JP6448681B2 - Lithium secondary battery negative electrode and manufacturing method thereof - Google Patents

Lithium secondary battery negative electrode and manufacturing method thereof Download PDF

Info

Publication number
JP6448681B2
JP6448681B2 JP2017030716A JP2017030716A JP6448681B2 JP 6448681 B2 JP6448681 B2 JP 6448681B2 JP 2017030716 A JP2017030716 A JP 2017030716A JP 2017030716 A JP2017030716 A JP 2017030716A JP 6448681 B2 JP6448681 B2 JP 6448681B2
Authority
JP
Japan
Prior art keywords
bis
active material
silicon
negative electrode
material layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017030716A
Other languages
Japanese (ja)
Other versions
JP2017092048A (en
Inventor
仁 八代
仁 八代
雅弘 細田
雅弘 細田
朗 繁田
朗 繁田
山田 宗紀
宗紀 山田
寿史朗 江口
寿史朗 江口
良彰 越後
良彰 越後
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwate University
Unitika Ltd
Original Assignee
Iwate University
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwate University, Unitika Ltd filed Critical Iwate University
Publication of JP2017092048A publication Critical patent/JP2017092048A/en
Application granted granted Critical
Publication of JP6448681B2 publication Critical patent/JP6448681B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、シリコン系材料を活物質として用いたリチウム二次電池負極及びその製造方法に関する。 The present invention relates to a negative electrode for a lithium secondary battery using a silicon-based material as an active material and a method for producing the same.

従来リチウム二次電池の負極には黒鉛粉末等カーボン系材料からなる負極活物質を、ポリフッ化ビニリデン、ポリテトラフルオロエチレン等絶縁性の有機高分子バインダにより結着し、これを銅箔等の集電体に積層したものが用いられているが、これらカーボン系材料を活物質として用いた負極は、その放電容量が、高々350mA・h/g程度であるため、さらに容量の大きい負極活物質が求められている。 Conventionally, a negative active material made of a carbon-based material such as graphite powder is bound to a negative electrode of a lithium secondary battery by an insulating organic polymer binder such as polyvinylidene fluoride or polytetrafluoroethylene, and this is collected into a copper foil or the like. A negative electrode using these carbon-based materials as an active material has a discharge capacity of about 350 mA · h / g at most. Therefore, a negative electrode active material having a larger capacity is used. It has been demanded.

そこで、これらカーボン系材料に代わる次世代の負極活物質としてシリコン系材料を用いた負極が提案されている。シリコン系材料はリチウムとの合金化反応により、黒鉛の数倍以上の放電容量を示すことが知られているが、充放電に伴う体積変化が激しく負極としての寿命を延ばすことが容易ではなかった。 Therefore, a negative electrode using a silicon-based material has been proposed as a next-generation negative electrode active material that can replace these carbon-based materials. Silicon-based materials are known to exhibit a discharge capacity several times that of graphite due to an alloying reaction with lithium, but the volume change associated with charge / discharge is so severe that it is not easy to extend the life of the negative electrode. .

この繰り返し充放電時の体積変化によるサイクル特性の低下を改善する方法として、平均粒径が1〜10ミクロンのシリコン系粒子を、力学的特性に優れたポリイミドを用いて結着し、熱加圧処理することにより負極活物質層を形成させる方法が提案されている(特許文献1〜5)。 As a method for improving the deterioration of cycle characteristics due to volume changes during repeated charge and discharge, silicon-based particles having an average particle size of 1 to 10 microns are bound using polyimide having excellent mechanical properties, and thermal pressurization is performed. A method of forming a negative electrode active material layer by treatment has been proposed (Patent Documents 1 to 5).

上記特許文献で開示されたポリイミドをバインダとして用いた負極は、充放電をさせると活物質層に亀裂が生じ充電時の体積膨張を吸収できる空間を持つ島状構造が形成されることにより、繰り返し充放電における容量保持率が向上することが非特許文献1で指摘されている。 The negative electrode using the polyimide disclosed in the above-mentioned patent document as a binder is repeatedly formed by forming an island-like structure having a space that can absorb the volume expansion during charging when the active material layer is cracked when charged and discharged. Non-Patent Document 1 points out that the capacity retention rate in charge and discharge is improved.

特許第4471836号Patent No. 4471836 特許第4270894号Patent No. 4270894 特許第4225727号Patent No. 4225727 特許第4212392号Patent No.4212392 特許第4033720号Patent No. 4033720

第48回電池討論会予稿集,2B23, p.238(2007) (高野靖男,山本英和,福井厚史,砂野泰三,神野丸男, 藤谷伸)Proceedings of the 48th Battery Conference, 2B23, p.238 (2007) (Tatsuo Takano, Hidekazu Yamamoto, Atsushi Fukui, Taizo Sunano, Maruo Kanno, Shin Fujiya)

しかしながら、従来開示されたポリイミドをバインダとして用いた負極であっても、前記シリコン系材料の体積変化にともなうサイクル特性の改善は必ずしも充分ではなく、さらにサイクル特性が良好で、かつ高い放電容量を有する負極が求められていた。 However, even the negative electrode using the polyimide disclosed in the prior art as a binder is not necessarily sufficient in improving the cycle characteristics due to the volume change of the silicon-based material, and further has good cycle characteristics and high discharge capacity. There was a need for a negative electrode.

そこで、本発明は上記課題を解決するものであって、活物質としてシリコン系材料を用いたリチウム二次電池負極において、高い放電容量と良好なサイクル特性を有する負極を提供することを目的とする。 Therefore, the present invention is to solve the above-described problems, and an object of the present invention is to provide a negative electrode having high discharge capacity and good cycle characteristics in a lithium secondary battery negative electrode using a silicon-based material as an active material. .

本発明者らは、上記課題を解決するために鋭意研究した結果、特定の特性を有する活物質層が集電体上に設けられた積層体を負極として用いることにより上記課題が解決されることを見出し、本発明の完成に至った。
即ち、本発明は下記を趣旨とするものである。
As a result of intensive studies to solve the above problems, the present inventors have solved the above problems by using a laminate in which an active material layer having specific characteristics is provided on a current collector as a negative electrode. As a result, the present invention has been completed.
That is, the present invention has the following purpose.

1)バインダであるポリイミドと、活物質であるシリコン系粒子とからなり、気孔率が25〜40%である活物質層が集電体上に設けられた積層体であって、前記シリコン系粒子の平均粒径が1μm未満であり、前記ポリイミドのテトラカルボン酸成分が、ピロメリット酸、3,3′,4,4′−ビフェニルテトラカルボン酸、3,3′,4,4′−ベンゾフェノンテトラカルボン酸、3,3′,4,4′−ジフェニルスルホンテトラカルボン酸、3,3′,4,4′−ジフェニルエーテルテトラカルボン酸、2,3,3′,4′−ベンゾフェノンテトラカルボン酸、2,3,6,7−ナフタレンテトラカルボン酸、1,4,5,7−ナフタレンテトラカルボン酸、1,2,5,6−ナフタレンテトラカルボン酸、3,3′,4,4′−ジフェニルメタンテトラカルボン酸、2,2−ビス(3,4−ジカルボキシフェニル)プロパン、2,2−ビス(3,4−ジカルボキシフェニル)ヘキサフルオロプロパン、3,4,9,10−テトラカルボキシペリレン、2,2−ビス[4−(3,4−ジカルボキシフェノキシ)フェニル]プロパン、2,2−ビス[4−(3,4−ジカルボキシフェノキシ)フェニル]ヘキサフルオロプロパンから選ばれる少なくとも一種であり、集電体と前記活物質層の接着強度が3.0N/cm以上であることを特徴とするリチウム二次電池負極。
2)バインダであるポリイミドと、活物質であるシリコン系粒子とからなり、気孔率が25〜40%である活物質層が集電体上に設けられた積層体であって、前記シリコン系粒子の平均粒径が1μm未満であり、前記ポリイミドのジアミン成分が、p−フェニレンジアミン、m−フェニレンジアミン、3,4′−ジアミノジフェニルエーテル、4,4′−ジアミノジフェニルエーテル、4,4′−ジアミノジフェニルメタン、3,3′−ジメチル−4,4′−ジアミノジフェニルメタン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン、1,2−ビス(アニリノ)エタン、ジアミノジフェニルスルホン、ジアミノベンズアニリド、ジアミノベンゾエート、ジアミノジフェニルスルフィド、2,2−ビス(p−アミノフェニル)プロパン、2,2−ビス(p−アミノフェニル)ヘキサフルオロプロパン、1,5−ジアミノナフタレン、ジアミノトルエン、ジアミノベンゾトリフルオライド、1,4−ビス(p−アミノフェノキシ)ベンゼン、4,4′−ビス(p−アミノフェノキシ)ビフェニル、ジアミノアントラキノン、4,4′−ビス(3−アミノフェノキシフェニル)ジフェニルスルホン、1,3−ビス(アニリノ)ヘキサフルオロプロパン、1,4−ビス(アニリノ)オクタフルオロブタン、1,5−ビス(アニリノ)デカフルオロペンタン、1,7−ビス(アニリノ)テトラデカフルオロヘプタンから選ばれる少なくとも一種であり、集電体と前記活物質層の接着強度が3.0N/cm以上であることを特徴とするリチウム二次電池負極。
)平均粒径が1μm未満のシリコン系粒子、ポリイミド前駆体および溶媒からなる分散体を集電体上に塗布、乾燥、熱硬化し、気孔率が25〜40%の活物質層を集電体上に形成させることを特徴とする1)または2)に記載のリチウム二次電池負極の製造方法。
1) A laminate comprising a polyimide as a binder and silicon-based particles as an active material, and an active material layer having a porosity of 25 to 40% provided on a current collector, the silicon-based particles The average particle size of the polyimide is less than 1 μm, and the tetracarboxylic acid component of the polyimide is pyromellitic acid, 3,3 ′, 4,4′-biphenyltetracarboxylic acid , 3,3 ′, 4,4′-benzophenonetetra Carboxylic acid, 3,3 ', 4,4'-diphenylsulfone tetracarboxylic acid, 3,3', 4,4'-diphenyl ether tetracarboxylic acid, 2,3,3 ', 4'-benzophenone tetracarboxylic acid, 2 , 3,6,7-naphthalenetetracarboxylic acid, 1,4,5,7-naphthalenetetracarboxylic acid, 1,2,5,6-naphthalenetetracarboxylic acid, 3,3 ', 4,4'-diph Nylmethane tetracarboxylic acid, 2,2-bis (3,4-dicarboxyphenyl) propane, 2,2-bis (3,4-dicarboxyphenyl) hexafluoropropane, 3,4,9,10-tetracarboxy At least one selected from perylene, 2,2-bis [4- (3,4-dicarboxyphenoxy) phenyl] propane, and 2,2-bis [4- (3,4-dicarboxyphenoxy) phenyl] hexafluoropropane der is, the lithium secondary battery negative electrode bonding strength of the current collector and the active material layer is characterized in der Rukoto least 3.0 N / cm.
2) A laminate comprising a polyimide as a binder and silicon-based particles as an active material, and an active material layer having a porosity of 25 to 40% provided on a current collector, the silicon-based particles And the polyimide has a diamine component of p-phenylenediamine, m-phenylenediamine, 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl ether, 4,4'-diaminodiphenylmethane. 3,3'-dimethyl-4,4'-diaminodiphenylmethane, 2,2-bis [4- (4-aminophenoxy) phenyl] propane , 1,2-bis (anilino) ethane, diaminodiphenylsulfone, diaminobenz Anilide, diaminobenzoate, diaminodiphenyl sulfide, 2,2-bis (p-aminophen Nyl) propane, 2,2-bis (p-aminophenyl) hexafluoropropane, 1,5-diaminonaphthalene, diaminotoluene, diaminobenzotrifluoride, 1,4-bis (p-aminophenoxy) benzene, 4,4 '-Bis (p-aminophenoxy) biphenyl, diaminoanthraquinone, 4,4'-bis (3-aminophenoxyphenyl) diphenylsulfone, 1,3-bis (anilino) hexafluoropropane, 1,4-bis (anilino) octafluorobutane, 1,5-bis (anilino) decafluoropentane, Ri least one der selected from 1,7-bis (anilino) tetradecanoyl fluoro heptane, the adhesive strength of the current collector and the active material layer 3 lithium secondary battery negative electrode, characterized in der Rukoto more .0N / cm.
3 ) A dispersion composed of silicon-based particles having an average particle size of less than 1 μm, a polyimide precursor, and a solvent is coated on the current collector, dried and thermally cured to collect an active material layer having a porosity of 25 to 40%. The method for producing a negative electrode for a lithium secondary battery according to 1) or 2) , wherein the negative electrode is formed on a body.

本発明の積層体は、高い放電容量と良好なサイクル特性を有するので、リチウム二次電池負極として好適に用いることができる。また、本発明の製造方法においては、簡単なプロセスで容易に高い放電容量と良好なサイクル特性を有する負極を製造することが出来る。 Since the laminate of the present invention has a high discharge capacity and good cycle characteristics, it can be suitably used as a lithium secondary battery negative electrode. In the production method of the present invention, a negative electrode having a high discharge capacity and good cycle characteristics can be easily produced by a simple process.

実施例1で得られた負極の表面SEM像である。2 is a surface SEM image of a negative electrode obtained in Example 1. 比較例1で得られた負極の表面SEM像である。2 is a surface SEM image of a negative electrode obtained in Comparative Example 1.

以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.

本発明のリチウム二次電池負極では、活物質層のバインダとしてポリイミドを使用する。本発明で用いられるポリイミドとはポリイミド、ポリアミドイミド、ポリエステルイミド等、主鎖にイミド結合を有する有機高分子を言い、下記の化学構造式(1)を有するポリイミドの中で芳香族ポリイミドが特に好ましく用いられる。 In the lithium secondary battery negative electrode of the present invention, polyimide is used as a binder for the active material layer. The polyimide used in the present invention refers to an organic polymer having an imide bond in the main chain, such as polyimide, polyamideimide, and polyesterimide, and aromatic polyimide is particularly preferable among polyimides having the following chemical structural formula (1). Used.

ここで、Rは4価の芳香族残基、脂肪族残基、脂環族残基から選ばれる残基を表し、Rは2価の芳香族残基、脂肪族残基、脂環族残基から選ばれる残基を表す。 Here, R 1 represents a residue selected from a tetravalent aromatic residue, an aliphatic residue, and an alicyclic residue, and R 2 represents a divalent aromatic residue, an aliphatic residue, and an alicyclic ring. Represents a residue selected from the group residues.

本発明では、良好なサイクル特性を確保する観点から、これらポリイミドの中でDSC(示差走査熱量測定)によるTg(ガラス転移温度)として150℃以上が好ましく、250℃〜350℃の範囲であることがさらに好ましい。また、これらポリイミドの真密度としては1.2g/cm以上であることが好ましい。 In the present invention, from the viewpoint of ensuring good cycle characteristics, among these polyimides, Tg (glass transition temperature) by DSC (differential scanning calorimetry) is preferably 150 ° C. or higher, and is in the range of 250 ° C. to 350 ° C. Is more preferable. The true density of these polyimides is preferably 1.2 g / cm 3 or more.

これらポリイミドの負極活物質層への配合量としては、1〜30質量%であることが好ましく、5〜25質量%が更に好ましい。 As a compounding quantity to the negative electrode active material layer of these polyimides, it is preferable that it is 1-30 mass%, and 5-25 mass% is still more preferable.

本発明のリチウム二次電池負極では、活物質層にシリコン系材料を用いる。ここで、シリコン系材料とは、例えば、シリコン、シリコン合金、シリコン・二酸化珪素複合体等を言い、シリコンを好ましく用いることができる。このシリコン系材料は粒子状のものを用いることが出来、これをバインダである前記ポリイミドに配合して負極活物質層とすることができる。 In the lithium secondary battery negative electrode of the present invention, a silicon-based material is used for the active material layer. Here, the silicon-based material means, for example, silicon, a silicon alloy, a silicon / silicon dioxide composite, or the like, and silicon can be preferably used. This silicon-based material can be used in the form of particles, and can be blended with the polyimide as a binder to form a negative electrode active material layer.

シリコン系粒子の形状は、不定形状、球状、繊維状等いかなる形状のものでも良い。また、良好なサイクル特性を確保する観点から、シリコン系材料の粒子径としてはその平均粒径が5μm以下のものが好ましく、1μm未満であることが更に好ましい。本発明におけるシリコン系粒子の平均粒径は、例えば、レーザー回折式粒度分布測定装置により測定することができる。なお、この平均粒径は前記シリコン系粒子を用いて負極作成後、その表面のSEM像から確認することができる。 The shape of the silicon-based particles may be any shape such as an indefinite shape, a spherical shape, or a fibrous shape. Further, from the viewpoint of ensuring good cycle characteristics, the silicon-based material preferably has an average particle size of 5 μm or less, and more preferably less than 1 μm. The average particle diameter of the silicon-based particles in the present invention can be measured by, for example, a laser diffraction particle size distribution measuring device. In addition, this average particle diameter can be confirmed from the SEM image of the surface after producing a negative electrode using the silicon-based particles.

また、活物質層へのシリコン系粒子の配合量としては、活物質層質量に対し、55質量%以上が好ましく、60質量%以上がより好ましい。 Moreover, as a compounding quantity of the silicon-type particle | grains to an active material layer, 55 mass% or more is preferable with respect to the active material layer mass, and 60 mass% or more is more preferable.

本発明の前記負極活物質層には、電極としての内部抵抗を低減させるために、必要に応じ、黒鉛やカーボンブラック等のカーボン粒子や銀、銅、ニッケル等の金属粒子の導電性粒子を配合することができる。これらカーボン粒子や金属粒子の粒子径としては平均粒径が5μm以下であることが好ましい。負極活物質層への配合量としては、1〜25質量%であることが好ましく、5〜20質量%が更に好ましい。 In order to reduce internal resistance as an electrode, the negative electrode active material layer of the present invention is blended with conductive particles such as carbon particles such as graphite and carbon black and metal particles such as silver, copper and nickel as necessary. can do. The average particle diameter of these carbon particles and metal particles is preferably 5 μm or less. As a compounding quantity to a negative electrode active material layer, it is preferable that it is 1-25 mass%, and 5-20 mass% is still more preferable.

本発明の負極活物質層は、15〜40体積%、より好ましくは25〜35体積%の気孔率を有するものである。本発明の負極では気孔率を上記のように予め設定することにより、シリコン系材料活物質の充放電に伴う体積変化により発生する活物質層へのストレスをこの気孔により吸収でき、それが為に充放電の際に活物質層に亀裂を生じさせることがなく、良好なサイクル特性が得られるものと考えられる。従い気孔率がこの範囲外では目的とする好ましいサイクル特性が得られないことが多い。 The negative electrode active material layer of the present invention has a porosity of 15 to 40% by volume, more preferably 25 to 35% by volume. In the negative electrode of the present invention, by setting the porosity in advance as described above, the stress on the active material layer generated by the volume change accompanying the charge and discharge of the silicon-based material active material can be absorbed by the pores. It is considered that good cycle characteristics can be obtained without causing cracks in the active material layer during charging and discharging. Therefore, if the porosity is outside this range, the desired desirable cycle characteristics are often not obtained.

ここで気孔率とは、活物質層の見掛け密度と活物質層を構成する個々の材料(シリコン系材料、ポリイミド、導電性粒子等)の真密度(比重)と配合量から算出される値である。たとえば、シリコン系材料(真密度A g/cm)をX質量%、ポリイミド(真密度Bg/cm)をY質量%、導電性粒子(真密度C g/cm)をZ質量%配合した負極活物質層の見掛け密度がD g/cmの場合の気孔率(%)は以下の計算式から算出される。 Here, the porosity is a value calculated from the apparent density of the active material layer, the true density (specific gravity) of each material (silicon-based material, polyimide, conductive particles, etc.) constituting the active material layer, and the blending amount. is there. For example, silicon-based material (true density A g / cm 3) to X wt% polyimide (true density Bg / cm 3) of Y weight%, conductive particles (true density C g / cm 3) the Z mass% blending The porosity (%) when the apparent density of the negative electrode active material layer is D g / cm 3 is calculated from the following calculation formula.

(数1)
気孔率 = 100−D(X/A+Y/B+Z/C) (%)
(Equation 1)
Porosity = 100-D (X / A + Y / B + Z / C) (%)

なお、本発明では、シリコン系材料としてシリコンを用いた場合はこの真密度として2.33g/cmの値を用いることが出来る。 In the present invention, when silicon is used as the silicon-based material, a value of 2.33 g / cm 3 can be used as the true density.

本発明では、前記活物質層の厚みは任意であるが、10〜300μm程度の厚みとすることが出来る。 In the present invention, the thickness of the active material layer is arbitrary, but can be about 10 to 300 μm.

本発明では前記負極活物質層を集電体上に形成させて負極とする。集電体としては、銅箔、ステンレス箔、ニッケル箔等の金属箔を使用することが出来るが、電解銅箔や圧延銅箔等の銅箔が好ましく用いられる。これら金属箔の厚みは5〜50μmが好ましく、9〜18μmがより好ましい。また、これらの金属の表面は接着性を向上させるための粗面化処理や防錆処理がされていても良い。また、これらの金属箔の表面に導電性接着層を積層したものを集電体と使用することもできる。なお、導電性接着層は有機高分子化合物に黒鉛などの導電性粒子を配合することによって形成させることができる。 In the present invention, the negative electrode active material layer is formed on a current collector to form a negative electrode. As the current collector, a metal foil such as a copper foil, a stainless steel foil or a nickel foil can be used, and a copper foil such as an electrolytic copper foil or a rolled copper foil is preferably used. The thickness of these metal foils is preferably 5 to 50 μm, more preferably 9 to 18 μm. Further, the surface of these metals may be subjected to a roughening treatment or an antirust treatment for improving the adhesion. Moreover, what laminated | stacked the electroconductive contact bonding layer on the surface of these metal foil can also be used with a collector. The conductive adhesive layer can be formed by blending conductive particles such as graphite with an organic polymer compound.

本発明のリチウム二次電池負極は、上記集電体とシリコン系活物質層の接着強度として3.0N/cm以上の値を有するものである。接着強度を上記とすることにより、気孔率が上記の範囲であっても、集電体とシリコン系活物質層の間の良好な密着性が確保されるので、良好なサイクル特性が得られるものと考えられる。 The lithium secondary battery negative electrode of the present invention has a value of 3.0 N / cm or more as the adhesive strength between the current collector and the silicon-based active material layer. By setting the adhesive strength to the above, even if the porosity is in the above range, good adhesion between the current collector and the silicon-based active material layer is ensured, so that good cycle characteristics can be obtained. it is conceivable that.

ここで、上記接着強度は、幅10mm、長さ100mmに切断した試験片について、両面粘着テープを用いて試験片の一方の導体層面をアルミニウム板に固定した状態で、アルミニウム板に固定されていない側のシリコン系活物質層と集電体の界面を180°方向に50mm/minの速度で引張り測定された値である。 Here, the adhesive strength is not fixed to the aluminum plate in a state where one conductor layer surface of the test piece is fixed to the aluminum plate using a double-sided adhesive tape for the test piece cut to a width of 10 mm and a length of 100 mm. This is a value obtained by measuring the interface between the silicon-based active material layer on the side and the current collector in a 180 ° direction at a speed of 50 mm / min.

本発明のリチウム二次電池負極は例えば以下のような方法によって製造することが出来る。 The lithium secondary battery negative electrode of the present invention can be produced, for example, by the following method.

即ち、シリコン系粒子とポリイミド前駆体と溶媒とからなる分散体を集電体上に塗布、乾燥、熱硬化させた後、熱加圧処理を行うことなく気孔率が15〜40体積%の活物質層を集電体上に形成させることにより製造することが出来る。 That is, a dispersion composed of silicon-based particles, a polyimide precursor, and a solvent is applied on a current collector, dried and thermally cured, and then an active material having a porosity of 15 to 40% by volume without performing heat and pressure treatment. It can be manufactured by forming a material layer on a current collector.

ここでポリイミドの前駆体溶液は、原料となるテトラカルボン酸二無水物とジアミンの略等モルを、溶媒中で重合反応させて得られるポリアミック酸溶液が好ましく用いられる。このポリアミック酸溶液を製造する際の、反応温度としては、−30〜60℃が好ましく、−15〜40℃がより好ましい。またこの反応において、モノマー及び溶媒の添加順序は特に制限はなく、いかなる順序でもよい。 Here, the polyimide precursor solution is preferably a polyamic acid solution obtained by polymerizing a substantially equal mole of tetracarboxylic dianhydride and diamine as raw materials in a solvent. As reaction temperature at the time of manufacturing this polyamic acid solution, -30-60 degreeC is preferable and -15-40 degreeC is more preferable. In this reaction, the order of addition of the monomer and the solvent is not particularly limited, and may be any order.

ここでテトラカルボン酸二無水物は例えばピロメリット酸、3,3′,4,4′−ビフェニルテトラカルボン酸、3,3′,4,4′−ベンゾフェノンテトラカルボン酸、3,3′,4,4′−ジフェニルスルホンテトラカルボン酸、3,3′,4,4′−ジフェニルエーテルテトラカルボン酸、2,3,3′,4′−ベンゾフェノンテトラカルボン酸、2,3,6,7−ナフタレンテトラカルボン酸、1,4,5,7−ナフタレンテトラカルボン酸、1,2,5,6−ナフタレンテトラカルボン酸、3,3′,4,4′−ジフェニルメタンテトラカルボン酸、2,2−ビス(3,4−ジカルボキシフェニル)プロパン、2,2−ビス(3,4−ジカルボキシフェニル)ヘキサフルオロプロパン、3,4,9,10−テトラカルボキシペリレン、2,2−ビス[4−(3,4−ジカルボキシフェノキシ)フェニル]プロパン、2,2−ビス[4−(3,4−ジカルボキシフェノキシ)フェニル]ヘキサフルオロプロパンなどの二無水物などを単体もしくは混合物として使用することが出来るがこれらに限定されるものではない。 Here, tetracarboxylic dianhydrides are, for example, pyromellitic acid, 3,3 ′, 4,4′-biphenyltetracarboxylic acid, 3,3 ′, 4,4′-benzophenonetetracarboxylic acid, 3,3 ′, 4. , 4'-diphenylsulfone tetracarboxylic acid, 3,3 ', 4,4'-diphenyl ether tetracarboxylic acid, 2,3,3', 4'-benzophenone tetracarboxylic acid, 2,3,6,7-naphthalenetetra Carboxylic acid, 1,4,5,7-naphthalenetetracarboxylic acid, 1,2,5,6-naphthalenetetracarboxylic acid, 3,3 ′, 4,4′-diphenylmethanetetracarboxylic acid, 2,2-bis ( 3,4-dicarboxyphenyl) propane, 2,2-bis (3,4-dicarboxyphenyl) hexafluoropropane, 3,4,9,10-tetracarboxyperile Dianhydrides such as 2,2-bis [4- (3,4-dicarboxyphenoxy) phenyl] propane and 2,2-bis [4- (3,4-dicarboxyphenoxy) phenyl] hexafluoropropane Can be used alone or as a mixture, but is not limited thereto.

ここで、ピロメリット酸、3,3′,4,4′−ビフェニルテトラカルボン酸が特に好ましく用いられる。 Here, pyromellitic acid and 3,3 ′, 4,4′-biphenyltetracarboxylic acid are particularly preferably used.

また、ジアミンとしては例えば、p−フェニレンジアミン、m−フェニレンジアミン、3,4′−ジアミノジフェニルエーテル、4,4′−ジアミノジフェニルエーテル、4,4′−ジアミノジフェニルメタン、3,3′−ジメチル−4,4′−ジアミノジフェニルメタン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン、1,2−ビス(アニリノ)エタン、ジアミノジフェニルスルホン、ジアミノベンズアニリド、ジアミノベンゾエート、ジアミノジフェニルスルフィド、2,2−ビス(p−アミノフェニル)プロパン、2,2−ビス(p−アミノフェニル)ヘキサフルオロプロパン、1,5−ジアミノナフタレン、ジアミノトルエン、ジアミノベンゾトリフルオライド、1,4−ビス(p−アミノフェノキシ)ベンゼン、4,4′−ビス(p−アミノフェノキシ)ビフェニル、ジアミノアントラキノン、4,4′−ビス(3−アミノフェノキシフェニル)ジフェニルスルホン、1,3−ビス(アニリノ)ヘキサフルオロプロパン、1,4−ビス(アニリノ)オクタフルオロブタン、1,5−ビス(アニリノ)デカフルオロペンタン、1,7−ビス(アニリノ)テトラデカフルオロヘプタン等を単体もしくは混合物として使用することが出来るがこれらに限定されるものではない。 Examples of the diamine include p-phenylenediamine, m-phenylenediamine, 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl ether, 4,4'-diaminodiphenylmethane, 3,3'-dimethyl-4, 4'-diaminodiphenylmethane, 2,2-bis [4- (4-aminophenoxy) phenyl] propane, 1,2-bis (anilino) ethane, diaminodiphenyl sulfone, diaminobenzanilide, diaminobenzoate, diaminodiphenyl sulfide, 2 , 2-bis (p-aminophenyl) propane, 2,2-bis (p-aminophenyl) hexafluoropropane, 1,5-diaminonaphthalene, diaminotoluene, diaminobenzotrifluoride, 1,4-bis (p- Aminophenoxy) benze 4,4′-bis (p-aminophenoxy) biphenyl, diaminoanthraquinone, 4,4′-bis (3-aminophenoxyphenyl) diphenylsulfone, 1,3-bis (anilino) hexafluoropropane, 1,4- Bis (anilino) octafluorobutane, 1,5-bis (anilino) decafluoropentane, 1,7-bis (anilino) tetradecafluoroheptane, etc. can be used alone or as a mixture, but are not limited thereto is not.

ここで、p−フェニレンジアミン、4,4′−ジアミノジフェニルエーテル、2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパンが特に好ましく用いられる。 Here, p-phenylenediamine, 4,4′-diaminodiphenyl ether, and 2,2-bis [4- (4-aminophenoxy) phenyl] propane are particularly preferably used.

ポリアミック酸の固形分濃度としては1〜50質量%が好ましく、5〜25質量%がより好ましい。このポリアミック酸溶液は部分的にイミド化されていても良い。 As solid content concentration of polyamic acid, 1-50 mass% is preferable, and 5-25 mass% is more preferable. This polyamic acid solution may be partially imidized.

ポリイミド前駆体溶液の25℃に於ける粘度は1〜150Pa・sが好ましく、5〜100Pa・sがより好ましい。 The viscosity of the polyimide precursor solution at 25 ° C. is preferably 1 to 150 Pa · s, and more preferably 5 to 100 Pa · s.

ポリイミド前駆体溶液に用いられる溶媒としては、ポリイミド前駆体を溶解する溶媒であれば如何なる溶媒でも使用することが出来るが、アミド系溶媒が好ましく用いられる。アミド系溶媒の具体例としては、N−メチル−2−ピロリドン(NMP)、N,N−ジメチルホルムアミド(DMF)、N,N−ジメチルアセトアミド(DMAc)等が挙げられ、これらの単体もしくは混合物が好ましい溶媒として使用できる。 As a solvent used for the polyimide precursor solution, any solvent can be used as long as it dissolves the polyimide precursor, but an amide solvent is preferably used. Specific examples of the amide solvent include N-methyl-2-pyrrolidone (NMP), N, N-dimethylformamide (DMF), N, N-dimethylacetamide (DMAc) and the like. It can be used as a preferred solvent.

ポリイミド前駆体溶液には、必要に応じて、例えば、各種界面活性剤、有機シランカップリング剤等の公知の添加物を本発明の効果を損なわない範囲で添加することができる。また、他の重合体が本発明の効果を損なわない範囲で添加されていてもよい。 For example, various additives such as various surfactants and organic silane coupling agents can be added to the polyimide precursor solution as long as the effects of the present invention are not impaired. Moreover, the other polymer may be added in the range which does not impair the effect of this invention.

次に、前記ポリイミド前駆体溶液にシリコン系粒子と必要に応じ導電性粒子等を混合、分散することにより分散体とする。 Next, a dispersion is obtained by mixing and dispersing silicon-based particles and conductive particles, if necessary, in the polyimide precursor solution.

次に、前記シリコン系材料分散体を金属箔上に塗布、乾燥してシリコン系材料が分散したポリイミド前駆体層を形成させる。この乾燥工程において、乾燥温度は150℃以下であることが好ましく、150℃以下であることがより好ましい。次に、250℃〜500℃の温度で熱硬化を行うことが好ましい。この熱硬化によりポリイミド前駆体がポリイミドに変換され、ポリイミドを含むシリコン系活物質層とすることが出来る。前記ポリイミド前駆体溶液は、複数回に分けて塗布してもよい。なお、熱硬化する際の雰囲気としては、窒素ガス等不活性ガス雰囲気化で行うことが好ましいが、空気雰囲気や真空で行うこともできる。 Next, the silicon-based material dispersion is applied onto a metal foil and dried to form a polyimide precursor layer in which the silicon-based material is dispersed. In this drying step, the drying temperature is preferably 150 ° C. or lower, and more preferably 150 ° C. or lower. Next, it is preferable to perform thermosetting at a temperature of 250 ° C to 500 ° C. By this thermosetting, the polyimide precursor is converted to polyimide, and a silicon-based active material layer containing polyimide can be obtained. The polyimide precursor solution may be applied in a plurality of times. The atmosphere for thermosetting is preferably an inert gas atmosphere such as nitrogen gas, but can also be an air atmosphere or a vacuum.

ここで、シリコン系材料活物質層の気孔率を前記の範囲内とするためには、負極活物質層における粒子の隙間の総体積がポリイミドの体積を上回ると、「粒子の隙間の総体積 − ポリイミドの体積」に相当する気孔が生ずるので、混合、分散する粒子の粒子径・形状、および前記した分散体の組成を調節すれば良い。本発明では、シリコン系粒子の平均粒径を1μm未満とすることにより、熱加圧処理を行わなくても、本発明で規定された気孔率とすることが出来る。シリコン活物質層に熱加圧処理を行い、シリコン活物質層の気孔率を調節することも出来るが、シリコン活物質層に熱加圧処理を行った場合は、活物質表面の気孔率が低下し負極とした時に電解液が浸透しにくくなり、放電容量が低下する傾向となる。なお、熱加圧処理する場合の処理温度としては、使用したポリイミドの(Tg+50℃)〜(Tg+150℃)の範囲で行うことが好ましく、圧力としては、線圧換算で10〜100kg/cmの範囲で行うことが好ましい。 Here, in order to make the porosity of the silicon-based material active material layer within the above range, if the total volume of the particle gap in the negative electrode active material layer exceeds the volume of the polyimide, “the total volume of the particle gap − Since pores corresponding to “the volume of the polyimide” are generated, the particle diameter and shape of the particles to be mixed and dispersed, and the composition of the dispersion described above may be adjusted. In the present invention, by setting the average particle size of the silicon-based particles to less than 1 μm, the porosity defined in the present invention can be obtained without performing the heat and pressure treatment. Although the silicon active material layer can be heat-pressed to adjust the porosity of the silicon active material layer, when the silicon active material layer is heat-pressed, the porosity of the active material surface decreases. However, when it is used as a negative electrode, the electrolyte does not easily penetrate and the discharge capacity tends to decrease. In addition, it is preferable to carry out in the range of (Tg + 50 degreeC)-(Tg + 150 degreeC) of the used polyimide as a process temperature in the case of carrying out a heat | fever pressurization process, As a pressure, the range of 10-100 kg / cm in conversion of a linear pressure It is preferable to carry out with.

シリコン系材料分散体を集電体へ塗布するに際しては、ロールツーロールによる連続的に塗布する方法、枚様で塗布する方法が採用出来、いずれの方法でも良い。この時に用いられる塗布装置としては、ダイコータ、多層ダイコータ、グラビアコータ、コンマコータ、リバースロールコータ、ドクタブレードコータ等が使用できる。 When the silicon-based material dispersion is applied to the current collector, either a roll-to-roll continuous application method or a sheet-like application method can be employed, and either method may be used. As a coating apparatus used at this time, a die coater, a multilayer die coater, a gravure coater, a comma coater, a reverse roll coater, a doctor blade coater, or the like can be used.

以上述べた如く、簡単なプロセスでポリイミドを含むシリコン系材料活物質層を集電体上に設けた本発明のリチウム二次電池負極を製造することが出来る。 As described above, the negative electrode of the lithium secondary battery of the present invention in which the silicon-based material active material layer containing polyimide is provided on the current collector can be manufactured by a simple process.

以下、実施例に基づき本発明を更に具体的に説明するが、本発明はこれらの実施例のみに限定されるものではない。
なお、以下の実施例および比較例における、各種特性の評価方法及び用いたポリイミド前駆体溶液の合成方法は、次の通りである。
EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example, this invention is not limited only to these Examples.
In addition, the evaluation method of various characteristics and the synthesis method of the used polyimide precursor solution in the following examples and comparative examples are as follows.

[評価方法]
(1)放電容量の評価
得られた負極を用い、対極をリチウム金属とした電池セルを構成し、以下の条件で繰り返し充放電を行い、一回目の放電容量を放電容量とし、以下の基準で評価した。ここで放電容量はシリコン系粒子の質量を基準として算出する。
○:放電容量 1000mAh/g以上
×:放電容量 1000mAh/g未満
(セルの構成)
・二極式ポーチセル
・対極:金属リチウム
・電解液:1M LiPF in EC + EMC + DMC = 1 : 1 : 1 (体積比)
(なお、EC、EMC、DMCはそれぞれ、エチレンカーボネート、エチルメチルカーボネート、ジメチルカーボネートの略語である。)
測定条件
・測定温度 : 30℃
・放電範囲 : 0.01V 〜 2V
・放電電流 : 15mA/g−負極活物質層
[Evaluation method]
(1) Evaluation of discharge capacity Using the obtained negative electrode, a battery cell having a counter electrode made of lithium metal was constructed, and charging / discharging was repeated under the following conditions, and the first discharge capacity was defined as the discharge capacity. evaluated. Here, the discharge capacity is calculated based on the mass of the silicon-based particles.
○: Discharge capacity of 1000 mAh / g or more ×: Discharge capacity of less than 1000 mAh / g (cell configuration)
-Bipolar pouch cell-Counter electrode: metallic lithium-Electrolyte: 1M LiPF 6 in EC + EMC + DMC = 1: 1: 1 (volume ratio)
(EC, EMC, and DMC are abbreviations for ethylene carbonate, ethyl methyl carbonate, and dimethyl carbonate, respectively.)
Measurement conditions and temperature: 30 ° C
・ Discharge range: 0.01V to 2V
・ Discharge current: 15 mA / g-negative electrode active material layer

(2)サイクル特性の評価
上記充放電条件において2回目の放電容量に対する10回目の放電容量の比率を求め、以下の基準でサイクル特性を評価した。
○:放電容量の比率 0.9以上
×:放電容量の比率 0.9未満
(2) Evaluation of cycle characteristics The ratio of the discharge capacity of the 10th time with respect to the discharge capacity of the 2nd time in the said charging / discharging conditions was calculated | required, and the cycle characteristics were evaluated on the following references | standards.
○: Ratio of discharge capacity 0.9 or more ×: Ratio of discharge capacity less than 0.9

[ポリイミド(PI)前駆体溶液の調製方法]
以下の説明において使用した略語は、以下のとおりである。
<ポリイミド原料>
BPDA:3,3’,4,4’−ビフェニルテトラカルボン酸二無水物
4,4’ODA:4,4’−オキシジアニリン
PDA:p−フェニレンジアミン
<溶媒>
NMP:N−メチル−2−ピロリドン
[Preparation method of polyimide (PI) precursor solution]
Abbreviations used in the following description are as follows.
<Polyimide raw material>
BPDA: 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride 4,4′ODA: 4,4′-oxydianiline PDA: p-phenylenediamine <solvent>
NMP: N-methyl-2-pyrrolidone

<PI前駆体溶液P−1の調製>
三つ口フラスコに窒素ガス気流下、NMP中で、略等モルのBPDAと4,4’ODAとを40℃で反応させることにより、固形分濃度15質量%、25℃での粘度が85Pa・sのポリアミック酸からなる均一な溶液を得た。この溶液をPI前駆体溶液P−1とする。
前記PI前駆体溶液を清浄なガラス基板上に熱硬化後の被膜の厚みが15μmになるようにバーコータによって塗布し、130℃で10分間乾燥した。次いで、窒素雰囲気下100℃から350℃まで2時間かけて昇温した後、350℃で1時間熱処理し、PI前駆体を熱硬化させてイミド化した後ガラス基板から剥離して透明な無孔のPIフィルムを得た。このPIフィルムのDSCによるTgは285℃で、真密度は1.40g/cmであった。
<Preparation of PI precursor solution P-1>
By reacting approximately equimolar BPDA and 4,4′ODA at 40 ° C. in NMP in a nitrogen gas stream in a three-necked flask, the solid content concentration is 15 mass% and the viscosity at 25 ° C. is 85 Pa · A homogeneous solution of s polyamic acid was obtained. This solution is designated as PI precursor solution P-1.
The PI precursor solution was applied on a clean glass substrate by a bar coater so that the thickness of the heat-cured film was 15 μm, and dried at 130 ° C. for 10 minutes. Next, the temperature was raised from 100 ° C. to 350 ° C. in a nitrogen atmosphere over 2 hours, then heat treated at 350 ° C. for 1 hour, the PI precursor was thermoset and imidized, and then peeled off from the glass substrate to be transparent and nonporous PI film was obtained. This PI film had a DSC Tg of 285 ° C. and a true density of 1.40 g / cm 3 .

<PI前駆体溶液P−2の調製>
4,4’ODAをPDAとしたこと以外は上記と同様の方法で、固形分濃度15質量%、25℃での粘度が88Pa・sのポリアミック酸からなる均一な溶液を得た。この溶液をPI前駆体溶液P−2とする。
この溶液から上記と同様の方法で厚みが15μmの透明な無孔のPIフィルムを得た。このPIフィルムのDSCによるTgは400℃以上で、真密度は1.47g/cmであった。
<Preparation of PI precursor solution P-2>
A uniform solution made of polyamic acid having a solid content concentration of 15% by mass and a viscosity at 25 ° C. of 88 Pa · s was obtained in the same manner as described above except that 4,4′ODA was changed to PDA. This solution is designated as PI precursor solution P-2.
From this solution, a transparent non-porous PI film having a thickness of 15 μm was obtained in the same manner as described above. This PI film had a DSC Tg of 400 ° C. or higher and a true density of 1.47 g / cm 3 .

<シリコン系粒子分散体の製造法>
上記で得られたPI前駆体溶液に所定の平均粒径を有するシリコン粒子と平均粒径が3μmの黒鉛粒子を表1の組成で加え、均一に分散するように攪拌後、NMPを加えて、固形分濃度24.5質量%の表2に示すシリコン分散体a〜fを作成した。
<Method for producing silicon particle dispersion>
To the PI precursor solution obtained above, silicon particles having a predetermined average particle diameter and graphite particles having an average particle diameter of 3 μm are added in the composition shown in Table 1, and after stirring to uniformly disperse, NMP is added, Silicon dispersions a to f shown in Table 2 having a solid content concentration of 24.5% by mass were prepared.

[実施例1〜2、比較例1〜4]
厚み18μmの電解銅箔(古河電気工業製 F2−WS)上に、前記シリコン粒子分散体a〜fを熱硬化後の被膜の厚みが30〜50μmになるようにバーコータを用いて枚様で均一に塗布し、130℃で10分間乾燥した。次に、この積層体を窒素ガス雰囲気下で100℃から350℃まで2時間かけて昇温した後、350℃で1時間熱処理し、ポリアミック酸を熱硬化させてイミド化した。これらの積層体は、さらに熱加圧処理することなく、負極用試料として用いた。
[Examples 1-2, Comparative Examples 1-4]
On an electrolytic copper foil (F2-WS, manufactured by Furukawa Electric Co., Ltd.) having a thickness of 18 μm, the silicon particle dispersions a to f are uniform in a sheet-like manner using a bar coater so that the thickness of the coating after thermosetting is 30 to 50 μm. And dried at 130 ° C. for 10 minutes. Next, after heating this laminated body from 100 degreeC to 350 degreeC over 2 hours in nitrogen gas atmosphere, it heat-processed at 350 degreeC for 1 hour, the polyamic acid was thermosetted and imidized. These laminates were used as negative electrode samples without further heat and pressure treatment.

各負極用試料の気孔率、接着強度の測定結果と放電特性、サイクル特性の評価結果を表3に示す。
また、実施例1及び比較例1で得られた活物質層表面のSEM像を図1〜2に示す。
図に示すように、所定の平均粒径を有するシリコン粒子が、凝集することなく、黒鉛粒子とともに、均一に負極活物質層に分散されていることが判る。
Table 3 shows the measurement results of the porosity and adhesion strength of each negative electrode sample, the discharge characteristics, and the evaluation results of the cycle characteristics.
Moreover, the SEM image of the active material layer surface obtained in Example 1 and Comparative Example 1 is shown in FIGS.
As shown in the figure, it can be seen that silicon particles having a predetermined average particle diameter are uniformly dispersed in the negative electrode active material layer together with the graphite particles without agglomeration.

実施例1〜2及び比較例1〜4の結果から、活物質層の気孔率を本発明の範囲である15〜40%とするとともに活物質層と銅箔との接着強度を3.0N/cm以上とすることにより、高い放電容量と良好なサイクル特性の得られることが判る。これに対し、気孔率が40%を超えた比較例1〜2の負極試料では、放電容量としては1000mAh/g超を示したものの、活物質層と銅箔との接着強度が低いため、繰り返し充放電での放電容量維持特性が充分ではなく、リチウム二次電池負極としては不適であることが判る。また、比較例3〜4に示すように、活物質層と銅箔との接着強度が本発明の範囲であっても、気孔率が15%以下の場合は、放電容量が低くリチウム二次電池負極としては不適であることが判る。   From the results of Examples 1 and 2 and Comparative Examples 1 to 4, the porosity of the active material layer was set to 15 to 40% which is the range of the present invention, and the adhesive strength between the active material layer and the copper foil was 3.0 N / It can be seen that a high discharge capacity and good cycle characteristics can be obtained by setting the thickness to cm or more. On the other hand, in the negative electrode samples of Comparative Examples 1 and 2 having a porosity exceeding 40%, although the discharge capacity was over 1000 mAh / g, the adhesive strength between the active material layer and the copper foil was low, so the repetition was repeated. It can be seen that the discharge capacity maintenance characteristic in charge and discharge is not sufficient and is not suitable as a negative electrode for a lithium secondary battery. Further, as shown in Comparative Examples 3 to 4, even when the adhesive strength between the active material layer and the copper foil is within the range of the present invention, when the porosity is 15% or less, the discharge capacity is low and the lithium secondary battery is low. It turns out that it is unsuitable as a negative electrode.

Claims (3)

バインダであるポリイミドと、活物質であるシリコン系粒子とからなり、気孔率が25〜40%である活物質層が集電体上に設けられた積層体であって、前記シリコン系粒子の平均粒径が1μm未満であり、前記ポリイミドのテトラカルボン酸成分が、ピロメリット酸、3,3′,4,4′−ビフェニルテトラカルボン酸、3,3′,4,4′−ベンゾフェノンテトラカルボン酸、3,3′,4,4′−ジフェニルスルホンテトラカルボン酸、3,3′,4,4′−ジフェニルエーテルテトラカルボン酸、2,3,3′,4′−ベンゾフェノンテトラカルボン酸、2,3,6,7−ナフタレンテトラカルボン酸、1,4,5,7−ナフタレンテトラカルボン酸、1,2,5,6−ナフタレンテトラカルボン酸、3,3′,4,4′−ジフェニルメタンテトラカルボン酸、2,2−ビス(3,4−ジカルボキシフェニル)プロパン、2,2−ビス(3,4−ジカルボキシフェニル)ヘキサフルオロプロパン、3,4,9,10−テトラカルボキシペリレン、2,2−ビス[4−(3,4−ジカルボキシフェノキシ)フェニル]プロパン、2,2−ビス[4−(3,4−ジカルボキシフェノキシ)フェニル]ヘキサフルオロプロパンから選ばれる少なくとも一種であり、集電体と前記活物質層の接着強度が3.0N/cm以上であることを特徴とするリチウム二次電池負極。 A laminate comprising a polyimide as a binder and silicon-based particles as an active material, and an active material layer having a porosity of 25 to 40% provided on a current collector, the average of the silicon-based particles The particle size is less than 1 μm and the tetracarboxylic acid component of the polyimide is pyromellitic acid, 3,3 ′, 4,4′-biphenyltetracarboxylic acid , 3,3 ′, 4,4′-benzophenonetetracarboxylic acid 3,3 ', 4,4'-diphenylsulfone tetracarboxylic acid, 3,3', 4,4'-diphenyl ether tetracarboxylic acid, 2,3,3 ', 4'-benzophenone tetracarboxylic acid, 2,3 , 6,7-Naphthalenetetracarboxylic acid, 1,4,5,7-naphthalenetetracarboxylic acid, 1,2,5,6-naphthalenetetracarboxylic acid, 3,3 ', 4,4'-dipheni Methanetetracarboxylic acid, 2,2-bis (3,4-dicarboxyphenyl) propane, 2,2-bis (3,4-dicarboxyphenyl) hexafluoropropane, 3,4,9,10-tetracarboxyperylene , 2,2-bis [4- (3,4-dicarboxyphenoxy) phenyl] propane, and 2,2-bis [4- (3,4-dicarboxyphenoxy) phenyl] hexafluoropropane Ah is, the lithium secondary battery negative electrode bonding strength of the current collector and the active material layer is characterized in der Rukoto least 3.0 N / cm. バインダであるポリイミドと、活物質であるシリコン系粒子とからなり、気孔率が25〜40%である活物質層が集電体上に設けられた積層体であって、前記シリコン系粒子の平均粒径が1μm未満であり、前記ポリイミドのジアミン成分が、p−フェニレンジアミン、m−フェニレンジアミン、3,4′−ジアミノジフェニルエーテル、4,4′−ジアミノジフェニルエーテル、4,4′−ジアミノジフェニルメタン、3,3′−ジメチル−4,4′−ジアミノジフェニルメタン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン、1,2−ビス(アニリノ)エタン、ジアミノジフェニルスルホン、ジアミノベンズアニリド、ジアミノベンゾエート、ジアミノジフェニルスルフィド、2,2−ビス(p−アミノフェニル)プロパン、2,2−ビス(p−アミノフェニル)ヘキサフルオロプロパン、1,5−ジアミノナフタレン、ジアミノトルエン、ジアミノベンゾトリフルオライド、1,4−ビス(p−アミノフェノキシ)ベンゼン、4,4′−ビス(p−アミノフェノキシ)ビフェニル、ジアミノアントラキノン、4,4′−ビス(3−アミノフェノキシフェニル)ジフェニルスルホン、1,3−ビス(アニリノ)ヘキサフルオロプロパン、1,4−ビス(アニリノ)オクタフルオロブタン、1,5−ビス(アニリノ)デカフルオロペンタン、1,7−ビス(アニリノ)テトラデカフルオロヘプタンから選ばれる少なくとも一種であり、集電体と前記活物質層の接着強度が3.0N/cm以上であることを特徴とするリチウム二次電池負極。 A laminate comprising a polyimide as a binder and silicon-based particles as an active material, and an active material layer having a porosity of 25 to 40% provided on a current collector, the average of the silicon-based particles The particle size is less than 1 μm, and the diamine component of the polyimide is p-phenylenediamine, m-phenylenediamine, 3,4′-diaminodiphenyl ether, 4,4′-diaminodiphenyl ether, 4,4′-diaminodiphenylmethane, 3 , 3′-dimethyl-4,4′-diaminodiphenylmethane, 2,2-bis [4- (4-aminophenoxy) phenyl] propane , 1,2-bis (anilino) ethane, diaminodiphenylsulfone, diaminobenzanilide, Diaminobenzoate, diaminodiphenyl sulfide, 2,2-bis (p-aminophenyl) ) Propane, 2,2-bis (p-aminophenyl) hexafluoropropane, 1,5-diaminonaphthalene, diaminotoluene, diaminobenzotrifluoride, 1,4-bis (p-aminophenoxy) benzene, 4,4 ' -Bis (p-aminophenoxy) biphenyl, diaminoanthraquinone, 4,4'-bis (3-aminophenoxyphenyl) diphenylsulfone, 1,3-bis (anilino) hexafluoropropane, 1,4-bis (anilino) octa fluoro butane, 1,5-bis (anilino) decafluoropentane, Ri least one der selected from 1,7-bis (anilino) tetradecanoyl fluoro heptane, the adhesive strength of the current collector and the active material layer 3. lithium secondary battery negative electrode, characterized in der Rukoto more 0N / cm. 平均粒径が1μm未満のシリコン系粒子、ポリイミド前駆体および溶媒からなる分散体を集電体上に塗布、乾燥、熱硬化し、気孔率が25〜40%の活物質層を集電体上に形成させることを特徴とする請求項1または2に記載のリチウム二次電池負極の製造方法。 A dispersion composed of silicon-based particles having an average particle size of less than 1 μm, a polyimide precursor and a solvent is applied on the current collector, dried and thermally cured, and an active material layer having a porosity of 25 to 40% is formed on the current collector. The method for producing a negative electrode for a lithium secondary battery according to claim 1 or 2 , wherein the negative electrode is formed.
JP2017030716A 2011-09-07 2017-02-22 Lithium secondary battery negative electrode and manufacturing method thereof Active JP6448681B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011194987 2011-09-07
JP2011194987 2011-09-07

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012195131A Division JP6300434B2 (en) 2011-09-07 2012-09-05 Lithium secondary battery negative electrode and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2017092048A JP2017092048A (en) 2017-05-25
JP6448681B2 true JP6448681B2 (en) 2019-01-09

Family

ID=48475101

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2012195131A Active JP6300434B2 (en) 2011-09-07 2012-09-05 Lithium secondary battery negative electrode and manufacturing method thereof
JP2017030716A Active JP6448681B2 (en) 2011-09-07 2017-02-22 Lithium secondary battery negative electrode and manufacturing method thereof

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2012195131A Active JP6300434B2 (en) 2011-09-07 2012-09-05 Lithium secondary battery negative electrode and manufacturing method thereof

Country Status (1)

Country Link
JP (2) JP6300434B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4050676A4 (en) * 2020-12-28 2022-09-07 Ningde Amperex Technology Ltd. Negative electrode sheet, electrochemical device comprising negative electrode sheet, and electronic device

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6854071B2 (en) * 2013-09-12 2021-04-07 ユニチカ株式会社 Electrode for lithium secondary battery
JP2015064988A (en) * 2013-09-24 2015-04-09 株式会社東芝 Nonaqueous electrolyte secondary battery and battery pack
JP6126546B2 (en) * 2014-03-26 2017-05-10 株式会社日立製作所 Method and apparatus for producing negative electrode for lithium ion secondary battery
JP2016186881A (en) * 2015-03-27 2016-10-27 国立研究開発法人産業技術総合研究所 Lithium ion battery negative electrode and lithium ion battery
JP6562380B2 (en) * 2015-05-28 2019-08-21 株式会社Gsユアサ Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP7476478B2 (en) * 2019-01-30 2024-05-01 株式会社Gsユアサ Anode, method for manufacturing anode, non-aqueous electrolyte storage element, and method for manufacturing non-aqueous electrolyte storage element
KR20210143268A (en) * 2019-03-27 2021-11-26 우베 고산 가부시키가이샤 Polyimide-based binder for electrical storage devices, electrode mixture paste, negative electrode active material layer, negative electrode sheet for electrical storage devices, and electrical storage device
US20220376237A1 (en) * 2019-10-02 2022-11-24 Ube Industries, Ltd. Active material layer for negative electrode, method for producing same, electrode mixture paste for power storage device negative electrode, negative electrode for power storage device, and power storage device
WO2021066101A1 (en) * 2019-10-02 2021-04-08 宇部興産株式会社 Negative electrode active material layer and method for manufacturing negative electrode active material layer, electrode mixture paste for power storage device negative electrode, power storage device negative electrode, and power storage device
KR102623078B1 (en) * 2022-01-28 2024-01-10 주식회사 엘지에너지솔루션 An electrode and an electrochemical device comprising the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4503807B2 (en) * 2000-10-11 2010-07-14 東洋炭素株式会社 Negative electrode for lithium ion secondary battery and method for producing negative electrode for lithium ion secondary battery
US8216720B2 (en) * 2002-06-26 2012-07-10 Sanyo Electric Co., Ltd. Negative electrode for lithium secondary cell and lithium secondary cell
JP4262475B2 (en) * 2002-12-27 2009-05-13 三菱化学株式会社 Negative electrode material and negative electrode for non-aqueous lithium ion secondary battery, and non-aqueous lithium ion secondary battery
JP4844764B2 (en) * 2008-03-17 2011-12-28 信越化学工業株式会社 Nonaqueous electrolyte secondary battery negative electrode and nonaqueous electrolyte secondary battery using the same
JP2009224239A (en) * 2008-03-18 2009-10-01 Nissan Motor Co Ltd Electrode for battery
JP5481904B2 (en) * 2009-03-30 2014-04-23 日産自動車株式会社 Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the same
JP5520538B2 (en) * 2009-08-03 2014-06-11 古河電気工業株式会社 Negative electrode material for lithium ion secondary battery containing nano-sized particles, negative electrode for lithium ion secondary battery, lithium ion secondary battery
JP5130273B2 (en) * 2009-10-14 2013-01-30 株式会社豊田自動織機 Non-aqueous secondary battery negative electrode and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4050676A4 (en) * 2020-12-28 2022-09-07 Ningde Amperex Technology Ltd. Negative electrode sheet, electrochemical device comprising negative electrode sheet, and electronic device

Also Published As

Publication number Publication date
JP6300434B2 (en) 2018-03-28
JP2017092048A (en) 2017-05-25
JP2013069681A (en) 2013-04-18

Similar Documents

Publication Publication Date Title
JP6448681B2 (en) Lithium secondary battery negative electrode and manufacturing method thereof
KR101831009B1 (en) Aqueous polyimide precursor solution composition and method for producing aqueous polyimide precursor solution composition
US20180076461A1 (en) Polyimide precursor solution, polyimide precursor, polyimide resin, mixture slurry, electrode, mixture slurry production method, and electrode formation method
JP6157468B2 (en) Negative electrode for lithium secondary battery
TWI692902B (en) Mixed material paste for negative electrode of lithium ion secondary battery, negative electrode for lithium ion secondary battery, method for manufacturing negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6638217B2 (en) Electrode manufacturing method
TWI616505B (en) Electrode for lithium secondary battery, lithium secondary battery, and manufacturing methods thereof
JP6891818B2 (en) Binder for secondary battery
WO2011040308A1 (en) Binder resin composition for electrode, electrode mix paste, and electrode
JPWO2014080853A1 (en) Bipolar lithium-ion secondary battery current collector and bipolar lithium-ion secondary battery
JP5761740B2 (en) Electrode and electrode forming method
JP7158124B2 (en) Electrode manufacturing method
JP5734623B2 (en) Manufacturing method of laminate
JP2023113663A (en) electrode
JP5543826B2 (en) Secondary battery negative electrode and secondary battery using the same
JP2019133922A (en) Secondary cell and porous separator for secondary cell
JP6520497B2 (en) Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170321

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180109

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181204

R150 Certificate of patent or registration of utility model

Ref document number: 6448681

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250