JP6450218B2 - Method for producing transesterified oil - Google Patents

Method for producing transesterified oil Download PDF

Info

Publication number
JP6450218B2
JP6450218B2 JP2015039811A JP2015039811A JP6450218B2 JP 6450218 B2 JP6450218 B2 JP 6450218B2 JP 2015039811 A JP2015039811 A JP 2015039811A JP 2015039811 A JP2015039811 A JP 2015039811A JP 6450218 B2 JP6450218 B2 JP 6450218B2
Authority
JP
Japan
Prior art keywords
oil
layer
weight
parts
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015039811A
Other languages
Japanese (ja)
Other versions
JP2016160339A (en
Inventor
章弘 菊田
章弘 菊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2015039811A priority Critical patent/JP6450218B2/en
Publication of JP2016160339A publication Critical patent/JP2016160339A/en
Application granted granted Critical
Publication of JP6450218B2 publication Critical patent/JP6450218B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Edible Oils And Fats (AREA)
  • Fats And Perfumes (AREA)

Description

本発明は、エステル交換油の製造方法に関する。   The present invention relates to a method for producing a transesterified oil.

触媒を用いた油脂の化学エステル交換プロセスは、「油脂の加熱→真空脱水→触媒投入」の順序で進行する。触媒投入によって、触媒であるアルカリ性物質と油脂が反応することで、化学エステル交換反応が進行すると共に、副生物のセッケン(脂肪酸のアルカリ金属塩)が生成する。そして、化学エステル交換反応が終了した時点では、油脂中に50000ppm前後のセッケン分が含まれている。   The process of chemical transesterification of fats and oils using a catalyst proceeds in the order of “heating of fats and oils → vacuum dehydration → injecting catalyst”. When the catalyst is charged, the alkaline substance, which is a catalyst, reacts with fats and oils, whereby a chemical transesterification reaction proceeds and a by-product soap (alkali metal salt of fatty acid) is generated. And when chemical transesterification reaction is complete | finished, the amount of soap about 50000 ppm is contained in fats and oils.

これまで、前記セッケン分を除去するために、化学エステル交換反応後の油脂に対して「水洗→静置→水相及び乳化相除去」との工程を実施していたが、水洗によって生じた乳化層と共に油脂の一部が失われ製品の歩留りが低下してしまう上に、セッケンをより多く除去しようとして水層及び乳化層を除去した後に再び水を添加すると、水層と油層の間で乳化状態となり、ひとたび乳化が起こると油脂の損失は莫大なものになるという問題があった(特許文献1)。一方、水洗で使用する水量を抑制すると、セッケンを十分に除去できず、白土処理等の吸着処理における吸着材の使用量が増えて油脂に吸着材特有の好ましくない風味が移行し油脂の風味が悪くなったり、吸着処理後の濾過による吸着材分離効率が落ちて、油脂の歩留りが悪くなったりするという問題がある。   Until now, in order to remove the soap, the oil and fat after the chemical transesterification reaction has been subjected to a process of “water washing → stationary → water phase and emulsified phase removal”. A part of the fat and oil is lost together with the layer, and the yield of the product is lowered, and when water is added again after removing the water layer and the emulsified layer in order to remove more soap, emulsification is performed between the water layer and the oil layer. Once emulsification occurs, there is a problem that the fat loss becomes enormous (Patent Document 1). On the other hand, if the amount of water used in washing is reduced, soap cannot be removed sufficiently, the amount of adsorbent used in the adsorption treatment such as white clay treatment increases, and the unfavorable flavor peculiar to the adsorbent is transferred to the fat and oil, resulting in a fat and oil flavor. There is a problem that the adsorbent separation efficiency by filtration after the adsorption treatment is deteriorated and the yield of fats and oils is deteriorated.

特開昭51−61510号公報JP-A-51-61510

本発明の目的は、エステル交換後の油脂中に含まれているセッケン分を安価で効率的に且つ歩留り良く除去して、脱臭処理に供する前のエステル交換油を提供することである。   An object of the present invention is to provide a transesterified oil before it is subjected to a deodorizing treatment by removing soap contained in the fat and oil after the transesterification at low cost, efficiently and with a good yield.

本発明者らは上記課題を解決するために鋭意研究を重ねた結果、動植物油脂をアルカリ性物質によりエステル交換反応させた後、中性水をシャワーリングのように水滴状で油脂に添加すると、中性水の表面積の総和が大きいことから、セッケンとの接触面積の総和も比例して大きくなり、また、水滴は適度な液滴径となることから、水滴はセッケンを抱いたまま油脂中を沈降していき、混合液の大部分が油層と水層とに分かれ、乳化層がほとんど生じないため、これまでのように油脂の歩留りを落とすことなく、セッケンを除去できることを見出し、本発明を完成するに至った。   As a result of intensive research to solve the above-mentioned problems, the present inventors have conducted a transesterification reaction of animal and vegetable oils and fats with an alkaline substance, and then added neutral water to the oils and fats like showering. Since the total surface area of the neutral water is large, the total contact area with the soap also increases proportionally, and since the water droplets have an appropriate droplet diameter, the water droplets settle in the oil and fat while holding the soap. As a result, most of the liquid mixture was divided into an oil layer and an aqueous layer, and an emulsified layer was hardly formed, so it was found that soap could be removed without lowering the yield of fats and oils as before, and the present invention was completed. It came to do.

即ち、本発明の第一は、動植物油脂を、アルカリ性物質を用いたエステル交換反応に付する第一工程、
前記エステル交換反応後に得られた油脂に、前記動植物油脂100重量部に対して10〜200重量部の液滴状の中性水を添加することで、前記油脂中で水滴を沈降させ、第一水層及び第一油層を含む液を得る第二工程、
第二工程で得られた液から第一水層を除去して、残留セッケン分が350〜1200ppmのエステル交換油を得る第三工程
を含む、脱臭処理に供するためのエステル交換油の製造方法に関する。
That is, the first of the present invention is a first step in which animal and vegetable fats and oils are subjected to a transesterification reaction using an alkaline substance,
By adding 10 to 200 parts by weight of neutral water droplets to 100 parts by weight of the animal and vegetable oils and fats obtained after the transesterification reaction, the water droplets are precipitated in the oils and fats. A second step of obtaining a liquid comprising an aqueous layer and a first oil layer;
The present invention relates to a method for producing a transesterified oil for use in deodorizing treatment, comprising a third step of removing a first aqueous layer from the liquid obtained in the second step to obtain a transesterified oil having a residual soap content of 350 to 1200 ppm. .

好ましくは、脱臭処理前に脱色処理を行い且つ脱色処理時に使用する吸着材が白土である。   Preferably, the adsorbent that is subjected to decolorization before deodorization and is used during decolorization is white clay.

本発明に従えば、エステル交換後の油脂中に含まれているセッケン分を安価で効率的に且つ歩留り良く除去して、脱臭処理に供する前のエステル交換油を提供することができる。   According to the present invention, it is possible to provide a transesterified oil before being subjected to a deodorizing treatment by removing soap contained in the oil and fat after the transesterification at low cost, efficiently and with a good yield.

以下、本発明につき、さらに詳細に説明する。本発明のエステル交換油の製造方法は、以下の通りである。まず、アルカリ性物質を触媒として動植物油脂をエステル交換反応させた後、前記油脂と特定量の中性水とを特定の方法で接触させ、セッケン分を界面に吸着した水滴を油脂中で沈降させることで、油脂中のセッケン分の含有量を特定量以下にすることを特徴とする。   Hereinafter, the present invention will be described in more detail. The method for producing the transesterified oil of the present invention is as follows. First, animal and vegetable fats and oils are transesterified using an alkaline substance as a catalyst, and then the fats and fats are brought into contact with a specific amount of neutral water by a specific method, so that water droplets adsorbing soap on the interface are precipitated in the fats and oils. Thus, the content of soap in the oil or fat is set to a specific amount or less.

<第一工程:エステル交換反応>
前記エステル交換反応では、アルカリ性物質を触媒として動植物油脂をエステル交換反応させる。具体的には、例えば「油脂の加熱→脱水→触媒投入」の順で常法に従うことができるが、これに限定されない。この反応工程内における触媒投入時に、触媒であるアルカリ性物質と動植物油脂が反応することで、化学エステル交換反応が進行すると共に、副生物のセッケンが生成する。ここでセッケンとは、エステル交換反応に供せられる動植物油脂中に含まれるトリグリセライド、ジグリセライド、又はモノグリセライド由来の脂肪酸とアルカリ性物質が反応して得られる脂肪酸アルカリ金属塩のことである。
<First step: transesterification>
In the transesterification reaction, animal and vegetable fats and oils are transesterified using an alkaline substance as a catalyst. Specifically, for example, the usual method can be followed in the order of “heating of fat / oil → dehydration → injecting catalyst”, but is not limited thereto. When the catalyst is charged in this reaction step, the alkaline substance as a catalyst reacts with animal and vegetable oils and fats, whereby a chemical transesterification reaction proceeds and a by-product soap is generated. Here, soap is a fatty acid alkali metal salt obtained by reacting triglyceride, diglyceride, or monoglyceride-derived fatty acid and an alkaline substance contained in animal or vegetable oils and fats subjected to transesterification.

本発明のエステル交換油の製造に用いる動植物油脂は特に制限されるものではないが、植物油の例として、サフラワー油、大豆油、ナタネ油、パーム油、パーム核油、綿実油、ヤシ油、米糠油、ゴマ油、ヒマシ油、亜麻仁油、オリーブ油、桐油、椿油、落花生油、カポック油、カカオ油、木蝋、ヒマワリ油、コーン油などを例示することができ、動物油としては、魚油、鯨油、牛脂、豚脂、羊脂、牛脚脂などを例示でき、更にそれらの水素添加油やエステル交換油、分別油、さらにはそれらの混合油などを用いても良い。   The animal and vegetable oils and fats used for producing the transesterified oil of the present invention are not particularly limited, but examples of vegetable oils include safflower oil, soybean oil, rapeseed oil, palm oil, palm kernel oil, cottonseed oil, coconut oil, rice bran Oil, sesame oil, castor oil, linseed oil, olive oil, tung oil, coconut oil, peanut oil, kapok oil, cacao oil, wood wax, sunflower oil, corn oil, etc. Examples include pork fat, sheep fat, beef leg fat, and the like, and hydrogenated oils, transesterified oils, fractionated oils, and mixed oils thereof may also be used.

上記エステル交換反応において、動植物油脂中のモノグリセライド、ジグリセライド、又はトリグリセライドとアルカリ性物質を反応させる際に、水分はエステル交換反応を阻害するため、動植物油脂中の水分含有量は少ないほど良い。そこで、触媒を投入する前に、動植物油脂を脱水工程に付して、動植物油脂中の水分含有量を、0.1重量%以下まで減少させておくことが好ましく、より好ましくは0.05重量%以下、さらに好ましくは0.03重量%以下、特に好ましくは0.01重量%以下である。ここで、動植物油脂を脱水するには、加熱真空脱水や窒素バブリングなどを行なえばよい。   In the transesterification reaction, when monoglyceride, diglyceride, or triglyceride in animal and vegetable fats and oils are reacted with an alkaline substance, moisture inhibits the transesterification reaction, so that the moisture content in animal and vegetable fats and oils is better. Therefore, before adding the catalyst, it is preferable to subject the animal and vegetable oils and fats to a dehydration step to reduce the water content in the animal and vegetable oils and fats to 0.1% by weight or less, more preferably 0.05% by weight. % Or less, more preferably 0.03% by weight or less, particularly preferably 0.01% by weight or less. Here, in order to dehydrate the animal and vegetable fats and oils, heating vacuum dehydration, nitrogen bubbling, or the like may be performed.

動植物油脂を脱水する前に動植物油脂を加熱する際には、その加熱温度は特に限定されないが、例えば、60〜110℃程度の温度に加熱すればよい。   When heating the animal and vegetable oils and fats before dehydrating the animal and vegetable oils and fats, the heating temperature is not particularly limited. For example, it may be heated to a temperature of about 60 to 110 ° C.

本発明のエステル交換油の製造に用いるアルカリ性物質としては、エステル交換能を有している物質であれば何を使用しても良く、アルカリ金属やその化合物が例示でき、具体的にはカリウムナトリウム合金、ナトリウムメチラート、ナトリウムエチラート、カリウムメチラート、水酸化ナトリウム、水酸化カリウム等を例示できる。低温での活性が高いことからはカリウムナトリウム合金が好ましく、経済性や扱い易さからはナトリウムメチラートが好ましい。   As the alkaline substance used in the production of the transesterified oil of the present invention, any substance having transesterification ability may be used, and an alkali metal or a compound thereof can be exemplified. Specifically, potassium sodium Examples include alloys, sodium methylate, sodium ethylate, potassium methylate, sodium hydroxide, potassium hydroxide and the like. A potassium sodium alloy is preferable because of its high activity at low temperatures, and sodium methylate is preferable from the viewpoint of economy and ease of handling.

前記アルカリ性物質の添加量は、前記動植物油脂100重量部に対して0.05〜0.5重量部が好ましく、0.1〜0.3重量部がより好ましい。0.05重量部より少ないと、動植物油脂のエステル交換反応速度が遅い、もしくは反応が進行しない場合がある。一方、0.5重量部より多いと、油脂中のモノグリセライド、ジグリセライド、又はトリグリセライドとアルカリ性物質が反応することで生成するセッケンの量が多くなり、得られるエステル交換油の収率が低下するため、好ましくない場合がある。   The addition amount of the alkaline substance is preferably 0.05 to 0.5 parts by weight, more preferably 0.1 to 0.3 parts by weight with respect to 100 parts by weight of the animal and vegetable fats and oils. If the amount is less than 0.05 parts by weight, the transesterification rate of the animal or vegetable oil may be slow or the reaction may not proceed. On the other hand, if the amount is more than 0.5 parts by weight, the amount of soap produced by the reaction of monoglyceride, diglyceride, or triglyceride in the oil and fat with an alkaline substance increases, and the yield of the obtained transesterified oil decreases. It may not be preferable.

動植物油脂とアルカリ性物質との反応における時間および温度は特に限定されず、常法に従うことができるが、例えば0.03〜3時間、50〜120℃程度であって、好ましくは外気等から水分が混入しない条件がよく、例えば真空下で反応させたり、反応容器のヘッドスペースに窒素を充填した状態で反応させたりすればよい。   The time and temperature in the reaction between the animal and plant oil and the alkaline substance are not particularly limited, and can follow a conventional method. For example, it is about 0.03 to 3 hours and about 50 to 120 ° C. Conditions for not mixing are good. For example, the reaction may be performed under vacuum, or the reaction may be performed in a state where the head space of the reaction vessel is filled with nitrogen.

<第二工程:エステル交換反応後の油脂と水との接触>
前記エステル交換反応後の油脂に、液滴状の中性水を添加して、油脂内で水滴を沈降させる。これにより、油脂に含まれるセッケンを水層に移行させ、油脂中に含まれるセッケン量を低減する。
<Second step: contact between oil and water after transesterification>
Droplet-like neutral water is added to the oil and fat after the transesterification reaction, and the water droplet is precipitated in the oil and fat. Thereby, the soap contained in fats and oils is moved to a water layer, and the amount of soap contained in fats and oils is reduced.

ここで、中性水とは、わずかにアルカリ性を示す水、及び、わずかに酸性を示すが、セッケンと反応して脂肪酸に変化させる程度の酸性ではない水も含む。具体的には、pH5〜9の範囲の水を好適に用い得る。   Here, the neutral water includes water that is slightly alkaline and water that is slightly acidic but is not acidic enough to react with soap and change into fatty acid. Specifically, water having a pH in the range of 5 to 9 can be suitably used.

前記液滴状の中性水を油脂に添加するには、エステル交換反応後の油脂と中性水との接触表面積の総和が大きく且つ乳化が生じにくいように液滴状の中性水を油脂に添加する方法が好ましい。接触表面積の総和が小さいと、洗浄効率の悪い場合がある。また、乳化が起こると、油脂の歩留りを低下させる場合がある。中性水の水滴径が大きいほど、大半の水滴はセッケンを抱いたまま、比重の差に従って沈降していく。これにより、セッケンを十分に除去できると共に、乳化を生じにくくすることができる。   To add the droplet-shaped neutral water to the fat or oil, the droplet-shaped neutral water is added to the fat or oil so that the total surface area of contact between the fat and neutral water after the transesterification reaction is large and emulsification hardly occurs. The method of adding to is preferable. If the total contact surface area is small, the cleaning efficiency may be poor. Moreover, when emulsification occurs, the yield of fats and oils may be reduced. The larger the water droplet size of neutral water, the more water droplets will settle according to the difference in specific gravity while holding the soap. Thereby, soap can be removed sufficiently and emulsification can be made difficult to occur.

接触表面積の総和と水滴径とのバランスを適度な範囲にするために、具体的には、油層中における水滴径が1〜5mm程度になるように、中性水の液滴を油脂に添加することが好ましく、さらには、中性水の添加の勢いが強すぎないように添加することがより好ましい。水滴径が1mmより小さいと、水滴が油脂中に浮遊し続けて沈降しにくい場合があり、また、油層中の油脂全体に接触させるためには中性水の添加の勢いが強くなるので乳化が生じやすくなる場合がある。5mmより大きいと接触表面積の総和が小さくなり、セッケンの除去が不十分になる場合がある。   In order to make the balance between the sum of the contact surface area and the water droplet diameter within an appropriate range, specifically, a neutral water droplet is added to the oil so that the water droplet diameter in the oil layer is about 1 to 5 mm. Further, it is more preferable that the neutral water is added so as not to be too strong. If the water droplet diameter is smaller than 1 mm, the water droplets may continue to float in the fat and oil, making it difficult to settle. In addition, in order to contact the entire fat and oil in the oil layer, the momentum of adding neutral water becomes strong, so emulsification May be more likely to occur. When it is larger than 5 mm, the total contact surface area becomes small, and the removal of soap may be insufficient.

中性水を添加する際は、油脂を撹拌しながら一気に中性水を接触させると、特開昭51−61510号公報に記載のように、水層と油層の間で大量の乳化層が発生し、油脂の歩留りを低下させる。従って、乳化層の発生をできるだけ抑制するために、油脂と中性水との接触は穏やかであることが好ましい。前述した水滴径の大きさに関わらず、中性水を添加する際の勢いが強すぎると乳化が起こり易くなる場合があり、勢いが弱すぎると中性水の添加に時間がかかり、生産効率が低下する場合がある。また、油脂に中性水を添加する際、油脂の流動性は低い方が好ましく、油脂は流動させないことが更に好ましい。油脂の流動性は、例えば撹拌速度を変えることで調整すれば良い。   When neutral water is added, if the neutral water is brought into contact with the oil and fat while stirring, a large amount of emulsified layer is generated between the water layer and the oil layer as described in JP-A-51-61510. And reduce the yield of fats and oils. Therefore, in order to suppress generation | occurrence | production of an emulsion layer as much as possible, it is preferable that the contact with fats and oils and neutral water is gentle. Regardless of the size of the water droplets described above, if the momentum when adding neutral water is too strong, emulsification may occur easily. If the momentum is too weak, it takes time to add neutral water, and production efficiency is increased. May decrease. Moreover, when adding neutral water to fats and oils, the one where the fluidity | liquidity of fats and oils is low is preferable, and it is still more preferable not to let fats and oils flow. The fluidity of the oil and fat may be adjusted by changing the stirring speed, for example.

中性水を油脂の上部から添加する場合は、例えばシャワーリングによって中性水を液滴状にして添加する方法などを例示することができる。シャワーリングは、ノズル径の変更や水圧の調節などで水滴径をコントロールし易く、エステル交換反応後の油脂と中性水との接触表面積の総和を大きくするのに好適である。また、油層の表面に対して広範囲に均一に中性水を添加することも容易である。さらに、添加する水滴が小粒径であっても、油層表面で水滴同士が合一し易く、適度な粒径になって沈降し易い。   When adding neutral water from the upper part of fats and oils, the method of adding neutral water in droplet form by showering etc. can be illustrated, for example. The shower ring is easy to control the water droplet diameter by changing the nozzle diameter or adjusting the water pressure, and is suitable for increasing the total surface area of contact between the oil and fat after the transesterification reaction and neutral water. It is also easy to add neutral water uniformly over a wide range with respect to the surface of the oil layer. Furthermore, even if the water droplets to be added have a small particle size, the water droplets are likely to coalesce on the surface of the oil layer, so that they have an appropriate particle size and are likely to settle.

前記エステル交換反応後の油脂に接触させる中性水の添加量は、原料である動植物油脂100重量部に対して10〜200重量部が好ましく、30〜170重量部がより好ましく、50〜150重量部が更に好ましく、50〜120重量部が特に好ましい。10重量部より少ないと、中性水とセッケンが接触する表面積の総和が少ないために、エステル交換反応後の油脂中からセッケンを十分に除去できない場合がある。200重量部より多いと、処理しなければならない廃水量が増加するため、経済的に好ましくない場合がある。   The amount of neutral water to be brought into contact with the oil and fat after the transesterification reaction is preferably 10 to 200 parts by weight, more preferably 30 to 170 parts by weight, and more preferably 50 to 150 parts by weight with respect to 100 parts by weight of the raw animal and vegetable oils and fats. Part is more preferable, and 50 to 120 parts by weight is particularly preferable. If the amount is less than 10 parts by weight, the total surface area where neutral water and soap are in contact with each other is small, so that soap may not be sufficiently removed from the fat after the transesterification reaction. If the amount is more than 200 parts by weight, the amount of waste water that must be treated increases, which may be economically undesirable.

この工程により、第一水層及び第一油層を含む液が得られる。また、この工程によると、従来の水洗工程と比較して、乳化層の発生をはるかに抑えることができる。しかし、わずかに乳化層が発生することもあり、その場合には、この工程により、第一水層、乳化層及び第一油層からなる液が得られる。乳化層は、第一水層と第一油層との間に形成される。   By this step, a liquid containing the first aqueous layer and the first oil layer is obtained. Moreover, according to this process, compared with the conventional water washing process, generation | occurrence | production of an emulsion layer can be suppressed much. However, a slightly emulsified layer may be generated, and in this case, a liquid composed of the first aqueous layer, the emulsified layer and the first oil layer is obtained by this step. The emulsified layer is formed between the first aqueous layer and the first oil layer.

<第三工程:第一水層の除去>
この工程では、第二工程で得られた液から第一水層を除去する。また、上述したように、第二工程で得られた液において乳化層が発生している場合には、第二工程で得られた液から第一水層及び乳化層を除去する。この場合、乳化層は第一水層と共に除去すればよい。
<Third step: removal of the first aqueous layer>
In this step, the first aqueous layer is removed from the liquid obtained in the second step. Moreover, as above-mentioned, when the emulsion layer has generate | occur | produced in the liquid obtained at the 2nd process, a 1st water layer and an emulsion layer are removed from the liquid obtained at the 2nd process. In this case, the emulsified layer may be removed together with the first aqueous layer.

第二工程で得られた液は、タンク等の容器中で、比重の差に従って、下方から、第一水層、生じている場合には乳化層、及び、第一油層に分離している。従って、容器の下部から、第一水層、及び、生じている場合には乳化層を排出することにより、第二工程で得られた液から第一水層及び乳化層を除去することが出来る。   In the container such as a tank, the liquid obtained in the second step is separated into the first aqueous layer, the emulsified layer, and the first oil layer, if any, from below according to the difference in specific gravity. Therefore, the first aqueous layer and the emulsified layer can be removed from the liquid obtained in the second step by discharging the first aqueous layer and, if any, the emulsified layer from the lower part of the container. .

なお、第一水層、乳化層、及び第一油層は、第一水層及び乳化層の除去の前に予め十分に分離させておくことが好ましい。各層の分離が十分でないとセッケンと乳化物の除去効率が低下したり、油脂の歩留りが低下する場合がある。前記各層を十分に分離するには、例えば、添加した中性水の沈降後に、容器中で一定時間静置したり、遠心分離すれば良い。   The first aqueous layer, the emulsified layer, and the first oil layer are preferably sufficiently separated in advance before the removal of the first aqueous layer and the emulsified layer. If the separation of each layer is not sufficient, the removal efficiency of soap and emulsion may be reduced, or the yield of fats and oils may be reduced. In order to sufficiently separate the layers, for example, after settling of the added neutral water, the layers may be left in a container for a certain period of time or centrifuged.

こうして水層を除去して得られたエステル交換油は、この時点で含まれるセッケン分が350〜1200ppm(好ましくは350〜1000ppm)と非常に少なくなる。しかし、高温脱臭時のえぐみの発生を防ぐためには、この後、該エステル交換油は、よりセッケン分を減らす為に、脱臭前に脱色処理及び/又は酸性物質との接触処理を行い、脱臭前のセッケン分を15ppm以下、より好ましくは10ppmとすることが好ましい。   The transesterified oil obtained by removing the aqueous layer in this way has a very low soap content of 350 to 1200 ppm (preferably 350 to 1000 ppm). However, in order to prevent the occurrence of stagnation during high temperature deodorization, the transesterified oil is then subjected to decolorization treatment and / or contact treatment with acidic substances before deodorization in order to further reduce soap content. The previous soap content is preferably 15 ppm or less, more preferably 10 ppm.

前記脱色処理は常法に従って行えばよい。   What is necessary is just to perform the said decoloring process according to a conventional method.

前記酸性物質との接触処理とは、第三工程で第一水層と、生じている場合には乳化層とを除去した後の第一油層に酸性物質を混合し、撹拌することである。これにより、第一油層に残留しているセッケンを脂肪酸に変化させることでセッケンを分解することができる。ここで、撹拌とは油層と酸性物質を乱流状態にすることを表す。乱流状態を作り上げるには、例えばタンクの中で撹拌翼を回転させたり、スタティックミキサーを通せばよい。   The contact treatment with the acidic substance is to mix and stir the acidic substance in the first oil layer after removing the first aqueous layer and the emulsified layer, if any, in the third step. Thereby, soap can be decomposed | disassembled by changing the soap remaining in the 1st oil layer into a fatty acid. Here, the agitation represents making the oil layer and the acidic substance into a turbulent state. In order to create a turbulent state, for example, a stirring blade may be rotated in a tank or a static mixer may be passed.

前記酸性物質は、セッケンと反応した際に、セッケンからアルカリ金属を奪い脂肪酸に変化させることが可能な酸性物質であれば特に限定はない。例えばクエン酸やリンゴ酸、乳酸などの有機酸や、塩酸、硫酸などの無機酸が例示できるが、食用であることを考えると、有機酸が好ましい。   The acidic substance is not particularly limited as long as it is an acidic substance that can take an alkali metal from soap and change it into a fatty acid when reacted with soap. For example, organic acids such as citric acid, malic acid and lactic acid, and inorganic acids such as hydrochloric acid and sulfuric acid can be exemplified, but considering that it is edible, organic acids are preferable.

前記酸性物質を第一油層に添加する場合、水溶液の状態で添加することが好ましい。その理由は、酸性物質を固体状で添加すると、油脂中のセッケンとの反応が効率的に進まないし、酸性物質を気体状で添加すると、油脂中からすぐに抜けてしまい、同じく反応が効率的に進まないからである。   When adding the said acidic substance to a 1st oil layer, adding in the state of aqueous solution is preferable. The reason for this is that when an acidic substance is added in a solid state, the reaction with soap in the oil or fat does not proceed efficiently, and when an acidic substance is added in the form of a gas, the reaction quickly takes place out of the oil and fat. It is because it does not advance to.

酸性物質を水溶液の状態で添加する場合は、酸性物質の水溶液と第一油層との混合・撹拌終了後、油層と水層とを十分に分離させた後に水層を除去する。これにより、セッケンと酸性物質との反応により生じた脂肪酸を水層と共に除去することができる。また、この工程では、極めて少量ではあるが、わずかに乳化層が発生する場合があり、その場合には、水層、乳化層及び油層からなる液が得られる。乳化層は、水層と油層との間に形成されるため、乳化層が発生している場合には、乳化層は水層と共に除去すればよい。   When the acidic substance is added in the form of an aqueous solution, after the mixing and stirring of the acidic substance aqueous solution and the first oil layer are completed, the oil layer and the aqueous layer are sufficiently separated, and then the aqueous layer is removed. Thereby, the fatty acid produced by the reaction between soap and acidic substance can be removed together with the aqueous layer. In this step, an emulsified layer may be slightly generated even in a very small amount. In this case, a liquid composed of an aqueous layer, an emulsified layer and an oil layer is obtained. Since the emulsified layer is formed between the aqueous layer and the oil layer, when the emulsified layer is generated, the emulsified layer may be removed together with the aqueous layer.

油層と水層を分離させるには、例えば撹拌終了後に一定時間静置したり、遠心分離すればよい。油層中の水分を除去する別の方法として、真空や加熱脱水等が挙げられるが、多くの水分を蒸発させるために多くの熱量が必要となり、除去するために多くの時間もかかること、油脂の酸化安定性や風味が損なわれる場合があることから好ましくない。   In order to separate the oil layer and the water layer, for example, the oil layer and the aqueous layer may be allowed to stand for a certain period of time after completion of stirring or may be centrifuged. Other methods for removing moisture in the oil layer include vacuum and heat dehydration, but a large amount of heat is required to evaporate much of the moisture, and it takes a lot of time to remove, Since oxidation stability and flavor may be impaired, it is not preferable.

さらに、油層中の残留酸性物質は、水層を除去した後に除去すれば良い。添加した酸性物質の融点が油脂の温度より低い場合は、水層を除去した後、真空脱水を行うと油層中に酸性物質が結晶として析出することがあるので、例えばフィルターに油層を通過させるなどの方法で酸性物質を除去することが可能である。また、酸性物質を析出させずに除去する方法としては、水層を除去した後、更に遠心分離を行い得られた水層を除去することにより水層に溶解した状態で酸性物質を除去する方法や、油脂と酸性物質との比重の差を利用して遠心分離後に油脂の下層に得られる酸性物質を除去する方法も可能である。この方法の場合、水層を除去した後水を再添加してから遠心分離しても良い。また、添加した酸性物質が塩酸などの沸点の低い酸である場合は、酸性物質は揮発するため、油層を蒸留する際に除去することが可能である。   Furthermore, the residual acidic substance in the oil layer may be removed after removing the aqueous layer. If the melting point of the added acidic substance is lower than the temperature of the oil or fat, removing the aqueous layer and then performing vacuum dehydration may cause the acidic substance to precipitate as crystals in the oil layer. For example, passing the oil layer through a filter, etc. It is possible to remove acidic substances by this method. Moreover, as a method for removing the acidic substance without precipitating, after removing the aqueous layer, further removing the acidic substance in a dissolved state in the aqueous layer by removing the aqueous layer obtained by centrifugation. Alternatively, a method of removing the acidic substance obtained in the lower layer of the oil and fat after centrifugation using the difference in specific gravity between the oil and fat and the acidic substance is also possible. In the case of this method, the water layer may be removed and then water may be added again before centrifugation. Further, when the added acidic substance is an acid having a low boiling point such as hydrochloric acid, the acidic substance is volatilized and can be removed when the oil layer is distilled.

<第四工程:脱臭処理>
この工程では、第一油層を脱臭工程に付して、エステル交換油である食用油脂を得る。前記脱臭は、例えば第一油層を水蒸気蒸留装置に移送し、第一油層を加熱しながら、400Pa以下の減圧下、第一油層100重量部に対して0.5〜10重量部/hrで水蒸気を吹き込むことでできる。
<Fourth process: Deodorizing treatment>
In this step, the first oil layer is subjected to a deodorization step to obtain an edible fat that is a transesterified oil. The deodorization is performed by, for example, transferring the first oil layer to a steam distillation apparatus and heating the first oil layer under a reduced pressure of 400 Pa or less at a rate of 0.5 to 10 parts by weight / hr with respect to 100 parts by weight of the first oil layer. It can be done by blowing.

また、前記水蒸気蒸留による脱臭温度は、180〜260℃が好ましく、190〜250℃がより好ましく、200〜240℃が更に好ましく、210〜240℃が特に好ましい。180℃より低いと、エステル交換油中に含まれる遊離脂肪酸を除去できず酸価が高くなったり、得られる油脂がえぐみのような異味を残す場合がある。260℃より高いと、油脂中の酸化安定物質の減少や、良好な風味成分まで除去してしまう場合がある。前記酸価は、0.1以下が好ましく、0.07以下がより好ましく、0.05以下が更に好ましい。酸価が0.07以下であれば、エステル交換油の脱臭が十分であるといえる。なお、実際の製造においては、酸価の下限値は0.02が限界である。   Moreover, 180-260 degreeC is preferable, as for the deodorizing temperature by the said steam distillation, 190-250 degreeC is more preferable, 200-240 degreeC is still more preferable, 210-240 degreeC is especially preferable. If it is lower than 180 ° C., the free fatty acid contained in the transesterified oil cannot be removed, the acid value becomes high, and the resulting fats and oils may leave a bitter taste such as gummy. When it is higher than 260 ° C., there may be a case where a decrease in oxidation-stable substances in fats and oils and a good flavor component are removed. The acid value is preferably 0.1 or less, more preferably 0.07 or less, and still more preferably 0.05 or less. If the acid value is 0.07 or less, it can be said that the deodorization of the transesterified oil is sufficient. In actual production, the lower limit of the acid value is 0.02.

前記水蒸気蒸留による脱臭時間は、20〜60分間が好ましく、30〜50分間がより好ましく、40〜50分間が更に好ましい。20分間より短いと、エステル交換油中に含まれる遊離脂肪酸を除去できず得られる油脂の酸価が高くなったり、えぐみのような異味を残す場合がある。60分間より長いと、油脂中の酸化安定物質の減少や、良好な風味成分まで除去してしまう場合がある。   The deodorization time by the steam distillation is preferably 20 to 60 minutes, more preferably 30 to 50 minutes, and further preferably 40 to 50 minutes. If it is shorter than 20 minutes, the free fatty acid contained in the transesterified oil cannot be removed, and the resulting oil or fat may have an acid value that is high, or may have a bitter taste. If it is longer than 60 minutes, there may be a decrease in oxidation-stable substances in the fats and oils and removal of good flavor components.

脱臭としては、薄膜蒸溜法も使えるが、その場合の脱臭温度や脱臭時間は、常法に準拠して適宜行えばよい。   As the deodorization, a thin-film distillation method can be used, and the deodorization temperature and deodorization time in that case may be appropriately performed in accordance with a conventional method.

以下に実施例を示し、本発明をより具体的に説明するが、本発明はこれらの実施例に何ら限定されるものではない。なお、実施例において「部」や「%」は重量基準である。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples. In the examples, “parts” and “%” are based on weight.

<油層中のセッケン量の測定方法>
油層中のセッケン量は社団法人日本油化学協会編「基準油脂分析法」(発行年:1996年)の2.6.2−1996セッケンに記載された方法に従い測定した。
<Measurement method of soap amount in oil reservoir>
The amount of soap in the oil layer was measured according to the method described in 2.6.2-1996 soap of “Reference Oil Analysis Method” (issue year: 1996) edited by Japan Oil Chemical Association.

<酸価>
社団法人日本油化学協会編「基準油脂分析法」(発行年:1996年)の基準油脂分析試験法「2.3.1−1996酸価」に準拠して酸価を測定した。
<Acid value>
The acid value was measured according to the standard oil analysis method “2.3.1-1996 acid value” of “Standard Oil Analysis Method” (issue year: 1996) edited by the Japan Oil Chemical Association.

(実施例1)脱臭処理に供するエステル交換油1の作製
パーム分別油(ヨウ素価:60、融点17℃)100重量部をセパラブルフラスコに入れ、150rpmの撹拌速度で撹拌しながら、100℃、真空度400Paの条件下で加熱真空脱水を行い、前記油脂中の水分を0.0085重量%に調整した。その後、油脂100重量部に対しナトリウムメチラートを0.15重量部添加し、真空状態のまま20分間撹拌した。撹拌を停止し、真空を開放した後、原料であるパーム分別油100重量部に対し100重量部の中性水(pH7.6(以下、全て同じpH))を、油層の上からシャワーリングしながら注いで該油脂と水とを接触させて、油脂内で水滴を沈降させた。この時、油層は撹拌していない。また、乳化はほとんど生じなかった。そのまま40分間静置して油層、乳化層、水層を十分に分離させた後に、フラスコ下部から水層と乳化層とを排出し、脱臭処理に供するエステル交換油1を98重量部得た。該エステル交換油1にはセッケンが500ppm含まれており、油脂の歩留りは98.0重量%と良好であった。
(Example 1) Preparation of transesterified oil 1 to be subjected to deodorization treatment 100 parts by weight of palm fractionated oil (iodine number: 60, melting point: 17 ° C) was placed in a separable flask and stirred at a stirring speed of 150 rpm. Heat vacuum dehydration was performed under the condition of a vacuum degree of 400 Pa, and the water content in the oil was adjusted to 0.0085% by weight. Thereafter, 0.15 parts by weight of sodium methylate was added to 100 parts by weight of the oil and fat, and the mixture was stirred for 20 minutes while maintaining the vacuum state. After the stirring was stopped and the vacuum was released, 100 parts by weight of neutral water (pH 7.6 (hereinafter all the same pH)) was showered from the top of the oil layer with respect to 100 parts by weight of the palm fractionated oil. While pouring, the oil and water were brought into contact with each other, and water droplets were settled in the oil and fat. At this time, the oil layer is not stirred. Moreover, almost no emulsification occurred. The mixture was allowed to stand for 40 minutes to sufficiently separate the oil layer, the emulsified layer, and the aqueous layer, and then the aqueous layer and the emulsified layer were discharged from the bottom of the flask to obtain 98 parts by weight of transesterified oil 1 for deodorization treatment. The transesterified oil 1 contained 500 ppm of soap, and the yield of fats and oils was as good as 98.0% by weight.

(実施例2)脱臭処理に供するエステル交換油2の作製
パーム分別油(ヨウ素価:52、融点33℃)100重量部をセパラブルフラスコに入れ、150rpmの撹拌速度で撹拌しながら、100℃、真空度1000Paの条件下で脱水を行い、油脂中の水分を0.025重量%に調整した。その後、前記油脂100重量部に対しナトリウムメチラートを0.25重量部添加し、真空状態のまま30分間撹拌した。撹拌を停止し真空を開放した後、140重量部の中性水を油層の上からシャワーリングしながら注いで、該油脂と水とを接触させて、油脂内で水滴を沈降させた。この時、油層は撹拌していない。また、乳化はほとんど生じなかった。
(Example 2) Production of transesterified oil 2 to be subjected to deodorization treatment 100 parts by weight of palm fractionated oil (iodine value: 52, melting point 33 ° C) was put into a separable flask and stirred at a stirring speed of 150 rpm, 100 ° C, Dehydration was performed under the condition of a vacuum degree of 1000 Pa, and the water content in the fat was adjusted to 0.025% by weight. Thereafter, 0.25 parts by weight of sodium methylate was added to 100 parts by weight of the fat and oil, and the mixture was stirred for 30 minutes in a vacuum state. After the stirring was stopped and the vacuum was released, 140 parts by weight of neutral water was poured from above the oil layer while showering to bring the oil and water into contact with each other, thereby allowing water droplets to settle in the oil. At this time, the oil layer is not stirred. Moreover, almost no emulsification occurred.

そのまま40分間静置して油層、乳化層、水層を十分に分離させた後に、フラスコ下部から水層と乳化層とを排出させ、97.2重量部の脱臭処理に供するエステル交換油2を得た。該エステル交換油2にはセッケンが450ppm含まれており、油脂の歩留りは97.2重量%と良好であった。   After leaving still for 40 minutes to sufficiently separate the oil layer, the emulsified layer, and the aqueous layer, the aqueous layer and the emulsified layer are discharged from the bottom of the flask, and 97.2 parts by weight of the transesterified oil 2 for deodorization treatment is obtained. Obtained. The transesterified oil 2 contained 450 ppm of soap, and the yield of fats and oils was as good as 97.2% by weight.

(実施例3)脱臭処理に供するエステル交換油3の作製
豚脂(融点37℃)100重量部をセパラブルフラスコに入れ、150rpmの撹拌速度で撹拌しながら、100℃、真空度670Paの条件下で脱水を行い、油脂中の水分を0.015重量%に調整した。その後、前記油脂100重量部に対し0.18重量部のナトリウムメチラートを添加し、真空状態のまま25分間撹拌した。撹拌を停止し真空を開放した後、80重量部の中性水を油層の上からシャワーリングしながら注いで、該油脂と水とを接触させて、油脂内で水滴を沈降させた。この時、油層は撹拌していない。また、乳化はほとんど生じなかった。そのまま40分間静置して油層、乳化層、水層を十分に分離させた後に、フラスコ下部から水層と乳化層とを排出し、97.8重量部の脱臭処理に供するエステル交換油3を得た。該エステル交換油3にはセッケンが750ppm含まれており、油脂の歩留りは97.7重量%と良好であった。
(Example 3) Production of transesterified oil 3 to be subjected to deodorization treatment 100 parts by weight of pork fat (melting point: 37 ° C) was put in a separable flask and stirred at a stirring speed of 150 rpm, under conditions of 100 ° C and a degree of vacuum of 670 Pa. The water content in the fat was adjusted to 0.015% by weight. Thereafter, 0.18 parts by weight of sodium methylate was added to 100 parts by weight of the oil and fat, and the mixture was stirred for 25 minutes in a vacuum state. After the stirring was stopped and the vacuum was released, 80 parts by weight of neutral water was poured from above the oil layer while showering to bring the oil and water into contact with each other, thereby allowing water droplets to settle in the oil. At this time, the oil layer is not stirred. Moreover, almost no emulsification occurred. After leaving still for 40 minutes to sufficiently separate the oil layer, the emulsified layer, and the aqueous layer, the aqueous layer and the emulsified layer are discharged from the bottom of the flask, and 97.8 parts by weight of the transesterified oil 3 for deodorization treatment is obtained. Obtained. The transesterified oil 3 contained 750 ppm of soap, and the yield of fats and oils was as good as 97.7% by weight.

(比較例1) 脱臭処理に供するエステル交換油4の作製
大豆油100重量部をセパラブルフラスコに入れ、150rpmの撹拌速度で撹拌しながら、100℃、真空度1000Paの条件下で脱水を行い、油脂中の水分を0.017重量%に調整した。その後、0.20重量%のナトリウムメチラートを添加し、真空状態のまま20分間撹拌し、真空を開放し、99.8重量部の脱臭処理に供するエステル交換油4を得た。該エステル交換油にはセッケンが48000ppmと多量に含まれており、油脂の歩留りは95.0重量%であった。
(Comparative example 1) Preparation of transesterified oil 4 to be subjected to deodorization treatment 100 parts by weight of soybean oil was put into a separable flask, and dehydrated under conditions of 100 ° C and a vacuum of 1000 Pa while stirring at a stirring speed of 150 rpm. The water | moisture content in fats and oils was adjusted to 0.017 weight%. Thereafter, 0.20% by weight of sodium methylate was added, the mixture was stirred for 20 minutes in a vacuum state, the vacuum was released, and 99.8 parts by weight of transesterified oil 4 for deodorization treatment was obtained. The transesterified oil contained a large amount of soap at 48000 ppm, and the yield of fats and oils was 95.0% by weight.

(比較例2)特開昭51−61510号公報記載の方法に準拠で脱臭処理に供するエステル交換油5の作製
大豆油100重量部をセパラブルフラスコに入れ、150rpmの撹拌速度で撹拌しながら、100℃、真空度400Paの条件下で脱水を行い、油脂中の水分を0.0074重量%に調整した。その後、0.15重量%のナトリウムメチラートを添加し、真空状態のまま20分間撹拌した。真空を開放した後、撹拌速度150rpmで油層を撹拌しながら100重量部の水を油層の上からシャワーリングして注いだ。この時、激しく乳化が生じ、油脂内で水滴が速やかに沈降するものではなかった。そのまま90分間静置して油層、乳化層、水層を極力分離させた後に、フラスコ下部から水層と乳化層とを排出し、88.7重量部の脱臭処理に供するエステル交換油5を得た。該エステル交換油にはセッケンが1600ppm含まれておりセッケンはある程度除去できたが、油脂の歩留りは88.6重量%と低かった。
(Comparative Example 2) Preparation of transesterified oil 5 to be subjected to deodorization treatment in accordance with the method described in JP-A-51-61510. 100 parts by weight of soybean oil was placed in a separable flask and stirred at a stirring speed of 150 rpm. Dehydration was performed under conditions of 100 ° C. and a vacuum degree of 400 Pa, and the water content in the fats and oils was adjusted to 0.0074% by weight. Thereafter, 0.15% by weight of sodium methylate was added and stirred for 20 minutes in a vacuum state. After releasing the vacuum, 100 parts by weight of water was poured from above the oil layer while being stirred while stirring the oil layer at a stirring speed of 150 rpm. At this time, emulsification occurred violently, and water droplets did not settle quickly in the oil. After leaving still for 90 minutes to separate the oil layer, the emulsified layer and the water layer as much as possible, the water layer and the emulsified layer are discharged from the bottom of the flask to obtain 88.7 parts by weight of the transesterified oil 5 to be subjected to deodorization treatment. It was. The transesterified oil contained 1600 ppm of soap and the soap could be removed to some extent, but the yield of fats and oils was as low as 88.6% by weight.

(比較例3) 脱臭処理に供するエステル交換油6の作製
大豆油100重量部をセパラブルフラスコに入れ、150rpmの撹拌速度で撹拌しながら、100℃、真空度1000Paでの脱水を行い、油脂中の水分を0.018重量%に調整した。その後、0.2重量%のナトリウムメチラートを添加し、真空状態のまま20分間撹拌した。真空を開放した後、20rpmで油層を撹拌しながら8重量部の水を油層の上からシャワーリングして注いだ。この時、乳化はほとんど生じていなかった。そのまま40分間静置して油層、乳化層、水層を十分に分離させた後にフラスコ下部から水層と乳化層とを排出し、98.9重量部の脱臭処理に供するエステル交換油6を得た。該エステル交換油にはセッケンが21000ppm含まれておりセッケン残存量が多く、油脂の歩留りは96.8重量%であった。
(Comparative Example 3) Production of transesterified oil 6 to be subjected to deodorization treatment 100 parts by weight of soybean oil was put into a separable flask and dehydrated at 100 ° C and a vacuum of 1000 Pa while stirring at a stirring speed of 150 rpm. Was adjusted to 0.018% by weight. Thereafter, 0.2% by weight of sodium methylate was added and stirred for 20 minutes in a vacuum state. After releasing the vacuum, 8 parts by weight of water was showered and poured from above the oil layer while stirring the oil layer at 20 rpm. At this time, almost no emulsification occurred. After leaving still for 40 minutes to sufficiently separate the oil layer, the emulsified layer and the aqueous layer, the aqueous layer and the emulsified layer are discharged from the bottom of the flask to obtain 98.9 parts by weight of the transesterified oil 6 for deodorization treatment. It was. The transesterified oil contained 21000 ppm of soap, the amount of soap remaining was large, and the yield of fats and oils was 96.8% by weight.

Figure 0006450218
Figure 0006450218

(参考例1)エステル交換油1の酸性物質との接触処理および脱臭
実施例1で得られた脱臭処理に供する98重量部のエステル交換油1に対し、300重量部の水に0.017重量部のクエン酸を溶解させたクエン酸水溶液を添加し、150rpm、80℃、常圧の条件下で60分間撹拌し、その後静置した。静置開始より35分後には90%の水分が水層に沈降していた。このとき、乳化は生じていなかった。静置開始より45分後にフラスコ下部から水層を排出した後、150rpmの撹拌速度で撹拌しながら、100℃、真空度400Paの条件下で加熱真空脱水を行い油脂中の水分を0.01重量%に調整し、ろ紙(Advantec定性ろ紙No1)を通過させて析出したクエン酸を除去し、セッケン濃度0ppmのエステル交換油を97.5重量部得た。
(Reference Example 1) Contact treatment and deodorization of transesterified oil 1 with an acidic substance 0.017 wt.% In 98 wt.% Water with respect to 98 wt.% Of transesterified oil 1 subjected to the deodorizing treatment obtained in Example 1 A citric acid aqueous solution in which a part of citric acid was dissolved was added, and the mixture was stirred for 60 minutes under conditions of 150 rpm, 80 ° C. and normal pressure, and then allowed to stand. After 35 minutes from the start of standing, 90% of the water had settled in the aqueous layer. At this time, emulsification did not occur. After 45 minutes from the start of standing, the water layer was discharged from the bottom of the flask, and while stirring at a stirring speed of 150 rpm, heat vacuum dehydration was performed under conditions of 100 ° C. and a vacuum of 400 Pa, and the moisture in the oil and fat was 0.01 weight. %, And passed through a filter paper (Advantec qualitative filter paper No. 1) to remove precipitated citric acid, thereby obtaining 97.5 parts by weight of a transesterified oil having a soap concentration of 0 ppm.

クエン酸で処理した後のエステル交換油全量97.5重量部を水蒸気蒸留装置に仕込み、210℃、真空度270Pa、水蒸気吹き込み量2重量%部/hr、45分間の条件で脱臭処理し、96.5重量部のエステル交換油脂を得た。得られたエステル交換油の酸価は0.03であり、好ましい風味が感じられ、異味・異臭がなく、エステル交換油の風味として好ましいものであった。また、吸着材不使用であるため、吸着材/エステル交換油(重量比、%)の値は0であった。それらを含めた評価結果は、表2にまとめた。   A total of 97.5 parts by weight of the transesterified oil after treatment with citric acid was charged into a steam distillation apparatus, and deodorized under conditions of 210 ° C., vacuum degree of 270 Pa, steam blowing amount of 2 wt% / hr, 45 minutes, 96 Obtained 5 parts by weight of transesterified oil. The acid value of the obtained transesterified oil was 0.03, a favorable flavor was felt, there was no off-flavor and off-flavor, and it was preferable as the flavor of the transesterified oil. Moreover, since the adsorbent was not used, the value of adsorbent / transesterified oil (weight ratio,%) was 0. The evaluation results including them are summarized in Table 2.

(参考例2)エステル交換油2の酸性物質との接触処理、白土処理及び脱臭
実施例2で得られた97.2重量部のエステル交換油2に対し、200重量部の水に0.0085重量部のクエン酸を溶解させたクエン酸水溶液を添加し、150rpm、80℃、常圧の条件下で60分間撹拌し、その後静置した。静置開始より40分後には90%の水分が沈殿しており、静置開始より50分後に沈降した水層を除去した。このとき、乳化は生じていなかった。その後、100℃、真空度400Paの条件下で加熱真空脱水により油脂中の水分を0.01重量%に調整し、ろ紙(Advantec定性ろ紙No1)を通過させて析出したクエン酸を除去し、セッケン濃度35ppmの油層を96.2重量部得た。
(Reference Example 2) Contact treatment of transesterified oil 2 with acidic substance, clay treatment and deodorization For 97.2 parts by weight of transesterified oil 2 obtained in Example 2, 0.0085 in 200 parts by weight of water. An aqueous citric acid solution in which parts by weight of citric acid was dissolved was added, and the mixture was stirred for 60 minutes under conditions of 150 rpm, 80 ° C. and normal pressure, and then allowed to stand. After 40 minutes from the start of standing, 90% of the water was precipitated, and the precipitated water layer was removed 50 minutes after the start of standing. At this time, emulsification did not occur. Thereafter, the moisture in the oil and fat is adjusted to 0.01 wt% by heating under vacuum dehydration under conditions of 100 ° C and a vacuum degree of 400 Pa, passed through a filter paper (Advantec qualitative filter paper No1) to remove the precipitated citric acid, 96.2 parts by weight of an oil layer having a concentration of 35 ppm was obtained.

クエン酸で処理した後の油層全量96.2重量部をセパラブルフラスコに入れ、0.38重量部の活性白土を添加した後、90℃、150rpm、真空度1330Paの条件下で20分間撹拌し、混合物全体の水分量を1重量%に調整した後、白土を分離してセッケン濃度0ppmのエステル交換油を95.8重量部得た。   96.2 parts by weight of the total oil layer after treatment with citric acid was put in a separable flask, 0.38 parts by weight of activated clay was added, and the mixture was stirred for 20 minutes at 90 ° C., 150 rpm, and a vacuum of 1330 Pa. After adjusting the water content of the entire mixture to 1 wt%, the white clay was separated to obtain 95.8 parts by weight of transesterified oil having a soap concentration of 0 ppm.

該白土処理した後に更に白土を分離した後のエステル交換油全量を水蒸気蒸留装置に仕込み、230℃、真空度270Pa、エステル交換油100重量部に対して水蒸気吹き込み量2重量部/hr、45分間の条件下で脱臭処理し、94.7重量部のエステル交換油脂を得た。得られたエステル交換油の酸価は0.04であり、好ましい風味が感じられ、異味・異臭がなく、エステル交換油の風味として好ましいものであった。また、分離した白土には油脂が0.4重量部付着しており廃吸着材/エステル交換油(重量比、%)の値は0.82であった。それらを含めた評価結果は、表2にまとめた。   After the white clay treatment, the entire amount of the transesterified oil after further separating the white clay was charged into a steam distillation apparatus, and the steam blowing amount was 2 parts by weight / hr for 45 minutes at 230 ° C., a vacuum of 270 Pa, and 100 parts by weight of the transesterified oil. The deodorization process was carried out under the above conditions to obtain 94.7 parts by weight of a transesterified oil and fat. The acid value of the obtained transesterified oil was 0.04, a favorable flavor was felt, there was no off-flavor and off-flavor, and the flavor of the transesterified oil was preferable. Moreover, 0.4 weight part of fats and oils adhered to the separated clay, and the value of waste adsorbent / transesterified oil (weight ratio,%) was 0.82. The evaluation results including them are summarized in Table 2.

(参考例3) エステル交換油3の酸性物質との接触処理および脱臭
実施例3で得られた97.8重量部のエステル交換油3に対し、400重量部の水に0.05重量部のリンゴ酸を溶解させたリンゴ酸水溶液を添加し、150rpm、90℃、常圧で40分間撹拌し、その後静置した。静置開始より30分後には90%の水分が沈降し油層、水層が十分に分離したので、そのまま水層を除去した。このとき、乳化は生じていなかった。その後、100℃、真空度400Paの条件下で加熱真空脱水により油脂中の水分を0.01重量%に調整し、ろ紙(Advantec定性ろ紙No1)を通過させ析出したリンゴ酸を除去し、セッケン濃度0ppmのエステル交換油を97.3重量部得た。
(Reference Example 3) Contact treatment and deodorization of transesterified oil 3 with an acidic substance 0.05 parts by weight of 400 parts by weight of water with respect to 97.8 parts by weight of transesterified oil 3 obtained in Example 3 A malic acid aqueous solution in which malic acid was dissolved was added, and the mixture was stirred at 150 rpm, 90 ° C. and normal pressure for 40 minutes, and then allowed to stand. After 30 minutes from the start of standing, 90% of the water settled and the oil layer and water layer were sufficiently separated, so the water layer was removed as it was. At this time, emulsification did not occur. Then, the moisture in the fats and oils was adjusted to 0.01 wt% by heating and vacuum dehydration under the conditions of 100 ° C and a degree of vacuum of 400 Pa, passed through a filter paper (Advantec qualitative filter paper No1), the precipitated malic acid was removed, and the soap concentration 97.3 parts by weight of 0 ppm transesterified oil was obtained.

リンゴ酸で処理した後の油層全量97.3重量部を水蒸気蒸留装置に仕込み、220℃、真空度270Pa、水蒸気吹き込み量3重量部/hr、40分間の脱臭条件で処理し、96.5重量部のエステル交換油を得た。得られたエステル交換油3の酸価は0.03であり、好ましい風味が感じられ、異味・異臭がなく、エステル交換油の風味として好ましいものであった。また、吸着材不使用であるため、廃吸着材/エステル交換油(重量比、%)の値は0であった。それらを含めた評価結果は、表2にまとめた。   A total of 97.3 parts by weight of the oil layer after the treatment with malic acid was charged into a steam distillation apparatus, treated under a deodorizing condition of 220 ° C., a vacuum degree of 270 Pa, a steam blowing amount of 3 parts by weight / hr for 40 minutes, and 96.5 weights. Part transesterified oil was obtained. The acid value of the obtained transesterified oil 3 was 0.03, a favorable flavor was felt, there was no off-flavor and off-flavor, and it was preferable as the flavor of the transesterified oil. Moreover, since the adsorbent was not used, the value of the waste adsorbent / transesterified oil (weight ratio,%) was 0. The evaluation results including them are summarized in Table 2.

(参考例4) エステル交換油4の酸性物質との接触処理および脱臭
比較例1で得られた脱臭処理に供するエステル交換油99.8重量部に対し、80重量部の水に1.22重量部のリンゴ酸を溶解させたリンゴ酸水溶液を添加し、150rpm、90℃、常圧の条件下で40分間撹拌し、その後静置した。静置開始より40分後には90%の水分が水層に沈降したので、そのままフラスコ下部から水層を排出した後、150rpmの撹拌速度で撹拌しながら、100℃、真空度400Paの条件下で加熱真空脱水を行い油脂中の水分を0.01重量%に調整した。続いてろ紙(Advantec定性ろ紙No1)を通過させて析出したリンゴ酸を除去し、セッケン濃度0ppmのエステル交換油を96.8重量部得た。
(Reference Example 4) Contact treatment and deodorization of transesterified oil 4 with an acidic substance 92.2 parts by weight of transesterified oil used in the deodorization treatment obtained in Comparative Example 1 was 1.22 wt.% In 80 parts by weight of water. A malic acid aqueous solution in which a part of malic acid was dissolved was added, and the mixture was stirred for 40 minutes under conditions of 150 rpm, 90 ° C. and normal pressure, and then allowed to stand. After 40 minutes from the start of standing, 90% of the water settled down in the aqueous layer. After discharging the aqueous layer from the bottom of the flask as it was, stirring was performed at a stirring speed of 150 rpm, under conditions of 100 ° C. and a vacuum of 400 Pa. Heat dehydration was performed to adjust the water content in the oil to 0.01% by weight. Subsequently, the precipitated malic acid was removed by passing through a filter paper (Advantec qualitative filter paper No1) to obtain 96.8 parts by weight of transesterified oil having a soap concentration of 0 ppm.

リンゴ酸処理後のエステル交換油全量を水蒸気蒸留装置に仕込み、250℃、真空度270Pa、水蒸気吹き込み量2重量部/hr、45分間の条件で脱臭処理し、96.0重量部のエステル交換油脂を得た。得られたエステル交換油脂の酸価は0.18と高く、風味はえぐみのような異味がはっきり感じられるものであった。また、吸着材不使用であるため、廃吸着材/エステル交換油(重量比、%)の値は0であった。それらを含めた評価結果は、表2にまとめた。   The whole amount of transesterified oil after malic acid treatment was charged into a steam distillation apparatus, deodorized under conditions of 250 ° C., vacuum degree of 270 Pa, steam blowing amount of 2 parts by weight / hr, 45 minutes, and 96.0 parts by weight of transesterified oil and fat. Got. The acid value of the obtained transesterified oil and fat was as high as 0.18, and the flavor was clearly felt with an off-flavored taste. Moreover, since the adsorbent was not used, the value of the waste adsorbent / transesterified oil (weight ratio,%) was 0. The evaluation results including them are summarized in Table 2.

(参考例5) エステル交換油6の脱色および脱臭
比較例3で得られた脱臭処理に供するエステル交換油6を98.9重量部セパラブルフラスコに入れ、15重量部の活性白土を添加した後、90℃、150rpm、真空度1330Paの条件下で40分間撹拌しながら真空状態にすることで、混合物全体の水分量を0.01重量%に調整し、白土を分離してセッケン濃度8ppmのエステル交換油を59.8重量部得た。
(Reference Example 5) Decolorization and deodorization of transesterified oil 6 After the transesterified oil 6 to be subjected to the deodorizing treatment obtained in Comparative Example 3 was put into a 98.9 parts by weight separable flask, 15 parts by weight of activated clay was added. , 90 ° C, 150 rpm, vacuum degree of 1330 Pa, stirring for 40 minutes to make a vacuum state, adjust the water content of the whole mixture to 0.01 wt%, separate the white clay and ester with a soap concentration of 8 ppm 59.8 parts by weight of exchange oil was obtained.

該エステル交換油全量を水蒸気蒸留装置に仕込み、250℃、真空度270Pa、水蒸気吹き込み量2重量部/hr、60分間の条件で脱臭処理し、57.9重量部のエステル交換油脂を得た。得られたエステル交換油脂の酸価は0.08であり、風味は異味・異臭がはっきり感じられるものであった。また、廃吸着材/エステル交換油(重量比、%)の値は39.1と高く、廃棄物処理すべき廃吸着材が多く生じた。それらを含めた評価結果は、表2にまとめた。   The total amount of the transesterified oil was charged into a steam distillation apparatus and subjected to deodorization treatment under the conditions of 250 ° C., vacuum degree of 270 Pa, steam blown amount of 2 parts by weight / hr, and 60 minutes to obtain 57.9 parts by weight of transesterified oil and fat. The acid value of the obtained transesterified oil / fat was 0.08, and the taste was clearly felt as having a different taste and smell. Moreover, the value of waste adsorbent / transesterified oil (weight ratio,%) was as high as 39.1, and many waste adsorbents to be treated were generated. The evaluation results including them are summarized in Table 2.

Figure 0006450218
Figure 0006450218

Claims (2)

動植物油脂を、アルカリ性物質を用いたエステル交換反応に付する第一工程、
前記エステル交換反応後に得られた油脂に、前記動植物油脂100重量部に対して10〜200重量部の液滴状の中性水を添加することで、前記油脂中で水滴を沈降させ、第一水層及び第一油層を含む液を得る第二工程、
第二工程で得た液から第一水層を除去して、残留セッケン分が350〜1200ppmのエステル交換油を得る第三工程
を含む、脱臭処理に供するためのエステル交換油の製造方法。
The first step of subjecting animal and vegetable oils and fats to a transesterification reaction using an alkaline substance,
By adding 10 to 200 parts by weight of neutral water droplets to 100 parts by weight of the animal and vegetable oils and fats obtained after the transesterification reaction, the water droplets are precipitated in the oils and fats. A second step of obtaining a liquid comprising an aqueous layer and a first oil layer;
The manufacturing method of the transesterification oil for using for the deodorizing process including the 3rd process which removes a 1st aqueous layer from the liquid obtained at the 2nd process, and obtains residual transesterification oil 350-1200 ppm.
脱臭処理前に脱色処理を行い且つ脱色処理時に使用する吸着材が白土であることを特徴とする請求項1に記載のエステル交換油の製造方法。   The method for producing transesterified oil according to claim 1, wherein the adsorbent used for the decolorization treatment is a white clay before the deodorization treatment.
JP2015039811A 2015-03-02 2015-03-02 Method for producing transesterified oil Active JP6450218B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015039811A JP6450218B2 (en) 2015-03-02 2015-03-02 Method for producing transesterified oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015039811A JP6450218B2 (en) 2015-03-02 2015-03-02 Method for producing transesterified oil

Publications (2)

Publication Number Publication Date
JP2016160339A JP2016160339A (en) 2016-09-05
JP6450218B2 true JP6450218B2 (en) 2019-01-09

Family

ID=56846141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015039811A Active JP6450218B2 (en) 2015-03-02 2015-03-02 Method for producing transesterified oil

Country Status (1)

Country Link
JP (1) JP6450218B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7544830B2 (en) * 2007-01-10 2009-06-09 The University Of Connecticut Methods and systems for alkyl ester production
JP2009013268A (en) * 2007-07-04 2009-01-22 Univ Kinki Method for cleaning biodiesel fuel
JP4249250B1 (en) * 2008-07-31 2009-04-02 水澤化学工業株式会社 Method for refining transesterified oil
US20110023353A1 (en) * 2010-10-07 2011-02-03 Joe Ciciulla Process of making biodiesel

Also Published As

Publication number Publication date
JP2016160339A (en) 2016-09-05

Similar Documents

Publication Publication Date Title
JP6698704B2 (en) Process for refining glyceride oil, including basic quaternary ammonium salt treatment
JP6671396B2 (en) Method for removing metals from metal-containing glyceride oils, comprising a basic quaternary ammonium salt treatment
TW212141B (en)
JP2018517814A (en) Method for removing chloropropanol and / or glycidol, or fatty acid esters thereof from glyceride oil, and a method for purifying an improved glyceride oil comprising them
CN108026476A (en) The method of refining of glyceride oil including alkali ionic liquid processing
Leibovitz et al. Our experiences in processing maize (corn) germ oil
US20170107452A1 (en) Products Produced From Distillers Corn Oil
WO2011005081A1 (en) Process for removing unwanted propanol components from unused triglyceride oil
JP2018517037A (en) Method for removing metal contaminants from glyceride oil and method for purifying glyceride oil incorporating the same
JP2010031190A (en) Purifying method for transesterified oil
WO2008008810A2 (en) Process for isolating phytosterols and tocopherols from deodorizer distillate
JP2002542379A (en) Method for removing free fatty acids from biological fats and oils or their vapor distillates
JPWO2011055732A1 (en) Method for reducing chloropropanols and substances formed in glyceride oils and fats
JP2005350632A (en) Method for producing biodiesel fuel
WO2002062157A2 (en) Methods for treating phosphatide-containing mixtures
RU2556718C2 (en) Vegetable oil processing
JP6450218B2 (en) Method for producing transesterified oil
JP6726657B2 (en) Method for producing edible oil and fat
JP2002212586A (en) Method for refining oil and fat
CN111902522A (en) Refining of edible oil
JP2012224797A (en) Method for producing transesterified fat-and-oil
Lee et al. Blending, Hydrogenation, Fractionation and Interesterification Processing
US10125331B2 (en) Renewable oil refining processes
CN110903893A (en) Deacidification method of edible palm oil
Torres et al. Extraction and enzymatic modification of functional lipids from soybean oil deodorizer distillate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181207

R150 Certificate of patent or registration of utility model

Ref document number: 6450218

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250