JP6456224B2 - Non-contact displacement sensor device - Google Patents
Non-contact displacement sensor device Download PDFInfo
- Publication number
- JP6456224B2 JP6456224B2 JP2015078092A JP2015078092A JP6456224B2 JP 6456224 B2 JP6456224 B2 JP 6456224B2 JP 2015078092 A JP2015078092 A JP 2015078092A JP 2015078092 A JP2015078092 A JP 2015078092A JP 6456224 B2 JP6456224 B2 JP 6456224B2
- Authority
- JP
- Japan
- Prior art keywords
- signal
- distance
- transmission
- degrees
- position adjustment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000006073 displacement reaction Methods 0.000 title claims description 32
- 230000005540 biological transmission Effects 0.000 claims description 29
- 238000001514 detection method Methods 0.000 description 9
- 238000005259 measurement Methods 0.000 description 8
- 230000035945 sensitivity Effects 0.000 description 6
- 238000000034 method Methods 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 239000003990 capacitor Substances 0.000 description 3
- 230000001133 acceleration Effects 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 230000002612 cardiopulmonary effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 238000012806 monitoring device Methods 0.000 description 1
- 230000029058 respiratory gaseous exchange Effects 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
Images
Landscapes
- Radar Systems Or Details Thereof (AREA)
Description
本発明は非接触変位センサ装置に関し、特にマイクロ波ドップラー方式により非接触で微小な変位、変位量の小さい振動等を安定して検知、測定する装置に関する。 The present invention relates to a non-contact displacement sensor device, and more particularly to a device that stably detects and measures minute displacement, vibration with a small displacement amount, and the like by a microwave Doppler method.
従来から、変位や振動を計測するには、レーザー変位計を用いる方法、対象物の振動に基づく空気の振動を検出するマイクロホン、加速度センサ等をその対象物に取り付ける方法等、様々な方法がある。これらの方法は、その特性により一長一短があり、優劣が明確となるものではない。例えば、マイクロホンの場合は、媒体として空気を利用して音の振動を簡単に取り出せるが、空気を媒介にするため、センサと対象物の間が板等で遮蔽されると、減衰が大きくなる。加速度センサの場合は、対象物の振動を直接計測できるが、物理的に接触する必要があるため、薄い板の振動等の計測は難しい。 Conventionally, there are various methods for measuring displacement and vibration, such as a method using a laser displacement meter, a microphone for detecting vibration of air based on the vibration of an object, and a method of attaching an acceleration sensor to the object. . These methods have merits and demerits depending on their characteristics, and the superiority or inferiority is not clear. For example, in the case of a microphone, sound vibration can be easily extracted using air as a medium. However, since air is used as a medium, attenuation increases when the sensor and the object are shielded by a plate or the like. In the case of an acceleration sensor, the vibration of the object can be directly measured, but it is difficult to measure the vibration of a thin plate because it is necessary to make physical contact.
また、下記特許文献1の心肺機能監視装置においては、呼吸や心臓の鼓動を検出するためにマイクロ波ドップラー方式のセンサが使用されており、マイクロ波ドップラーセンサは、対象物が電波を反射する物であれば、非接触で変位、振動等を計測できるという利点がある。
In addition, in the cardiopulmonary function monitoring device of
ところで、上述のマイクロ波ドップラーセンサは、一般的には移動物体の速度に比例したドップラー周波数出力が得られるため、この出力をハイパスフィルタ又はバンドパスフィルタにより直流及び低周波成分をカットすることで、静止物体は検知することなく、移動物体のみを検知することができる。 By the way, since the above-mentioned microwave Doppler sensor generally obtains a Doppler frequency output proportional to the speed of the moving object, by cutting the direct current and low frequency components of this output by a high pass filter or a band pass filter, Only a moving object can be detected without detecting a stationary object.
また、マイクロ波ドップラーセンサの前方に静止物体があるとき、送信周波数と受信周波数は同じであり、その位相だけがセンサ(送受信部)と対象物との間の距離によって変わる。このとき、ドップラーセンサは、位相検波器として動作し、出力は直流電圧となり、その電位は送信波と受信波の位相差に応じた値となる。 Further, when there is a stationary object in front of the microwave Doppler sensor, the transmission frequency and the reception frequency are the same, and only the phase varies depending on the distance between the sensor (transmission / reception unit) and the object. At this time, the Doppler sensor operates as a phase detector, the output is a DC voltage, and the potential is a value corresponding to the phase difference between the transmission wave and the reception wave.
しかしながら、この場合の送信波と受信波の位相差は、ドップラーセンサから対象物までの距離によるものであるため、出力電圧は、センサから対象物までの距離が送信波の1/2波長変化する毎に周期的に変化することになる。従って、マイクロ波ドップラーセンサを微小変位センサや微小振動センサ等として用いる場合、センサと対象物との間の距離により変位量と出力電圧の変化量が異なるため、安定した検出ができないという問題がある。 However, since the phase difference between the transmitted wave and the received wave in this case depends on the distance from the Doppler sensor to the object, the output voltage varies by 1/2 wavelength of the transmitted wave from the sensor to the object. It will change periodically every time. Therefore, when a microwave Doppler sensor is used as a minute displacement sensor, minute vibration sensor, or the like, there is a problem in that stable detection cannot be performed because the amount of displacement and the amount of change in output voltage differ depending on the distance between the sensor and the object. .
本発明は上記問題点に鑑みてなされたものであり、その目的は、センサと測定対象物との間の距離を最適位置に調整可能となり、高い感度で直線性も良好な検知ができる非接触変位センサ装置を提供することにある。 The present invention has been made in view of the above-described problems, and the object thereof is a non-contact type in which the distance between the sensor and the measurement object can be adjusted to the optimum position, and the detection can be performed with high sensitivity and good linearity. The object is to provide a displacement sensor device.
上記目的を達成するために、請求項1の発明に係る非接触変位センサ装置は、マイクロ波を送受信する送受信部と、この送受信部からの受信信号に基づきドップラー周波数信号としての90度位相の異なる2つのI,Q信号を出力する直交ミキサとを備え、上記直交ミキサから出力された上記I,Q信号のいずれか一方の信号を、上記送受信部と対象物との距離を最適距離とするための位置調整信号として用い、上記I,Q信号の他方の信号を、対象物検知のための信号として用いることを特徴とする。
請求項2の発明は、上記送受信部又は対象物のいずれかを移動させ、上記送受信部と対象物との距離を調整する位置調整機構(手動でも機械的な自動でもよい)を設け、上記位置調整信号の電圧が最大又は最小となるように、上記位置調整機構により上記送受信部と対象物との距離を調整することを特徴とする。
請求項3の発明は、上記位置調整信号の直流成分を除去するDCカット素子を設け、このDCカット素子を通した位置調整信号の振幅が最小となるように、上記位置調整機構により上記送受信部と対象物との距離を調整し、振動を検知することを特徴とする。
In order to achieve the above object, a non-contact displacement sensor device according to a first aspect of the present invention includes a transmission / reception unit that transmits and receives microwaves and a 90-degree phase difference as a Doppler frequency signal based on a reception signal from the transmission and reception unit. A quadrature mixer that outputs two I and Q signals, and setting one of the I and Q signals output from the quadrature mixer as the optimum distance between the transceiver and the object The other signal of the I and Q signals is used as a signal for detecting an object.
The invention of
According to a third aspect of the present invention, a DC cut element for removing a direct current component of the position adjustment signal is provided, and the position adjustment mechanism causes the transmission / reception unit to minimize the amplitude of the position adjustment signal that has passed through the DC cut element. The distance between the object and the object is adjusted, and vibration is detected.
上記の構成によれば、直交ミキサからドップラー周波数情報を含むI信号とQ信号が出力され、このI,Q信号の、例えばQ信号が位置調整信号、I信号が対象物検知のための信号として用いられる。そして、位置調整信号であるQ信号を手動又は自動にてモニタし、この位置調整信号の電圧が最大又は最小となるように送受信部又は対象物を動かすことで、送受信部と対象物との距離が最適な距離に位置決めされる。この結果、対象物検知用信号であるI信号においては最大の電力が得られることになり、このI信号から測定対象物の変位や振動が感度よく計測されることになる。 According to the above configuration, an I signal and a Q signal including Doppler frequency information are output from the orthogonal mixer, and for example, the Q signal is a position adjustment signal and the I signal is a signal for detecting an object. Used. Then, the Q signal that is the position adjustment signal is monitored manually or automatically, and the distance between the transmission / reception unit and the object is moved by moving the transmission / reception unit or the object so that the voltage of the position adjustment signal is maximized or minimized. Is positioned at the optimum distance. As a result, the maximum power is obtained in the I signal that is the object detection signal, and the displacement and vibration of the measurement object are measured with high sensitivity from the I signal.
上記I,Q信号における位相差と出力振幅は、送信波と反射波の位相差が+90度又は−90度付近では位相変化(距離の変化)に対する出力電圧の変化が最小となり、位相差が0度又は180度付近では出力電圧の変化が最大となり、かつ直線性もよいという関係にあるので、上述のように位置調整信号であるQ信号が+90度又は−90度付近、検知用信号であるI信号が0度又は180度付近にある関係に設定することで、感度を高めた直線性のよい状態の測定ができることになる。 The phase difference and output amplitude in the I and Q signals are such that the change in output voltage with respect to the phase change (change in distance) is minimum and the phase difference is 0 when the phase difference between the transmitted wave and the reflected wave is near +90 degrees or −90 degrees. Since the change in the output voltage is the maximum and the linearity is good near the angle of 180 degrees or 180 degrees, the Q signal as the position adjustment signal is the detection signal near +90 degrees or −90 degrees as described above. By setting the relationship where the I signal is in the vicinity of 0 degree or 180 degrees, it is possible to measure in a highly linear state with improved sensitivity.
即ち、I信号の位相差が0度付近にあるとき、Q信号電圧は例えば+1(正側最大の値)にあり、I信号の位相差が180度付近にあるとき、Q信号電圧は例えば−1(負側最小の値)にあるので、位置調整信号であるQ信号が最大又は最小となる位置に送受信部と対象物間の距離を調整すれば、直線性のよいI信号により測定物の検知が可能となる。
また、振動検知の場合は、DCカット素子を通した位置調整信号の振幅が最小となるように、送受信部−対象物間距離を調整することで、微小な振動等を良好に検知することができる。
That is, when the phase difference of the I signal is around 0 degrees, the Q signal voltage is, for example, +1 (the maximum value on the positive side), and when the phase difference of the I signal is around 180 degrees, the Q signal voltage is, for example, − 1 (minimum value on the negative side), so if the distance between the transmitter / receiver and the object is adjusted to the position where the Q signal, which is the position adjustment signal, is maximum or minimum, Detection is possible.
In the case of vibration detection, fine vibrations and the like can be detected well by adjusting the distance between the transmission / reception unit and the object so that the amplitude of the position adjustment signal passing through the DC cut element is minimized. it can.
本発明の非接触変位センサ装置によれば、センサと測定対象物との間の距離を最適位置に調整可能となり、感度が高く、直線性も良好となる検知・計測ができるという効果がある。
マイクロ波ドップラー方式のセンサは、マイクロ波帯の電波を媒体とし、送信波が対象物によって反射され戻ってきた受信波を送信波と比較し、その差を取り出すものであり、対象物が電波を反射する物であれば、非接触でその振動や変位を計測することが可能となる。例えば、構造物の微小な変位や振動、楽器やアルミホイル膜の振動等を離れた位置から測定することができる。
また、センサと測定対象物との間に誘電体のカバーや板等があっても、マイクロ波は減衰が少なく透過し、煙や霧等で光が遮られる状態でも透過するので、各種の状況下での計測が可能になるという利点がある。
According to the non-contact displacement sensor device of the present invention, the distance between the sensor and the measurement object can be adjusted to the optimum position, and there is an effect that detection and measurement with high sensitivity and good linearity can be performed.
A microwave Doppler sensor uses a microwave band radio wave as a medium, compares the transmitted wave reflected by the object with the transmitted wave and extracts the difference. If it is a reflecting object, it is possible to measure the vibration and displacement without contact. For example, minute displacements and vibrations of structures, vibrations of musical instruments and aluminum foil films, and the like can be measured from remote positions.
Even if there is a dielectric cover or plate between the sensor and the object to be measured, microwaves pass through with little attenuation, and even when light is blocked by smoke, fog, etc. There is an advantage that measurement below is possible.
図1に、第1実施例の非接触変位センサ装置の構成が示されており、この第1実施例は、主に微小変位センサとして用いられる。図1に示されるように、センサ部10には、送受信部としての送信アンテナ11と受信アンテナ12、マイクロ波発振器14、分配器15、そして上記発振器14からのマイクロ波をローカル信号として入力し、90度位相の異なるIQ信号を出力する直交ミキサ16a,16bが設けられ、また直交ミキサ16a,16bから出力されたQ信号及びI信号を増幅する増幅回路17a,17bが配置される。更に、上記センサ部10は、送受信部と測定対象物20との距離を調整するための距離調整部(距離調整機構:各種アクチュエータによる駆動機構)19に取り付けられる。この距離調整部19は、例えば位置調整信号を用いた信号処理に加え、距離調整のための駆動制御をする駆動回路22を接続することができる。
FIG. 1 shows the configuration of the non-contact displacement sensor device of the first embodiment, and this first embodiment is mainly used as a minute displacement sensor. As shown in FIG. 1, a
上記発振器14から発振されたマイクロ波が送信アンテナ11から出力されると、測定対象物から反射された反射波が受信信号として受信アンテナ12にて得られ、この受信信号は、直交ミキサ16a,16bに供給されることで、この直交ミキサ16a,16bから、90度位相の異なるI,Q信号が出力される。
When the microwave oscillated from the
実施例では、I信号を対象物の変位・振動の測定・検知に用い、Q信号を位置調整信号として用いており、増幅回路17aから出力されたQ信号は位置調整信号として駆動回路22へ供給される。この駆動回路22では、位置調整信号であるQ信号(出力)の電圧が最大(又は最小)となるように、距離調整部19を調整することで、センサ部10と対象物20との距離が最適距離に位置決めされる。そして、この後のI信号によって対象物20の変位や振動が計測される。なお、距離調整は、位置調整信号を信号処理した結果を用いて、駆動回路22が自動で送受信部−対象物間の距離を最適な距離に設定するようにしてもよい。
In the embodiment, the I signal is used for measuring / detecting the displacement / vibration of the object, the Q signal is used as a position adjustment signal, and the Q signal output from the
上記I,Q信号では、図3に示されるように、I信号の位相差(送信波と受信波の位相差)が0度付近にあるとき、Q信号の位相差が+90度付近にあり、又は図4に示されるように、I信号の位相差が180度付近にあるとき、Q信号の位相差が270度(又は−90度)付近にあるという関係になる。即ち、直交ミキサ16a,16bから出力されるI信号とQ信号の位相差は、常に90度異なっているため、例えば、図3のようにI信号の位相差が0度の場合(電圧0)、Q信号の出力電圧は最大(電圧+1)となり、図4のようにI信号の位相差が180度の場合(電圧0)、Q信号の出力電圧は最小(電圧−1)となり、その出力電圧の変化は、位相差0度又は180度のI信号が最大で、直線的となり、位相差90度、270度のQ信号が最小となる。
In the I and Q signals, as shown in FIG. 3, when the phase difference of the I signal (the phase difference between the transmission wave and the reception wave) is around 0 degrees, the phase difference of the Q signal is around +90 degrees, Alternatively, as shown in FIG. 4, when the phase difference of the I signal is around 180 degrees, the phase difference of the Q signal is around 270 degrees (or -90 degrees). That is, the phase difference between the I signal and the Q signal output from the
そこで、実施例では、例えば図3(C)に示されるように、位相差90度付近のQ信号を位相調整信号とし、このQ信号の出力電圧が最大(+1)となるように、駆動回路22等を用いてセンサ部10(送受信アンテナ11,12)と対象物20との距離を調整し、この距離調整がされた後の位相差0度付近のI信号(出力)を測定・解析することにより、対象物の変位や振動が検知される。即ち、センサ部10から出力されたI信号の直流成分を増幅回路17bで増幅することで、変位量が測定される。
Therefore, in the embodiment, as shown in FIG. 3C, for example, the drive circuit is configured so that the Q signal near the phase difference of 90 degrees is used as the phase adjustment signal, and the output voltage of the Q signal becomes the maximum (+1). 22 is used to adjust the distance between the sensor unit 10 (transmission /
また、図4のように、位相差270度(−90度)付近のQ信号を位相調整信号とし、このQ信号の出力電圧が最小(−1)となるように、送受信部−対象物間の距離を調整し、この距離調整がされた後の180度付近のI信号を測定・解析することによっても、対象物の変位や振動の検知ができる。 Also, as shown in FIG. 4, a Q signal near a phase difference of 270 degrees (−90 degrees) is used as a phase adjustment signal, and the output voltage of the Q signal is minimized (−1) between the transmission / reception unit and the object. The displacement and vibration of the object can also be detected by measuring and analyzing the I signal near 180 degrees after the distance adjustment.
更に、図3の位相関係にある場合と図4の位相関係にある場合とでは、変位方向に対する電圧の増減方向が異なっているが、この電圧の増減方向を変位方向の情報(基準点から遠い方向か近い方向か)として用いることになる。即ち、図3のように、位置調整信号であるQ信号(+90度付近)の電圧が最大となるように送受信部−対象物間の距離を調整した場合は、送信波と受信波の位相差が+方向に変化するとき、即ち送受信部−対象物間の距離が増加する方向に変化するとき、I信号(0度付近)の電圧も増加する。一方、図4のように、位置調整信号であるQ信号(+270度付近)の電圧が最小となるように送受信部−対象物間の距離を調整した場合は、送信波と受信波の位相差が+方向に変化するとき、即ち送受信部−対象物間の距離が増加する方向に変化するとき、I信号(180度付近)の電圧は減少する(変化の傾きも逆になる)。従って、このような電圧の増減の方向によって対象物20が遠い方向又は近い方向のいずれに変位しているかを把握し、検知情報として利用することができる。
Further, the voltage increase / decrease direction with respect to the displacement direction is different between the phase relationship of FIG. 3 and the phase relationship of FIG. 4, but the voltage increase / decrease direction is indicated by information on the displacement direction (distant from the reference point). Direction or near direction). That is, as shown in FIG. 3, when the distance between the transmission / reception unit and the object is adjusted so that the voltage of the Q signal (around +90 degrees) as the position adjustment signal is maximized, the phase difference between the transmission wave and the reception wave When the voltage changes in the + direction, that is, when the distance between the transmission / reception unit and the object increases, the voltage of the I signal (near 0 degrees) also increases. On the other hand, as shown in FIG. 4, when the distance between the transmitting / receiving unit and the object is adjusted so that the voltage of the Q signal (around +270 degrees) as the position adjustment signal is minimized, the phase difference between the transmission wave and the reception wave When is changed in the + direction, that is, when the distance between the transmission / reception unit and the object is increased, the voltage of the I signal (around 180 degrees) decreases (the slope of the change is also reversed). Therefore, it is possible to grasp whether the
図2に、第2実施例の非接触変位センサ装置の構成が示されており、この第2実施例は、主に微小振動センサとして用いられる。図2に示されるように、センサ部10と増幅回路17a,17bの間に、雑音低減やDCオフセット除去等を実施するため、DCカットコンデンサ24a,24bを介挿しており、増幅回路17a,17bではDC成分を除去した信号を所定の増幅率で増幅し、振動による変化のみを取り出すようになっている。また、DCカットコンデンサの代わりに、ハイパスフィルタ、バンドパスフィルタ等を使用し、出力する周波数帯域を制限し、所望の周波数帯域の振動成分のみを感度よく検出するようにしてもよい。
FIG. 2 shows the configuration of the non-contact displacement sensor device of the second embodiment, and this second embodiment is mainly used as a micro vibration sensor. As shown in FIG. 2, DC cut
そして、この場合は、対象物の振動時に、位置調整信号であるQ信号の振幅が最小となるように、センサ部10(送受信アンテナ11,12)と対象物20との距離を調整することで、距離調整後のI信号から対象物20の振動が検知される。図2の出力波形に示されるように、Q信号の振幅が最小になるとき、I信号の振幅が最大となる。
In this case, by adjusting the distance between the sensor unit 10 (transmission /
上記各実施例の説明では、I信号を対象物検知のための信号とし、Q信号を位置調整信号として用いたが、逆に、Q信号を対象物検知のための信号とし、I信号を位置調整信号とした場合も、同様に送受信部(センサ)と対象物間の距離を最適位置に調整することで、検出感度が高く、直線性のよい変位センサ、微小振動センサを実現することができる。 In the description of each of the above embodiments, the I signal is used as a signal for detecting an object and the Q signal is used as a position adjustment signal. Conversely, the Q signal is used as a signal for detecting an object and the I signal is used as a position signal. Even in the case of the adjustment signal, similarly, by adjusting the distance between the transmission / reception unit (sensor) and the object to the optimum position, it is possible to realize a displacement sensor and a minute vibration sensor with high detection sensitivity and high linearity. .
構造物、機械、器具、楽器等の微小な変位や振動を計測することができ、例えば建物の揺れ、騒音等による壁や窓の揺れ等の計測に適用可能である。 It is possible to measure minute displacements and vibrations of structures, machines, instruments, musical instruments, etc., and can be applied to, for example, measurement of shaking of buildings, shaking of walls and windows due to noise, and the like.
10…センサ部、
11…送信アンテナ、
12…受信アンテナ、
16a,16b…直交ミキサ、
17a,17b…増幅回路、
19…距離調整部(機構)、
22…駆動回路、
24a,24b…DCカットコンデンサ。
10 ... sensor part,
11: Transmitting antenna,
12 ... receiving antenna,
16a, 16b ... orthogonal mixer,
17a, 17b ... amplifier circuit,
19 ... Distance adjustment part (mechanism),
22 ... Drive circuit,
24a, 24b ... DC cut capacitors.
Claims (3)
この送受信部からの受信信号に基づきドップラー周波数信号としての90度位相の異なる2つのI,Q信号を出力する直交ミキサとを備え、
上記直交ミキサから出力された上記I,Q信号のいずれか一方の信号を、上記送受信部と対象物との距離を最適距離とするための位置調整信号として用い、上記I,Q信号の他方の信号を、対象物検知のための信号として用いることを特徴とする非接触変位センサ装置。 A transceiver for transmitting and receiving microwaves;
A quadrature mixer that outputs two I and Q signals that are 90 degrees out of phase as a Doppler frequency signal based on the received signal from the transceiver;
One of the I and Q signals output from the quadrature mixer is used as a position adjustment signal for setting the distance between the transmission / reception unit and the object to be an optimum distance, and the other of the I and Q signals is used. A non-contact displacement sensor device using a signal as a signal for detecting an object.
上記位置調整信号の電圧が最大又は最小となるように、上記位置調整機構により上記送受信部と対象物との距離を調整することを特徴とする請求項1記載の非接触変位センサ装置。 A position adjustment mechanism that moves either the transmission / reception unit or the object and adjusts the distance between the transmission / reception unit and the object is provided,
The non-contact displacement sensor device according to claim 1, wherein the distance between the transmission / reception unit and the object is adjusted by the position adjustment mechanism so that the voltage of the position adjustment signal is maximized or minimized.
このDCカット素子を通した位置調整信号の振幅が最小となるように、上記位置調整機構により上記送受信部と対象物との距離を調整し、振動を検知することを特徴とする請求項2記載の非接触変位センサ装置。
A DC cut element for removing the DC component of the position adjustment signal is provided,
So that the amplitude of the alignment signal through the DC cut element is minimized by the position adjusting mechanism to adjust the distance between the transceiver and the object, according to claim 2, wherein the detecting vibration Non-contact displacement sensor device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015078092A JP6456224B2 (en) | 2015-04-06 | 2015-04-06 | Non-contact displacement sensor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015078092A JP6456224B2 (en) | 2015-04-06 | 2015-04-06 | Non-contact displacement sensor device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016197089A JP2016197089A (en) | 2016-11-24 |
JP6456224B2 true JP6456224B2 (en) | 2019-01-23 |
Family
ID=57358065
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015078092A Active JP6456224B2 (en) | 2015-04-06 | 2015-04-06 | Non-contact displacement sensor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6456224B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6714058B2 (en) * | 2018-09-28 | 2020-06-24 | 三菱電機インフォメーションシステムズ株式会社 | Method, device and program for predicting motion |
KR102291083B1 (en) * | 2019-11-05 | 2021-08-19 | 경북대학교 산학협력단 | Signal Processing Method for Determining The Presence of Vital Signal and System Thereof |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3044242A1 (en) * | 1979-12-11 | 1981-09-03 | Smiths Industries Ltd., London | DISPLAY SYSTEM FOR DISPLAYING THE DISTANCE OF THE BLADES OF A TURBINE TO A REFERENCE POINT |
JP3386367B2 (en) * | 1998-04-30 | 2003-03-17 | 横河電子機器株式会社 | Surface displacement detector |
JP2002065677A (en) * | 2000-08-29 | 2002-03-05 | Toto Ltd | Cardiopulmonary function monitoring device |
JP2003194925A (en) * | 2001-12-25 | 2003-07-09 | Toto Ltd | Sensor |
JP2004286675A (en) * | 2003-03-24 | 2004-10-14 | Toto Ltd | Sensor unit |
-
2015
- 2015-04-06 JP JP2015078092A patent/JP6456224B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2016197089A (en) | 2016-11-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9448301B2 (en) | Calibrated radar apparatus and associated methods | |
JP6663115B2 (en) | FMCW radar | |
JP2002243849A (en) | Process and system for measuring distance of moving body from fixed part | |
US10371799B1 (en) | Methods of calibration for radar apparatus | |
US10088372B2 (en) | Wireless temperature measurement apparatus using surface acoustic wave device | |
KR101825363B1 (en) | Method and system for acquiring natural frequency of diaphragm | |
JP2011058836A (en) | Wireless sensor device | |
JP6456224B2 (en) | Non-contact displacement sensor device | |
CA2454612A1 (en) | Ultrasonic doppler effect speed measurement | |
GB2121174A (en) | Measurement of distance using ultrasound | |
US9188477B2 (en) | Radar system and method for providing information on movements of object's surface | |
KR20060037777A (en) | Apparatus for removing leakage signal of fmcw radar | |
JPH0569192B2 (en) | ||
JP5776495B2 (en) | Gain measuring circuit, gain measuring method and communication apparatus | |
WO2017154731A1 (en) | Vibration inspection device | |
JP5593062B2 (en) | Measuring device, measuring system, and measuring method | |
JP2962983B2 (en) | CW Doppler measurement radar device | |
JP2013137231A (en) | Vibration sensor system | |
US10444203B2 (en) | Ultrasonic vibration sensing | |
JP2017003318A (en) | Temperature sensor | |
KR102026262B1 (en) | Ladar sensor system and sensing method thereof | |
JP4895175B2 (en) | Gap meter and moisture measuring device | |
JP2828802B2 (en) | Radar equipment | |
JP2000055605A (en) | Body detecting method and body detector using same | |
JPH1062520A (en) | Cw disturbance wave-removing apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180202 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20181108 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20181120 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20181129 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20181211 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20181218 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6456224 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |