュール103に近いガイド208の外周側の部分が冷却される。すなわち、実施例2と同様に、モータ5の吸気と排気の双方を用いることで、電力変換装置の冷却性能を高めることができ、低コストに電力変換装置を構成できるまた、片面冷却の構成であるため、汎用の半導体モジュールを使用することができ、低コストに電力変換装置を構成できる。それ以外の構成は実施例1と同様である。
The radiator 207 of the semiconductor module 103 cools the inner peripheral portion of the guide 208 far from the semiconductor module 103 using the intake air of the motor 5, and uses the exhaust of the motor 5 to outer peripheral side of the guide 208 close to the semiconductor module 103. The part of is cooled. That is, as in the second embodiment, by using both the intake and exhaust of the motor 5, the cooling performance of the power conversion device can be improved, and the power conversion device can be configured at a low cost. Therefore, a general-purpose semiconductor module can be used, and a power conversion device can be configured at low cost. Other configurations are the same as those in the first embodiment.

図8は本発明における実施例4の駆動装置の回路図である。本実施例では、直列接続された2つのスイッチング素子、及び各スイッチング素子に逆並列に接続されたダイオード素子が同一のパッケージに格納された2in1の半導体モジュールを複数個使用して電力変換装置が構成されており、複数の半導体モジュールが並列接続されて1相分の上下アームが構成される。U相を例に挙げると、半導体モジュール103a、103bが互いに並列接続されてU相を構成している。なお、並列接続された二つの半導体モジュールは共通の放熱器に接続してもよい。ここで、並列接続されたスイッチング素子Q1aとQ1bは、二つのスイッチング素子でU相の上アーム素子を構成するため、ゲート駆動回路107aから与えられる共通の信号により制御されて同一のスイッチング動作を行う。また同様に、並列接続されたスイッチング素子Q2aとQ2bは、二つのスイッチング素子でU相の下アーム素子を構成するため、ゲート駆動回路107aから与えられる共通の信号により制御されて同一のスイッチング動作を行う。このように、複数のスイッチング素子を並列接続して1相分の上又は下側アーム素子を構成することにより、電力変換装置の許容電流を高めて、電流の大容量化が可能となる。例えば、図8においては600A定格の半導体モジュールを二つ並列接続することで1200A定格の電力変換装置6を構成できる。   FIG. 8 is a circuit diagram of a driving apparatus according to the fourth embodiment of the present invention. In this embodiment, the power conversion apparatus is configured by using a plurality of 2-in-1 semiconductor modules in which two switching elements connected in series and diode elements connected in antiparallel to each switching element are stored in the same package. The upper and lower arms for one phase are configured by connecting a plurality of semiconductor modules in parallel. Taking the U phase as an example, the semiconductor modules 103a and 103b are connected in parallel to each other to form the U phase. Note that the two semiconductor modules connected in parallel may be connected to a common radiator. Here, the switching elements Q1a and Q1b connected in parallel constitute the U-phase upper arm element by the two switching elements, and thus are controlled by a common signal supplied from the gate drive circuit 107a to perform the same switching operation. . Similarly, since the switching elements Q2a and Q2b connected in parallel form a U-phase lower arm element by two switching elements, they are controlled by a common signal supplied from the gate drive circuit 107a and perform the same switching operation. Do. In this way, by connecting a plurality of switching elements in parallel to form an upper or lower arm element for one phase, the allowable current of the power conversion device can be increased and the current can be increased in capacity. For example, in FIG. 8, the 1200 A rated power conversion device 6 can be configured by connecting two 600 A rated semiconductor modules in parallel.

図9は実施例4の駆動装置における他の回路構成例を示す回路図である。本回路構成においても図8と同様に、直列接続された2つのスイッチング素子、及び各スイッチング素子に逆並列に接続されたダイオード素子が同一のパッケージに格納された2in1の半導体モジュールを複数個使用して電力変換装置が構成されている。本実施例では実施例4と異なり、二つの半導体モジュールが直列接続されて1相分の上下アームを構成している。U相を例に挙げると、半導体モジュール103a、103bが互いに直列接続されてU相を構成し、半導体モジュール103aと半導体モジュール103bの接続点がU相の交流出力となる。ここで、直列接続されたスイッチング素子Q1aとQ1bは、二つのスイッチング素子でU相の上アーム素子を構成するため、ゲート駆動回路107aから与えられる共通の信号により制御されて同一のスイッチング動作を行う。また同様に、直列接続されたスイッチング素子Q2aとQ2bは、二つのスイッチング素子でU相の下アーム素子を構成するため、ゲート駆動回路107aから与えられる共通の信号により制御されて同一のスイッチング動作を行う。このように、複数のスイッチング素子を直列接続して1相分の上又は下側アーム素子を構成することにより、電力変換装置の許容電圧を高めて、電圧の大容量化が可能となる。例えば、直流1500V架線対応の鉄道車両の駆動装置を構成する場合には、半導体モジュールは1アームで3.3kVの耐圧が必要となるが、図9に示すように半導体モジュールを直列接続することによって、1.7kV耐圧の2in1の素子を使用することができる。なお、半導体モジュールの並列数および直列数は二つのみならず、三つ以上でよい。
FIG. 9 is a circuit diagram illustrating another circuit configuration example of the driving apparatus according to the fourth embodiment. As in FIG. 8, this circuit configuration uses a plurality of 2-in-1 semiconductor modules in which two switching elements connected in series and diode elements connected in antiparallel to each switching element are stored in the same package. Thus, a power conversion device is configured. In this embodiment, unlike the fourth embodiment, two semiconductor modules are connected in series to form an upper and lower arm for one phase. Taking the U phase as an example, the semiconductor modules 103a and 103b are connected in series to form the U phase, and the connection point between the semiconductor module 103a and the semiconductor module 103b is the U-phase AC output. Here, since the switching elements Q1a and Q1b connected in series constitute the U-phase upper arm element by two switching elements, they are controlled by a common signal supplied from the gate drive circuit 107a and perform the same switching operation. . Similarly, since the switching elements Q2a and Q2b connected in series constitute a U-phase lower arm element by two switching elements, the same switching operation is controlled by a common signal supplied from the gate drive circuit 107a. Do. In this way, by connecting a plurality of switching elements in series to form an upper or lower arm element for one phase, the allowable voltage of the power conversion device can be increased and the voltage can be increased. For example, in the case of configuring a railway vehicle drive device compatible with a DC 1500V overhead line, a semiconductor module requires a withstand voltage of 3.3 kV with one arm, but by connecting the semiconductor modules in series as shown in FIG. A 2 in 1 element with a 1.7 kV breakdown voltage can be used. Note that the number of parallel and serial numbers of the semiconductor modules is not limited to two but may be three or more.

図10は実施例4における駆動装置の側面図である。図10に示すように、図8や図9の回路図に示した半導体モジュール103a、103bを冷却する放熱器207を物理的に分離して配置する。この構成により、熱源となる半導体モジュールが分離して配置されるため、放熱作用を大きくし放熱器を小型化することができる。
FIG. 10 is a side view of the drive device according to the fourth embodiment. As shown in FIG. 10, the heat radiator 207 for cooling the semiconductor modules 103a and 103b shown in the circuit diagrams of FIGS. 8 and 9 is physically separated. With this configuration, since the semiconductor module serving as a heat source is disposed separately, the heat dissipation action can be increased and the heatsink can be downsized.

1 架線
2 レール
3 車輪
4 台車
5 モータ
6 電力変換装置
7 集電装置
8 車体
101 直流電源
102a〜102c キャパシタ
103〜105、103a〜105a、103b〜105b 半導体モジュール
106a〜106c 主回路バスバー
107a〜107c ゲート駆動回路
Q1〜Q6、Q1a〜Q6a、Q1b〜Q6b スイッチング素子
D1〜D6、D1a〜D6a、D1b〜D6b ダイオード
201 ロータダクト
202 ステータコイル
203 軸受け
204 回転軸
205 モータフレーム
206 ファン
207 放熱器
208 ガイド
209 補助ファン
210 ロータ
211 ステータ
212 フレームダクト
213 吸気孔
214 排気孔
215 排気流路カバー
216 吸気流路カバー
DESCRIPTION OF SYMBOLS 1 Overhead 2 Rail 3 Wheel 4 Car 5 Motor 6 Power converter 7 Current collector 8 Car body 101 DC power supply 102a-102c Capacitors 103-105, 103a-105a, 103b-105b Semiconductor module 106a-106c Main circuit bus bar 107a-107c Gate Driving circuits Q1 to Q6, Q1a to Q6a, Q1b to Q6b Switching elements D1 to D6, D1a to D6a, D1b to D6b Diode 201 Rotor duct 202 Stator coil 203 Bearing 204 Rotating shaft 205 Motor frame 206 Fan 207 Radiator 208 Guide 209 Auxiliary fan 210 Rotor 211 Stator 212 Frame duct 213 Intake hole 214 Exhaust hole 215 Exhaust passage cover 216 Intake passage cover

Claims (12)

回転軸を支える軸受けを冷却する冷却風を発生させるファンを備え、車輪を駆動するモータと、複数のスイッチング素子をスイッチング動作させることにより直流電力から変換した交流電力を前記モータに供給する電力変換装置と、を有する車両用駆動装置において、
前記スイッチング素子を内部に備えた半導体モジュールから発生した熱を放熱する放熱器の一部を前記軸受けよりも風上側の吸気流路上に配置し、前記放熱器の他の一部を前記軸受けよりも風下側の排気流路上に配置することを特徴とする車両用駆動装置。
A motor that generates a cooling air for cooling a bearing that supports a rotating shaft, drives a wheel, and a power converter that supplies AC power converted from DC power to the motor by switching a plurality of switching elements. In a vehicle drive device having:
A part of the radiator that dissipates heat generated from the semiconductor module provided with the switching element is disposed on the intake passage on the windward side of the bearing, and the other part of the radiator is disposed above the bearing. A vehicle drive device, wherein the vehicle drive device is disposed on an exhaust passage on a leeward side.
請求項1に記載の車両用駆動装置において、
前記半導体モジュール及び前記放熱器は、前記モータの一方の回転軸方向に配置され、
前記ファンにより発生される冷却風は、前記モータの一方の回転軸方向から吸気され、前記モータの一方の回転軸方向へ排気されることを特徴とする車両用駆動装置。
The vehicle drive device according to claim 1,
The semiconductor module and the radiator are arranged in one rotational axis direction of the motor,
Cooling air generated by the fan is sucked in from one rotating shaft direction of the motor and exhausted in one rotating shaft direction of the motor.
請求項2に記載の車両用駆動装置において、
前記モータの回転軸は、前記半導体モジュールが配置された回転軸方向とは、反対の回転軸方向で、駆動対象のギア又は車輪と接続されることを特徴とする車両用駆動装置。
The vehicle drive device according to claim 2,
The vehicle drive device according to claim 1, wherein a rotation shaft of the motor is connected to a gear or a wheel to be driven in a rotation shaft direction opposite to a rotation shaft direction in which the semiconductor module is disposed.
請求項1乃至請求項3のいずれかに記載の車両用駆動装置において、
前記半導体モジュールの一方側に備えられた前記放熱器は、前記冷却風の吸気流路上に配置され、
前記半導体モジュールの他方側に備えられた前記放熱器は、前記冷却風の排気流路上に配置されることを特徴とする車両用駆動装置。
The vehicle drive device according to any one of claims 1 to 3,
The radiator provided on one side of the semiconductor module is disposed on the intake passage of the cooling air,
The vehicle drive device, wherein the radiator provided on the other side of the semiconductor module is disposed on an exhaust passage of the cooling air.
請求項4に記載の車両用駆動装置において、
前記ファンは、前記回転軸と固定されており、前記回転軸が回転することにより回転内周側に配置された前記吸気流路から回転外周側に配置された排気流路へ流れる冷却風を発生させ、
前記半導体モジュールは、前記吸気流路と前記排気流路の間に配置されることを特徴とする車両用駆動装置。
The vehicle drive device according to claim 4,
The fan is fixed to the rotating shaft, and generates cooling air flowing from the intake passage disposed on the inner periphery of the rotation to the exhaust passage disposed on the outer periphery of the rotation as the rotating shaft rotates. Let
The vehicle drive device according to claim 1, wherein the semiconductor module is disposed between the intake passage and the exhaust passage.
請求項1乃至請求項3のいずれかに記載の車両用駆動装置において、
前記半導体モジュールは、前記吸気流路上及び前記排気流路上に配置された前記放熱器よりも回転外周側に配置されることを特徴とする車両用駆動装置。
The vehicle drive device according to any one of claims 1 to 3,
The vehicle drive device according to claim 1, wherein the semiconductor module is disposed on a rotating outer circumferential side with respect to the radiator disposed on the intake passage and the exhaust passage.
請求項1乃至請求項6のいずれかに記載の車両用駆動装置において、
前記半導体モジュールは、第一のスイッチング素子と、前記第一のスイッチング素子に逆並列接続された第一のダイオードと、第二のスイッチング素子と、前記第二のスイッチング素子に逆並列接続された第二のダイオードをそれぞれ備え、前記第一のスイッチング素子の低電位端子と前記第二のスイッチング素子の高電位端子が接続されて構成され、
前記第一のスイッチング素子の低電位端子と前記第二のスイッチング素子の高電位端子の接続点がモータに接続され、
前記半導体モジュールにより、3相変換回路の1相分を構成することを特徴とする車両用駆動装置。
The vehicle drive device according to any one of claims 1 to 6,
The semiconductor module includes: a first switching element; a first diode connected in antiparallel to the first switching element; a second switching element; and a second diode connected in antiparallel to the second switching element. Each comprising two diodes, the low potential terminal of the first switching element and the high potential terminal of the second switching element are connected,
A connection point between the low potential terminal of the first switching element and the high potential terminal of the second switching element is connected to the motor,
A vehicle drive device comprising the semiconductor module as one phase of a three-phase conversion circuit.
請求項7に記載の車両用駆動装置において、
1相分の変換回路は、並列接続された複数の前記半導体モジュールで構成されることを特徴とする車両用駆動装置。
The vehicle drive device according to claim 7,
The conversion circuit for one phase includes a plurality of the semiconductor modules connected in parallel.
請求項1乃至請求項6の何れか一項に記載の車両用駆動装置において、
前記半導体モジュールは、第一のスイッチング素子と、前記第一のスイッチング素子に逆並列接続された第一のダイオードと、第二のスイッチング素子と、前記第二のスイッチング素子に逆並列接続された第二のダイオードをそれぞれ備え、前記第一のスイッチング素子の低電位端子と前記第二のスイッチング素子の高電位端子が接続されて構成され、
前記半導体モジュールの前記第二のスイッチング素子の低電位端子と他の前記半導体モジュールの前記第一のスイッチング素子の高電位端子との接続点がモータに接続され、
互いに接続された前記2つの半導体モジュールにより、3相変換回路の1相分を構成することを特徴とする車両用駆動装置。
In the vehicle drive device according to any one of claims 1 to 6,
The semiconductor module includes: a first switching element; a first diode connected in antiparallel to the first switching element; a second switching element; and a second diode connected in antiparallel to the second switching element. Each comprising two diodes, the low potential terminal of the first switching element and the high potential terminal of the second switching element are connected,
A connection point between the low potential terminal of the second switching element of the semiconductor module and the high potential terminal of the first switching element of the other semiconductor module is connected to the motor,
A vehicle drive device, wherein the two semiconductor modules connected to each other constitute one phase of a three-phase conversion circuit.
請求項1乃至請求項4の何れか一項に記載の車両用駆動装置において、
前記スイッチング素子はIGBTもしくはMOSFETであることを特徴とする車両用駆動装置。
In the vehicle drive device according to any one of claims 1 to 4,
The vehicle drive device, wherein the switching element is an IGBT or a MOSFET.
請求項1乃至請求項10の何れか一項に記載の車両用駆動装置において、
前記スイッチング素子乃至前記ダイオードはシリコン又はシリコンより大きいバンドギャップを有する半導体材料を母材とすることを特徴とする車両用駆動装置。
In the vehicle drive device according to any one of claims 1 to 10,
The driving device for vehicles, wherein the switching element or the diode is made of silicon or a semiconductor material having a larger band gap than silicon.
請求項1乃至請求項11の何れか一項に記載の車両用駆動装置を台車に備え、集電装置を介して架線又は導電レールから電力を得て前記車両用駆動装置へ電力を供給することを特徴とする鉄道車両。   A vehicle drive device according to any one of claims 1 to 11 is provided in a carriage, and electric power is obtained from an overhead wire or a conductive rail via a current collector and supplied to the vehicle drive device. A railway vehicle characterized by
JP2015101490A 2015-05-19 2015-05-19 Vehicle drive device Active JP6457884B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015101490A JP6457884B2 (en) 2015-05-19 2015-05-19 Vehicle drive device
GB1607385.0A GB2540009B (en) 2015-05-19 2016-04-28 Vehicle drive unit with integrated power converter and guided air flow
CN201610302669.5A CN106169835B (en) 2015-05-19 2016-05-09 Vehicle driving apparatus
DE102016208555.7A DE102016208555A1 (en) 2015-05-19 2016-05-18 Drive assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015101490A JP6457884B2 (en) 2015-05-19 2015-05-19 Vehicle drive device

Publications (2)

Publication Number Publication Date
JP2016220357A JP2016220357A (en) 2016-12-22
JP6457884B2 true JP6457884B2 (en) 2019-01-23

Family

ID=56234024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015101490A Active JP6457884B2 (en) 2015-05-19 2015-05-19 Vehicle drive device

Country Status (4)

Country Link
JP (1) JP6457884B2 (en)
CN (1) CN106169835B (en)
DE (1) DE102016208555A1 (en)
GB (1) GB2540009B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018074897A (en) * 2016-11-02 2018-05-10 日本電産株式会社 Rotor assembly and method for manufacturing rotor assembly
FR3068565B1 (en) * 2017-06-28 2020-11-27 Valeo Equip Electr Moteur VOLTAGE CONVERTER, ELECTRICAL SYSTEM INCLUDING SUCH A VOLTAGE CONVERTER AND PROCESS FOR MANUFACTURING SUCH A VOLTAGE CONVERTER
FR3102317B1 (en) * 2019-10-17 2022-05-27 Valeo Equip Electr Moteur Electronic system for supplying an electric machine and electric assembly comprising such an electronic system

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8312963D0 (en) * 1983-05-11 1983-06-15 Lucas Ind Plc Alternators
JPH0795771A (en) * 1993-09-20 1995-04-07 Sansha Electric Mfg Co Ltd Cooling structure of power unit
JP4686228B2 (en) * 2005-03-23 2011-05-25 株式会社東芝 Fully enclosed fan motor
JP2007037280A (en) * 2005-07-27 2007-02-08 Mitsubishi Electric Corp Rotary electric machine with integrated inverter
DE202005020624U1 (en) * 2005-09-29 2006-06-14 Zf Friedrichshafen Ag Electrical drive unit for industrial truck, has steering and traction motors coaxially arranged relative to each another, where traction motor includes drive shaft connected with fan, which blows air along outer wall in radial direction
JP4089917B2 (en) * 2005-12-16 2008-05-28 三菱電機株式会社 Motor generator for vehicles
JP4706932B2 (en) * 2006-08-04 2011-06-22 株式会社デンソー Cooling air flow path structure for vehicle alternator
JP2008271730A (en) * 2007-04-23 2008-11-06 Toshiba Corp Electric motor
JP5306623B2 (en) * 2007-09-25 2013-10-02 東芝三菱電機産業システム株式会社 Electric motor device
EP2808982B1 (en) * 2012-01-25 2022-08-10 Mitsubishi Electric Corporation Rotating electric machine with integrated driving apparatus
JP5542977B1 (en) * 2013-01-24 2014-07-09 三菱電機株式会社 Rotating electric machine
CN203368235U (en) * 2013-07-25 2013-12-25 顾林男 Explosion-proof motor

Also Published As

Publication number Publication date
GB2540009B (en) 2018-03-07
CN106169835B (en) 2018-09-11
CN106169835A (en) 2016-11-30
JP2016220357A (en) 2016-12-22
GB201607385D0 (en) 2016-06-15
DE102016208555A1 (en) 2016-11-24
GB2540009A (en) 2017-01-04

Similar Documents

Publication Publication Date Title
JP4339832B2 (en) Rotating electric machine for vehicles
JP4279810B2 (en) Rotating electric machine for vehicles
JP2008179285A (en) Motor drive system for railway vehicle
JP4859950B2 (en) Rotating electric machine
JP2004159454A (en) Mechatronic driver
US20120126728A1 (en) Integrated electric machine and silicon carbide power converter assembly and method of making same
JP6457884B2 (en) Vehicle drive device
JP2013162690A (en) Vvvf inverter and vehicle controller
JP4015634B2 (en) Semiconductor device
JP5787226B2 (en) Rotating electric machine for vehicles
JP2012239256A (en) Electric power conversion apparatus
JP4128645B2 (en) Inverter for rotating electrical machine
US10396636B2 (en) Power converter and rotary electric machine
JP6827477B2 (en) Electric motor power system and electric vehicle
JP2016103887A (en) Power semiconductor module
JP5058545B2 (en) Electric vehicle control device
JP2007325341A (en) Motor and generator
KR20130131354A (en) Cooling system for an electric machine system including an alternating current (ac) electric machine having an integrated switch assembly
JP5798951B2 (en) Inverter device
KR20140056135A (en) Electric machine system including an alternating electric current (ac) electric machine having a switch module
JP2012239255A (en) Power conversion apparatus
JP2016068900A (en) Power conversion system and cooling system
CN110383654B (en) Main conversion circuit, power conversion device, and moving object
JP2022054164A (en) Main circuit system for railroad vehicle
TW202323082A (en) Power converter

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170111

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170113

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181221

R150 Certificate of patent or registration of utility model

Ref document number: 6457884

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150