JP6449075B2 - Sounding test method and sounding test apparatus - Google Patents

Sounding test method and sounding test apparatus Download PDF

Info

Publication number
JP6449075B2
JP6449075B2 JP2015064452A JP2015064452A JP6449075B2 JP 6449075 B2 JP6449075 B2 JP 6449075B2 JP 2015064452 A JP2015064452 A JP 2015064452A JP 2015064452 A JP2015064452 A JP 2015064452A JP 6449075 B2 JP6449075 B2 JP 6449075B2
Authority
JP
Japan
Prior art keywords
ground
sounding test
loading
resistor
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015064452A
Other languages
Japanese (ja)
Other versions
JP2016183509A (en
Inventor
運雄 酒井
運雄 酒井
立川 日出男
日出男 立川
智勝 立川
智勝 立川
浩則 湯川
浩則 湯川
泰造 奥澤
泰造 奥澤
田中 勉
田中  勉
Original Assignee
基礎地盤コンサルタンツ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 基礎地盤コンサルタンツ株式会社 filed Critical 基礎地盤コンサルタンツ株式会社
Priority to JP2015064452A priority Critical patent/JP6449075B2/en
Publication of JP2016183509A publication Critical patent/JP2016183509A/en
Application granted granted Critical
Publication of JP6449075B2 publication Critical patent/JP6449075B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Description

本発明は地盤の液状化強度や動的変形係数などを求めるための特性値を求めるサウンディング試験装置およびサウンディング試験方法に関する。   The present invention relates to a sounding test apparatus and a sounding test method for obtaining characteristic values for obtaining the liquefaction strength, dynamic deformation coefficient, etc. of the ground.

液状化強度試験法で最も信頼されて普及しているのは、現地から乱さない試料を採取して供試体を作成し、これに原地盤の地中応力に近い拘束圧をかけた状態で、繰返し載荷試験を行い、20回の繰返し載荷で供試体の圧縮と伸張歪がDA=5%に達する載荷応力を液状化強度と定めている。この試験は、供試体の空隙が完全に飽和し、載荷試験中に間隙水圧が逃げないようにした非排水繰返し試験である。このような試験からは信頼性の高い地盤情報が得られるが、高価で試験技術レベルが高く、不規則な自然地盤を対象としては、数多く行うことが出来ないため、深度方向に連続的に概略値を求めるサウンディングと併用することで全体の調査精度を上げることが望まれる。   The most reliable and popular liquefaction strength test method is that a sample that is not disturbed is collected from the site and a specimen is created, and a restraint pressure close to the ground stress of the original ground is applied to this, A repeated loading test is performed, and the loading stress at which the compression and extension strain of the specimen reaches DA = 5% after 20 repeated loadings is defined as the liquefaction strength. This test is a non-drainage repeated test in which the void of the specimen is completely saturated and the pore water pressure does not escape during the loading test. Such a test provides highly reliable ground information, but it is expensive, has a high level of testing technology, and cannot be used for irregular natural ground. It is desirable to improve the overall survey accuracy by using it together with sounding to obtain values.

わが国で最も普及しているサウンディングは、標準貫入試験(SPT)で、通常、深度1m毎に規格化された管をボーリング孔底から30cm貫入に必要な打撃回数N値を求めるものである。世界で最も普及している手法はコーン貫入試験(CPT)で、先端の尖ったコーンの貫入抵抗を測定する手法である。そして、わが国の小規模調査で最近よく用いられているスウェーデン式サウンディング(SWS)は、四角錐をねじった抵抗体をつけたロッドに錘を載せて貫入させ、貫入できなくなったら回転貫入する方法である。これらの調査法は単なる貫入抵抗を求める手法に過ぎず、さらにSPTは時間がかかり、かつ簡易な調査法ではない。この他に、軟弱粘性土などでは十字のベーンをロッドの先端につけて地中に貫入し、回転抵抗を求めるベーンせん断静的試験(V)やボーリング孔を利用する応力制御式載荷試験であるプレッシャーメータ試験(PMT)などがある。以上の調査手法は基準化されている。   The most popular sounding in Japan is the Standard Penetration Test (SPT), which usually determines the number of hits N required to penetrate a standardized tube at a depth of 1 m 30 cm from the bottom of the borehole. The most popular method in the world is the cone penetration test (CPT), which measures the penetration resistance of a pointed cone. The Swedish sounding (SWS), which is often used recently in small-scale surveys in Japan, is a method in which a weight is placed on a rod with a resistor that twists a quadrangular pyramid and penetrates. is there. These investigation methods are merely methods for obtaining penetration resistance, and SPT is time consuming and not a simple investigation method. In addition to this, in soft viscous soils, etc., pressure is a vane shear static test (V) in which a cross vane is attached to the tip of the rod and penetrates into the ground to determine the rotational resistance, and a stress-controlled loading test using a boring hole. There is a meter test (PMT). The above survey methods are standardized.

上記の他に、SPT貫入パイプの先端シュー部の外側に羽根をつけて回転し、N値とせん断強度を同時に求める手法がある(特許文献1)。浅層地盤用にはコーンに4枚縦羽をつけ、ロッドでコーンを押しながら回転させて荷重とトルクから地盤の強度定数である粘着力cと内部摩擦角φを求める簡易な試験法が提案されている(特許文献2)。これらは簡便な手法ではあるが動的物性調査ではない。   In addition to the above, there is a method in which a blade is attached to the outer side of the tip shoe portion of the SPT penetrating pipe and rotated to simultaneously obtain the N value and the shear strength (Patent Document 1). For shallow ground, a simple test method is proposed to determine the adhesive strength c and the internal friction angle φ from the load and torque by attaching four vertical blades to the cone and rotating it while pushing the cone with a rod. (Patent Document 2). These are simple methods but not dynamic physical property surveys.

その他にも5度以下の緩勾配逆円錐台を貫入して変位制御式の横方向載荷試験を行いながら逆円錐台に装着したベーンを回転し、載荷状態下でのトルクから、あるいは逆円錐台表面を粗面仕上げにして貫入しながら表面で地盤をせん断し、強度定数cφの他に変形係数Eを求める手法(特許文献3)。そしてPMTゾンデの外周に羽をつけて、加圧状態で回転してトルクを測定し、cφをもとめる方法も提案されている(特許文献4)。これらの調査法も繰返し載荷ではなく、単調載荷・せん断試験法である。   In addition, the vane mounted on the inverted truncated cone is rotated while penetrating a gentle gradient inverted truncated cone of 5 degrees or less and performing a displacement controlled lateral loading test. From the torque under the loaded condition, or the inverted truncated cone A method for obtaining a deformation coefficient E in addition to the strength constant cφ by shearing the ground with the surface while penetrating the surface with a rough finish (Patent Document 3). A method has also been proposed in which wings are attached to the outer periphery of the PMT sonde, the torque is measured by rotating in a pressurized state, and cφ is obtained (Patent Document 4). These survey methods are not repeated loading but also monotonic loading / shear test methods.

また、PMTの外側に粗面のスリット入りせん断板を装着し、横方向に加圧しながら上方に引揚げて地盤をせん断してcφと地盤変形係数Eを求める手法(特許文献5)が開発され実用化されているが、これも静的強度・変形試験である。一方、PMTから動的地盤情報を得る方法としては、ボーリング孔壁の動的加圧装置が開発されている(特許文献6)。この他に、CPTで液状化強度を求めるための振動コーン(特許文献7および特許文献8)が開発されている。以上、いずれも高度な装置と技術を要し、実用化には到っていないのが原状である。   In addition, a method (Patent Document 5) has been developed in which a shear plate with slits on the rough surface is attached to the outside of the PMT, and the cφ and the ground deformation coefficient E are obtained by lifting upward while shearing the ground while applying lateral pressure. Although it has been put to practical use, this is also a static strength / deformation test. On the other hand, as a method for obtaining dynamic ground information from the PMT, a dynamic pressurizing device for a borehole wall has been developed (Patent Document 6). In addition, vibration cones (Patent Document 7 and Patent Document 8) for obtaining the liquefaction strength by CPT have been developed. As described above, all of them require advanced equipment and technology, and have not yet been put into practical use.

さらに、階段状に貫入ブレードを厚くし、各ステップに土圧計を装着したステップブレード静止土圧測定法(SBT)や緩勾配で上部を厚くしたブレードを貫入して土圧を測定するテーパードブレード法(TBT)なども提案されており、ブレード中央に空気圧で膨らます土圧計が設置されているダイラトメータ(特許文献9)を変位制御式にしたものも考案されている(特許文献10)。   In addition, step blade static earth pressure measurement method (SBT) with thicker intrusion blades and earth pressure gauges attached to each step, and tapered blade method to measure earth pressure by penetrating blades with a thicker top part with a gentle gradient. (TBT) has also been proposed, and a dilatometer (Patent Document 9) in which a soil pressure gauge that is inflated with air pressure is installed at the center of the blade has been devised (Patent Document 10).

このように、地盤の工学的特性は堆積環境により多種多様であるので、簡便でスピーディな調査法で、地盤調査を多数地点で、深度方向にほぼ連続的に行うことが望まれている。また、地盤は単純な弾性体ではなく、粒径・粒形・土粒子の微妙な接触状態・密度・硬度・膠結度・歪レベル・繰返し載荷回数・歪速度・堆積年代・拘束応力等により物性値が変化する。特に、液状化強度などは最も大きな影響を受ける物性値である。そこで、液状化などの検討のための動的物性を求めるためには、原地盤を出来るだけ乱さない状態で多数回繰返し載荷・変形を与えたときの挙動を測定する必要がある。   As described above, since the engineering characteristics of the ground vary widely depending on the sedimentary environment, it is desired that the ground survey be performed almost continuously in the depth direction at a number of points by a simple and speedy survey method. In addition, the ground is not a simple elastic body, but its physical properties depend on particle size, particle shape, delicate contact state of soil particles, density, hardness, caking degree, strain level, number of repeated loadings, strain rate, deposition age, restraint stress, etc. The value changes. In particular, the liquefaction strength is a physical property value that is most greatly affected. Therefore, in order to obtain dynamic physical properties for examination such as liquefaction, it is necessary to measure the behavior when repeated loading / deformation is repeated many times without disturbing the original ground as much as possible.

しかしながら、良く用いられている貫入試験(SPT,CPT,WSW他)は、貫入時にその周辺地盤が乱されるので貫入抵抗以外は真の地盤の値ではない。したがって、抵抗体を貫入させて貫入抵抗以外の地盤物性を求めるためには、測定面の地盤が出来るだけ乱されないように配慮しなければならず、応力制御による動的載荷試験手法は、地震時の地盤挙動により近づいているが、簡易なサウンディングとは反対に複雑な機構で研究用調査としても未だに実用化されていない。また、前述のMSTは変位制御式で簡易な調査手法ではあるが、多サイクル繰返し載荷条件を満たしていない。   However, the penetration tests (SPT, CPT, WSW, etc.) that are often used are not true ground values other than the penetration resistance because the surrounding ground is disturbed at the time of penetration. Therefore, in order to obtain the ground physical properties other than the penetration resistance by penetrating the resistor, care must be taken so that the ground of the measurement surface is not disturbed as much as possible. However, it has not been put into practical use as a research survey because of its complicated mechanism as opposed to simple sounding. The above-mentioned MST is a displacement control type and a simple investigation method, but does not satisfy the multi-cycle repeated loading condition.

特開2001−020268号公報JP 2001-020268 A 特開2003−227786号公報JP 2003-227786 A 特開2007−239444号公報JP 2007-239444 A 特開2013−144921号公報JP2013-144922A 特開2001−32252号公報JP 2001-32252 A 実開昭51−153701号公報Japanese Utility Model Publication No. 51-153701 特開昭58−5655号公報Japanese Patent Laid-Open No. 58-5655 特開2004−347490号公報JP 2004-347490 A 特開平3−189537号公報Japanese Patent Laid-Open No. 3-189537 特開2014−190041号公報JP 2014-190041 A

本発明は以上のような従来の欠点に鑑み、原位置で繰返し横方向載荷試験などを行い、地盤の液状化強度や動的変形係数などを求めるための特性値を簡便に、スピーディに求めるサウンディング試験装置およびサウンディング試験方法を提供することを目的としている。   In view of the above-mentioned conventional drawbacks, the present invention performs sounding in which a characteristic value for determining the liquefaction strength, dynamic deformation coefficient, etc. of the ground is simply and quickly obtained by performing repeated lateral loading tests in-situ. An object is to provide a test apparatus and a sounding test method.

すなわち、簡易でスピーディな調査、地盤を出来るだけ乱さない状態で繰返し載荷できることである。地震時、実際の液状化地盤では地盤全体が地震動で繰返しせん断変形を受け、液状化地盤では土粒子の骨格体積が収縮する。広範囲にこのような状態になると、短時間に地下水は移動(排水)出来ないため間隙水圧が上昇し、土粒子の接触圧が低下して液状化する。   In other words, simple and speedy investigation and repeated loading with as little disturbance as possible. In an actual liquefied ground, the entire ground is repeatedly subjected to shear deformation by earthquake motion during an earthquake, and the skeletal volume of soil particles contracts in the liquefied ground. In such a state over a wide area, the groundwater cannot move (drain) in a short time, so the pore water pressure rises, and the contact pressure of the soil particles falls and liquefies.

従って、前述のように室内での液状化強度試験は、非排水繰返し載荷試験であるが、サウンディングでは局所的な繰返し載荷であるので非排水条件は満たされないことになる。
しかし、サウンディング抵抗体の周辺土粒子骨格は収縮するので、抵抗体に働く土圧は減少することになることと、土粒子間に働く応力が小さくなるので砂地盤の強度は低下することになる。
Therefore, as described above, the indoor liquefaction strength test is a non-drainage repeated loading test, but since the sounding is a local repeated loading, the undrained condition is not satisfied.
However, since the surrounding soil particle skeleton of the sounding resistor contracts, the earth pressure acting on the resistor decreases, and the stress acting between the soil particles decreases, so the strength of the sand ground decreases. .

従って、繰返し載荷による回転抵抗トルクや土圧などの変化特性を計測すれば、液状化強度の推定が従来のサウンデジング手法より高い精度で容易にできる様になる。   Therefore, if the change characteristics such as the rotational resistance torque and earth pressure due to repeated loading are measured, the liquefaction strength can be easily estimated with higher accuracy than the conventional sounding technique.

上記目的を達成するために、本発明はロッドの先端部に、カッティングシューを備える中空の抵抗体を接続し、これを地中に貫入させて測定深度で抵抗を測って土層の性状を深さ方向に調べるサウンディング試験方法であって、前記中空の抵抗体は、上端部の水平面で切断した断面形状が前記カッティングシューの直径より大きい長軸径とカッティングシューの直径と同じか小さくした短軸径からなる楕円形であり、かつ長軸の頂点を結んだ貫入方向の勾配が5度以下の載荷ユニットを備え、前記中空の抵抗体を地中に貫入しながら、又は貫入させてから回転するかのいずれかにより横方向繰返し載荷試験を行い、前記載荷ユニットに発生する回転抵抗トルクを測定して地盤の動的特性値を求める。 In order to achieve the above object, according to the present invention, a hollow resistor having a cutting shoe is connected to the tip of a rod, and this is penetrated into the ground to measure the resistance at a measurement depth, thereby deepening the properties of the soil layer. A sounding test method for examining in a lateral direction, wherein the hollow resistor has a major axis whose section taken along the horizontal plane of the upper end is larger than the diameter of the cutting shoe and a minor axis that is equal to or smaller than the diameter of the cutting shoe. It has an elliptical shape with a diameter and a loading unit with an inclination in the penetration direction connecting the vertices of the major axis of 5 degrees or less, and rotates while penetrating the hollow resistor into the ground or penetrating it. The lateral repeated loading test is performed by either of the above, and the rotational resistance torque generated in the loading unit described above is measured to determine the dynamic characteristic value of the ground.

また、本発明はロッドの先端部に、カッティングシューを備える中空の抵抗体を接続し、これを地中に貫入させて測定深度で抵抗を測って土層の性状を深さ方向に調べるサウンディング試験装置であって、前記中空の抵抗体は、一番内側の荷重を伝達する荷重伝達管と、該荷重伝達管の外周部にトルク伝達板を介して設けられた載荷ユニットとで構成され、該載荷ユニットは、上端部の水平面で切断した断面形状が前記カッティングシューの直径より大きい長軸径とカッティングシューの直径と同じか小さくした短軸径からなる楕円形であり、かつ長軸の頂点を結んだ貫入方向の勾配が5度以下であることを特徴とする。 In addition, the present invention is a sounding test in which a hollow resistor provided with a cutting shoe is connected to the tip of the rod, and this is penetrated into the ground to measure the resistance at the measurement depth to examine the properties of the soil layer in the depth direction. The hollow resistor is composed of a load transmission tube that transmits the innermost load, and a loading unit that is provided on the outer periphery of the load transmission tube via a torque transmission plate, The loading unit has an elliptical shape in which a cross-sectional shape cut by a horizontal plane at the upper end portion has a major axis diameter larger than that of the cutting shoe and a minor axis diameter equal to or smaller than the diameter of the cutting shoe, and the apex of the major axis is It is characterized in that the tangential penetration gradient is 5 degrees or less.

以上の説明から明らかなように、本発明にあっては次に列挙する効果が得られる。
(1)請求項1の発明では、地震外力を想定した横方向多数回繰返し載荷試験を地盤の乱れを抑止した状態からスタートし、簡易な装置で深度方向に連続的にスピーディに調査することが出来、動的地盤物性値が得られる。
(2)請求項2の発明も前記(1)と同様な効果が得られるとともに、抵抗体を回転せずに貫入して地盤の静的物性値を求めてから、回転して動的物性値を求めることができ、調査をさらにスピーディに行なうことができる。
(3)請求項3の発明も前記(1)、(2)と同様な効果が得られるとともに、液状化などの動的物性のみでなく、1回の調査で静的な力学定数が求められる。
(4)請求項4の発明も前記(1)と同様な効果が得られる。
(5)請求項5の発明も前記(1)と同様な効果が得られる。
(6)請求項6の発明も前記(1)と同様な効果が得られるとともに、平坦部を有するため貫入力の影響を受けないので、特性値をより高い精度で測定することができる。
(7)請求項7の発明も前記(1)と同様な効果が得られるとともに、よりスピーディに行なうことができ、礫などが多少混入していても計測することができる。
(8)請求項8の発明も前記(1)〜(3)と同様な効果が得られる。
As is clear from the above description, the present invention has the following effects.
(1) In the first aspect of the invention, it is possible to start a load test repeatedly in the transverse direction assuming an earthquake external force from a state in which the ground disturbance is suppressed, and to continuously and speedily investigate in the depth direction with a simple device. And dynamic ground property values can be obtained.
(2) The invention of claim 2 can also obtain the same effect as the above (1), and after inserting the resistor without rotating to obtain the static physical property value of the ground, the dynamic physical property value by rotating And the survey can be conducted more quickly.
(3) The invention of claim 3 can obtain the same effects as the above (1) and (2), and not only dynamic physical properties such as liquefaction but also static mechanical constants are obtained by one investigation. .
(4) According to the invention of claim 4, the same effect as the above (1) can be obtained.
(5) The invention of claim 5 can achieve the same effect as the above (1).
(6) The invention of claim 6 can obtain the same effect as the above (1), and since it has a flat portion, it is not affected by through-input, so that the characteristic value can be measured with higher accuracy.
(7) The invention of claim 7 can obtain the same effect as the above (1), can be performed more speedily, and can be measured even if some gravel is mixed.
(8) The invention according to claim 8 can achieve the same effects as the above (1) to (3).

本発明を実施するための第1の形態の概略説明図。BRIEF DESCRIPTION OF THE DRAWINGS Schematic explanatory drawing of the 1st form for implementing this invention. 本発明を実施するための第1の形態の抵抗体の正面図。The front view of the resistor of the 1st form for carrying out the present invention. 本発明を実施するための第1の形態の縦断面図。The longitudinal cross-sectional view of the 1st form for implementing this invention. 図3の4−4線断面図。FIG. 4 is a sectional view taken along line 4-4 of FIG. 図3の5−5線断面図。FIG. 5 is a sectional view taken along line 5-5 of FIG. 本発明を実施するための第2の形態の概略説明図。Schematic explanatory drawing of the 2nd form for implementing this invention. 本発明を実施するための第2の形態の抵抗体の正面図。The front view of the resistor of the 2nd form for carrying out the present invention. 本発明を実施するための第2の形態の縦断面図。The longitudinal cross-sectional view of the 2nd form for implementing this invention. 本発明を実施するための第3の形態の概略説明図。Schematic explanatory drawing of the 3rd form for implementing this invention. 本発明を実施するための第3の形態の抵抗体の正面図。The front view of the resistor of the 3rd form for carrying out the present invention. 本発明を実施するための第3の形態の抵抗体の平面図。The top view of the resistor of the 3rd form for carrying out the present invention. 本発明を実施するための第4の形態の概略説明図。Schematic explanatory drawing of the 4th form for implementing this invention. 本発明を実施するための第4の形態の抵抗体の正面図。The front view of the resistor of the 4th form for carrying out the present invention. 図13の14−14線断面図。FIG. 14 is a sectional view taken along line 14-14 of FIG.

以下、図面に示す本発明を実施するための形態により、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to the embodiments shown in the drawings.

図1ないし図5に示す本発明を実施するための第1の形態において、1は地盤の液状化強度や動的変形係数などを求めるための特性値を求めるサウンディング試験方法で、該サウンディング試験方法1はロッド2の先端部に、円筒状のカッティングシュー5を備えた抵抗体3を接続し、これを地面4に貫入させて測定深度で抵抗を測って土層の性状を深さ方向に調べるサウンディング試験方法1であって、下端部に前記中空の抵抗体3は、上端部が前記カッティングシュー5の径より大きい長軸径とカッティングシュー5の直径と同じか小さくした短軸径からなる断面形状楕円形で、長軸の頂点を結んだ貫入方向の勾配が5度以下の緩勾配稜線を有する楕円逆円錐台を輪切り状に分割した複数の載荷ユニット6を備え、前記中空の抵抗体3を地中に貫入しながら、あるいは貫入させてから回転して横方向繰返し載荷試験を行い、各載荷ユニット6に発生する回転抵抗トルクを測定して地盤の動的特性値を求めている。   In the first embodiment for carrying out the present invention shown in FIGS. 1 to 5, reference numeral 1 denotes a sounding test method for obtaining characteristic values for obtaining the liquefaction strength, dynamic deformation coefficient, etc. of the ground. Reference numeral 1 denotes a resistor 2 having a cylindrical cutting shoe 5 connected to the tip of a rod 2, and this is penetrated into the ground 4 to measure the resistance at a measurement depth to examine the properties of the soil layer in the depth direction. In the sounding test method 1, the hollow resistor 3 at the lower end has a cross section having a major axis diameter larger than the diameter of the cutting shoe 5 and a minor axis diameter equal to or smaller than the diameter of the cutting shoe 5. The hollow resistor 3 is provided with a plurality of loading units 6 each having an elliptical elliptical truncated cone having a gentle gradient ridge line with an inclination of 5 degrees or less, which has an elliptical shape and connects the vertices of the major axis. The And while penetrating, or subjected to lateral cyclic loading test is rotated from by penetration, rotational resistance torque generated in each loading unit 6 measures seeking dynamic characteristic values of the ground during.

また、このサウンディング試験方法1に用いられるサウンディング試験装置7は、ロッド2の先端部に、カッティングシュー5を備える抵抗体3を接続したものであって、前記抵抗体3は、一番内側の荷重(貫入力と回転力)を伝達する荷重伝達管8と、該荷重伝達管8の外周部にトルク伝達板9を介して設けられた、上端部が前記カッティングシュー5の径より大きい長軸径とカッティングシュー5の直径と同じ短軸径からなる楕円形で、長軸の頂点を結んだ貫入方向の勾配が5度以下の緩勾配稜線を有する楕円逆円錐台を輪切り状に分割した複数の載荷ユニット6とで構成されている。   The sounding test apparatus 7 used in the sounding test method 1 is such that a resistor 3 having a cutting shoe 5 is connected to the tip of the rod 2, and the resistor 3 is the innermost load. A load transmission tube 8 that transmits (penetration input and rotational force), and a long axis diameter that is provided on the outer periphery of the load transmission tube 8 via a torque transmission plate 9 and whose upper end is larger than the diameter of the cutting shoe 5. And an elliptical elliptical truncated cone having a gentle gradient ridge line with a gradient in the penetrating direction connecting the vertices of the major axis and having a slope of 5 degrees or less. It is composed of a loading unit 6.

なお、本発明において貫入方向の勾配は、載荷ユニットの上端部から下端部の長軸頂部を直線で結んだ場合の勾配をいう。また、ロッド2の先端部とは図1における下方の端部、すなわち中空の抵抗体3と接続される部位をいい、載荷ユニット6の上端部とは図1における上方の端部であり、下端部とは図1における下方の端部をいう。   In the present invention, the gradient in the penetration direction refers to a gradient in a case where the major axis top portion from the upper end portion of the loading unit to the lower end portion is connected by a straight line. Further, the tip end of the rod 2 refers to the lower end in FIG. 1, that is, the portion connected to the hollow resistor 3, and the upper end of the loading unit 6 is the upper end in FIG. The part refers to the lower end in FIG.

前記載荷ユニット6は、貫入方向と垂直方向(水平方向)に分割された複数の載荷ユニット6a、6b、6c、6dからなり、荷重伝達管8の外周にトルク伝達板9を介してトルク伝達板固定ビス10およびトルク伝達板アンカー11で荷重伝達管8に固定されている。各載荷ユニット6a、6b、6c、6dの間には弾性パッキン12が挟みこまれ、4セットの載荷ユニット6a、6b、6c、6dをケーブル路13に各種配線を収めてセットしたら保護ユニット14を荷重伝達管8に接続し、その頭部に排土と荷重伝達のための荷重伝達門型支柱15をセットする。また、載荷ユニット6の長軸の頂点を結んだ貫入方向の勾配(稜線16)に沿って、接地圧計17と間隙水圧計18を埋め込んである。
なお、楕円の短軸径は下端部から上端部までカッティングシュー5の外径と同じである。従って、貫入時の地盤の横方向応力を下限とし、楕円形が長軸径の増分だけ、地盤を横方向に変形させ、1回転に2回繰返し載荷試験をすることになるので、片振幅変位制御型繰返し載荷試験になる。
The load unit 6 described above includes a plurality of load units 6a, 6b, 6c, and 6d that are divided in a penetration direction and a vertical direction (horizontal direction), and a torque transmission plate is arranged on the outer periphery of the load transmission tube 8 via a torque transmission plate 9. It is fixed to the load transmission tube 8 with a fixing screw 10 and a torque transmission plate anchor 11. The elastic packing 12 is sandwiched between the loading units 6a, 6b, 6c, and 6d, and when the four sets of loading units 6a, 6b, 6c, and 6d are set in the cable path 13 and set, the protection unit 14 is provided. The load transmission pipe 8 is connected, and a load transmission gate type column 15 for soil removal and load transmission is set on the head. Further, a ground pressure gauge 17 and a pore water pressure gauge 18 are embedded along a gradient (ridge line 16) in the penetration direction connecting the tops of the major axes of the loading unit 6.
The minor axis diameter of the ellipse is the same as the outer diameter of the cutting shoe 5 from the lower end to the upper end. Therefore, the lateral stress of the ground at the time of intrusion is set as the lower limit, and the elliptical shape is deformed laterally by the increment of the major axis diameter, and the load test is repeated twice per rotation. This is a controlled cyclic loading test.

中掘りしながら抵抗体3を貫入させることで地盤の乱れを極力抑止した状態で抵抗体3を地中に貫入し、回転して繰返し載荷試験を行い、トルクを始めとする各種地盤の特性値を求める。これらのデータを用いて繰返し回数Ncとトルクの関係からNc=20,40,80回に当たる1回目のトルクとの比Trを求めて、室内試験などによる従来の液状化強度との関係式を導いて測定対象地盤の深度方向の液状化推定強度を求める。   The resistance 3 penetrates into the ground with the resistance 3 penetrated as much as possible while digging inside, and the resistance 3 penetrates into the ground and rotates repeatedly to carry out repeated loading tests. Ask for. Using these data, the ratio Tr of the first torque corresponding to Nc = 20, 40, 80 times is obtained from the relationship between the number of repetitions Nc and the torque, and a relational expression with the conventional liquefaction strength by the laboratory test or the like is derived. The estimated liquefaction strength in the depth direction of the ground to be measured is obtained.

カッティングシュー5は、前記抵抗体3の一番内側の荷重(貫入力と回転力)を伝達する荷重伝達管8の下端部に接続されている。   The cutting shoe 5 is connected to the lower end portion of the load transmission tube 8 that transmits the innermost load (through force and rotational force) of the resistor 3.

抵抗体3の下端部に表面を平滑に仕上げたカッティングシュー5を付け、内部の土砂を排出しながら貫入すれば、貫入による測定地盤の乱れを抑止できる。下端部の円形と上端部の楕円形との間は、貫入軸線と平行に5度以下の緩勾配となる抵抗体長とし、その間は直線的に変化させた平滑仕上げの楕円逆錐台回転抵抗体とすることで、1回転につき、微少歪から連続的に大歪まで、それぞれ横方向載荷を2回行なうことができる。   If the cutting shoe 5 having a smooth surface is attached to the lower end portion of the resistor 3 and it penetrates while discharging the earth and sand inside, the disturbance of the measurement ground due to the penetration can be suppressed. Between the circular shape at the lower end and the elliptical shape at the upper end, the length of the resistor is a gentle gradient of 5 degrees or less parallel to the penetration axis, and the elliptical inverted frustum rotation resistor with a smooth finish that is linearly changed between them. By doing so, it is possible to carry out lateral loading twice for each rotation from a slight strain to a continuously large strain.

この抵抗体3の回転により、カッティングシュー5の周面に働く自然地盤の水平応力を下限とする、または中立応力軸とする変位制御の繰返し載荷試験を行うことが出来る。この抵抗体3は、下端部の円形から上端部の楕円形に軸方向に直線的に変化させ、かつこの抵抗体3を3分割以上に輪切状にした載荷ユニット6の回転による横方向載荷試験で発生するトルクの他に、長軸径頂部の地盤との接地圧、間隙水圧などの測定を行うことができる。   By the rotation of the resistor 3, it is possible to perform a repeated loading test for displacement control with the horizontal stress of the natural ground acting on the peripheral surface of the cutting shoe 5 as a lower limit or a neutral stress axis. The resistor 3 is changed from a circular shape at the lower end to an elliptical shape at the upper end in the axial direction, and loaded laterally by rotation of a loading unit 6 in which the resistor 3 is divided into three or more parts. In addition to the torque generated in the test, it is possible to measure the contact pressure with the ground at the top of the major axis diameter, pore water pressure, and the like.

試験は、抵抗体の内部を掘削しながら貫入し、抵抗体3が測定深度に達したら貫入させずに回転し、10回転以上で20回以上横方向繰返し載荷試験を行い、上記の各種測定値と室内非排水繰返し試験による液状化強度との相関性から液状化強度を求める。   The test penetrates the inside of the resistor while excavating it, and when the resistor 3 reaches the measurement depth, it rotates without penetrating. The liquefaction strength is determined from the correlation between the liquefaction strength and the liquefaction strength obtained by indoor undrained repeated tests.

もっとスピーディに試験するためには、抵抗体長分だけ定速貫入する間に10回転で20回繰返し載荷試験を行うと、各測定深度では微少歪レベルから大歪まで連続的に繰返し載荷をして最大変位載荷時に20波になるようにすることで液状化強度相当値を求めることが可能になる。これは室内非排水繰返し試験で丁度20回の載荷で歪が5%に達する変位振幅曲線を直線的に近似させた試験法である。ただし、室内試験の5%歪に対応する楕円体の繰返し回転載荷試験時の歪レベルは同一ではないので、今後、多様な地盤についての計測結果を待つことになる。   In order to test more speedily, if a repeated loading test is performed 20 times at 10 rotations while penetrating at a constant speed for the length of the resistor, repeated loading is performed continuously from a slight strain level to a large strain at each measurement depth. By setting the wave to 20 waves at the time of maximum displacement loading, it is possible to obtain the liquefaction strength equivalent value. This is a test method that linearly approximates a displacement amplitude curve in which a strain reaches 5% after 20 loadings in an indoor undrained repeated test. However, since the strain level in the repeated rotation loading test of the ellipsoid corresponding to 5% strain in the laboratory test is not the same, it will wait for measurement results for various grounds in the future.

測定データは、図示していない貫入回転のためのロッド2下端部に設けたメモリーユニットに一時保管する方法とケーブルをロッド2内に通して地上で無線で送信する方法がある。図示していない地上の装置により抵抗体3の中堀を既技術の泥水ジェットなどで行い、回転貫入は既に実用化されている自動化されたSWS装置などによることができる。
なお、本実施の形態においては、載荷ユニット6の楕円の短軸径は下端部から上端部までカッティングシュー5の外径と同じに形成しているが、本発明はこれに限られず、短軸径をカッティングシューの外径よりも小さく形成してもよい。
There are a method of temporarily storing the measurement data in a memory unit provided at the lower end of the rod 2 for penetration rotation (not shown) and a method of wirelessly transmitting a cable through the rod 2 on the ground. The intermediate moat of the resistor 3 is formed by an already-known muddy water jet or the like using a ground device (not shown), and the rotation penetration can be performed by an automated SWS device that has already been put into practical use.
In the present embodiment, the elliptical minor axis diameter of the loading unit 6 is formed to be the same as the outer diameter of the cutting shoe 5 from the lower end to the upper end. However, the present invention is not limited to this, and the minor axis The diameter may be smaller than the outer diameter of the cutting shoe.

[発明を実施するための異なる形態]
次に、図6ないし図14に示す本発明を実施するための異なる形態につき説明する。なお、これらの本発明を実施するための異なる形態の説明に当って、前記本発明を実施するための第1の形態と同一構成部分には同一符号を付して重複する説明を省略する。
[Different forms for carrying out the invention]
Next, different modes for carrying out the present invention shown in FIGS. 6 to 14 will be described. In the description of the different embodiments for carrying out the present invention, the same components as those in the first embodiment for carrying out the present invention are denoted by the same reference numerals, and redundant description is omitted.

図6ないし図8に示す本発明を実施するための第2の形態において、前記本発明を実施するための第1の形態と主に異なる点は、それぞれ貫入方向に対して平行(鉛直)な平坦部19と、該平坦部19の下部に傾斜面20を形成するとともに、下方に弾性パッキン12を介して接続される載荷ユニットの平坦部19の長半径が上方に接続された載荷ユニットの傾斜面20の下端部の長半径と略同一となるように形成し、複数の載荷ユニット6Aの全体として貫入方向の勾配が5度以下となる載荷ユニット6Aを備えた抵抗体3Aを用いたサウンディング試験装置7Aおよび該サウンディング試験装置7Aを用いたサウンディング試験方法1Aにした点で、このような構成にしても前記本発明を実施するための第1の形態と同様な作用効果が得られるとともに、平坦部19を有するため貫入力の影響を受けないので、特性値をより高い精度で測定することができる。   The second embodiment for carrying out the present invention shown in FIGS. 6 to 8 is mainly different from the first embodiment for carrying out the present invention in that each is parallel (perpendicular) to the penetration direction. Inclination of the loading unit in which the flat surface 19 and the inclined surface 20 are formed below the flat portion 19 and the long radius of the flat portion 19 of the loading unit connected to the lower side via the elastic packing 12 is connected upward. Sounding test using a resistor 3A provided with a loading unit 6A formed so as to be substantially the same as the long radius of the lower end portion of the surface 20 and having a gradient in the penetration direction of 5 ° or less as a whole of the plurality of loading units 6A. Even in such a configuration, the same effect as that of the first embodiment for carrying out the present invention can be obtained in that the device 7A and the sounding test method 1A using the sounding test device 7A are used. Together are, therefore not affected by the penetration force for having a flat portion 19, it is possible to measure the characteristic values with higher accuracy.

図9ないし図11に示す本発明を実施するための第3の形態において、前記本発明を実施するための第1の形態と主に異なる点は、水平方向に分割せず、貫入方向の勾配が5度以下となるように螺旋状(スパイラル状)に形成した載荷ユニット6Bを備えた抵抗体3Bを用いたサウンディング試験装置7Bおよび該サウンディング試験装置7Bを用いたサウンディング試験方法1Bにした点で、このような構成にしても前記本発明を実施するための第1の形態と同様な作用効果が得られるとともに、楕円逆円錐台回転体に螺旋状に溝を入れたものと同様な形状で、先端部に切削刃をつけて回転による掘削貫入を容易行うことができる。   In the third embodiment for carrying out the present invention shown in FIGS. 9 to 11, the main difference from the first embodiment for carrying out the present invention is that the gradient in the penetration direction is not divided in the horizontal direction. Is a sounding test apparatus 7B using a resistor 3B having a loading unit 6B formed in a spiral shape (spiral shape) so that the angle is 5 degrees or less, and a sounding test method 1B using the sounding test apparatus 7B. Even with such a configuration, the same effect as the first embodiment for carrying out the present invention can be obtained, and the same shape as that obtained by spirally grooving the elliptical inverted truncated cone rotating body can be obtained. By attaching a cutting blade to the tip, it is possible to easily perform excavation penetration by rotation.

そのためスピーディに、回転させるだけで排土と貫入作業を同時に行い、回転抵抗体には測定計器を無くし、図示していない地上部の貫入力計、深度計、トルク計で計測して、トルク比Trとの相関関係から液状化強度などを推定する関係式を導いて測定対象地盤の深度方向の液状化推定強度を求めることができる。   For this reason, the earth is removed and penetrated at the same time simply by rotating it, the measuring instrument is eliminated from the rotating resistor, and the torque ratio is measured with a ground input meter, depth meter and torque meter (not shown). The relational expression for estimating the liquefaction strength and the like from the correlation with Tr can be derived to obtain the estimated liquefaction strength in the depth direction of the measurement target ground.

図12ないし図14に示す本発明を実施するための第4の形態において、前記本発明を実施するための第1の形態と主に異なる点は、短半径の長さが異なる楕円形の載荷ユニット6Cを備えた抵抗体3Cを用いたサウンディング試験装置7Cおよび該サウンディング試験装置7Cを用いたサウンディング試験方法1Cにした点で、このような構成にしても前記本発明を実施するための第1の形態と同様な作用効果が得られるとともに、両振幅変位制御繰返し載荷試験を行うことができる。   The fourth embodiment for carrying out the present invention shown in FIGS. 12 to 14 is mainly different from the first embodiment for carrying out the present invention in that an elliptical load having a different short radius is used. The sounding test apparatus 7C using the resistor 3C including the unit 6C and the sounding test method 1C using the sounding test apparatus 7C are used, and the first embodiment for carrying out the present invention is also provided with such a configuration. The effect similar to that of the above embodiment can be obtained, and a repeated loading test with both amplitude displacement control can be performed.

本発明は地震時の土構造物、土砂斜面、各種基礎などの設計に必要な地盤情報、特に地震などの繰返し作用する外力に対する地盤物性値を求めることは重要である。地盤は種々雑多な環境下で堆積、あるいは造成されたもので、一様性に欠けている。そのため、簡易でスピーディな手法で深度方向に連続的に、かつ出きるだけ多くの地点で調査することが望まれている。当該発明は少数地点での高精度調査ではなく、このような社会的要求に答えるものであり、サウンディング試験を行う産業で利用される。   In the present invention, it is important to obtain ground information necessary for the design of earth structures, earth and sand slopes, various foundations, etc. at the time of an earthquake, in particular, ground property values for external forces that repeatedly act such as earthquakes. The ground is deposited or created in various environments and lacks uniformity. For this reason, it is desired to conduct surveys at as many points as possible in a continuous and depth direction using a simple and speedy method. The present invention is not a high-precision survey at a small number of points but a response to such social demands, and is used in industries that perform sounding tests.

1、1A、1B、1C:サウンディング試験方法、
2:ロッド、 3、3A、3B、3C:抵抗体、
4:地面、 5:カッティングシュー、
6、6A、6B、6C:載荷ユニット、
7、7A、7B、7C:サウンディング試験装置、
8:荷重伝達管、 9:トルク伝達板、
10:トルク伝達板固定ビス、 11:トルク伝達板固定アンカー、
12:弾性パッキン、 13:ケーブル路、
14:保護ユニット、 15:荷重伝達門型支柱、
16:稜線、 17:接地圧計、
18:間隙水圧計、 19:平坦部、
20:傾斜面。
1, 1A, 1B, 1C: Sounding test method,
2: Rod, 3, 3A, 3B, 3C: Resistor,
4: Ground, 5: Cutting shoe,
6, 6A, 6B, 6C: loading unit,
7, 7A, 7B, 7C: Sounding test apparatus,
8: Load transmission tube, 9: Torque transmission plate,
10: Torque transmission plate fixing screw, 11: Torque transmission plate fixing anchor,
12: Elastic packing, 13: Cable path,
14: protection unit, 15: load transmission gate-type support,
16: Ridge line, 17: Ground pressure gauge,
18: Pore water pressure gauge, 19: Flat part,
20: Inclined surface.

Claims (8)

ロッドの先端部に、カッティングシューを備える中空の抵抗体を接続し、これを地中に貫入させて測定深度で抵抗を測って土層の性状を深さ方向に調べるサウンディング試験方法であって、前記中空の抵抗体は、上端部の水平面で切断した断面形状が前記カッティングシューの直径より大きい長軸径とカッティングシューの直径と同じか小さくした短軸径からなる楕円形であり、かつ長軸の頂点を結んだ貫入方向の勾配が5度以下の載荷ユニットを備え、前記中空の抵抗体を地中に貫入しながら、又は貫入させてから回転するかのいずれかにより横方向繰返し載荷試験を行い、前記載荷ユニットに発生する回転抵抗トルクを測定して地盤の動的特性値を求めるサウンディング試験方法。 It is a sounding test method in which a hollow resistor provided with a cutting shoe is connected to the tip of the rod, and this is penetrated into the ground to measure the resistance at a measurement depth to examine the properties of the soil layer in the depth direction. The hollow resistor has an elliptical shape in which a cross-sectional shape cut by a horizontal plane at an upper end has a major axis diameter larger than the cutting shoe diameter and a minor axis diameter equal to or smaller than the cutting shoe diameter, and a major axis A loading unit with a slope of 5 degrees or less that connects the tops of the top and the horizontal resistance loading test is performed by either rotating the hollow resistor while penetrating into the ground or rotating after penetrating. A sounding test method for determining the dynamic characteristic value of the ground by measuring the rotational resistance torque generated in the load unit described above. 前記中空の抵抗体に備える載荷ユニットに発生する回転抵抗に加え、楕円形の長軸頂部の接地圧、間隙水圧およびせん断応力を測定して地盤の動的特性値を求めることを特徴とする請求項1記載のサウンディング試験方法。 In addition to the rotational resistance generated in the loading unit provided in the hollow resistor, the ground contact pressure, pore water pressure and shear stress at the top of the elliptical long axis are measured to determine the dynamic characteristic value of the ground. Item 2. The sounding test method according to Item 1. 前記中空の抵抗体の短軸径の下端部はカッティングシューと同径にし、これより上部は外側に1〜2度の緩勾配とし、長軸径はこれより急勾配とする楕円逆錐台の短軸径面に載荷ユニットに接地圧計、間隙水圧計およびせん断応力計を装着した中空の抵抗体を地中に非回転貫入することで地盤の静的強度・変形係数を測定してから回転して横方向繰返し載荷試験を行うことを特徴とする請求項1又は請求項2のいずれかに記載されたサウンディング試験方法。 The lower end of the short axis diameter of the hollow resistor has the same diameter as the cutting shoe, the upper part has a gentle gradient of 1 to 2 degrees outward, and the long axis diameter has a steeper slope than this. Rotate after measuring the static strength and deformation coefficient of the ground by non-rotating penetration of a hollow resistor with a ground pressure gauge, pore water pressure gauge and shear stress gauge attached to the loading unit on the short axis diameter surface. The sounding test method according to claim 1, wherein a lateral loading test is performed. ロッドの先端部に、カッティングシューを備える中空の抵抗体を接続し、これを地中に貫入させて測定深度で抵抗を測って土層の性状を深さ方向に調べるサウンディング試験装置であって、前記中空の抵抗体は、一番内側の荷重を伝達する荷重伝達管と、該荷重伝達管の外周部にトルク伝達板を介して設けられた載荷ユニットとで構成され、該載荷ユニットは、上端部の水平面で切断した断面形状が前記カッティングシューの直径より大きい長軸径とカッティングシューの直径と同じか小さくした短軸径からなる楕円形であり、かつ長軸の頂点を結んだ貫入方向の勾配が5度以下であることを特徴とするサウンディング試験装置。 It is a sounding test device that connects a hollow resistor with a cutting shoe to the tip of the rod, penetrates it into the ground, measures the resistance at the measurement depth, and examines the properties of the soil layer in the depth direction, The hollow resistor is composed of a load transmission tube that transmits the innermost load, and a loading unit that is provided on the outer periphery of the load transmission tube via a torque transmission plate. The cross-sectional shape cut at the horizontal plane of the part is an ellipse having a major axis diameter larger than the cutting shoe diameter and a minor axis diameter equal to or smaller than the cutting shoe diameter, and in the penetration direction connecting the vertices of the major axes. A sounding test apparatus having a gradient of 5 degrees or less. 前記載荷ユニットは、貫入方向と垂直方向に分割された複数の載荷ユニットからなることを特徴とする請求項4に記載のサウンディング試験装置。 The sounding test apparatus according to claim 4, wherein the load unit includes a plurality of load units divided in a direction perpendicular to the penetration direction. 前記複数の載荷ユニットは、それぞれ貫入方向に対して平行な平坦部と、該平坦部の下部に設けられた勾配部を有し、複数の載荷ユニットの全体として貫入方向の勾配が5度以下となることを特徴とする請求項5に記載のサウンディング試験装置。 Each of the plurality of loading units has a flat portion parallel to the penetration direction and a gradient portion provided at a lower portion of the flat portion, and the gradient of the penetration direction as a whole of the plurality of loading units is 5 degrees or less. The sounding test apparatus according to claim 5, wherein 前記載荷ユニットは、貫入方向の勾配が5度以下となるように螺旋状に形成したことを特徴とする請求項4に記載のサウンディング試験装置。 The sounding test apparatus according to claim 4, wherein the load unit is formed in a spiral shape so that a gradient in an intrusion direction is 5 degrees or less. 前記載荷ユニットの短軸径の下端面はカッティングシューと同径にし、これより上部は外側に1〜2度の緩勾配とし、長軸径はこれより急勾配に形成するとともに、楕円逆錐台の短軸径面に接地圧計、間隙水圧計およびせん断応力計を装着したことを特徴とする請求項4〜請求項7のいずれかに記載のサウンディング試験装置。 The lower end surface of the short axis diameter of the load unit described above is the same diameter as the cutting shoe, the upper part has a gentle gradient of 1 to 2 degrees on the outside, the long axis diameter forms a steeper slope than this, and the elliptical inverted frustum The sounding test apparatus according to any one of claims 4 to 7, wherein a ground pressure gauge, a pore water pressure gauge, and a shear stress gauge are mounted on the short axis diameter surface.
JP2015064452A 2015-03-26 2015-03-26 Sounding test method and sounding test apparatus Expired - Fee Related JP6449075B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015064452A JP6449075B2 (en) 2015-03-26 2015-03-26 Sounding test method and sounding test apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015064452A JP6449075B2 (en) 2015-03-26 2015-03-26 Sounding test method and sounding test apparatus

Publications (2)

Publication Number Publication Date
JP2016183509A JP2016183509A (en) 2016-10-20
JP6449075B2 true JP6449075B2 (en) 2019-01-09

Family

ID=57241603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015064452A Expired - Fee Related JP6449075B2 (en) 2015-03-26 2015-03-26 Sounding test method and sounding test apparatus

Country Status (1)

Country Link
JP (1) JP6449075B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS572853B2 (en) * 1974-08-02 1982-01-19
US4594899A (en) * 1984-03-06 1986-06-17 Robert Henke Method and apparatus for testing soil
JP4694513B2 (en) * 2006-02-08 2011-06-08 良刀 前田 Survey method to obtain ground information

Also Published As

Publication number Publication date
JP2016183509A (en) 2016-10-20

Similar Documents

Publication Publication Date Title
JP6112663B2 (en) In-situ rock test method and test equipment
Zhou et al. Zhejiang University benchmark centrifuge test for LEAP-GWU-2015 and liquefaction responses of a sloping ground
Papamichos et al. Hole stability of Red Wildmoor sandstone under anisotropic stresses and sand production criterion
Lin et al. Interaction between laterally loaded pile and surrounding soil
Juran et al. Engineering analysis of dynamic behavior of micropile systems
Li et al. Analysis of time-dependent bearing capacity of a driven pile in clayey soils by total stress method
Rathod et al. Experimental investigation of the behavior of monopile under asymmetric two-way cyclic lateral loads
Togashi et al. Determining anisotropic elastic parameters of transversely isotropic rocks through single torsional shear test and theoretical analysis
Chatterjee1a et al. Dynamic analyses and field observations on piles in Kolkata city
Tang et al. Numerical simulations of shake-table experiment for dynamic soil-pile-structure interaction in liquefiable soils
Kahribt et al. Lateral response of a single pile under combined axial and lateral cyclic loading in sandy soil
Choi et al. Response of pile groups driven in sand subjected to combined loads
Lee et al. Shear wave velocity measurements and soil–pile system identifications in dynamic centrifuge tests
Lee et al. Development of prebored screw pile method and evaluation of its bearing characteristics
Drnevich et al. Applications of the new approach to resonant column testing
Baca et al. Pile foot capacity testing in various cases of pile shaft displacement
Poganski et al. Extended pile driving model to predict the penetration of the InSight/HP 3 mole into the Martian soil
Moss et al. Physical, analytical, and numerical modeling of reverse‐fault displacement through near‐surface soils
US10962460B2 (en) Free fall ball penetrometer with a booster
Meymand et al. Large scale shaking table tests of seismic soil-pile interaction in soft clay
JP6449075B2 (en) Sounding test method and sounding test apparatus
Al-Mosawi et al. Experimental observations on the behavior of a piled raft foundation
Ralli et al. Dynamic Behavior of Single Steel-Driven Vertical and Batter Piles under Horizontal Excitations: Field Model Testing
RU2301983C1 (en) Method for testing soils by static probing
CN206638503U (en) Offshore wind farm testing stand

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181205

R150 Certificate of patent or registration of utility model

Ref document number: 6449075

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees