JP6456218B2 - Method for detecting combustible gas in crusher and explosion-proof device for crusher - Google Patents

Method for detecting combustible gas in crusher and explosion-proof device for crusher Download PDF

Info

Publication number
JP6456218B2
JP6456218B2 JP2015071726A JP2015071726A JP6456218B2 JP 6456218 B2 JP6456218 B2 JP 6456218B2 JP 2015071726 A JP2015071726 A JP 2015071726A JP 2015071726 A JP2015071726 A JP 2015071726A JP 6456218 B2 JP6456218 B2 JP 6456218B2
Authority
JP
Japan
Prior art keywords
infrared
gas
crusher
combustible gas
explosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015071726A
Other languages
Japanese (ja)
Other versions
JP2016191622A (en
Inventor
裕司 白石
裕司 白石
利治 小林
利治 小林
保紀 二澤
保紀 二澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP2015071726A priority Critical patent/JP6456218B2/en
Publication of JP2016191622A publication Critical patent/JP2016191622A/en
Application granted granted Critical
Publication of JP6456218B2 publication Critical patent/JP6456218B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Crushing And Pulverization Processes (AREA)
  • Disintegrating Or Milling (AREA)

Description

本発明は、被破砕物に含まれる容器などから漏れ出した可燃性ガスを検出する破砕機の可燃性ガス検出方法、およびこの可燃性ガスが破砕時の火花により着火燃焼、爆発するのを未然に防止する破砕機の防爆装置に関する。   The present invention relates to a flammable gas detection method for a pulverizer that detects flammable gas leaked from a container or the like contained in an object to be crushed, and to prevent the flammable gas from being ignited, burned, and exploded by a spark during crushing. The present invention relates to an explosion-proof device for a crusher.

ごみ焼却施設に設置された破砕機に被破砕物を投入して破砕する際に、被破砕容器などに残存する可燃性液体や可燃性ガス、たとえばメタンやプロパン、ブタン、ガソリンなどが漏れ出し、破砕時に発生する火花が着火して、破砕機内で燃焼や爆発が発生するのを防止するために、例えば特許文献1が提案されている。
特許文献1には、回転されるハンマーと、側壁面に突設されたブロックとの間で上方の投入口から被破砕物を破砕する破砕機において、側壁面の突状物の背面にガス濃度計を設置し、このガス濃度計に基準を超えた濃度の可燃性ガスが検出されると、不燃性気体を注入して燃焼や爆発を防止するものが開示されている。
When a material to be crushed is put into a crusher installed in a garbage incineration facility and crushed, flammable liquid and flammable gas remaining in the crushing container, such as methane, propane, butane, and gasoline, leak out. For example, Patent Document 1 has been proposed in order to prevent a spark generated during crushing from igniting and causing combustion or explosion in a crusher.
In Patent Document 1, in a crusher for crushing a material to be crushed from an upper inlet between a rotating hammer and a block protruding on a side wall surface, a gas concentration is formed on the back surface of the side wall surface. A gas meter is disclosed in which a non-combustible gas is injected to prevent combustion or explosion when a combustible gas with a concentration exceeding a standard is detected in the gas concentration meter.

特許文献2には、赤外線光源と赤外線検出素子とにより所定の被測定ガスを検出する赤外線ガス検知装置が開示されている。   Patent Document 2 discloses an infrared gas detection device that detects a predetermined gas to be measured using an infrared light source and an infrared detection element.

特許第4737838号公報Japanese Patent No. 4737838 特開2006−220625号公報JP 2006-220625 A

しかし、特許文献1の破砕機は、濃度計がガスサンプリング式であるため、検知に応答時間が長くかかり、応答特性が低い。またサンプリング位置が限定されるため、サンプリング位置近傍で発生した可燃性ガスしか検出することができない。   However, since the crusher of Patent Document 1 is a gas sampling type, the response time is long for detection and the response characteristics are low. Further, since the sampling position is limited, only combustible gas generated in the vicinity of the sampling position can be detected.

また特許文献2では、被測定ガスに吸収される吸収光の放射強度と、被測定ガスに吸収されないリファレンス光の放射強度を測定しており、吸収光の放射強度はリファレンス光の放射強度を基準とするものである。しかしながら、破砕機のように被破砕物や粉塵などが混在する空間部で、可燃性ガスを検出することは困難である。   In Patent Document 2, the radiant intensity of absorbed light absorbed by the gas to be measured and the radiant intensity of reference light that is not absorbed by the gas to be measured are measured. The radiant intensity of absorbed light is based on the radiant intensity of the reference light. It is what. However, it is difficult to detect combustible gas in a space where a material to be crushed or dust is mixed, such as a crusher.

本発明は、被破砕物や粉塵などが存在する破砕機内の空間部で、被破砕物や粉塵を判別して可燃性ガスのみを精度よく検出することができる破砕機の可燃性ガス検出方法、および破砕機内の空間部に漏出した可燃性ガス塊を効果的に希釈して着火、爆発を未然に防止できる破砕機の防爆装置を提供することを目的とする。   The present invention is a method for detecting a combustible gas in a crusher capable of accurately detecting only a combustible gas by identifying the material to be crushed and dust in a space in a crusher where the material to be crushed and dust are present, Another object of the present invention is to provide an explosion-proof device for a crusher that can effectively prevent ignition and explosion by effectively diluting a combustible gas mass leaked into a space in the crusher.

本発明に係る破砕機の可燃性ガス検出方法は、
投光器から可燃性ガスにおける吸収波長とリファレンス波長を含む赤外線を破砕機内の空間部に照射して受光器で受光する破砕機の可燃性ガス検出方法であって、
吸収波長の赤外線の放射強度がリファレンス波長の赤外線の放射強度より減衰された時に、空間部に可燃性ガス塊が存在すると判断し、
吸収波長の赤外線の放射強度とリファレンス波長の赤外線の放射強度がそれぞれ減衰されず略同一の時に、空間部に介在物がないと判断し、
吸収波長の赤外線の放射強度とリファレンス波長の赤外線の放射強度が略同一程度に減衰され、減衰が小さい時に空間部に粉塵が存在し、減衰が大きい時に空間部に被破砕物が存在すると判断することを特徴とする。
The combustible gas detection method of the crusher according to the present invention is:
A method for detecting a flammable gas in a crusher that irradiates a space in a crusher with infrared light including an absorption wavelength and a reference wavelength in a combustible gas from a projector and receives the light with a light receiver.
When the infrared radiation intensity of the absorption wavelength is attenuated from the infrared radiation intensity of the reference wavelength, it is determined that there is a flammable gas mass in the space,
When the infrared radiation intensity of the absorption wavelength and the infrared radiation intensity of the reference wavelength are not attenuated and are substantially the same, it is determined that there is no inclusion in the space,
The infrared radiation intensity of the absorption wavelength and the infrared radiation intensity of the reference wavelength are attenuated to approximately the same level. When the attenuation is small, dust is present in the space portion. It is characterized by that.

また、上記破砕機の可燃性ガス検出方法において、
赤外線の複数の光軸を、略同一平面上でかつ格子状に形成し、
可燃性ガス塊が検出された光軸の交差位置から、可燃性ガス塊の発生位置を特定することを特徴とする。
Moreover, in the combustible gas detection method of the crusher,
A plurality of infrared optical axes are formed in a lattice shape on substantially the same plane,
The generation position of the combustible gas mass is specified from the crossing position of the optical axes where the combustible gas mass is detected.

さらに、本発明に係る破砕機の防爆装置は、
破砕機に設けられてケーシング内から空間部に、可燃性ガスにおける吸収波長とリファレンス波長を含む赤外線を照射する投光器と、
ケーシングに設けられて吸収波長の赤外線とリファレンス波長の赤外線をそれぞれ受光する受光器と、
投光器と受光器の間で略同一平面上で、かつ格子状に配置された複数の赤外線の光軸と、
ケーシングに設けられて可燃性ガス塊を希釈する希釈用ガスを噴射する複数の防爆用ガスノズルと、
受光器で受光した吸収波長の赤外線の放射強度とリファレンス波長の赤外線の放射強度に基づいて可燃性ガス塊を検出するとともに、赤外線の光軸の交差位置から可燃性ガス塊の位置を判断するガス検出判断部と、
ガス検出判断部で可燃性ガス塊を検出した時に、可燃性ガス塊の位置に対応する防爆用ガスノズルを選択し、選択された防爆用ガスノズルから前記空間部の可燃性ガス塊に向かって希釈用ガスを噴射する防爆制御部と、具備したことを特徴とする。
Furthermore, the explosion-proof device of the crusher according to the present invention is:
A projector that is provided in the crusher and irradiates the space part from the inside of the casing with infrared rays including an absorption wavelength and a reference wavelength in the combustible gas,
A receiver that is provided on the casing and receives infrared rays of an absorption wavelength and an infrared wavelength of a reference wavelength,
A plurality of infrared optical axes arranged in a grid pattern on the substantially same plane between the projector and the receiver;
A plurality of explosion-proof gas nozzles for injecting a dilution gas for diluting the combustible gas mass provided in the casing;
Gas that detects the flammable gas mass based on the infrared radiation intensity of the absorption wavelength received by the light receiver and the infrared radiation intensity of the reference wavelength, and determines the position of the flammable gas mass from the crossing position of the infrared optical axis A detection determination unit;
When the gas detection judgment unit detects a flammable gas mass, select an explosion-proof gas nozzle corresponding to the position of the flammable gas mass, and dilute from the selected explosion-proof gas nozzle toward the flammable gas mass in the space. An explosion-proof control unit for injecting gas is provided.

さらにまた、上記構成の破砕機の防爆装置において、
光軸を含む略平面が、破砕用回転体の被破砕物投入口側近傍および破砕物排出口側近傍の少なくとも一方に配置されたことを特徴とする。
Furthermore, in the explosion-proof device of the crusher configured as described above,
A substantially flat surface including the optical axis is arranged in at least one of the vicinity of the object to be crushed and the vicinity of the object to be crushed and the outlet of the rotator for crushing.

また、上記構成の破砕機の防爆装置において、
希釈用ガスが窒素ガスであり、
防爆判断部は、ガス検出判断部で可燃性ガス塊を検出した時に破砕機を停止し、可燃性ガス塊が希釈された時に再起動することを特徴とする。
Moreover, in the explosion-proof device of the crusher having the above configuration,
The dilution gas is nitrogen gas,
The explosion-proof judgment unit stops the crusher when the gas detection judgment unit detects a combustible gas mass, and restarts when the combustible gas mass is diluted.

本発明に係る破砕機の可燃性ガス検出方法によれば、可燃性ガスの吸収波長とリファレンス波長の放射強度を互いに比較して、吸収波長がリファレンス波長より減衰され、設定された放射強度差となった時に可燃性ガス塊が発生したと判断する。また赤外線の吸収波長とリファレンス波長の放射強度がそれぞれ略同一で減衰されない時に空間部に介在物がなく、さらに吸収波長とリファレンス波長の放射強度がそれぞれ略同一に減衰され、この減衰が小さい時に粉塵が存在すると判断し、減衰が極めて大きい時に被破砕物が存在すると判断する。これにより、破砕機の空間部で被破砕物と粉塵と可燃性ガスとが混在することがあっても、可燃性ガスを精度良く判別して、可燃性ガス塊の発生を検出することができる。なお、ここで可燃性ガス塊とは、火花などにより着火、燃焼、爆発するおそれがある濃度となった可燃性ガス雰囲気空間をいう。   According to the combustible gas detection method of the crusher according to the present invention, the absorption wavelength of the combustible gas and the radiation intensity of the reference wavelength are compared with each other, the absorption wavelength is attenuated from the reference wavelength, and the set radiation intensity difference It is judged that a flammable gas lump has been generated. Also, when the infrared absorption wavelength and the reference wavelength radiation intensity are substantially the same and are not attenuated, there are no inclusions in the space, and the absorption wavelength and the reference wavelength radiation intensity are attenuated approximately the same. When the attenuation is extremely large, it is determined that the object to be crushed exists. As a result, even if the object to be crushed, dust and combustible gas may coexist in the space of the crusher, it is possible to accurately determine the combustible gas and detect the generation of the combustible gas mass. . Here, the flammable gas mass refers to a flammable gas atmosphere space having a concentration that may cause ignition, combustion, or explosion due to a spark or the like.

また吸収波長とリファレンス波長の赤外線の光軸を格子状に配置することにより、検出された光軸に基づいてその交差位置から可燃性ガス塊の発生位置を特定することができ、これにより可燃性ガス塊に対する希釈や排出、破砕停止などの対応を迅速かつ効果的に行うことができる。   In addition, by arranging the optical axes of the infrared rays of the absorption wavelength and the reference wavelength in a lattice shape, it is possible to specify the generation position of the flammable gas mass from the crossing position based on the detected optical axis, thereby making the flammable It is possible to quickly and effectively cope with dilution, discharge, crushing stop, etc. for the gas mass.

さらに、破砕機の防爆装置によれば、空間部の略同一平面上で格子状に配置された赤外線の光軸において、可燃性ガスを検出した光軸の交差位置に、可燃性ガス塊が発生したと判断することができる。そして可燃性ガス塊に向かって希釈用ガスを噴射可能な防爆用ガスノズルを選択し、これら防爆用ガスノズルから可燃性ガス塊に向かって希釈用ガスを効果的に噴射することができる。これにより、少ない量の希釈用ガスで迅速かつ効果的に可燃性ガス塊を希釈することができ、破砕機内で漏出された可燃性ガスによる着火や燃焼、爆発を未然に防止することができる。   Furthermore, according to the explosion-proof device of the crusher, a flammable gas mass is generated at the intersection of the optical axes where the flammable gas is detected in the infrared optical axes arranged in a lattice pattern on substantially the same plane of the space. Can be determined. An explosion-proof gas nozzle capable of injecting the dilution gas toward the combustible gas mass is selected, and the dilution gas can be effectively injected from the explosion-proof gas nozzle toward the combustible gas mass. As a result, the combustible gas mass can be diluted quickly and effectively with a small amount of dilution gas, and ignition, combustion, and explosion due to the combustible gas leaked in the crusher can be prevented in advance.

また、気流が滞留しやすい破砕用回転体の被破砕物投入口側近傍および破砕物排出口側近傍の一方の略平面上に、赤外線の光軸を交差状に配置することにより、可燃性ガス塊の発生位置を効果的に検出することができる。   In addition, by placing the optical axes of the infrared rays in a crossed manner on one of the planes near the crushed material inlet side and the crushed material outlet side of the crushing rotating body where airflow tends to stay, combustible gas The generation position of the lump can be detected effectively.

さらに、希釈用ガスを窒素ガスとすることで、可燃性ガスの吸収波長が窒素ガスの影響を受けることがなく、可燃性ガス塊の希釈状態を精度よく検出することができる。したがって、ガス検出判断部では、吸収波長とリファレンス波長の放射強度差(比率)が小さくなったのを精度良く検出することができ、これにより可燃性ガス塊の濃度が低下したと判断して、破砕機の再起動を安全かつ迅速に行うことができる。   Further, by using nitrogen gas as the dilution gas, the absorption wavelength of the combustible gas is not affected by the nitrogen gas, and the diluted state of the combustible gas mass can be detected with high accuracy. Therefore, the gas detection determination unit can accurately detect that the difference in radiation intensity (ratio) between the absorption wavelength and the reference wavelength has decreased, thereby determining that the concentration of the combustible gas mass has decreased, The crusher can be restarted safely and quickly.

本発明に係る可燃性ガス検出装置を有する一軸式竪型破砕機を示す側面視の断面図である。It is sectional drawing of the side view which shows the uniaxial scissor type crusher which has a combustible gas detection apparatus which concerns on this invention. 図1に示すA−A断面図である。It is AA sectional drawing shown in FIG. 防爆装置を示す構成図である。It is a block diagram which shows an explosion-proof device. (a)〜(d)は可燃性ガスの吸収波長の赤外線と可燃性ガスのリファレンス波長の赤外線の照射距離と放射強度の関係を示し、(a)は介在物および可燃性ガスの無い状態、(b)は粉塵が存在する状態、(c)は可燃性ガスが存在する状態、(d)は被破砕物が存在する状態を示す。(A)-(d) shows the relationship between the irradiation distance and the radiation intensity of the infrared ray of the absorption wavelength of the combustible gas and the infrared ray of the reference wavelength of the combustible gas, (a) is a state without inclusions and combustible gas, (B) shows a state where dust is present, (c) shows a state where combustible gas exists, and (d) shows a state where an object to be crushed exists. 可燃性ガスの吸収波長の赤外線と可燃性ガスのリファレンス波長の赤外線の放射強度の変化を示すグラフである。It is a graph which shows the change of the radiation intensity of the infrared of the absorption wavelength of combustible gas, and the infrared of the reference wavelength of combustible gas. 本発明に係る可燃性ガス検出装置を有する二軸式横型破砕機の実施例2を示す側面視の断面図である。It is sectional drawing of the side view which shows Example 2 of the biaxial horizontal crusher which has a combustible gas detection apparatus which concerns on this invention. 二軸式横型破砕機を示すB−B断面図である。It is BB sectional drawing which shows a biaxial horizontal crusher. 赤外線投・受光器の他の実施例を示す構成図である。It is a block diagram which shows the other Example of an infrared rays projector / receiver.

[実施例1]
以下、本発明の実施例1を図1〜図5に基づいて説明する。
図1および図2に示す大型の一軸式竪型破砕機10は、たとえばごみ収集施設や廃棄物リサイクル施設などに設置されて焼却等の処理前の大型廃棄物を破砕 するものである。この破砕機10は、基台フレーム11に駆動モータ12と破砕機本体13が並列に立設配置されており、駆動モータ12の出力軸が巻き掛け伝動機構14を介して破砕機本体13の駆動軸15に連動連結されている。
[Example 1]
Embodiment 1 of the present invention will be described below with reference to FIGS.
A large single-shaft vertical crusher 10 shown in FIGS. 1 and 2 is installed in, for example, a garbage collection facility or a waste recycling facility, and crushes large waste before treatment such as incineration. In this crusher 10, a drive motor 12 and a crusher main body 13 are erected in parallel on a base frame 11, and an output shaft of the drive motor 12 is wound around to drive the crusher main body 13 via a transmission mechanism 14. The shaft 15 is linked and connected.

破砕機本体13は、鉛直方向の軸心部に駆動軸15が回転自在に配置されたケーシング20と、駆動軸15の上端部に設けられて被破砕物を撹拌するノッカ(破砕用回転体)23と、駆動軸15の中間部に設けられ外周部に支持された複数のグラインダ24により被破砕物を破砕するロータ(破砕用回転体)25と、駆動軸15の下端部に設けられ旋回アームの先端部に破砕物を排出口22に送り出す掻き出し体が取り付けられたスイーパ(破砕用回転体)26と、ケーシング20の内周面にグラインダ24に対向して配置されグラインダ24との間で被破砕物を破砕する複数のシェルライナ27と、を具備している。このケーシング20はたとえば直径が10m前後に形成され、ノッカ23の上方に被破砕物投入口21が開口され、スイーパ26の一側方に破砕物排出口22が開口されている。   The crusher body 13 includes a casing 20 in which a drive shaft 15 is rotatably disposed in a vertical axial center part, and a knocker (rotating body for crushing) that is provided at the upper end of the drive shaft 15 and stirs an object to be crushed. 23, a rotor (crushing rotating body) 25 for crushing an object to be crushed by a plurality of grinders 24 provided at an intermediate portion of the drive shaft 15 and supported on an outer peripheral portion, and a swivel arm provided at a lower end portion of the drive shaft 15 Between the grinder 24 and the sweeper 26 which is provided with a scraping body 26 that feeds the crushed material to the discharge port 22 at the front end of the casing 20 and the grinder 24 on the inner peripheral surface of the casing 20. And a plurality of shell liners 27 for crushing the crushed material. For example, the casing 20 is formed to have a diameter of about 10 m, a crushing object input port 21 is opened above the knocker 23, and a crushed material discharge port 22 is opened on one side of the sweeper 26.

上記構成において、被破砕物投入口21からケーシング20内に投入された被破砕物は、まずノッカ23により撹拌されつつ外周部に送り込まれ、次いでグラインダ24とシェルライナ27との間で破砕される。破砕されて落下した破砕物は、スイーパ26により破砕物排出口22に送り出される。   In the above-described configuration, the material to be crushed that has been input into the casing 20 from the material to be crushed 21 is first fed to the outer peripheral portion while being stirred by the knocker 23, and then crushed between the grinder 24 and the shell liner 27. . The crushed material that has been crushed and dropped is sent out to the crushed material discharge port 22 by the sweeper 26.

本発明に係る可燃性ガス検出装置31を具備した防爆装置41を図3〜図5を参照して説明する。
図3に示すように、可燃性ガス検出装置31は、少なくとも可燃性ガスの吸収波長とリファレンス波長を含む赤外線を、ケーシング20内でスイーパ26の上方の空間部28に照射する赤外線投光器(投光器)32と、各赤外線投光器32に対向するケーシング20に配置されて吸収波長の赤外線とリファレンス波長の赤外線とをそれぞれ受光する赤外線受光器(受光器)33と、赤外線受光器33Aで受光した吸収波長とリファレンス波長の赤外線の放射強度差(比率)やそれぞれの波長の放射強度差に基づいて、空間部28に存在する被破砕物、粉塵、可燃性ガスのいずれかを検出するガス検出判断部34と、を具備している。
An explosion-proof device 41 provided with a combustible gas detection device 31 according to the present invention will be described with reference to FIGS.
As shown in FIG. 3, the combustible gas detection device 31 is an infrared projector (projector) that irradiates the space 28 above the sweeper 26 in the casing 20 with infrared rays including at least the absorption wavelength of the combustible gas and the reference wavelength. 32, an infrared receiver (receiver) 33 that is disposed on the casing 20 facing each infrared projector 32 and receives infrared rays having an absorption wavelength and infrared rays having a reference wavelength, and an absorption wavelength received by the infrared receiver 33A. A gas detection determination unit 34 for detecting any one of the object to be crushed, dust, and combustible gas existing in the space 28 based on the difference in radiant intensity (ratio) of infrared rays of the reference wavelength and the difference in radiant intensity of each wavelength; Are provided.

これら複数対の赤外線投光器32および赤外線受光器33は、ノッカ23 上方の空間部28で略同一平面、たとえば水平面上に配置され、赤外線の光軸IRがたとえば0.5〜2.0mのピッチで格子状に交差するように配置されている。これにより、可燃性ガスを検出した赤外線投・受光器32,33の光軸IRが交差する位置を可燃性ガス塊の発生位置として特定することができる。ここで可燃性ガス塊とは、火花などにより着火、燃焼、爆発するおそれがある濃度の可燃性ガス雰囲気空間をいう。   The plurality of pairs of infrared projectors 32 and infrared receivers 33 are disposed on the substantially same plane, for example, a horizontal plane, in the space 28 above the knocker 23, and the infrared optical axis IR is at a pitch of, for example, 0.5 to 2.0 m. They are arranged so as to intersect in a lattice pattern. Thereby, the position where the optical axes IR of the infrared ray projectors / receivers 32, 33 that have detected the combustible gas intersect can be specified as the generation position of the combustible gas mass. Here, the flammable gas mass refers to a flammable gas atmosphere space having a concentration that may cause ignition, combustion, or explosion due to a spark or the like.

また破砕機10では、破砕時に粉塵が舞い上がって放散しないように、破砕物の排出口22を負圧として被破砕物の投入口21から排出口22に向かって気流が形成されている。このような気流中で、気流が最も滞留しやすい箇所が、スイーパ26の上方の空間部28であり、この空間部28で略同一水平面上に赤外線の光軸IRを配置することにより、効果的に可燃性ガス塊を検出することができる。   Further, in the crusher 10, an airflow is formed from the crushing material discharge port 22 toward the discharge port 22 using the crushing material discharge port 22 as a negative pressure so that dust does not rise and dissipate during crushing. In such an air flow, the portion where the air flow is most likely to stay is a space portion 28 above the sweeper 26, and the infrared light axis IR is arranged on the substantially the same horizontal plane in the space portion 28, thereby being effective. A flammable gas mass can be detected.

防爆装置41は、可燃性ガス検出装置31を含み、ケーシング20に不活性ガスまたは水蒸気からなる希釈用ガスを空間部28の所定部位に向かって噴射する複数の防爆用ガスノズル42が所定間隔ごとに設けられている。希釈用ガスは、不活性ガスや水蒸気であり、好ましくは窒素ガスが最適である。ガス検出判断部34において、空間部28に可燃性ガス塊が発生したと判断された時に、検出した赤外線投・受光器32,33の光軸IRの交差位置に対応して選択された防爆用ガスノズル42から、空間部28に希釈用ガスを噴射する防爆制御部43が設けられている。吸収波長とリファレンス波長の放射強度差に基づいて、可燃性ガス塊の濃度を判断することができる。したがって、希釈用ガスの噴射後に、吸収波長とリファレンス波長の放射強度差(比率)が十分に小さくなったと判断することにより、停止していた破砕機を再起動することができる。   The explosion-proof device 41 includes a combustible gas detection device 31, and a plurality of explosion-proof gas nozzles 42 that inject a dilution gas composed of an inert gas or water vapor into the casing 20 toward a predetermined portion of the space portion 28 at predetermined intervals. Is provided. The gas for dilution is an inert gas or water vapor, preferably nitrogen gas. When the gas detection determination unit 34 determines that a flammable gas mass has been generated in the space 28, the explosion detection is selected corresponding to the detected crossing position of the optical axis IR of the infrared emitter / receiver 32, 33. An explosion-proof control unit 43 that injects dilution gas from the gas nozzle 42 into the space 28 is provided. Based on the difference in radiation intensity between the absorption wavelength and the reference wavelength, the concentration of the combustible gas mass can be determined. Therefore, after determining that the radiation intensity difference (ratio) between the absorption wavelength and the reference wavelength has become sufficiently small after the injection of the dilution gas, the stopped crusher can be restarted.

以下、詳細を説明する。
赤外線投光器32から空間部28に照射される赤外線は、少なくとも可燃性ガス、たとえばメタン(CH4)やプロパン(C3H8)、ブタン(C4H10) の吸収波長の赤外線とリファレンス波長の赤外線を含んでいる。表1に可燃性ガスの吸収波長の代表例を示す。
Details will be described below.
The infrared rays irradiated on the space 28 from the infrared projector 32 include at least an infrared ray having an absorption wavelength of a combustible gas such as methane (CH4), propane (C3H8), and butane (C4H10) and an infrared ray having a reference wavelength. Table 1 shows typical examples of the absorption wavelength of combustible gases.

Figure 0006456218
赤外線受光器33は、吸収波長の赤外線A-IRのみを通過させる吸収波長用の波長選択(バンドパス)フィルタ35Aと、この波長選択フィルタ35Aを介して吸収波長の赤外線A-IRを受光する吸収波長受光部(受光素子)33Aと、リファレンス波長の赤外線R-IRのみを通過させるリファレンス波長用の波長選択(バンドパス)フィルタ35Rと、このリファレンス波長用フィルタ35Rを介してファレンス波長の赤外線R-IR受光するリファレンス波長受光部(受光素子)33Rと、を具備している。ここで、吸収波長用の波長選択フィルタ35Aの選択波長は、3.1μm以上、3.5μm以下であり、リファレンス波長用の波長選択フィルタ35Rの選択波長は、3.5を超え、4.1μm以下である。なお、上記の吸収波長およびリファレンス波長に限定されるものではなく、破砕物に含まれる可燃性ガスの成分に対応して、任意に選択することができる。
Figure 0006456218
The infrared receiver 33 is a wavelength selection (bandpass) filter 35A for absorption wavelength that allows only the infrared A-IR of the absorption wavelength to pass, and absorption that receives the infrared A-IR of the absorption wavelength via the wavelength selection filter 35A. A wavelength light receiving unit (light receiving element) 33A, a reference wavelength selection filter (bandpass) filter 35R that passes only the reference wavelength infrared R-IR, and a reference wavelength infrared filter R through the reference wavelength filter 35R. And a reference wavelength light receiving part (light receiving element) 33R for receiving IR light. Here, the selection wavelength of the wavelength selection filter 35A for the absorption wavelength is 3.1 μm or more and 3.5 μm or less, and the selection wavelength of the wavelength selection filter 35R for the reference wavelength exceeds 3.5 and is 4.1 μm. It is as follows. In addition, it is not limited to said absorption wavelength and reference wavelength, According to the component of the combustible gas contained in a crushed material, it can select arbitrarily.

そして吸収波長受光部35Aおよびリファレンス波長受光部35Rで検出した信号は、それぞれアンプ36A,36Rで増幅後、ガス検出判断部34に出力される。
つぎに吸収波長の赤外線A-IRとリファレンス波長の赤外線R-IRの挙動を、図4および図5を参照して説明する。
The signals detected by the absorption wavelength light receiving unit 35A and the reference wavelength light receiving unit 35R are amplified by the amplifiers 36A and 36R, respectively, and then output to the gas detection determination unit 34.
Next, the behavior of the absorption wavelength infrared A-IR and the reference wavelength infrared R-IR will be described with reference to FIGS.

図4(a)に示すように、空間部28に介在物および可燃性ガスが無い場合、赤外線投光器32から空間部28に照射された吸収波長の赤外線A-IRとリファレンス波長の赤外線R-IRは、空間部28でそれぞれ僅かに減衰しつつ直進し、赤外線受光器33に略同一の放射強度で受光される。   As shown in FIG. 4A, when there are no inclusions and flammable gas in the space 28, the infrared light A-IR of the absorption wavelength and the infrared light R-IR of the reference wavelength irradiated from the infrared projector 32 to the space 28. Are straightened while being attenuated slightly in the space 28 and are received by the infrared receiver 33 with substantially the same radiation intensity.

図4(b)に示すように、空間部28に粉塵がある場合、赤外線投光器32から空間部28に照射された吸収波長の赤外線A-IRとリファレンス波長の赤外線R-IRは、粉塵中に入射されることでそれぞれ一定の割合で減衰しつつ直進し、赤外線受光器33に略同一程度で小さく減衰された放射強度で受光される。   As shown in FIG. 4B, when there is dust in the space 28, the infrared A-IR of the absorption wavelength and the infrared R-IR of the reference wavelength irradiated to the space 28 from the infrared projector 32 are contained in the dust. By being incident, the light travels straight while being attenuated at a constant rate, and is received by the infrared ray receiver 33 with a radiation intensity that is attenuated to a small extent at approximately the same level.

図4(c)に示すように、空間部28に可燃性ガス塊がある場合、赤外線投光器32から空間部28に照射された赤外線IRのうち、吸収波長の赤外線A-IRは可燃性ガスにより吸収されて大きく減衰され、リファレンス波長の赤外線R-IRは、殆ど吸収されずわずかに減衰した状態で直進し、それぞれ赤外線受光器33に受光される。この放射強度差(比率)が、所定時間、予め設定された閾値を超えて検出されると、空間部28の光軸IR上に可燃性ガス塊が存在すると判断される。   As shown in FIG. 4 (c), when there is a flammable gas mass in the space 28, the infrared A-IR of the absorption wavelength among the infrared IR irradiated to the space 28 from the infrared projector 32 is caused by the flammable gas. The infrared R-IR of the reference wavelength is absorbed and greatly attenuated and travels straight in a slightly attenuated state with little absorption, and is received by the infrared receiver 33. If this radiation intensity difference (ratio) is detected exceeding a preset threshold value for a predetermined time, it is determined that a combustible gas mass exists on the optical axis IR of the space 28.

図4(d)に示すように、空間部28に被破砕物がある場合、赤外線投光器32から空間部28に照射された吸収波長の赤外線A-IRとリファレンス波長の赤外線R-IRは、それぞれ被破砕物により直進が遮断されて赤外線受光器33で受光されず、放射強度は0となる。   As shown in FIG. 4 (d), when there is an object to be crushed in the space 28, the infrared A-IR of the absorption wavelength and the infrared R-IR of the reference wavelength irradiated to the space 28 from the infrared projector 32 are respectively The straight traveling is blocked by the object to be crushed, and is not received by the infrared receiver 33, and the radiation intensity becomes zero.

図5は、たとえば一対の赤外線投・受光器32,33において、赤外線受光器33で受光した吸収波長の赤外線A-IRとリファレンス波長の赤外線R-IRの放射強度の時間的な変化を示す。時間の経過とともに両波長の赤外線A-IR,R-IRの放射強度がそれぞれ変化し、空間部28にたとえば被破砕物や粉塵が介在されることで、赤外線A-IR,R-IRが吸収散乱されて同程度で減衰される。また空間部28に可燃性ガス塊があると、吸収波長の赤外線A-IRが大幅に減衰されるが、リファレンス波長の赤外線R-IRはほとんど減衰されず、放射強度に大きな差が生じる。この放射強度差(比率)が大きくなり、予め設定された放射強度差の閾値を超え、かつ閾値の数値を一定時間超えるかまたは一定の時間の移動平均値が閾値を超えると、 検出判断部34では空間部28に可燃性ガス塊が存在すると判断する。   FIG. 5 shows temporal changes in the radiation intensity of the infrared A-IR of the absorption wavelength and the infrared R-IR of the reference wavelength received by the infrared receiver 33 in, for example, a pair of infrared emitter / receivers 32 and 33. The radiation intensity of infrared A-IR and R-IR of both wavelengths changes with the passage of time, and the infrared A-IR and R-IR are absorbed by, for example, objects to be crushed and dust in the space 28. Scattered and attenuated to the same extent. Also, if there is a flammable gas mass in the space 28, the infrared A-IR of the absorption wavelength is greatly attenuated, but the infrared R-IR of the reference wavelength is hardly attenuated, resulting in a large difference in radiation intensity. When this radiation intensity difference (ratio) becomes large and exceeds a preset threshold value of radiation intensity difference and exceeds a threshold value for a certain period of time or a moving average value for a certain period of time exceeds a threshold value, the detection / determination unit 34 Then, it is determined that a combustible gas mass exists in the space portion 28.

防爆制御部43では、検出判断部34で可燃性ガスが存在すると判断された場合、検出された複数組の赤外線投・受光器32,33の光軸IRの交差位置から、可燃性ガス塊の発生位置を特定する。そして、可燃性ガス塊の発生位置とその周辺部に希釈用ガスを噴射できる防爆用ガスノズル42を選択し、選択された防爆用ガスノズル42の電磁式開閉弁44を開け、ガス供給源(ガスボンベ)45から可燃性ガス塊に向かって希釈用ガスを噴射させる。また同時に駆動モータ12のモータ制御器12aに停止信号を出力して破砕機10を停止する。さらに同時に警報ブザー46を作動させるとともに、警告表示部47に可燃性ガス塊が検出されたことを警告表示する。   In the explosion-proof control unit 43, when the detection determination unit 34 determines that flammable gas is present, the explosion-proof control unit 43 determines the flammable gas mass from the intersection of the detected optical axes IR of the plurality of sets of infrared projectors / receivers 32 and 33. Specify the location. Then, an explosion-proof gas nozzle 42 capable of injecting dilution gas to the position where the combustible gas mass is generated and its peripheral part is selected, the electromagnetic on-off valve 44 of the selected explosion-proof gas nozzle 42 is opened, and a gas supply source (gas cylinder) The dilution gas is injected from 45 toward the combustible gas mass. At the same time, a stop signal is output to the motor controller 12 a of the drive motor 12 to stop the crusher 10. At the same time, the alarm buzzer 46 is activated and a warning display unit 47 displays a warning that a combustible gas mass has been detected.

ここで、希釈用ガスは、不活性ガスまたは水蒸気を使用することができるが、ここでは窒素ガスが好適である。これは、窒素ガスの吸収波長は可燃性ガスの吸収波長の赤外線A-IRと異なるため、ファレンス波長の赤外線R-IRに影響を与えることがないためであり、ガス検出判断部34において、窒素ガスによって可燃性ガス塊の濃度が十分に希釈されたことを確認することができるためである。これによりガス検出判断部34で可燃性ガス塊の希釈を確認後に、破砕機10を安全に再起動することができる。他の不活性ガスや水蒸気では、可燃性ガスの吸収波長の赤外線A-IRとファレンス波長の赤外線R-IRの計測に悪影響を与える恐れがある。なお、アルゴンガスArは、吸収波長の赤外線A-IRとファレンス波長の赤外線R-IRに影響を与えることがないが、高価でランニングコストが嵩むため希釈用ガスに適さない。   Here, an inert gas or water vapor can be used as the dilution gas, but nitrogen gas is preferred here. This is because the absorption wavelength of nitrogen gas is different from the infrared A-IR of the absorption wavelength of the flammable gas, and therefore does not affect the infrared R-IR of the reference wavelength. This is because it can be confirmed that the concentration of the combustible gas mass is sufficiently diluted by the gas. Thereby, the crusher 10 can be restarted safely after the gas detection judgment part 34 confirms the dilution of the combustible gas mass. Other inert gases and water vapor may adversely affect the measurement of infrared A-IR at the absorption wavelength of combustible gas and infrared R-IR at the reference wavelength. Argon gas Ar does not affect the infrared wavelength A-IR of the absorption wavelength and the infrared wavelength R-IR of the reference wavelength, but is not suitable for a dilution gas because it is expensive and increases the running cost.

上記実施例1の可燃性ガス検出装置31によれば、可燃性ガスの吸収波長とリファレンス波長の赤外線A-IR,R-IRの放射強度を検出して互いに比較し、吸収波長の赤外線A-IRがリファレンス波長の赤外線R-IRより減衰され、互いの放射強度差(比率)が大きくなった時に空間部28に可燃性ガス塊が発生したと判断する。また、吸収波長とリファレンス波長の赤外線A-IR,R-IRの放射強度(比率)がそれぞれ略同一で減衰されない時に空間部28に介在物がないと判断し、さらに吸収波長とリファレンス波長の赤外線A-IR,R-IRの放射強度がそれぞれ略同一に減衰されかつ減衰が小さい時に空間部28に粉塵が存在すると判断し、減衰が極めて大きい時に被破砕物が存在すると判断する。これにより、破砕機の空間部28で被破砕物と粉塵と可燃性ガスとが混在することがあっても、可燃性ガス塊を精度良く判別して検出することができる。   According to the combustible gas detection device 31 of the first embodiment, the absorption wavelength of the combustible gas and the infrared radiation A-IR, R-IR of the reference wavelength are detected and compared with each other, and the infrared light A- of the absorption wavelength is compared. When the IR is attenuated from the infrared R-IR of the reference wavelength and the difference (ratio) between the radiant intensities increases, it is determined that a flammable gas mass is generated in the space 28. Further, it is determined that there is no inclusion in the space portion 28 when the radiation intensity (ratio) of the infrared rays A-IR and R-IR of the absorption wavelength and the reference wavelength is substantially the same and is not attenuated, and further, the infrared rays of the absorption wavelength and the reference wavelength When the radiant intensity of A-IR and R-IR is attenuated substantially the same and the attenuation is small, it is determined that dust is present in the space portion 28, and when the attenuation is extremely large, it is determined that the object to be crushed exists. Thereby, even if a to-be-crushed object, dust, and combustible gas may coexist in the space part 28 of a crusher, a combustible gas lump can be discriminate | determined and detected accurately.

また赤外線の光軸IRを格子状に配置することにより、検出された赤外線投・受光器32,33の光軸IRに基づいてその交差位置から可燃性ガス塊の発生位置を特定することができる。これにより可燃性ガス塊に対する希釈を迅速かつ効果的に行うことができる。   Further, by arranging the infrared optical axis IR in a grid pattern, the generation position of the combustible gas mass can be specified from the crossing position based on the detected optical axis IR of the infrared projector / receiver 32, 33. . Thereby, dilution with respect to a combustible gas lump can be performed rapidly and effectively.

さらに防爆装置41によれば、略同一平面上で格子状に配置された赤外線の光軸IRにおいて、可燃性ガスを検出した光軸IRの交差位置に存在する可燃性ガス塊に向かって、選択された防爆用ガスノズル42から希釈用ガスを噴射することができる。したがって、少ない量の希釈用ガスにより、効果的かつ迅速に可燃性ガス塊を希釈することができ、可燃性ガスの着火や燃焼、爆発を未然に防止することができる。   Further, according to the explosion-proof device 41, in the infrared optical axis IR arranged in a lattice pattern on substantially the same plane, it is selected toward the combustible gas mass existing at the intersection of the optical axis IR where the combustible gas is detected. The dilution gas can be injected from the explosion-proof gas nozzle 42. Therefore, the flammable gas lump can be effectively and quickly diluted with a small amount of dilution gas, and ignition, combustion, and explosion of the flammable gas can be prevented in advance.

さらにまた、気流が滞留しやすい破砕用回転体であるロータ25やノッカ23の被破砕物投入口側近傍の略平面上に、赤外線の光軸IRを交差状に配置することにより、可燃性ガス塊を精度良く検出することができ、少ない量の希釈用ガスにより効果的に可燃性ガスを希釈することができる。   Furthermore, by arranging the infrared optical axes IR in a crossing manner on a substantially flat surface in the vicinity of the object to be crushed inlet of the rotor 25 and knocker 23 which are rotators for crushing in which airflow tends to stay, combustible gas The lump can be detected with high accuracy, and the combustible gas can be effectively diluted with a small amount of dilution gas.

なお、実施例1では、基台フレーム11に破砕機本体13と駆動モータ12と並列配置したが、駆動軸15の上端部に駆動モータ12を取り付けて、破砕機本体13と駆動モータ12を一体とした構造であってもよい。
[実施例2]
本発明に係る可燃性ガス検出装置を備えた防爆装置を有する二軸式横型破砕機を、図6および図7を参照して説明する。なお、実施例1と同一部材には同一符号を付して説明を省略する。
In the first embodiment, the crusher body 13 and the drive motor 12 are arranged in parallel on the base frame 11, but the drive motor 12 is attached to the upper end of the drive shaft 15 so that the crusher body 13 and the drive motor 12 are integrated. The structure may be as follows.
[Example 2]
A biaxial horizontal crusher having an explosion-proof device equipped with a combustible gas detection device according to the present invention will be described with reference to FIGS. 6 and 7. Note that the same members as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted.

この破砕機50は、実施例1の一軸式竪型破砕機に比較して小型のもので、ケーシング54内に、互いに平行な駆動軸51R,51Lに複数枚の破砕刃52R,52Lがそれぞれ取り付けられている。そして、図示しない駆動モータにより、駆動軸51R,51Lが破砕刃52R,52Lが中央上部で噛み合う相対方向に回転駆動される。またケーシング54には、破砕刃52R,52Lにそれぞれ噛み合う固定刃 53が設けられている。   The crusher 50 is smaller than the single-shaft vertical crusher of the first embodiment, and a plurality of crushing blades 52R and 52L are attached to drive shafts 51R and 51L, which are parallel to each other, in the casing 54, respectively. It has been. And drive shaft 51R, 51L is rotationally driven by the drive motor which is not shown in the relative direction which crushing blade 52R, 52L meshes in the center upper part. The casing 54 is provided with fixed blades 53 that mesh with the crushing blades 52R and 52L, respectively.

この破砕機50では、ケーシング54上方に被破砕物投入口55が開口されるとともに、ケーシング54下方に破砕物排出口56が開口されている。そして排出口56を負圧として被破砕物の投入口55から排出口56に向かって気流が形成されている。気流が滞留しやすい破砕刃52R,52Lの下方の空間部28で、略水平面上に赤外線の光軸IRをそれぞれ交差する配置するように、赤外線投光器32と赤外線受光器33がケーシング54に設置されている。もちろん、仮想線で示すように、破砕刃52R,52Lの上方の空間部で、略水平面上に赤外線の光軸IRをそれぞれ交差する配置するように赤外線投・受光器32,33を配置してもよい。また、破砕刃52R,52Lの上方と下方の空間部に赤外線投・受光器32,33をそれぞれ配置することもできる。   In this crusher 50, a crushing object input port 55 is opened above the casing 54, and a crushing material discharge port 56 is opened below the casing 54. And the airflow is formed toward the discharge port 56 from the input port 55 of the to-be-crushed object by making the discharge port 56 into a negative pressure. The infrared projector 32 and the infrared receiver 33 are installed in the casing 54 so that the infrared optical axis IR intersects the substantially horizontal plane in the space portion 28 below the crushing blades 52R and 52L where the airflow tends to stay. ing. Of course, as shown by the phantom lines, the infrared projectors / receivers 32, 33 are arranged in the space above the crushing blades 52R, 52L so that the infrared optical axes IR intersect each other on a substantially horizontal plane. Also good. In addition, infrared projectors / receivers 32 and 33 can be disposed in the space above and below the crushing blades 52R and 52L, respectively.

その他の可燃性ガス検出装置および防爆装置は同一に構成され、実施例1と同様の作用効果を奏することができる。
[可燃性ガス検出装置の他の実施例]
実施例1,2の赤外線受光器33では、波長選択フィルタ35A,35Rを用いたが、図8に示すように、可燃性ガスの吸収波長の赤外線A−IRを照射するLEDまたは半導体レーザ62Aと、可燃性ガスのリファレンス波長の赤外線R−IRを照射するLEDまたは半導体レーザ62Rと、からなる赤外線投光器62としてもよい。この場合、赤外線受光器63は、吸収波長の赤外線A−IRを受光する吸収波長受光素子63Aと、リファレンス波長の赤外線R−IRを受光するリファレンス波長受光素子63Rとで構成される。なお、LEDまたは半導体レーザなどは、狭い波長の赤外線が発生されるので、複数種類の可燃性ガスに対応する場合、必要に応じて複数の吸収波長の赤外線A−IRや複数のリファレンス波長の赤外線R−IRを投、受光するように赤外線投・受光器を構成してもよい。
The other combustible gas detection device and the explosion-proof device are configured in the same manner, and the same effects as those of the first embodiment can be achieved.
[Other Examples of Combustible Gas Detection Device]
In the infrared receivers 33 of the first and second embodiments, the wavelength selection filters 35A and 35R are used. As shown in FIG. 8, an LED or semiconductor laser 62A that emits infrared A-IR having an absorption wavelength of a combustible gas is used. The infrared projector 62 may include an LED or a semiconductor laser 62R that emits infrared R-IR having a reference wavelength of a combustible gas. In this case, the infrared light receiver 63 includes an absorption wavelength light receiving element 63A that receives infrared light A-IR having an absorption wavelength and a reference wavelength light receiving element 63R that receives infrared light R-IR having a reference wavelength. Since LEDs or semiconductor lasers generate infrared light with a narrow wavelength, when supporting a plurality of types of flammable gases, infrared A-IR with a plurality of absorption wavelengths and infrared light with a plurality of reference wavelengths are necessary. The infrared projector / receiver may be configured to emit and receive R-IR.

IR 赤外線
A−IR 吸収波長の赤外線
R−IR リファレンス波長の赤外線
10 破砕機
15 駆動軸
20 ケーシング
21 被破砕物投入口
22 破砕物排出口
23 ノッカ(破砕用回転体)
24 グラインダ(破砕用回転体)
25 ロータ(破砕用回転体)
26 スイーパ(破砕用回転体)
27 シェルライナ
28 空間部
31 可燃性ガス検出装置
32 赤外線投光器
33A,33R 赤外線受光器
34 ガス検出判断部
35A,35R 波長選択フィルタ
41 防爆装置
42 防爆用ガスノズル
43 防爆制御部
IR Infrared A-IR Absorbing Wavelength Infrared R-IR Reference Wavelength Infrared 10 Crusher 15 Drive Shaft 20 Casing 21 Fracture Input Port 22 Fracture Discharge Port 23 Knocker (Rotating Body for Crushing)
24 Grinder (Rotating body for crushing)
25 Rotor (Rotating body for crushing)
26 Sweeper (Rotating body for crushing)
27 Shell liner 28 Space 31 Flammable gas detector 32 Infrared projector 33A, 33R Infrared receiver 34 Gas detection determination unit 35A, 35R Wavelength selection filter 41 Explosion-proof device 42 Explosion-proof gas nozzle 43 Explosion-proof control unit

Claims (5)

投光器 から可燃性ガスにおける吸収波長とリファレンス波長を含む赤外線を破砕機内の空間部に照射して受光器で受光する破砕機の可燃性ガス検出方法であって、
吸収波長の赤外線の放射強度 がリファレンス波長の赤外線の放射強度より減衰された時に、空間部に可燃性ガス塊が存在すると判断し、
吸収波長の赤外線の放射強度とリファレンス波長の赤外線の放射強度がそれぞれ減衰されず略同一の時に、空間部に介在物がないと判断し、
吸収波長の赤外線の放射強度とリファレンス波長の赤外線の放射強度が略同一程度に減衰され、減衰が小さい時に空間部に粉塵が存在し、減衰が大きい時に空間部に被破砕物が存在すると判断する
ことを特徴とする破砕機の可燃性ガス検出方法。
A method for detecting a combustible gas in a crusher that irradiates a space inside a crusher with infrared light including an absorption wavelength and a reference wavelength in a combustible gas from a projector and receives the light with a light receiver.
When the infrared radiation intensity at the absorption wavelength is attenuated from the infrared radiation intensity at the reference wavelength, it is determined that there is a flammable gas mass in the space,
When the infrared radiation intensity of the absorption wavelength and the infrared radiation intensity of the reference wavelength are not attenuated and are substantially the same, it is determined that there is no inclusion in the space,
The infrared radiation intensity of the absorption wavelength and the infrared radiation intensity of the reference wavelength are attenuated to approximately the same level. When the attenuation is small, dust is present in the space portion. The combustible gas detection method of the crusher characterized by the above-mentioned.
赤外線の複数の光軸を、略同一平面上でかつ格子状に形成し、
可燃性ガス塊が検出された光軸の交差位置から、可燃性ガス塊の存在位置を特定する
ことを特徴とする請求項1記載の破砕機の可燃性ガス検出方法。
A plurality of infrared optical axes are formed in a lattice shape on substantially the same plane,
The method for detecting a combustible gas in a crusher according to claim 1, wherein the position where the combustible gas mass is present is specified from the crossing position of the optical axes where the combustible gas mass is detected.
破砕機に設けられてケーシング内から空間部に、可燃性ガスにおける吸収波長とリファレンス波長を含む赤外線を照射する投光器と、
前記ケーシングに設けられて吸収波長の赤外線とリファレンス波長の赤外線をそれぞれ受光する受光器と、
投光器と受光器の間で略同一平面上で、かつ格子状に配置された複数の赤外線の光軸と、
前記ケーシングに設けられて可燃性ガス塊を希釈する希釈用ガスを噴射する複数の防爆用ガスノズルと、
受光器で受光した吸収波長の赤外線の放射強度とリファレンス波長の赤外線の放射強度に基づいて可燃性ガス塊を検出するとともに、赤外線の光軸の交差位置から可燃性ガス塊の位置を判断するガス検出判断部と、
ガス検出判断部で可燃性ガス塊を検出した時に、可燃性ガス塊の位置に対応する防爆ガスノズルを選択し、選択された防爆ガスノズルから前記空間部の可燃性ガス塊に向かって希釈用ガスを噴射する防爆制御部と、具備した
ことを特徴とする破砕機の防爆装置。
A projector that is provided in the crusher and irradiates the space part from the inside of the casing with infrared rays including an absorption wavelength and a reference wavelength in the combustible gas,
A light receiver that is provided in the casing and receives each of infrared rays having an absorption wavelength and infrared rays having a reference wavelength;
A plurality of infrared optical axes arranged in a grid pattern on the substantially same plane between the projector and the receiver;
A plurality of explosion-proof gas nozzles for injecting a dilution gas for diluting the combustible gas mass provided in the casing;
Gas that detects the flammable gas mass based on the infrared radiation intensity of the absorption wavelength received by the light receiver and the infrared radiation intensity of the reference wavelength, and determines the position of the flammable gas mass from the crossing position of the infrared optical axis A detection determination unit;
When the gas detection judgment unit detects the flammable gas mass, the explosion proof gas nozzle corresponding to the position of the flammable gas mass is selected, and the dilution gas is supplied from the selected explosion proof gas nozzle toward the flammable gas mass in the space. An explosion-proof control unit for spraying, and an explosion-proof device for a crusher.
光軸を含む略平面が、破砕用回転体の被破砕物投入口側近傍および破砕物排出口側近傍の少なくとも一方に配置された
ことを特徴とする請求項3記載の破砕機の防爆装置。
4. The explosion-proof device for a crusher according to claim 3, wherein a substantially flat surface including the optical axis is arranged in at least one of the vicinity of the crushing material inlet side and the crushing material outlet side of the crushing rotating body.
希釈用ガスが窒素ガスであり、
防爆判断部は、ガス検出判断部で可燃性ガス塊を検出した時に破砕機を停止し、可燃性ガス塊が希釈された時に再起動する
ことを特徴とする請求項3または4記載の破砕機の防爆装置。
The dilution gas is nitrogen gas,
5. The crusher according to claim 3 or 4, wherein the explosion-proof judgment unit stops the crusher when the gas detection judgment unit detects the combustible gas mass, and restarts when the combustible gas mass is diluted. Explosion-proof device.
JP2015071726A 2015-03-31 2015-03-31 Method for detecting combustible gas in crusher and explosion-proof device for crusher Active JP6456218B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015071726A JP6456218B2 (en) 2015-03-31 2015-03-31 Method for detecting combustible gas in crusher and explosion-proof device for crusher

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015071726A JP6456218B2 (en) 2015-03-31 2015-03-31 Method for detecting combustible gas in crusher and explosion-proof device for crusher

Publications (2)

Publication Number Publication Date
JP2016191622A JP2016191622A (en) 2016-11-10
JP6456218B2 true JP6456218B2 (en) 2019-01-23

Family

ID=57245466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015071726A Active JP6456218B2 (en) 2015-03-31 2015-03-31 Method for detecting combustible gas in crusher and explosion-proof device for crusher

Country Status (1)

Country Link
JP (1) JP6456218B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109999988A (en) * 2019-05-17 2019-07-12 中冶北方(大连)工程技术有限公司 High pressure roller stud detection device and detection method
CN113210083B (en) * 2021-05-12 2022-06-10 威海职业学院(威海市技术学院) Fine grinding equipment

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4467674B2 (en) * 1999-08-31 2010-05-26 三菱重工業株式会社 Gas concentration measuring device
JP4737838B2 (en) * 2001-01-09 2011-08-03 三菱電機株式会社 Explosion-proof crusher
JP3756459B2 (en) * 2002-03-28 2006-03-15 株式会社タクマ Deodorization system and deodorization method
JP3861059B2 (en) * 2003-01-17 2006-12-20 三菱重工業株式会社 Gas concentration monitoring system
JP2006220625A (en) * 2005-02-14 2006-08-24 Denso Corp Infrared gas detector
JP4436382B2 (en) * 2007-03-23 2010-03-24 メタウォーター株式会社 Crushing system

Also Published As

Publication number Publication date
JP2016191622A (en) 2016-11-10

Similar Documents

Publication Publication Date Title
CN1211764C (en) Improvements relating to smoke detectors particularly ducted smoke detectors
CN101920083B (en) Self-extinguishing fire monitor and method for fire disaster detection and locating
JP5540085B2 (en) Gas detector
JPH08509563A (en) Smoke detector sensitivity test device
US8947249B1 (en) Apparatus and method for conducting hot work
JP6456218B2 (en) Method for detecting combustible gas in crusher and explosion-proof device for crusher
KR101851683B1 (en) Test system for combustion with high heating value
JPH02501282A (en) Inertial and fire extinguishing system for coal crusher
JPH06288858A (en) Gas visualizer
WO2011022157A2 (en) Burner monitor and control
JP6024925B2 (en) Dust collector and fire detection method in dust collector
BRPI1010448A2 (en) burner monitoring burner tower pilots
CN105823754A (en) Gas detection method and apparatus
JP6020104B2 (en) Fire protection equipment for bulky waste treatment facilities
JP6068504B2 (en) Apparatus and method for obtaining measurement data relating to gases and / or aerosols used in driven machines
Zhou et al. Experimental investigation on unconfined hydrogen explosion with different ignition height
JP2006308030A (en) Gas leak detector and gas filling device using the same
JP3144884U (en) Hydrogen gas leak detector at hydrogen storage station
KR101774145B1 (en) Gas leakage sensing apparatus
US20190168048A1 (en) Jet fuel fire simulator
KR101786507B1 (en) Portable mock―up flame generating device for fire detector checking
JP2006223328A (en) Fire extinguishing system of waste product-crushing treatment facility
CN106918533B (en) Measuring device for extinction scattering characteristics of smoke particles under low pressure
JP5333242B2 (en) Flame atomic absorption spectrophotometer
KR101450302B1 (en) automatic detection system of the dust leakage

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181218

R150 Certificate of patent or registration of utility model

Ref document number: 6456218

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250