JP6454046B1 - Method for producing functionally enhanced charcoal - Google Patents

Method for producing functionally enhanced charcoal Download PDF

Info

Publication number
JP6454046B1
JP6454046B1 JP2018113205A JP2018113205A JP6454046B1 JP 6454046 B1 JP6454046 B1 JP 6454046B1 JP 2018113205 A JP2018113205 A JP 2018113205A JP 2018113205 A JP2018113205 A JP 2018113205A JP 6454046 B1 JP6454046 B1 JP 6454046B1
Authority
JP
Japan
Prior art keywords
charcoal
nitrifying bacteria
supporting
nitrifying
cultivation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018113205A
Other languages
Japanese (ja)
Other versions
JP2019214499A (en
Inventor
哲 梁川
哲 梁川
吉澤 秀治
秀治 吉澤
光幸 飯嶋
光幸 飯嶋
佐藤 秀雄
秀雄 佐藤
Original Assignee
新和環境株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新和環境株式会社 filed Critical 新和環境株式会社
Priority to JP2018113205A priority Critical patent/JP6454046B1/en
Application granted granted Critical
Publication of JP6454046B1 publication Critical patent/JP6454046B1/en
Publication of JP2019214499A publication Critical patent/JP2019214499A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Hydroponics (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

【課題】建築廃材等の木質バイオマスから機能性に富んだ炭を得ることと炭の用途を提供すること。
【解決手段】含水率15%以下の木質バイオマスを900〜1200℃で炭化させる第1の工程と、前記第1工程を経た炭化物を900〜1200℃で過熱蒸気と反応させる第2の工程を経て得られた炭を硝化菌担持用とし、植物栽培等に用いる。
【選択図】図1
An object of the present invention is to obtain charcoal with high functionality from woody biomass such as building waste and to provide a use of charcoal.
Through a first step of carbonizing a woody biomass having a water content of 15% or less at 900 to 1200 ° C., and a second step of reacting the carbide obtained through the first step with superheated steam at 900 to 1200 ° C. The obtained charcoal is used for supporting nitrifying bacteria and used for plant cultivation and the like.
[Selection] Figure 1

Description

本発明は炭の製造方法、用途に関するものである。   The present invention relates to a method for producing charcoal and its use.

近年、地球温暖化や廃棄物削減等、企業や自治体にとっては環境問題への取組み、特に、循環型社会実現に向けた取組みが重要な課題となりつつある。例えば、畜産分野では家畜排せつ物によって近隣に引き超す悪臭問題、水道水源の汚染といった水質汚濁問題等、様々な問題が挙げられる。また、農業分野においても化成肥料の施肥過剰による地力低下等の農家レベルの問題から過剰な窒素やリン等による汚染、バクテリアの異常発生、魚の窒息死等の地域・地球レベルの問題まで様々な問題がある。   In recent years, for companies and local governments, such as global warming and waste reduction, efforts for environmental issues, especially for realizing a recycling-oriented society, are becoming important issues. For example, in the field of livestock, there are various problems such as a bad odor problem that is surpassed by the livestock excrement and a water pollution problem such as contamination of tap water sources. In the agricultural field, various problems ranging from farm level problems such as reduced geopower due to excessive application of chemical fertilizers to regional and global level problems such as contamination by excessive nitrogen and phosphorus, abnormal bacterial occurrence, death from suffocation of fish, etc. There is.

建築廃材や間伐材等の木質系廃棄物については、焼却の際に熱エネルギーを取り出すサーマルリサイクルが一般的である。近年ではこれらの廃棄物から発電や水素を生成することが行われている(特許文献1)。特許文献1に係る特開2018−2808では有機物を乾燥、炭化、分解し、炭素含有率が高い炭化物とするものである。しかしながら、当該文献は反応残留物である炭を最小化すること、無害化することを目的とするものである。当該文献は炭の用途を示唆するものではなく、また、最終生成物である炭は廃棄処分となっているのが実情である。   For woody waste such as building waste and thinned wood, thermal recycling is generally used to extract thermal energy during incineration. In recent years, power generation and hydrogen generation from these wastes have been performed (Patent Document 1). In Japanese Patent Application Laid-Open No. 2018-2808 according to Patent Document 1, an organic substance is dried, carbonized, and decomposed to obtain a carbide having a high carbon content. However, this document aims at minimizing and detoxifying the charcoal which is a reaction residue. This document does not suggest the use of charcoal, and the fact is that the final product, charcoal, is disposed of.

牛糞等の家畜排泄物については、有機肥料として運用することが古くから行われてきた。牛糞等の有機化合物を植物の栄養源として利用するためには、有機化合物を微生物によって分解し、NH (アンモニウムイオン)を経由して植物が栄養分とするNO (硝酸イオン)へと無機化する必要がある。また、水耕栽培では化成肥料を施用することにより行われるのが一般的であり、有機質肥料を施用する方法はアンモニウムイオンが作物に悪影響を及ぼすためほとんど見られない。また、植物は窒素源として、主に硝酸イオンを吸収し、硝酸イオン濃度が低減すると成長速度が低下してしまう。そのため、有機質肥料を断続的に追肥する必要があるが、有機質肥料から硝酸イオンへの無機化反応が遅いとアンモニウムイオン濃度が上昇し、植物の育成阻害を引き起こすという別の問題が生じる。 For livestock excrement such as cow dung, it has long been used as an organic fertilizer. In order to use organic compounds such as cow dung as a nutrient source for plants, the organic compounds are decomposed by microorganisms and converted to NO 3 (nitrate ions), which the plant uses as nutrients via NH 4 + (ammonium ions). Need to be mineralized. Also, hydroponics is generally performed by applying chemical fertilizer, and the method of applying organic fertilizer is hardly seen because ammonium ions adversely affect crops. In addition, plants mainly absorb nitrate ions as a nitrogen source, and when the nitrate ion concentration decreases, the growth rate decreases. Therefore, it is necessary to topdress the organic fertilizer intermittently. However, when the mineralization reaction from the organic fertilizer to nitrate ions is slow, another problem arises that the ammonium ion concentration increases and causes plant growth inhibition.

有機質を微生物に分解させ、硝酸イオンへと無機化させるものとして、所定条件下の水耕栽培装置を用いた方法が開示されている(特許文献2、3、非特許文献1)。   As a method for decomposing organic matter into microorganisms and mineralizing them into nitrate ions, methods using hydroponic cultivation equipment under predetermined conditions have been disclosed (Patent Documents 2 and 3, Non-Patent Document 1).

特許文献2に係る特開2010−88360号は、排水口を備えた容器に軽石を充填し、これにメタン発酵後に得られるメタン消化液を徐添加して静置した後に水を添加して前記容器の排水口から流出させることで前記軽石を洗浄する処理を当該流出液に硝酸態窒素が生成され始めるまで繰り返して行うことにより、前記軽石にメタン消化液に含まれるアンモニア態窒素を硝化する活性を付与させた軽石培地の製造方法と養液栽培方法に関するものである。これはメタン消化液に含まれるアンモニア態窒素を硝化する活性を付与させた軽石を固形培地として用いることによって、メタン消化液を肥料成分として直接添加して、固形培地耕での養液栽培を行うというものである。   Japanese Patent Application Laid-Open No. 2010-88360 according to Patent Document 2 is a method in which a pumice is filled in a container equipped with a drain, and a methane digestion liquid obtained after methane fermentation is gradually added thereto and left still, and then water is added thereto. An activity of nitrifying ammonia nitrogen contained in the methane digestion liquid in the pumice by repeatedly performing the process of washing the pumice by flowing out from the drain of the container until nitrate nitrogen begins to be generated in the effluent. The present invention relates to a method for producing a pumice medium and a hydroponics method. This is because pumice with the activity of nitrifying ammonia nitrogen contained in methane digestive liquid is used as a solid medium, and methane digestive liquid is directly added as a fertilizer component to perform hydroponic culture in solid medium cultivation. That's it.

特許文献3に係る特開2010−88359号は、水を溜めることができる容器に水を張り、並行複式無機化反応を行う微生物群を所定の条件を満たすように前記水中の環境を維持することで、前記並行複式無機化反応を行う微生物群を培養し、前記水と接する所定の固体表面にバイオフィルムを形成させ、次いで、当該バイオフィルムを回収し、回収された前記バイオフィルムを、並行複式無機化反応の触媒として最適化された微生物群の種菌とする種菌の製造方法と植物の栽培方法に関するものである。これは有機物からアンモニア態窒素への分解とアンモニア態窒素から硝酸態窒素への硝化とを同一の反応系で連続的に行うものある。この反応系における微生物担体としては竹炭や木炭等が想定されている。   Japanese Patent Application Laid-Open No. 2010-88359 according to Patent Document 3 is to fill a container capable of storing water and maintain the underwater environment so that a group of microorganisms performing a parallel dual mineralization reaction satisfies a predetermined condition. Then, culturing a group of microorganisms that perform the parallel dual mineralization reaction, forming a biofilm on a predetermined solid surface in contact with the water, then collecting the biofilm, and collecting the recovered biofilm with the parallel complex The present invention relates to a method for producing an inoculum, which is an inoculum of a microorganism group optimized as a catalyst for a mineralization reaction, and a plant cultivation method. In this method, decomposition from organic matter to ammonia nitrogen and nitrification from ammonia nitrogen to nitrate nitrogen are continuously performed in the same reaction system. Bamboo charcoal or charcoal is assumed as a microorganism carrier in this reaction system.

前記特許文献2、3はいずれも有機化合物を微生物によって分解させ、アンモニウムイオンを経由して植物が栄養分とする硝酸イオンへ無機化させる一連の流れを同一系内(同一装置内)で行うものである。アンモニウムイオンから硝酸イオンへの無機化を行うにあたっては、特許文献2では無機化機能を有する硝化菌を軽石に担持させ、特許文献3では硝化菌を竹炭や木炭等に担持させている。いずれの文献も同一系内で一連の反応を稼働・維持することを対象としており、系全体として最適化することに主眼を置いたものである。すなわち、引用文献において用いられる硝化菌担持体は硝化菌が定着し得る素材を選択し、これを適量系内に用いるにとどまり、硝化菌を担持する素材について、より硝化菌の定着に適したもの、機能性を高めたものにするための具体的な製造方法を示すものではなく、栽培による効果については収量を示すにとどまるものである。   In each of Patent Documents 2 and 3, a series of processes in which organic compounds are decomposed by microorganisms and mineralized to nitrate ions which are plant nutrients through ammonium ions are performed in the same system (in the same apparatus). is there. In performing mineralization from ammonium ions to nitrate ions, Patent Document 2 supports nitrifying bacteria having a mineralizing function on pumice, and Patent Document 3 supports nitrifying bacteria on bamboo charcoal or charcoal. Both documents are intended to operate and maintain a series of reactions in the same system, and focus on optimizing the entire system. In other words, the nitrifying bacteria carrier used in the cited document selects a material that can be fixed by nitrifying bacteria, and only uses it in an appropriate amount system, and the material supporting nitrifying bacteria is more suitable for fixing nitrifying bacteria. However, it does not indicate a specific manufacturing method for improving functionality, but only shows the yield for the effects of cultivation.

また、非特許文献1にも示されている有機質肥料養液中のアンモニウムイオンを硝酸イオンに硝化する一連の反応系による場合、実質的には約1か月の調整期間を要することから、有機肥料を適量範囲を超えて断続的に追肥するとアンモニウムイオン濃度が上昇し、植物の育成阻害を引き起こすという問題があった。   In addition, in the case of a series of reaction systems in which ammonium ions in an organic fertilizer nutrient solution shown in Non-Patent Document 1 are nitrified to nitrate ions, an adjustment period of about one month is substantially required. When fertilizer was intermittently fertilized beyond the appropriate amount range, the ammonium ion concentration increased, causing a problem of inhibiting plant growth.

特開2018−2808号公報JP-A-2018-2808 特開2010−88360号公報JP 2010-88360 A 特開2010−88359号公報JP 2010-88359 A

Shinohara M,Aoyama C,Fujiwara K, Watanabe A, Ohmori H,Uehara Y,Takano M (2011) Microbial mineralization of organic nitrogen into nitrate to allow the use of organic fertilizer in hydroponics,Soil Science and Plant NutritiON 57(2):190−203Shinohara M, Aoyama C, Fujiwara K, Watanabe A, Ohmori H, Uehara Y, Takano M (2011) Microbial mineralization of organic nitrogen into nitrate to allow the use of organic fertilizer in hydroponics, Soil Science and Plant NutritiON 57 (2): 190-203

本発明が解決しようとする課題は、建築廃材等の木質バイオマスから機能性に富んだ炭を得ることと炭の用途を提供することである。   The problem to be solved by the present invention is to obtain charcoal rich in functionality from woody biomass such as building waste and to provide the use of charcoal.

第1の発明は、含水率15%以下の木質バイオマスを900〜1200℃で炭化させる第1の工程と、前記第1工程を経た炭化物を900〜1200℃で過熱蒸気と反応させる第2の工程を経て得られた炭を硝化菌担持用とすることを特徴とする硝化菌担持用炭の製造方法である。また、第2の発明は前記第1、第2工程を有し、前記第2工程における過熱蒸気の物質量が前記第1工程を経た炭化物の炭素の物質量の1.3〜2.0倍であることを特徴とする炭の製造方法である。また、第3の発明は、前記第1又は第2の発明の製造方法によって製造された炭に硝化菌担持ることを特徴とする硝化菌担持炭の製造方法である。また、第4の発明は、メタン発酵消化液に前記硝化菌担持炭を混合し、硝化反応を経て得られた溶液を植物栽培用とすることを特徴とする栽培用硝化液の製造方法である。また、第5の発明は、前記第4の発明の製造法によって製造された栽培用硝化液を養液として植物に施用することを特徴とする養液栽培方法である。

A first invention is a first step of carbonizing a woody biomass having a water content of 15% or less at 900 to 1200 ° C., and a second step of reacting the carbide obtained through the first step with superheated steam at 900 to 1200 ° C. This is a method for producing charcoal for supporting nitrifying bacteria, characterized in that charcoal obtained through the above process is used for supporting nitrifying bacteria. Moreover, 2nd invention has the said 1st, 2nd process, and the substance amount of the superheated steam in the said 2nd process is 1.3 to 2.0 times the substance amount of the carbon of the carbide | carbonized_material which passed through the said 1st process. It is the manufacturing method of the charcoal characterized by being. The third invention is the first or second manufacturing method of nitrifying bacteria charcoal which nitrifying bacteria charcoal produced is characterized in carrying to Rukoto by the manufacturing method of the invention. The fourth invention is a method for producing a nitrifying liquid for cultivation, characterized in that the nitrifying bacteria-supported charcoal is mixed with a methane fermentation digestive liquid, and the solution obtained through the nitrification reaction is used for plant cultivation. . Moreover, 5th invention is a hydroponics method characterized by applying to a plant the nitrification liquid for cultivation manufactured by the manufacturing method of the said 4th invention as a nutrient solution.

本発明は、含水率が約15%又はそれ以下の木質バイオマスを900〜1200℃で炭化させ、その後、900〜1200℃で過熱蒸気と反応させることで木質バイオマスを硝化菌の定着に適した硝化菌担持用炭とする効果が期待できる。前記第2工程における過熱蒸気の物質量を前記第1工程を経た炭化物の炭素の物質量の1.3倍以上、2.0倍以下の範囲とすることで炭化物と過熱蒸気との熱分解反応により硝化菌等の担持等に適した特性の炭とする効果が期待できる。この炭に硝化菌を担持した硝化菌担持炭を用いることで従来の担持物を用いた場合よりも硝酸イオンの生成等を促進する効果が期待できる。また、メタン発酵消化液に前記硝化菌担持炭を混合し、硝化反応によって得られた水溶液を植物栽培用とすることで、化成肥料を用いた場合に比べて植物の品質を高める効果が期待できる。   In the present invention, woody biomass having a water content of about 15% or less is carbonized at 900 to 1200 ° C., and then reacted with superheated steam at 900 to 1200 ° C., so that the woody biomass is suitable for fixing nitrifying bacteria. The effect of using the charcoal for supporting bacteria can be expected. Thermal decomposition reaction of carbide and superheated steam by setting the amount of superheated steam in the second step to a range of 1.3 times or more and 2.0 times or less the amount of carbon of the carbide obtained in the first step. Thus, the effect of making charcoal having characteristics suitable for supporting nitrifying bacteria and the like can be expected. By using nitrifying bacteria-supporting charcoal in which nitrifying bacteria are supported on this charcoal, it is possible to expect the effect of promoting the production of nitrate ions and the like as compared with the case of using a conventional supporting material. In addition, by mixing the nitrifying bacteria-supported charcoal into the methane fermentation digestive liquid and using the aqueous solution obtained by nitrification reaction for plant cultivation, the effect of improving the quality of the plant can be expected compared to the case of using a chemical fertilizer. .

図1は木質バイオマスの処理フローイメージである。FIG. 1 is a processing flow image of woody biomass. 図2は栽培装置を用いたレタス栽培の様子である。FIG. 2 shows a state of lettuce cultivation using a cultivation apparatus. 図3はレタス収穫量の結果である。FIG. 3 shows the result of lettuce yield.

本発明の実施の形態を以下に説明する。   Embodiments of the present invention will be described below.

(1)炭の製造(処理フローイメージ:図1)(設備:(株)高橋製作所製)
木質系バイオマスには大きさ50mm以下の木質チップを用いた。広葉樹や針葉樹を原料としたものであるが、これらに限定されるものではなく、また、間伐材、建築廃材等、どのような起源のものであるか限定されるものではない。まず、含水率55%以下の木質チップを乾燥させ、木質チップの含水率を15%以下にした。次に、燃焼温度900〜1200℃で約1時間かけて木質チップを炭化させた(炭化工程)。ここで、燃焼温度範囲や燃焼時間について限定するものではないが、タールの発生を抑制しつつ炭化を進行させるための燃焼温度範囲としては1000〜1100℃がさらに好ましい。炭化物中の炭素含有率が80%であることが炭化の目安となる。次に、炭化工程で炭素含有率を80%以上とした炭化チップを730〜830℃の過熱蒸気とともに900〜1200℃で加熱して熱分解反応させた(水性ガス反応工程)。水性ガス反応工程における生成(残留)炭は、重量比で、投入した木質チップに対して約2(重量)%だった。この反応工程における炭化物と過熱蒸気との反応は、炭素と水のみに着目すると、
C+HO=CO+H (吸熱反応)
C+2HO=CO+2H (吸熱反応)
という反応が想定され、左辺から右辺に反応が進行すると炭素成分が消失する。実際には投入木質チップ(含水率約15%)に対して前記の通り約2%の硝化菌担持用炭が残留物となる。また、実際に起こっている反応は上記2つの式だけではない。上記第一式のCOについてはさらに、
CO+HO=CO+H (発熱反応)
の反応も起こる。その他にも水性ガス反応工程では様々な反応が起こり、それらの反応の進み易さは各成分の物質量や反応温度等の影響を受ける。この水性ガス反応を通じて硝化菌担持等の機能性に富んだ炭を得るための過熱蒸気の量(物質量)は投入する炭化物の炭素の量(物質量)の1.5倍が最も効果的であるが、1.3〜2.0倍の範囲内であれば近しい特性の炭を得ることができる。また、本発明のための処理装置としては、前記各工程の条件を実現できるものであれば何でもよく、全工程を一括的に処理するもの、工程別に分離処理するものでもよい。例えば、特許文献1に記載の装置や方法、又は、これに準じた装置や方法を用いて炭を製造することができる。本発明で生じた炭の炭素含有率は90〜95%、残りの成分は大半がカルシウム(炭素以外の全成分の50〜70%)、比表面積は300〜400m/gであった。
(1) Manufacture of charcoal (processing flow image: Fig. 1) (Equipment: manufactured by Takahashi Manufacturing Co., Ltd.)
Wood chips having a size of 50 mm or less were used for the woody biomass. It is made from hardwood or softwood, but it is not limited to these, nor is it limited to what it originates from, such as thinned wood or construction waste. First, the wood chips having a moisture content of 55% or less were dried, and the moisture content of the wood chips was reduced to 15% or less. Next, the wood chips were carbonized at a combustion temperature of 900 to 1200 ° C. for about 1 hour (carbonization step). Here, although it does not limit about a combustion temperature range or combustion time, 1000-1100 degreeC is further more preferable as a combustion temperature range for advancing carbonization, suppressing generation | occurrence | production of tar. An indication of carbonization is that the carbon content in the carbide is 80%. Next, the carbonized chip | tip which made carbon content 80% or more at the carbonization process was heated at 900-1200 degreeC with the superheated steam of 730-830 degreeC, and was made to thermally decompose (water gas reaction process). The produced (residual) charcoal in the water gas reaction process was about 2 (weight)% by weight with respect to the wood chips charged. The reaction between carbide and superheated steam in this reaction process is focused on carbon and water only.
C + H 2 O═CO + H 2 (endothermic reaction)
C + 2H 2 O═CO 2 + 2H 2 (endothermic reaction)
As the reaction proceeds from the left side to the right side, the carbon component disappears. Actually, as described above, about 2% of the nitrifying bacteria supporting charcoal becomes a residue with respect to the input wood chip (water content: about 15%). In addition, the reactions actually occurring are not limited to the above two equations. For the first formula CO above,
CO + H 2 O = CO 2 + H 2 (exothermic reaction)
The reaction also occurs. In addition, various reactions occur in the water gas reaction process, and the easiness of the reaction is affected by the amount of each component and the reaction temperature. The amount of superheated steam (substance amount) to obtain charcoal rich in functionality such as nitrifying bacteria support through this water gas reaction is most effective 1.5 times the amount of carbon of the carbide (substance amount) to be input. However, if it is within the range of 1.3 to 2.0 times, charcoal with close characteristics can be obtained. In addition, the processing apparatus for the present invention may be anything as long as it can realize the conditions of each process, and may be a process that processes all processes collectively or a process that separates processes. For example, charcoal can be produced using the apparatus and method described in Patent Document 1 or an apparatus and method according to the apparatus and method. The carbon content of the charcoal produced in the present invention was 90 to 95%, most of the remaining components were calcium (50 to 70% of all components other than carbon), and the specific surface area was 300 to 400 m 2 / g.

(2)硝化菌の担持
前記(1)で製造した炭への硝化菌の担持にあたっては、水槽中で有機質肥料と炭を混合し、曝気により酸素(空気)を送り込む方法を挙げることができる。なお、硝化菌とはNH をNO (亜硝酸イオン)に酸化する亜硝酸菌、NO をNO に酸化する硝酸菌がある。前者はNitrosomonas属、Nitorosococcus属、Nitros ospira属の、後者はNitrobacter属、Nitrospira属の細菌が挙げられる。本実施例は自然由来の硝化菌を前記(1)の方法により製造した炭に下記条件下で担持するものである。本発明の炭に硝化菌を担持したものは、植物栽培において効果を示し(後述)、硝化菌の担持に適したものであることが確認された。本発明により製造した炭は炭化物表面の炭素に水が反応(水性ガス反応)し、菌の担持に適した表面形状や孔サイズ等になっている可能性が示唆される。従って、本発明の炭への担持に適した菌は前記菌に限定されるものではなく、前記菌と同等の大きさを有する等のその他の菌にも適用してもよい。また、硝化菌の担持条件についても下記条件に限定されるものではなく、硝酸態窒素濃度等を指標に条件を変えてもよい。
<硝化菌担持条件>
水:30L
牛糞堆肥(種源):150g
有機質肥料:30g
炭:1000g
空気流量:200−300mL/min
経過日数:20日以上(硝酸生成量が安定するまで)
(2) Supporting nitrifying bacteria In supporting nitrifying bacteria on the charcoal produced in (1), a method of mixing organic fertilizer and charcoal in a water tank and sending oxygen (air) by aeration can be mentioned. The nitrifying bacteria include nitrite bacteria that oxidize NH 4 + to NO 2 (nitrite ions) and nitrite bacteria that oxidize NO 2 to NO 3 . The former includes bacteria of the genus Nitrosomonas, Nitrosococcus and Nitros ospira, and the latter includes the genus Nitrobacter and Nitrospira. In this example, naturally derived nitrifying bacteria are supported on charcoal produced by the method (1) under the following conditions. It was confirmed that the charcoal of the present invention loaded with nitrifying bacteria showed an effect in plant cultivation (described later) and was suitable for supporting nitrifying bacteria. It is suggested that the charcoal produced by the present invention reacts with the carbon on the surface of the carbide (water gas reaction) and has a surface shape, pore size, etc. suitable for supporting bacteria. Therefore, the bacteria suitable for loading on the charcoal of the present invention are not limited to the above bacteria, and may be applied to other bacteria such as having the same size as the bacteria. Further, the nitrifying bacteria support conditions are not limited to the following conditions, and the conditions may be changed using the nitrate nitrogen concentration as an index.
<Nitrifying bacteria support conditions>
Water: 30L
Cow manure compost (seed source): 150g
Organic fertilizer: 30g
Charcoal: 1000g
Air flow rate: 200-300mL / min
Elapsed days: 20 days or more (until the amount of nitric acid is stabilized)

(3)硝化菌担持炭による硝酸化反応効果確認
下記(a)の混合条件下、下記(b)の硝酸化反応効果が確認された。
(a)混合条件
下表(表1)に示す条件で水槽中にて硝化菌担持炭を混合した。

Figure 0006454046
(b)硝酸化反応効果
表1の実験A〜Cのいずれにおいても約1週間で硝酸態窒素濃度が上昇し始めた。実験B及びCにおいては30日以上観測を続けた。硝酸態窒素の濃度は、実験Bにおいては9日経過後から急激に上昇し、15日経過後には30ppmを超えた。その後の濃度はほぼ一定であった。実験Cにおいては7日経過後から急激に濃度が上昇し、9日経過後には10ppmを超え、その後はほぼ一定であった。これにより本発明の炭に硝化菌が限界数まで担持されたことを確認した。 (3) Confirmation of nitrification reaction effect by nitrifying bacteria-supporting charcoal The following nitrification reaction effect of (b) was confirmed under the mixing conditions of (a) below.
(A) Mixing conditions The nitrifying bacteria-supporting charcoal was mixed in a water tank under the conditions shown in the following table (Table 1).
Figure 0006454046
(B) Nitrification reaction effect In any of the experiments A to C in Table 1, the nitrate nitrogen concentration began to increase in about one week. In Experiments B and C, observation was continued for 30 days or more. The concentration of nitrate nitrogen increased rapidly after 9 days in Experiment B and exceeded 30 ppm after 15 days. The concentration after that was almost constant. In Experiment C, the concentration increased rapidly after 7 days, exceeded 10 ppm after 9 days, and was almost constant thereafter. As a result, it was confirmed that the nitrifying bacteria were supported to the limit number on the charcoal of the present invention.

(4)水耕栽培
前記(3)で製造した硝化菌担持炭を用いてレタスを水耕栽培した。
(a)栽培条件
栽培対象:リーフレタス((株)サカタのタネ)
温湿度:22℃、55%(恒温恒湿室内)
照度:10,000 lux(16h/日)
水耕栽培装置:長さ130cm、幅5cm、深さ 6cm、2列3段 (株)アルミス製(図2)
養液の条件は下表(表2)の通りである。表中の消化液とは有機質がメタン発酵した後の液のことである。

Figure 0006454046
(化成肥料:大塚ハウス 1、2 号混合標準(株)大塚化学) (4) Hydroponics The lettuce was hydroponically cultivated using the nitrifying bacteria-supporting charcoal produced in (3).
(A) Cultivation conditions Cultivation target: Leaf lettuce (Sakata Seed)
Temperature and humidity: 22 ° C, 55% (in a constant temperature and humidity room)
Illuminance: 10,000 lux (16h / day)
Hydroponic cultivation device: 130cm in length, 5cm in width, 6cm in depth, two rows and three stages
The conditions of the nutrient solution are as shown in the following table (Table 2). The digestive juice in the table is a solution after organic matter has been methane-fermented.
Figure 0006454046
(Chemical fertilizer: Otsuka House 1, 2 mixed standard Otsuka Chemical Co., Ltd.)

(b)結果
収穫したレタスの収穫量と成分分析の結果を表3(収量結果)及び表4(成分結果)に示す。

Figure 0006454046
Figure 0006454046
収量に関する効果は、葉重(g)と葉長(cm)に関しては、化成肥料>硝化菌担持炭、葉枚(枚)に関しては、硝化菌担持炭>化成肥料、であった。一方、成分に関する効果は、硝化菌担持炭を用いた場合の方が、化成肥料を用いた場合に比べて硝酸態窒素濃度を4分の1以下に低減でき、かつ、L−グルタミン酸濃度を高めることができた。ここで、硝化菌担持炭を用いた場合の硝酸イオン濃度は試験開始時に約100ppmであり、レタスの成長に伴って低下することが確認された(本実施例では、7日間で約60ppm、10日間で約30ppm、14日間で約20ppm、21日間で約10ppm)。一方、レタスの重量は日数経過とともに増大したが、硝酸イオン濃度が低い環境においては成長が遅くなることが確認された(レタス重量は7日間で20g、10日間で30g、14日間で38g、21日間で40g)。栽培物の収穫量の観点では硝酸濃度が少なくとも30ppm以上を維持する必要があることが示唆された。この硝酸濃度は60ppm以上を維持することがより好ましく、100ppmを維持することがさらに好ましい(硝酸イオンを100ppmに維持した場合、硝酸イオン濃度が自然減衰した場合に比べ、レタス重量は7日間で約25%、10日間で約30%、14日間で約45%、21日間で75%増加した)。硝酸濃度を維持する方法としては限定するものではないが、例えば、初期に投入した消化液の1〜3%の量の消化液を1〜2日間隔で追加投入することが挙げられる(ただし、硝化菌担持炭の性能を踏まえ、正確な消化液の投与量、投与間隔は濃度確認を行いつつ決定することが必要である)。 (B) Results Table 3 (yield results) and 4 (component results) show the yields of harvested lettuce and the results of component analysis.
Figure 0006454046
Figure 0006454046
The effect on the yield was: chemical fertilizer> nitrifying bacteria supported charcoal for leaf weight (g) and leaf length (cm), and nitrifying bacteria supporting charcoal> chemical fertilizer for leaf sheets (sheets). On the other hand, as for the effects regarding the components, when using nitrifying charcoal-supporting charcoal, the nitrate nitrogen concentration can be reduced to a quarter or less, and the L-glutamic acid concentration is increased compared to the case using chemical fertilizer. I was able to. Here, the nitrate ion concentration when using nitrifying bacteria-supporting charcoal was about 100 ppm at the start of the test, and it was confirmed that it decreased with the growth of lettuce (in this example, about 60 ppm, 10 ppm over 7 days). About 30 ppm for 14 days, about 20 ppm for 14 days, about 10 ppm for 21 days). On the other hand, the lettuce weight increased with the passage of days, but it was confirmed that the growth was slow in an environment where the nitrate ion concentration was low (the lettuce weight was 20 g for 7 days, 30 g for 10 days, 38 g for 14 days, 21 g 40g per day). It was suggested that the concentration of nitric acid should be maintained at least 30 ppm from the viewpoint of crop yield. This nitric acid concentration is more preferably maintained at 60 ppm or more, and more preferably 100 ppm (when the nitrate ion is maintained at 100 ppm, the lettuce weight is about 7 days after the natural decay of the nitrate ion concentration). 25%, 10 days increased about 30%, 14 days increased about 45%, 21 days increased 75%). Although it does not limit as a method of maintaining nitric acid concentration, For example, it is mentioned that the digestive liquid of the amount of 1-3% of the digestive liquid initially injected | thrown-in is additionally input at intervals of 1-2 days (however, Based on the performance of nitrifying bacteria-supported charcoal, it is necessary to determine the exact dose and interval of digestive juice while confirming the concentration).

また、本実施例では硝化反応を行いつつレタスを栽培できたが、事前に硝化液を製造しておき、これを本実施例の条件に準じ、養液として施肥する栽培、すなわち、水耕栽培や養液土耕栽培等に有用であることが示唆される。養液の使用条件は前記リーフレタス栽培の硝酸イオン濃度レベルが参考になるが、これに限定されるものではない。   Further, in this example, lettuce could be cultivated while performing a nitrification reaction, but a nitrification solution was manufactured in advance, and this was fertilized as a nutrient solution according to the conditions of this example, that is, hydroponics It is suggested that it is useful for hydroponic cultivation. The use conditions of the nutrient solution are not limited to the nitrate ion concentration level of the leaf lettuce cultivation as a reference.

本発明に係る炭とその他の炭の効果について以下に説明する。本発明とは別の炭(モウソウ竹炭)に硝化菌を担持した場合の効果と本発明品の効果との比較を図3に示す。モウソウ竹炭に関する効果確認試験は別の試験系で行ったものである。それぞれの試験における比較対象用として用いた化成肥料が同一であるため、化成肥料を基準に間接的にそれぞれの炭の効果を比較したものである(化成肥料を用いた場合の効果を1とした)。図3は、栽培したレタスの糖度とL−グルタミン酸濃度について、化成肥料を用いた場合の結果を基準に(化成肥料を用いた場合のレタス糖度、L−グルタミン酸濃度を基準に)グラフ化したものである。うま味成分として知られるL−グルタミン酸について本発明に係る炭を用いた場合に最も高い効果が得られた。糖度に関しても、本発明に係る炭を用いた場合に最も高い効果が得られた。本発明に係る炭に硝化菌を担持して植物栽培に供することで植物の品質向上に寄与することが、すなわち、本発明に係る炭は植物栽培において他の炭よりも有用性が大きいことが示唆された。   The effects of the charcoal according to the present invention and other charcoal will be described below. FIG. 3 shows a comparison between the effect of nitrifying bacteria supported on charcoal (Moso bamboo bamboo charcoal) different from the present invention and the effect of the product of the present invention. The effect confirmation test on Moso bamboo charcoal was conducted in another test system. Because the chemical fertilizer used for comparison in each test is the same, the effect of each charcoal is compared indirectly based on the chemical fertilizer (the effect when using the chemical fertilizer is 1) ). FIG. 3 is a graph of sugar content and L-glutamic acid concentration of cultivated lettuce based on the results when using chemical fertilizer (based on lettuce sugar content and L-glutamic acid concentration when using chemical fertilizer). It is. For L-glutamic acid known as an umami component, the highest effect was obtained when the charcoal according to the present invention was used. Regarding the sugar content, the highest effect was obtained when the charcoal according to the present invention was used. The charcoal according to the present invention contributes to improving the quality of the plant by supporting the nitrifying bacteria on the plant cultivation, that is, the charcoal according to the present invention is more useful than other charcoal in the plant cultivation. It was suggested.

今回、確認された効果については水性ガス反応等を通じて生成された炭の特性(表面形状、孔サイズ、組成等)を要因として挙げることができる。さらに、このような炭の特性を活かした展開としては、菌の担持等に限らず、他の用途、例えば、物理吸着特性を活かした脱臭等への展開等を挙げることができる。   The effects confirmed this time can be attributed to the characteristics (surface shape, pore size, composition, etc.) of the charcoal generated through the water gas reaction. Furthermore, the development utilizing such charcoal characteristics is not limited to the support of bacteria and the like, and other uses such as development to deodorization utilizing the physical adsorption characteristics can be exemplified.

本発明によれば、木質バイオマスから硝化菌担持用炭、硝化菌担持炭、栽培用硝化液、及び、機能性植物の栽培方法等を提供する技術として有用である。また、本発明に係る炭の特性を活かし、菌の担持等に限らず、他の用途、例えば、物理吸着特性を活かした脱臭等への利用可能性を挙げることができる。   INDUSTRIAL APPLICABILITY According to the present invention, it is useful as a technique for providing nitrifying bacteria-supporting charcoal, nitrifying bacteria-supporting charcoal, cultivating nitrifying liquid, and functional plant cultivation method from woody biomass. In addition, utilizing the characteristics of the charcoal according to the present invention, not only the loading of bacteria, etc., other applications such as deodorization utilizing the physical adsorption characteristics can be mentioned.

Claims (5)

含水率15%以下の木質バイオマスを900〜1200℃で炭化させる第1の工程と、
前記第1工程を経た炭化物を900〜1200℃で過熱蒸気と反応させる第2の工程、
を経て得られた炭を硝化菌担持用とすることを特徴とする硝化菌担持用炭の製造方法。
A first step of carbonizing a woody biomass having a water content of 15% or less at 900 to 1200 ° C .;
A second step of reacting the carbide having undergone the first step with superheated steam at 900 to 1200 ° C;
A method for producing charcoal for supporting nitrifying bacteria, characterized in that the charcoal obtained through the process is used for supporting nitrifying bacteria.
請求項1に記載の第1、第2工程を有し、前記第2工程における過熱蒸気の物質量が前記第1工程を経た炭化物の炭素の物質量の1.3〜2.0倍であることを特徴とする炭の製造方法。   It has the 1st and 2nd process of Claim 1, and the amount of substances of superheated steam in said 2nd process is 1.3 to 2.0 times the amount of substances of carbon of the carbide which passed through said 1st process. A method for producing charcoal characterized by the above. 請求項1〜2のいずれか一項に記載の製造方法によって製造された炭に硝化菌担持ることを特徴とする硝化菌担持炭の製造方法 Manufacturing method of nitrifying bacteria charcoal which nitrifying bacteria charcoal produced is characterized in carrying to Rukoto by the manufacturing method according to any one of claims 1-2. メタン発酵消化液に請求項3に記載の硝化菌担持炭を混合し、硝化反応を経て得られた溶液を植物栽培用とすることを特徴とする栽培用硝化液の製造方法。   A method for producing a nitrifying liquid for cultivation, comprising mixing the nitrifying bacteria-supporting charcoal according to claim 3 with a methane fermentation digestive liquid and using the solution obtained through a nitrification reaction for plant cultivation. 請求項4に記載の製造方法によって製造された栽培用硝化液を養液として植物に施用することを特徴とする養液栽培方法。   A hydroponic cultivation method, wherein the nitrifying solution for cultivation produced by the production method according to claim 4 is applied to a plant as a nutrient solution.
JP2018113205A 2018-06-13 2018-06-13 Method for producing functionally enhanced charcoal Active JP6454046B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018113205A JP6454046B1 (en) 2018-06-13 2018-06-13 Method for producing functionally enhanced charcoal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018113205A JP6454046B1 (en) 2018-06-13 2018-06-13 Method for producing functionally enhanced charcoal

Publications (2)

Publication Number Publication Date
JP6454046B1 true JP6454046B1 (en) 2019-01-16
JP2019214499A JP2019214499A (en) 2019-12-19

Family

ID=65020411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018113205A Active JP6454046B1 (en) 2018-06-13 2018-06-13 Method for producing functionally enhanced charcoal

Country Status (1)

Country Link
JP (1) JP6454046B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010088360A (en) * 2008-10-09 2010-04-22 National Agriculture & Food Research Organization Method for producing pumice culture medium to be used for hydroponics of plant, and apparatus and method for plant hydroponics using the pumice culture medium obtained by the method
JP2010088359A (en) * 2008-10-09 2010-04-22 National Agriculture & Food Research Organization Manufacturing method of fungus seed of microorganism optimized as catalyst of concurrent multiple mineralization reaction

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010088360A (en) * 2008-10-09 2010-04-22 National Agriculture & Food Research Organization Method for producing pumice culture medium to be used for hydroponics of plant, and apparatus and method for plant hydroponics using the pumice culture medium obtained by the method
JP2010088359A (en) * 2008-10-09 2010-04-22 National Agriculture & Food Research Organization Manufacturing method of fungus seed of microorganism optimized as catalyst of concurrent multiple mineralization reaction

Also Published As

Publication number Publication date
JP2019214499A (en) 2019-12-19

Similar Documents

Publication Publication Date Title
Cheong et al. Closing the food waste loop: Food waste anaerobic digestate as fertilizer for the cultivation of the leafy vegetable, xiao bai cai (Brassica rapa)
Hansen et al. Reviews and syntheses: Review of causes and sources of N 2 O emissions and NO 3 leaching from organic arable crop rotations
Song et al. Upcycling food waste using black soldier fly larvae: Effects of further composting on frass quality, fertilising effect and its global warming potential
Meng et al. Co-composting of the biogas residues and spent mushroom substrate: Physicochemical properties and maturity assessment
Pelayo Lind et al. Biogas digestate in vegetable hydroponic production: pH dynamics and pH management by controlled nitrification
Meng et al. Full-scale of composting process of biogas residues from corn stover anaerobic digestion: Physical-chemical, biology parameters and maturity indexes during whole process
Thangarajan et al. Role of organic amendment application on greenhouse gas emission from soil
KR101889400B1 (en) Method for manufacturing pellet type of slow releasing fertilizer using biochar and manure compost
Chang et al. Effects of composting and carbon based materials on carbon and nitrogen loss in the arable land utilization of cow manure and corn stalks
CN107628916B (en) A kind of charcoal fertilizer and preparation method and application
Tan et al. Application of the 15N tracer method to study the effect of pyrolysis temperature and atmosphere on the distribution of biochar nitrogen in the biomass–biochar-plant system
Insam et al. Control of GHG emission at the microbial community level
Zhou et al. Effects of applying different carbon substrates on nutrient removal and greenhouse gas emissions by constructed wetlands treating carbon-depleted hydroponic wastewater
Singla et al. Nitrous oxide flux from komatsuna (Brassica rapa) vegetated soil: a comparison between biogas digested liquid and chemical fertilizer
Dan et al. Gross N transformations and plant N use efficiency in intensive vegetable production soils
CN108887139A (en) A kind of safe and environment-friendly, economizing type greengrocery hole plate seedling growth dedicated substrate compounded using cow manure
Singh et al. Methanogenesis and methane emission in rice/paddy fields
Igbokwe et al. Manufacture of Bio Fertilizer by Composting Sawdust and Other Organic Waste
Saria et al. Soil fertility dynamics of ultisol as influenced by greengram and mucuna green manures
JP6454046B1 (en) Method for producing functionally enhanced charcoal
Reddy et al. Biochar and its potential benefits-a review
Abubakari et al. Standardizing the quality of composts using stability and maturity indices: the use of sawdust and rice husks as compost feed stocks
Chakraborty et al. Nutrient recovery and utilization from wastewater for soil-less agriculture
Singh et al. Biochar: An eco-friendly residue management approach
Rajkovich Biochar as an amendment to improve soil fertility

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180613

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20180613

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20180911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181213

R150 Certificate of patent or registration of utility model

Ref document number: 6454046

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250