JP6454203B2 - Energization control device, self-propelled vehicle, and energization control method - Google Patents

Energization control device, self-propelled vehicle, and energization control method Download PDF

Info

Publication number
JP6454203B2
JP6454203B2 JP2015065156A JP2015065156A JP6454203B2 JP 6454203 B2 JP6454203 B2 JP 6454203B2 JP 2015065156 A JP2015065156 A JP 2015065156A JP 2015065156 A JP2015065156 A JP 2015065156A JP 6454203 B2 JP6454203 B2 JP 6454203B2
Authority
JP
Japan
Prior art keywords
command value
energization
storage battery
time
continuous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015065156A
Other languages
Japanese (ja)
Other versions
JP2016185048A (en
Inventor
義晃 田口
義晃 田口
小笠 正道
正道 小笠
悟志 門脇
悟志 門脇
真幸 三木
真幸 三木
篤人 寺田
篤人 寺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP2015065156A priority Critical patent/JP6454203B2/en
Publication of JP2016185048A publication Critical patent/JP2016185048A/en
Application granted granted Critical
Publication of JP6454203B2 publication Critical patent/JP6454203B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、蓄電池を連続して充電又は放電させる制御に関する。   The present invention relates to control for continuously charging or discharging a storage battery.

蓄電池の劣化を抑え、蓄電池を安全かつ長寿命に使用するには、蓄電池を充電又は放電(以下包括して「通電」という)する際の温度上昇を抑制する必要がある。蓄電池の通常の使用温度範囲では、温度と内部抵抗との間に、温度上昇に従って内部抵抗が低下する相関がみられる。そのため、温度上昇を抑制するための通電制御において重要な指標となり得るのが、蓄電池の内部抵抗である。   In order to suppress deterioration of the storage battery and use the storage battery safely and with a long life, it is necessary to suppress an increase in temperature when the storage battery is charged or discharged (hereinafter collectively referred to as “energization”). In the normal operating temperature range of the storage battery, there is a correlation between the temperature and the internal resistance in which the internal resistance decreases as the temperature increases. Therefore, the internal resistance of the storage battery can be an important index in energization control for suppressing temperature rise.

内部抵抗は、蓄電池の通電に係る電流及び電圧を変化させることで正確に測定できる。しかし、内部抵抗は種々の要因で動的に変化する。したがって、充電又は放電中に蓄電池の内部抵抗を知りたい場合には、充電又は放電を一時中断して、通電電流及び通電電圧を内部抵抗測定用に変化させる必要がある。ただし、充電又は放電を再開すると、内部抵抗が変化し得るため、充電又は放電中にリアルタイムに内部抵抗を測定し続けることは困難である。   The internal resistance can be accurately measured by changing the current and voltage related to the energization of the storage battery. However, the internal resistance changes dynamically due to various factors. Therefore, when it is desired to know the internal resistance of the storage battery during charging or discharging, it is necessary to temporarily stop charging or discharging and change the energization current and energization voltage for measuring the internal resistance. However, when charging or discharging is resumed, the internal resistance may change, so it is difficult to continue measuring the internal resistance in real time during charging or discharging.

そこで、内部抵抗を推定する技術が要求される。例えば、特許文献1には、内部抵抗と継続時間とSOC(State Of Charge)と温度との関係を全て示した内部抵抗マップを用いて、現在の蓄電池の使用状態から内部抵抗を推定する技術が開示されている。   Therefore, a technique for estimating the internal resistance is required. For example, Patent Document 1 discloses a technique for estimating the internal resistance from the current use state of the storage battery using an internal resistance map that shows all the relationships among the internal resistance, the duration, the SOC (State Of Charge), and the temperature. It is disclosed.

また、特許文献2には、通電前に測定した内部抵抗から通電中の蓄電池の温度遷移を推定して、通電の計画を立案する技術が開示されている。   Patent Document 2 discloses a technique for estimating a temperature transition of an energized storage battery from an internal resistance measured before energization to make a plan for energization.

特開2013−101884号公報JP 2013-101484 A 特開2013−106476号公報JP 2013-106476 A

例えば、蓄電池を使用していない深夜の時間帯に十分な時間をかけて満充電にする場合には、充電電流を低くすれば蓄電池の内部発熱量を低くすることができるため、簡単に温度上昇を抑えることができる。しかし、限られた時間内に所定の充電量(充電率上昇や充電電力量のこと)を目指すといった、通電時間と充電量の両方を目標とする場面において、温度上昇を抑えた通電で当該目標を達成しようとする場合、単に充電電流を低くするだけでは実現できない。内部発熱量が大きいため、放熱を上回る内部発熱が生じ、蓄電池の内部温度が上昇するからである。   For example, when a sufficient amount of time is spent in the midnight hours when the storage battery is not used, the internal heat generation amount of the storage battery can be reduced by lowering the charging current, so the temperature rises easily. Can be suppressed. However, in a situation where both the energization time and the charge amount are targeted, such as aiming for a predetermined charge amount (charge rate increase or charge power amount) within a limited time, the target is achieved by energizing with the temperature rise suppressed. In order to achieve this, it cannot be realized simply by reducing the charging current. This is because the internal heat generation amount is large, so that internal heat generation exceeding heat dissipation occurs, and the internal temperature of the storage battery rises.

なお、充電量又は放電量を包括した用語として「充放電量」を用いる。「充電量」とは蓄電池の充電率上昇幅や充電電力量のことであり、「放電量」とは蓄電池の充電率減少幅や放電電力量のことである。以下同じ意味で同用語を使用する。   Note that “charge / discharge amount” is used as a term encompassing the charge amount or the discharge amount. “Charge amount” refers to the increase rate of charge rate and charge power amount of the storage battery, and “discharge amount” refers to the decrease rate of charge rate and discharge power amount of the storage battery. Hereinafter, the same terms are used with the same meaning.

また、特許文献1の技術を用いることで内部抵抗を随時推定することはできるが、特許文献1の技術は、通電時間と充放電量の両方を目標とし、且つ、蓄電池の内部発熱量を抑制した通電制御を実現する技術ではない。   Moreover, although internal resistance can be estimated at any time using the technique of patent document 1, the technique of patent document 1 aims at both energization time and charge / discharge amount, and suppresses the internal heat generation amount of a storage battery. It is not a technology to realize the energization control.

また、特許文献2の技術は、負荷が最も小さくなる通電計画案を繰り返し計算で求める技術であるため、通電時間と充放電量の両方を満たす通電計画が得られない場合には繰り返し計算がいわば永久ループとなってしまい、計画を作成することができないと思われる。   In addition, since the technique of Patent Document 2 is a technique for repeatedly obtaining an energization plan with the smallest load, if the energization plan that satisfies both the energization time and the charge / discharge amount cannot be obtained, iterative calculation may be said. It seems that it becomes an endless loop and the plan cannot be made.

本発明は上述した課題に鑑みて考案されたものであり、その目的とするところは、通電時間と充放電量の両方を目標とする通電制御を行う場合に内部発熱量を抑制することができる新たな通電制御を実現する技術を提案することである。   The present invention has been devised in view of the above-described problems, and the object of the present invention is to suppress the internal heat generation amount when conducting energization control that targets both energization time and charge / discharge amount. It is to propose a technology for realizing new energization control.

以上の課題を解決するための第1の発明は、温度上昇に応じて蓄電池の内部抵抗が低下する所定の温度範囲において、所与の時間の間、所与の電流指令値又は電流値(以下包括して「指令値」という)に基づく定電流制御によって当該蓄電池を連続して充電又は放電(以下包括して「通電」という)させる制御を行う通電制御装置であって、
連続通電時間及び目標充放電量を少なくとも含む通電目標条件に基づいて、一定電流で連続通電した場合に前記通電目標条件を満たすための当該一定電流の指令値(以下この指令値を「基準指令値」という)を決定する基準指令値決定手段と、
通電開始時に前記基準指令値より低い指令値とし、時間経過に応じて指令値を単調増加させ、前記連続通電時間経過時に前記基準指令値より高い指令値とするように指令値を定めて前記連続通電時間にわたる連続通電制御を行う連続通電制御手段と、
を備えた通電制御装置である。
According to a first invention for solving the above-described problems, a given current command value or a current value (hereinafter referred to as a predetermined current range) in a predetermined temperature range in which the internal resistance of the storage battery decreases in response to a temperature rise. An energization control device that performs control to continuously charge or discharge the storage battery (hereinafter collectively referred to as “energization”) by constant current control based on “command value”.
Based on the energization target condition including at least the continuous energization time and the target charge / discharge amount, the command value of the constant current for satisfying the energization target condition when continuously energized with a constant current (hereinafter, this command value is referred to as “reference command value”). A reference command value determining means for determining
The command value is set to be lower than the reference command value at the start of energization, the command value is monotonously increased as time elapses, and the command value is set to be higher than the reference command value when the continuous energization time elapses. Continuous energization control means for performing continuous energization control over energization time;
It is the electricity supply control apparatus provided with.

また、他の発明として、
温度上昇に応じて蓄電池の内部抵抗が低下する所定の温度範囲において、所与の時間の間、所与の電流指令値又は電流値(以下包括して「指令値」という)に基づく定電流制御によって当該蓄電池を連続して充電又は放電(以下包括して「通電」という)させる制御を行うための通電制御方法であって、
連続通電時間及び目標充放電量を少なくとも含む通電目標条件に基づいて、一定電流で連続通電した場合に前記通電目標条件を満たすための当該一定電流の指令値(以下この指令値を「基準指令値」という)を決定することと、
通電開始時に前記基準指令値より低い指令値とし、時間経過に応じて指令値を単調増加させ、前記連続通電時間経過時に前記基準指令値より高い指令値とするように指令値を定めて前記連続通電時間にわたる連続通電制御を行うことと、
を含む通電制御方法を構成することとしてもよい。
As another invention,
Constant current control based on a given current command value or current value (hereinafter collectively referred to as “command value”) for a given time in a predetermined temperature range where the internal resistance of the storage battery decreases as the temperature rises Is an energization control method for performing control to continuously charge or discharge the storage battery (hereinafter collectively referred to as “energization”),
Based on the energization target condition including at least the continuous energization time and the target charge / discharge amount, the command value of the constant current for satisfying the energization target condition when continuously energized with a constant current (hereinafter, this command value is referred to as “reference command value”). ”), And
The command value is set to be lower than the reference command value at the start of energization, the command value is monotonously increased as time elapses, and the command value is set to be higher than the reference command value when the continuous energization time elapses. Performing continuous energization control over the energization time;
It is good also as comprising the electricity supply control method containing these.

第1の発明等によれば、連続通電時間及び目標充放電量を少なくとも含む通電目標条件に基づいて、一定電流で連続通電した場合に通電目標条件を満たすための当該一定電流の基準指令値を決定する。従って、通電時間と目標充放電量の両方を満たすための基準指令値を決定することができる。但し、基準指令値に応じた一定電流の通電制御では、蓄電池の内部発熱量は従来のままである。   According to the first invention and the like, the reference command value for the constant current for satisfying the energization target condition when the energization target condition includes at least the continuous energization time and the target charge / discharge amount is continuously energized. decide. Therefore, the reference command value for satisfying both the energization time and the target charge / discharge amount can be determined. However, in the energization control with a constant current according to the reference command value, the internal heat generation amount of the storage battery remains the same as before.

そこで、第1の発明等では、通電開始時に基準指令値より低い指令値とし、時間経過に応じて指令値を単調増加させ、連続通電時間経過時に基準指令値より高い指令値とするように連続通電時間にわたる連続通電制御を行う。これにより、通電時間と充放電量の両方を目標とする通電制御であって、蓄電池の内部発熱量を抑えることによって温度上昇の抑制が期待される通電制御を実現することができる。   Therefore, in the first invention, the command value is lower than the reference command value at the start of energization, the command value is monotonously increased as time elapses, and the command value is continuously higher than the reference command value when the continuous energization time elapses. Perform continuous energization control over the energization time. Thereby, it is energization control aiming at both energization time and charge-and-discharge amount, Comprising: Energization control by which suppression of a temperature rise is anticipated by suppressing internal calorific value of a storage battery is realizable.

また、第2の発明は、
前記蓄電池の内部抵抗を測定する測定手段と、
前記連続通電制御手段による通電前の前記内部抵抗と、前記基準指令値と、前記連続通電時間とを用いて、前記基準指令値にもとづく前記連続通電時間の通電をした場合の前記連続通電時間経過時の前記蓄電池の内部抵抗を予測する予測手段と、
を備え、
前記連続通電制御手段は、前記通電前の内部抵抗と前記予測した内部抵抗とを用いて連続通電の開始時の指令値および前記連続通電時間経過時の指令値を定めて、前記連続通電制御を行う、
第1の発明の通電制御装置である。
In addition, the second invention,
Measuring means for measuring the internal resistance of the storage battery;
Elapsed continuous energization time when energizing the continuous energization time based on the reference command value using the internal resistance before energization by the continuous energization control means, the reference command value, and the continuous energization time Predicting means for predicting the internal resistance of the storage battery at the time,
With
The continuous energization control means uses the internal resistance before energization and the predicted internal resistance to determine a command value at the start of continuous energization and a command value when the continuous energization time has elapsed, and performs the continuous energization control. Do,
It is an electricity supply control device of the 1st invention.

この第2の発明によれば、蓄電池の内部抵抗に適した連続通電制御を実現することができる。   According to the second aspect of the invention, continuous energization control suitable for the internal resistance of the storage battery can be realized.

また、第3の発明は、前記連続通電時間が、30秒以上15分以下である、第1又は第2の発明の通電制御装置である。   Moreover, 3rd invention is the electricity supply control apparatus of 1st or 2nd invention whose said continuous electricity supply time is 30 second or more and 15 minutes or less.

この第3の発明によれば、30秒以上15分以下の連続通電に適した通電制御を実現することができる。   According to the third aspect of the invention, energization control suitable for continuous energization for 30 seconds or more and 15 minutes or less can be realized.

また、第4の発明は、
前記蓄電池は、当該蓄電池の蓄電電力を用いて電動機を駆動して自走する自走式車両に搭載され、
前記自走式車両が所定の停止位置に停止中に、前記連続通電制御手段が、前記自走式車両の外部からの供給電力に基づいて前記蓄電池への充電を制御する第1〜第3の何れかの発明の通電制御装置である。
In addition, the fourth invention is
The storage battery is mounted on a self-propelled vehicle that self-runs by driving an electric motor using stored power of the storage battery,
While the self-propelled vehicle is stopped at a predetermined stop position, the continuous energization control means controls the charging of the storage battery based on the supplied power from the outside of the self-propelled vehicle. It is an electricity supply control device of any invention.

また、第5の発明は、前記蓄電池と第4の発明の通電制御装置とを備えた自走式車両である。   Moreover, 5th invention is a self-propelled vehicle provided with the said storage battery and the electricity supply control apparatus of 4th invention.

この第4又は第5の発明によれば、電動機を駆動して自走する自走式車両が所定の停止位置に停止中に、第1〜第3の何れかの発明を適用して、当該自走式車両に搭載された蓄電池を充電することができる。   According to the fourth or fifth aspect of the invention, when the self-propelled vehicle that drives the electric motor and is self-propelled is stopped at the predetermined stop position, the first to third aspects of the invention are applied, A storage battery mounted on a self-propelled vehicle can be charged.

一定の定電流で蓄電池を充電する場合の通電制御の一例を示す図。The figure which shows an example of the electricity supply control in the case of charging a storage battery with a fixed constant current. 理想的な通電制御の例を示す図。The figure which shows the example of ideal electricity supply control. 本実施形態の通電指令値生成部の機能構成の一例を示す図。The figure which shows an example of a function structure of the electricity supply command value production | generation part of this embodiment. 指令値の生成手順を説明するための図。The figure for demonstrating the production | generation procedure of command value. 通電指令値生成部を適用した一実施例を示す図。The figure which shows one Example to which the electricity supply command value production | generation part is applied.

以下、図面を参照して本発明の実施形態を説明する。但し、本発明の適用可能な実施形態が以下の実施形態に限定されるものではない。
以下説明中の用語であるが、蓄電池の「通電」とは充電又は放電のことである。また、充電又は放電のことを適宜「充放電」とも称する。また、「充電量」とは蓄電池の充電率(SOC:State Of Charge)上昇幅や充電電力量を包括した用語であり、「放電量」とは蓄電池の充電率減少幅や放電電力量を包括した用語である。充電量及び放電量を包括して「充放電量」と称する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the applicable embodiments of the present invention are not limited to the following embodiments.
Although it is a term in the following description, “energization” of the storage battery means charging or discharging. Further, charging or discharging is also referred to as “charging / discharging” as appropriate. “Charge amount” is a term that covers the increase in the state of charge (SOC) of the storage battery and the amount of charge power, and “discharge amount” includes the decrease rate of the charge rate of the storage battery and the amount of discharge power. Is the term. The charge amount and discharge amount are collectively referred to as “charge / discharge amount”.

1.原理
蓄電池の通電の一例として充電の場合を例に挙げて、本実施形態の原理を説明する。放電の場合も同様の原理が適用できる。
蓄電池の充放電は通常、定電流制御が用いられる。蓄電池を一定時間連続して充電する場合には、通電時間中、一定の定電流で充電する方法が考えられる。図1(1)は、この場合の充電電流iおよび蓄電池の内部抵抗Rの時間変化の様子を示し、図1(2)は、蓄積電荷qの様子を示している。
1. Principle The principle of this embodiment will be described by taking the case of charging as an example of energization of a storage battery. The same principle can be applied to discharge.
Constant current control is usually used for charging and discharging the storage battery. In the case where the storage battery is continuously charged for a certain period of time, a method of charging with a constant constant current during the energization time can be considered. FIG. 1 (1) shows the time change of the charging current i and the internal resistance R of the storage battery in this case, and FIG. 1 (2) shows the state of the stored charge q.

図1(1)および図1(2)によれば、通電時間中、充電電流iが一定であるため、電荷が一定割合で蓄積される。
充電を開始してから終了するまでの連続通電時間Tの間に蓄積される電荷qは、蓄電池容量Qに対する充電率SOCの変動幅ΔSOCとなって表れる。従って、連続通電時間Tと、充電によって蓄電池の充電率を上昇させたい目標とする充電率の要求変動幅ΔSOCとが事前に与えられれば、それらの条件を満たすための一定の定電流iを求めることができる。
According to FIG. 1 (1) and FIG. 1 (2), since the charging current i is constant during the energization time, charges are accumulated at a constant rate.
The charge q accumulated during the continuous energization time T from the start to the end of charging appears as a fluctuation range ΔSOC of the charging rate SOC with respect to the storage battery capacity Q. Accordingly, if the continuous energization time T and the required fluctuation rate ΔSOC of the target charging rate for which the charging rate of the storage battery is to be increased by charging are given in advance, a constant constant current i for satisfying those conditions is obtained. be able to.

しかし、連続通電中の充電電流iを一定とする制御は、蓄電池の内部発熱量(ひいては温度上昇)を無視した制御となっている。蓄電池は内部抵抗を有するため、通電電流が流れると内部抵抗によってジュール熱が生じ、そのジュール熱によって温度が上昇する性質を有している。温度上昇と蓄電池の内部抵抗Rの低下との間には相関があることが知られている。図1(1)に示すように、通電時間の経過に応じて内部抵抗Rが徐々に低下しており、温度上昇が起こっていることを示している。   However, the control for making the charging current i during continuous energization constant is control that ignores the internal heat generation amount (and hence the temperature rise) of the storage battery. Since the storage battery has an internal resistance, Joule heat is generated by the internal resistance when an energizing current flows, and the temperature rises due to the Joule heat. It is known that there is a correlation between the temperature rise and the reduction in the internal resistance R of the storage battery. As shown in FIG. 1 (1), the internal resistance R gradually decreases with the passage of energization time, indicating that a temperature increase has occurred.

よって、本実施形態の目的は、蓄電池内部でのジュール発熱量(内部発熱量とも言える)を最低限に抑える通電制御を実現することと言い換えることができる。
図2(1)および図2(2)は、理想的な通電制御の例を示す図である。すなわち、連続通電時間Tの間に充電率の要求変動幅ΔSOCを達成する通電制御であって、蓄電池内部でのジュール発熱量を最小化した通電制御の例である。通電制御は定電流制御で行われるが、固定値とするのではなく、図2(1)に示すように、充電開始時の充電電流iを小さく、連続通電時間Tに至った時の充電電流iを大きく設定し、充電中は充電電流iを単調増加させる制御となっている。充電電流iが徐々に大きくなるため、図2(2)に示すように蓄積電荷qの増加率(グラフの傾き)も徐々に大きくなっている。以下では、このときの蓄積電荷qの時系列のパターンを「最適パターンq(t)」と称する。
Therefore, the object of the present embodiment can be paraphrased as realizing energization control that minimizes the amount of Joule heat generation (also referred to as internal heat generation amount) inside the storage battery.
FIG. 2 (1) and FIG. 2 (2) are diagrams showing examples of ideal energization control. That is, this is an example of energization control that achieves the required fluctuation range ΔSOC of the charging rate during the continuous energization time T and that minimizes the amount of Joule heat generated inside the storage battery. The energization control is performed by constant current control, but is not a fixed value. As shown in FIG. 2A, the charging current i at the start of charging is small and the charging current when the continuous energization time T is reached. Control is performed so that i is set large and the charging current i is monotonously increased during charging. Since the charging current i gradually increases, as shown in FIG. 2 (2), the rate of increase of the accumulated charge q (gradient of the graph) also gradually increases. Hereinafter, the time-series pattern of the accumulated charge q at this time is referred to as “optimal pattern q 0 (t)”.

この理想的な通電制御を実現するための原理を、変分法を用いて説明する。
まず、蓄電池の容量を電気量で表してQ[c]とし、連続通電時間をT[s]とし、通電によるSOCの要求変動幅をΔSOC[%]とすると、連続通電時間Tの間に蓄積する必要のある電荷はQ×ΔSOC÷100となる。蓄電池の内部抵抗をR[Ω]、通電電流をi[A]とすると、蓄電池の発熱パワーP[W]は、P=R・iとして表される。通電中に発生する蓄電池の発熱量(ジュール損)を評価関数Iとすると、Iは次の(1)式で表される。

Figure 0006454203
The principle for realizing this ideal energization control will be described using a variational method.
First, if the capacity of the storage battery is expressed in terms of electric quantity, Q [c], the continuous energization time is T [s], and the required fluctuation range of the SOC due to energization is ΔSOC [%], it accumulates during the continuous energization time T. The charge that needs to be done is Q × ΔSOC ÷ 100. When the internal resistance of the storage battery is R [Ω] and the energization current is i [A], the heat generation power P [W] of the storage battery is expressed as P = R · i 2 . When the calorific value (joule loss) of the storage battery generated during energization is an evaluation function I, I is expressed by the following equation (1).
Figure 0006454203

ここで、電流iは、単位時間当たりの電荷q[c]を用いて、i=dq/dtとして表される。従って、評価関数Iは次のように変形できる。

Figure 0006454203
これを、次の(3)式として定義する。
Figure 0006454203
Here, the current i is expressed as i = dq / dt using the charge q [c] per unit time. Therefore, the evaluation function I can be modified as follows.
Figure 0006454203
This is defined as the following equation (3).
Figure 0006454203

評価関数Iが極値(この場合は最小)をとるための必要十分条件は、(4)式で示すオイラーの式を満足することである。

Figure 0006454203
A necessary and sufficient condition for the evaluation function I to take an extreme value (minimum in this case) is to satisfy the Euler's equation represented by the equation (4).
Figure 0006454203

(4)式の左辺第2項はゼロであるため、次の(5)式が導かれる。

Figure 0006454203
Since the second term on the left side of the equation (4) is zero, the following equation (5) is derived.
Figure 0006454203

すなわち、(6)〜(7)式が導かれる。

Figure 0006454203
Figure 0006454203
That is, equations (6) to (7) are derived.
Figure 0006454203
Figure 0006454203

よって、(7)式からR・i=一定であることが、最適パターンq(t)であることの必要条件となる。内部抵抗Rが時間変化するため、

Figure 0006454203
(8)式を満たす制御を行うこと、すなわち、内部抵抗Rに反比例するように通電電流iを定めることが理想的な通電制御となる。 Therefore, from equation (7), R · i = constant is a necessary condition for the optimum pattern q 0 (t). Since the internal resistance R changes over time,
Figure 0006454203
It is ideal energization control to perform control satisfying the equation (8), that is, to determine the energization current i so as to be inversely proportional to the internal resistance R.

2.具体的な制御手法
上述の原理説明では、蓄電池の内部抵抗に反比例するように通電電流を制御することで、蓄電池内部でのジュール発熱量を最小限に抑える通電制御を実現できることを述べた。
2. Specific Control Method In the above description of the principle, it has been described that the energization control that minimizes the amount of Joule heat generated inside the storage battery can be realized by controlling the energization current so as to be inversely proportional to the internal resistance of the storage battery.

しかし、充放電中に蓄電池の内部抵抗を知りたい場合には、充放電を一時中断して、通電電流及び通電電圧を内部抵抗測定用に変化させる必要がある。このため、連続的な蓄電池の充放電中に内部抵抗をリアルタイムに計測することは困難である。
そこで、本実施形態では、以下の具体的な制御手法を採用する。
However, when it is desired to know the internal resistance of the storage battery during charging / discharging, it is necessary to temporarily stop charging / discharging and change the energization current and energization voltage for measuring the internal resistance. For this reason, it is difficult to measure internal resistance in real time during continuous charge and discharge of a storage battery.
Therefore, in the present embodiment, the following specific control method is adopted.

図3は、本実施形態の制御手法を実現するための通電指令値生成部10の機能構成の一例を示す図である。
通電指令値生成部10は、蓄電池の充放電を制御するための通電制御装置に組み込まれる機能部であり、CPU等のプロセッサーが演算制御用のプログラムを実行することで実現する構成としてもよいし、専用の回路モジュールで構成することとしてもよい。
FIG. 3 is a diagram illustrating an example of a functional configuration of the energization command value generation unit 10 for realizing the control method of the present embodiment.
The energization command value generation unit 10 is a functional unit incorporated in an energization control device for controlling charging / discharging of the storage battery, and may be realized by a processor such as a CPU executing a program for arithmetic control. Alternatively, a dedicated circuit module may be used.

通電指令値生成部10が組み込まれる通電制御装置は、定電流制御により蓄電池を充放電させる装置である。通電制御装置は、装置内部で、充放電用の通電電流の指令値又は通電電流の電流値(以下包括して「指令値」という)を算出し、この指令値に応じた通電電流で蓄電池を充放電させる。従来公知の通電制御装置においても、同様に指令値を内部で生成し、蓄電池の通電制御を実行している。
指令値を生成する機能部が、通電指令値生成部10である。
The energization control device in which the energization command value generation unit 10 is incorporated is a device that charges and discharges a storage battery by constant current control. The energization control device calculates the command value of the energizing current for charging / discharging or the current value of the energizing current (hereinafter collectively referred to as “command value”), and stores the storage battery with the energizing current according to this command value. Charge and discharge. Also in a conventionally known energization control device, a command value is similarly generated internally and energization control of the storage battery is executed.
The functional unit that generates the command value is the energization command value generation unit 10.

図3において、通電指令値生成部10は、基準指令値生成部12と、内部抵抗予測部14と、抵抗変化率算出部16と、指令値パターン生成部18とを有して構成され、通電時間Tと、蓄電池容量Qと、要求変動幅ΔSOCと、通電前内部抵抗R(0)とを入力すると、通電時間Tの間の時系列の指令値である指令値パターンを生成して出力する。   In FIG. 3, the energization command value generation unit 10 includes a reference command value generation unit 12, an internal resistance prediction unit 14, a resistance change rate calculation unit 16, and a command value pattern generation unit 18. When the time T, the storage battery capacity Q, the required fluctuation width ΔSOC, and the internal resistance R (0) before energization are input, a command value pattern that is a time-series command value during the energization time T is generated and output. .

通電時間Tと蓄電池容量Qと要求変動幅ΔSOCとは通電目標条件の一例である。通電時間Tは、蓄電池を連続的に通電させる時間である。蓄電池容量Qは、通電制御の対象となる蓄電池の容量である。要求変動幅ΔSOCは、今回の通電時間Tの通電で変動させるSOCの幅のことであり、充電の場合には上昇幅を意味し、放電の場合には減少幅を意味する。蓄電池容量Qと要求変動幅ΔSOCとは、目標充放電量を示しているため、充電又は放電の目標電力量に代えることもできる。   The energization time T, the storage battery capacity Q, and the required fluctuation range ΔSOC are examples of energization target conditions. The energization time T is a time for continuously energizing the storage battery. The storage battery capacity Q is the capacity of the storage battery that is subject to energization control. The required fluctuation width ΔSOC is the width of the SOC that is changed by energization during the current energization time T, meaning an increase width in the case of charging, and a decrease width in the case of discharging. Since the storage battery capacity Q and the required fluctuation width ΔSOC indicate the target charge / discharge amount, the storage battery capacity Q and the required fluctuation width ΔSOC may be replaced with the target power amount for charging or discharging.

基準指令値生成部12は、通電時間Tと蓄電池容量Qと要求変動幅ΔSOCとから、通電時間Tの間、指令値を一定とした場合に、蓄電池のSOCを要求変動幅ΔSOC分変動させることのできる指令値を基準指令値icc-refとして生成する。この基準指令値icc-refの生成にあたっては、公知の算出手法を適用することができる。 The reference command value generation unit 12 varies the SOC of the storage battery by the required variation width ΔSOC when the command value is constant during the energization time T from the energization time T, the storage battery capacity Q, and the required variation width ΔSOC. Is generated as a reference command value i cc-ref . In generating the reference command value i cc-ref , a known calculation method can be applied.

なお、通電指令値生成部10は、基準指令値生成部12を省略して、基準指令値icc-refを選択的に決定、或いは、予め定めた値とすることも可能である。例えば、制御対象の蓄電池の仕様が予め決まっており、連続通電1回で、充電であれば上限SOCに至る可能性がなく、放電であれば下限SOCに至る可能性の無い通電の場合に、基準指令値生成部12を省略することができる。具体的には、通電が充電の場合、充電を開始する時点では、蓄電池が上限SOCから必ず一定以上低下した状態にあって、この状態から上限SOCに達するまでには不十分な時間で充電する場合である。例えば、搭載した蓄電池の電力で電動機を駆動させて自走する電車において、走行路線の中間駅で停車時間の間に蓄電池を充電する場合が該当する。この場合、基準指令値icc-refを予め定めた値としてもよいし、停車時間に相当する通電時間T(停車時間)に応じて、複数の基準指令値の候補値の中から選択的に決定するとしてもよい。 The energization command value generation unit 10 may omit the reference command value generation unit 12 and selectively determine the reference command value i cc-ref or set a predetermined value. For example, when the specification of the storage battery to be controlled is determined in advance, and continuous energization is once, there is no possibility of reaching the upper limit SOC if charging, and in the case of energization not reaching the lower limit SOC if discharging, The reference command value generation unit 12 can be omitted. Specifically, when the energization is charging, when the charging is started, the storage battery is always in a state of being lowered from the upper limit SOC by a certain level or more, and charging is performed in an insufficient time before reaching the upper limit SOC from this state. Is the case. For example, in a train that self-runs by driving an electric motor with electric power of a mounted storage battery, the case where the storage battery is charged at the intermediate station on the traveling route during the stop time is applicable. In this case, the reference command value i cc-ref may be a predetermined value, or may be selectively selected from a plurality of candidate reference command values according to the energization time T (stop time) corresponding to the stop time. It may be decided.

内部抵抗予測部14は、基準指令値生成部12が生成した基準指令値icc-refと、通電時間Tと、通電前内部抵抗R(0)とから、経過時内部抵抗R(T)を予測する。経過時内部抵抗R(T)とは、通電開始から通電時間T経過時点での蓄電池の内部抵抗である。通電前内部抵抗R(0)は、不図示の内部抵抗測定部によって測定される。測定方法は公知の方法を採用することができる。内部抵抗予測部14は、予め定められた制御対象の蓄電池の熱モデル式に、基準指令値icc-refと、通電時間Tと、通電前内部抵抗R(0)とを代入することで、経過時内部抵抗R(T)を予測値として算出することができる。 The internal resistance predicting unit 14 determines the elapsed internal resistance R (T) from the reference command value i cc-ref generated by the reference command value generating unit 12, the energization time T, and the pre-energization internal resistance R (0). Predict. The elapsed internal resistance R (T) is the internal resistance of the storage battery at the time when the energization time T has elapsed since the start of energization. The internal resistance R (0) before energization is measured by an internal resistance measurement unit (not shown). A known method can be employed as the measurement method. The internal resistance prediction unit 14 substitutes the reference command value i cc-ref , the energization time T, and the internal resistance R (0) before energization into a predetermined thermal model expression of the storage battery to be controlled, The elapsed internal resistance R (T) can be calculated as a predicted value.

抵抗変化率算出部16は、通電前内部抵抗R(0)と、内部抵抗予測部14が予測した経過時内部抵抗R(T)とから、内部抵抗Rの抵抗変化率γRを算出する。例えば、γR=R(T)/R(0)として算出することができる。 The resistance change rate calculation unit 16 calculates the resistance change rate γ R of the internal resistance R from the pre-energization internal resistance R (0) and the elapsed internal resistance R (T) predicted by the internal resistance prediction unit 14. For example, it can be calculated as γ R = R (T) / R (0).

次いで、指令値パターン生成部18が、基準指令値生成部12が生成した基準指令値icc-refと、抵抗変化率算出部16が算出した抵抗変化率γRとから、出力する最終的な指令値irefを生成する。ここで、指令値irefは、通電時間T内の各タイミングでの指令値を含む指令値パターンとして生成することができる。より具体的には、指令値パターン生成部18は、通電中の各タイミング(時刻t,0≦t≦T)における抵抗変化率γR(=R(T)/R(0))に反比例するように、当該タイミングの指令値を定める。 Next, the command value pattern generation unit 18 outputs a final output from the reference command value i cc-ref generated by the reference command value generation unit 12 and the resistance change rate γ R calculated by the resistance change rate calculation unit 16. A command value i ref is generated. Here, the command value i ref can be generated as a command value pattern including a command value at each timing within the energization time T. More specifically, the command value pattern generation unit 18 is inversely proportional to the resistance change rate γ R (= R (T) / R (0)) at each timing (time t, 0 ≦ t ≦ T) during energization. Thus, the command value of the timing is determined.

抵抗変化率γRを一定とする場合には、より簡単に指令値パターンを生成することができる。充電の場合を例に挙げて説明する。
図4は、充電の場合の指令値パターンの生成手順を説明するための図である。抵抗変化率γRが一定であるため、これに反比例する指令値は、充電開始時では基準指令値icc-refよりも一定値Δだけ低く、通電時間T経過時点では基準指令値icc-refよりも同じ一定値Δだけ大きい値となる。式で表すと、次の(9)式となる。

Figure 0006454203
When the resistance change rate γ R is constant, the command value pattern can be generated more easily. The case of charging will be described as an example.
FIG. 4 is a diagram for explaining a procedure for generating a command value pattern in the case of charging. Since the resistance change rate γ R is constant, the command value inversely proportional to this is lower than the reference command value i cc-ref by a constant value Δ at the start of charging, and the reference command value i cc- The value is larger than ref by the same constant value Δ. When expressed by an equation, the following equation (9) is obtained.
Figure 0006454203

この(9)式をΔについて整理すると次の(10)式となる。

Figure 0006454203
When this equation (9) is arranged with respect to Δ, the following equation (10) is obtained.
Figure 0006454203

従って、指令値irefは、充電開始時では基準指令値icc-refよりも(10)式で求められるΔだけ低い値とし、通電時間T経過時点では基準指令値icc-refよりも(10)式で求められるΔだけ大きい値として定めることができる。また、充電開始時から通電時間T経過時点までの指令値irefは、図4に示すように、直線的に変化する単調増加とする。このようにすることで、基準指令値icc-refの一定電流で充電する際と同じ蓄積電荷量となることが保障される。こうして指令値パターンを生成することができる。
指令値パターン生成部18によって生成された指令値に基づいて、通電制御装置によって蓄電池が通電制御される。
Therefore, the command value i ref is the only low Δ given by (10) than the reference command value i cc-ref is at the charge start time, than the reference command value i cc-ref at the time energization time T has passed ( It can be determined as a value that is larger by Δ obtained by the equation (10). Further, the command value i ref from the start of charging to the time point when the energization time T has elapsed is assumed to be a monotonically increasing linear change as shown in FIG. By doing so, it is ensured that the accumulated charge amount is the same as when charging with a constant current of the reference command value i cc-ref . In this way, a command value pattern can be generated.
Based on the command value generated by the command value pattern generation unit 18, the energization control device controls the energization of the storage battery.

なお、抵抗変化率算出部16は、抵抗変化率γRを可変に定めることとしてもよい。例えば、通電時間の経過とともに抵抗変化率γRを徐々に小さくするように抵抗変化率γRを定めることとしても良い。また、通電前内部抵抗R(0)に応じて抵抗変化率γRを可変に定めてもよい。また、通電時間Tに応じて抵抗変化率γRを可変に定めてもよい。何れの場合も、指令値パターン生成部18は、指令値irefを、単調増加する指令値パターンとして生成することができる。 Note that the resistance change rate calculation unit 16 may variably set the resistance change rate γ R. For example, it is also possible to determine the resistance change rate gamma R to gradually reduce the rate of resistance change gamma R with the passage of current time. The resistance change rate γ R may be variably determined according to the internal resistance R (0) before energization. Further, the resistance change rate γ R may be variably determined according to the energization time T. In any case, the command value pattern generation unit 18 can generate the command value i ref as a monotonically increasing command value pattern.

3.実施例
次に、通電指令値生成部10を適用した一実施例を説明する。図5は、いわゆる蓄電池駆動の電車、および、当該電車の蓄電池を充電するための充電施設の一例を示す。電車100は、コンバータ装置110と、蓄電池120と、インバータ装置130と、電動機140とを備えた架線式蓄電池電車とも呼ばれる電車であり、自走式車両である。電車100が走行する路線の各駅には、電車100の蓄電池120を充電するための充電ステーション200が充電施設として設けられている。充電ステーション200は、設置駅に設けられた架線である電車線を通じて、当該駅に停止した電車100の蓄電池120を充電することができる。電車100は、駅停止時に蓄電池120を充電し、駅間は、蓄電池120の蓄電電力に基づいて自走する。
3. Example Next, an example in which the energization command value generation unit 10 is applied will be described. FIG. 5 shows an example of a so-called storage battery-driven train and a charging facility for charging the storage battery of the train. The train 100 is a train called an overhead storage battery train including a converter device 110, a storage battery 120, an inverter device 130, and an electric motor 140, and is a self-propelled vehicle. A charging station 200 for charging the storage battery 120 of the train 100 is provided as a charging facility at each station on the route on which the train 100 travels. The charging station 200 can charge the storage battery 120 of the train 100 stopped at the station through a train line that is an overhead line provided at the station where the charging station 200 is installed. The train 100 charges the storage battery 120 when the station stops, and travels between stations based on the stored power of the storage battery 120.

具体的には、電車100は、各駅の所定の停止位置に停止すると、パンタグラフを上昇させてパンタグラフを電車線に接触させる。電車線には、充電ステーション200から電力が供給されているため、電車100は、電車線を通じて蓄電池120を充電することができる。   Specifically, when the train 100 stops at a predetermined stop position of each station, the pantograph is raised and brought into contact with the train line. Since electric power is supplied to the train line from the charging station 200, the train 100 can charge the storage battery 120 through the train line.

このときの充電制御は、電車線から供給される電力を充電用の電力に変換するコンバータ装置110が担う。すなわち、図5(3)に示すように、コンバータ装置110は、図3を用いて説明した通電指令値生成部10を有する通電制御装置112を備えており、当該駅での停止時間から余裕時間を差し引いた時間を通電時間Tとし、次駅までの走行に要する電力量に“1.0”以上の所定の安全係数を掛けた電力量を目標充電量とした通電目標条件に基づいて指令値irefを生成し、指令値irefに基づいて蓄電池120を充電する。 The charging control at this time is performed by the converter device 110 that converts the electric power supplied from the train line into electric power for charging. That is, as shown in FIG. 5 (3), the converter device 110 includes the energization control device 112 having the energization command value generation unit 10 described with reference to FIG. 3, and the margin time from the stop time at the station. The command value is based on the energization target condition with the energization time T as the energization time T and the amount of power required to travel to the next station multiplied by a predetermined safety factor of "1.0" or more as the target charge amount. i ref is generated, and the storage battery 120 is charged based on the command value i ref .

通電時間Tが経過するとコンバータ装置110は充電を停止する。そして、電車100は、パンタグラフを降下させ、今度は、インバータ装置130が蓄電池120の蓄電電力を電動機140駆動用の電力に変換して電動機140を駆動させ、次駅に向けて出発する。   When energization time T elapses, converter device 110 stops charging. Then, the train 100 lowers the pantograph, and this time, the inverter device 130 converts the stored power of the storage battery 120 into power for driving the electric motor 140 to drive the electric motor 140, and departs toward the next station.

通電時間Tは、駅の停止時間に基づいて定めることができ、30秒以上15分以下の範囲で定めると本実施例の場合に好適である。   The energization time T can be determined based on the stop time of the station, and is preferably set in the range of 30 seconds to 15 minutes in the case of the present embodiment.

また、充電ステーション200は、商用電力を架線電圧に変換して電車線に供給する変電所として構成することができるが、電車100への充電用の蓄電池220を備えて構成することもできる。具体的には、充電ステーション200が、コンバータ装置210と、蓄電池220とを備えており、電車100が当該駅に停止して充電を行う際に、コンバータ装置210が蓄電池220の蓄電電力を電車線に供給させる。コンバータ装置210は、図5(3)に示すように、通電指令値生成部10を有する通電制御装置212を備えており、電車100の当該駅での停止時間から余裕時間を差し引いた時間を通電時間Tとし、次駅までの走行に要する電力量に所定の安全係数を掛けた電力量を目標放電量とした通電目標条件に基づいて指令値irefを生成し、指令値irefに基づいて蓄電池220を放電させる。 The charging station 200 can be configured as a substation that converts commercial power into overhead voltage and supplies it to the train line, but can also be configured with a storage battery 220 for charging the train 100. Specifically, the charging station 200 includes a converter device 210 and a storage battery 220, and when the train 100 stops at the station and performs charging, the converter device 210 supplies the stored power of the storage battery 220 to the train line. To supply. As shown in FIG. 5 (3), the converter device 210 includes an energization control device 212 having an energization command value generation unit 10, and energizes a time obtained by subtracting a margin time from the stop time of the train 100 at the station. and time T, and generates a command value i ref based on the amount of power multiplied by a predetermined safety factor to the amount of power required to travel to the next station energization target conditions with the goal discharge amount, based on the command value i ref The storage battery 220 is discharged.

充電ステーション200における蓄電池220への充電は、電車100への充電を行っていない時間に行うことができる。蓄電池220を大容量とし、電気料金が安価となる深夜帯などにおいて商用電力からの電力で蓄電池220を満充電として、日中の充電を不要とする構成も可能である。また、太陽光発電や風力発電などの自然エネルギー発電を組み合わせて蓄電池220を充電することとしてもよいことは勿論である。   Charging of the storage battery 220 at the charging station 200 can be performed at a time when the train 100 is not charged. A configuration is also possible in which the storage battery 220 has a large capacity and the storage battery 220 is fully charged with power from commercial power in the midnight or the like when the electricity rate is low, so that no charge during the day is required. Of course, the storage battery 220 may be charged by combining natural energy power generation such as solar power generation or wind power generation.

4.作用効果
本実施形態によれば、通電時間及び目標充放電量を少なくとも含む通電目標条件に基づいて、一定電流で連続通電した場合に通電目標条件を満たすための当該一定電流の基準指令値を決定する。従って、通電時間と目標充放電量の両方を満たすための基準指令値を決定することができる。但し、基準指令値に応じた一定電流の通電制御では、蓄電池の内部発熱量は従来のままである。
4). According to the present embodiment, based on the energization target condition including at least the energization time and the target charge / discharge amount, the reference command value of the constant current for satisfying the energization target condition when continuously energized with a constant current is determined. To do. Therefore, the reference command value for satisfying both the energization time and the target charge / discharge amount can be determined. However, in the energization control with a constant current according to the reference command value, the internal heat generation amount of the storage battery remains the same as before.

そこで、通電開始時に基準指令値より低い指令値とし、時間経過に応じて指令値を単調増加させ、連続通電時間経過時に基準指令値より高い指令値とするように連続通電時間にわたる連続通電制御を行う。これにより、通電時間と充放電量の両方を目標とする通電制御であって、蓄電池の内部発熱量を抑えることにより温度上昇抑制が期待される通電制御を実現することができる。   Therefore, continuous energization control over continuous energization time is performed so that the command value is lower than the reference command value at the start of energization, the command value is monotonously increased as time elapses, and the command value is higher than the reference command value when continuous energization time elapses. Do. Thereby, it is energization control aiming at both energization time and charge-and-discharge amount, Comprising: The energization control by which temperature rise suppression is anticipated by suppressing the internal calorific value of a storage battery is realizable.

5.変形例
本発明の適用可能な形態は、上述した実施形態に限られるものではない。
例えば、通電目標条件として、通電中のある時点での充電率上昇幅を含めることもできる。より具体的には、通電時間Tの中間時点で、要求変動幅ΔSOCの70%を達成することを更なる通電目標条件として含めることもできる。
5. Modified Embodiment The applicable form of the present invention is not limited to the above-described embodiment.
For example, as the energization target condition, a charging rate increase at a certain point during energization can be included. More specifically, achieving 70% of the required fluctuation range ΔSOC at the intermediate point of the energization time T can be included as a further energization target condition.

通電指令値生成部10の適用例として電車の例を説明したが、自動車へも適用することができる。例えば、電気自動車やハイブリッド式自動車等である。この場合、図5に示した充電ステーション200と同様の充電ステーションを従来のガソリンスタンドのように各所に設けて、図5の電車線に代えてケーブルで自動車と電気的に接続する構成が考えられる。通電目標条件に応じて充電料金を定めることもできる。   Although an example of a train has been described as an application example of the energization command value generation unit 10, it can also be applied to an automobile. For example, an electric vehicle or a hybrid vehicle. In this case, a configuration in which charging stations similar to the charging station 200 shown in FIG. 5 are provided in various places like a conventional gas station, and is electrically connected to the automobile by a cable instead of the train line of FIG. . The charging fee can be determined according to the energization target condition.

112,212 通電制御装置
10 通電指令値生成部
12 基準指令値生成部
14 内部抵抗予測部
16 抵抗変化率算出部
18 指令値パターン生成部
112, 212 Energization control device 10 Energization command value generation unit 12 Reference command value generation unit 14 Internal resistance prediction unit 16 Resistance change rate calculation unit 18 Command value pattern generation unit

Claims (6)

温度上昇に応じて蓄電池の内部抵抗が低下する所定の温度範囲において、所与の時間の間、所与の電流指令値又は電流値(以下包括して「指令値」という)に基づく定電流制御によって当該蓄電池を連続して充電又は放電(以下包括して「通電」という)させる制御を行う通電制御装置であって、
前記蓄電池を一定電流で連続通電時間の間、連続通電することで目標充放電量とすることができる前記一定電流の指令値(以下この指令値を「基準指令値」という)を、前記連続通電時間及び前記目標充放電量を少なくとも含む通電目標条件に基づい決定する基準指令値決定手段と、
時間経過に応じて指令値を単調増加させる前記通電目標条件に含まれる連続通電時間にわたる連続通電制御であって、通電開始時に前記基準指令値より低い指令値とし、当該連続通電時間経過時に前記基準指令値より高い指令値となるような指令値の連続通電制御を行うことで前記通電目標条件に含まれる目標充放電量を実現する連続通電制御手段と、
を備えた通電制御装置。
Constant current control based on a given current command value or current value (hereinafter collectively referred to as “command value”) for a given time in a predetermined temperature range where the internal resistance of the storage battery decreases as the temperature rises Is an energization control device that performs control to continuously charge or discharge the storage battery (hereinafter collectively referred to as “energization”),
The constant current command value (hereinafter referred to as “reference command value”) that can be used as a target charge / discharge amount by continuously energizing the storage battery at a constant current for a continuous energization time is used as the continuous energization. a reference command value determining means for determining based on the time and energizing the target conditions including at least the target discharge amount,
A continuous current control over the continuous current time included in the current target conditions for monotonically increasing the command value as time elapses, the the lower command value than the reference command value at the start of energization, the time course of the continuous energization time a continuous energization control means for realizing a target charge-and-discharge amount included in the current target conditions in a continuous current control, to perform the command value such that higher command value than the reference command value,
An energization control device comprising:
前記蓄電池の内部抵抗を測定する測定手段と、
前記連続通電制御手段による通電前の前記内部抵抗と、前記基準指令値と、前記連続通電時間とを用いて、前記基準指令値にもとづく前記連続通電時間の通電をした場合の前記連続通電時間経過時の前記蓄電池の内部抵抗を予測する予測手段と、
を備え、
前記連続通電制御手段は、前記通電前の内部抵抗と前記予測した内部抵抗とを用いて連続通電の開始時の指令値および前記連続通電時間経過時の指令値を定めて、前記連続通電制御を行う、
請求項1に記載の通電制御装置。
Measuring means for measuring the internal resistance of the storage battery;
Elapsed continuous energization time when energizing the continuous energization time based on the reference command value using the internal resistance before energization by the continuous energization control means, the reference command value, and the continuous energization time Predicting means for predicting the internal resistance of the storage battery at the time,
With
The continuous energization control means uses the internal resistance before energization and the predicted internal resistance to determine a command value at the start of continuous energization and a command value when the continuous energization time has elapsed, and performs the continuous energization control. Do,
The energization control apparatus according to claim 1.
前記連続通電時間は、30秒以上15分以下である、
請求項1又は2に記載の通電制御装置。
The continuous energization time is 30 seconds to 15 minutes,
The energization control apparatus according to claim 1 or 2.
前記蓄電池は、当該蓄電池の蓄電電力を用いて電動機を駆動して自走する自走式車両に搭載され、
前記自走式車両が所定の停止位置に停止中に、前記連続通電制御手段が、前記自走式車両の外部からの供給電力に基づいて前記蓄電池への充電を制御する請求項1〜3の何れかに記載の通電制御装置。
The storage battery is mounted on a self-propelled vehicle that self-runs by driving an electric motor using stored power of the storage battery,
The said continuous electricity supply control means controls the charge to the said storage battery based on the electric power supplied from the exterior of the said self-propelled vehicle, when the said self-propelled vehicle stops at the predetermined stop position. The energization control device according to any one of the above.
前記蓄電池と請求項4に記載の通電制御装置とを備えた自走式車両。   The self-propelled vehicle provided with the said storage battery and the electricity supply control apparatus of Claim 4. 温度上昇に応じて蓄電池の内部抵抗が低下する所定の温度範囲において、所与の時間の間、所与の電流指令値又は電流値(以下包括して「指令値」という)に基づく定電流制御によって当該蓄電池を連続して充電又は放電(以下包括して「通電」という)させる制御を行うための通電制御方法であって、
前記蓄電池を一定電流で連続通電時間の間、連続通電することで目標充放電量とすることができる前記一定電流の指令値(以下この指令値を「基準指令値」という)を、前記連続通電時間及び前記目標充放電量を少なくとも含む通電目標条件に基づい決定することと、
時間経過に応じて指令値を単調増加させる前記通電目標条件に含まれる連続通電時間にわたる連続通電制御であって、通電開始時に前記基準指令値より低い指令値とし、当該連続通電時間経過時に前記基準指令値より高い指令値となるような指令値の連続通電制御を行うことで前記通電目標条件に含まれる目標充放電量を実現することと、
を含む通電制御方法。
Constant current control based on a given current command value or current value (hereinafter collectively referred to as “command value”) for a given time in a predetermined temperature range where the internal resistance of the storage battery decreases as the temperature rises Is an energization control method for performing control to continuously charge or discharge the storage battery (hereinafter collectively referred to as “energization”),
The constant current command value (hereinafter referred to as “reference command value”) that can be used as a target charge / discharge amount by continuously energizing the storage battery at a constant current for a continuous energization time is used as the continuous energization. and determining based on the time and the target charge-and-discharge amount to at least including energizing target conditions,
A continuous current control over the continuous current time included in the current target conditions for monotonically increasing the command value as time elapses, the the lower command value than the reference command value at the start of energization, the time course of the continuous energization time and realizing the target charge-and-discharge amount contained in the current target condition by the continuous energization control, the command value such that higher command value than the reference command value,
Energization control method.
JP2015065156A 2015-03-26 2015-03-26 Energization control device, self-propelled vehicle, and energization control method Expired - Fee Related JP6454203B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015065156A JP6454203B2 (en) 2015-03-26 2015-03-26 Energization control device, self-propelled vehicle, and energization control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015065156A JP6454203B2 (en) 2015-03-26 2015-03-26 Energization control device, self-propelled vehicle, and energization control method

Publications (2)

Publication Number Publication Date
JP2016185048A JP2016185048A (en) 2016-10-20
JP6454203B2 true JP6454203B2 (en) 2019-01-16

Family

ID=57241985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015065156A Expired - Fee Related JP6454203B2 (en) 2015-03-26 2015-03-26 Energization control device, self-propelled vehicle, and energization control method

Country Status (1)

Country Link
JP (1) JP6454203B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7031572B2 (en) * 2018-12-07 2022-03-08 トヨタ自動車株式会社 Drive system
CN112886650A (en) * 2019-11-29 2021-06-01 北京小米移动软件有限公司 Charging control method, charging control device and storage medium

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19803312A1 (en) * 1998-01-29 1999-08-05 Varta Batterie Process for improving the charging and discharging capacity of accumulators
JP3491528B2 (en) * 1998-05-27 2004-01-26 三菱自動車工業株式会社 Electric vehicle charging device
JP2009273198A (en) * 2008-04-30 2009-11-19 Kawasaki Heavy Ind Ltd Power flow control method and control device of battery-driven vehicle
JP2010135075A (en) * 2008-12-02 2010-06-17 Calsonic Kansei Corp Method and device for estimating temperature of battery pack

Also Published As

Publication number Publication date
JP2016185048A (en) 2016-10-20

Similar Documents

Publication Publication Date Title
JP6299728B2 (en) Secondary battery management device
US9849793B2 (en) Electrical storage system for vehicle
JP5477212B2 (en) Electric vehicle system
JP4884945B2 (en) Charging state prediction program, overhead line-less traffic system and charging method thereof
US9162580B2 (en) Charge control apparatus for vehicle
US9496734B2 (en) Charge control apparatus for vehicle
KR101135314B1 (en) Secondary battery temperature-increasing control apparatus, vehicle including the same, and secondary battery temperature-increasing control method
US20160001766A1 (en) Vehicle
JP5268853B2 (en) Hybrid cruise control system
JP4209423B2 (en) Secondary battery control device and secondary battery output control method
US20190143820A1 (en) Maximum current calculation and power prediction for a battery pack
KR102184207B1 (en) Vehicle comprising a battery and means for determining a maximum allowable power for the battery, and corresponding method
JP5821669B2 (en) Estimation apparatus, estimation method, and control method
US11391782B2 (en) Energy storage device managing apparatus, energy storage apparatus, photovoltaic power generating system, degradation amount estimating method, and computer program
JP2009044862A (en) Power supply controller and power supply system for electric vehicle
JP2011075461A (en) Characteristics evaluation device of secondary battery, vehicle, and charger
JP2013210257A (en) Power storage device for railroad vehicle
JP6454203B2 (en) Energization control device, self-propelled vehicle, and energization control method
JP4897976B2 (en) Method and apparatus for detecting state of power storage device
JP2005261034A (en) Controller of electric storage mechanism
JP7137760B2 (en) Charge/discharge control method for secondary battery
JP2015230235A (en) Energy accumulation control device
JP5901318B2 (en) Charge / discharge control device, charge control method, discharge control method, and program
CN112140888A (en) Control device for vehicle-mounted power supply device
JP2013179737A (en) Output smoothing device, output smoothing method, and program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180501

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181214

R150 Certificate of patent or registration of utility model

Ref document number: 6454203

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees