JP6447276B2 - Carburization analysis apparatus and carburization analysis method - Google Patents

Carburization analysis apparatus and carburization analysis method Download PDF

Info

Publication number
JP6447276B2
JP6447276B2 JP2015053275A JP2015053275A JP6447276B2 JP 6447276 B2 JP6447276 B2 JP 6447276B2 JP 2015053275 A JP2015053275 A JP 2015053275A JP 2015053275 A JP2015053275 A JP 2015053275A JP 6447276 B2 JP6447276 B2 JP 6447276B2
Authority
JP
Japan
Prior art keywords
equation
fluid
carburization
analysis
processing space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015053275A
Other languages
Japanese (ja)
Other versions
JP2016172898A (en
Inventor
総一郎 牧野
総一郎 牧野
昌英 稲垣
昌英 稲垣
田中 浩司
浩司 田中
秀哲 池畑
秀哲 池畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2015053275A priority Critical patent/JP6447276B2/en
Publication of JP2016172898A publication Critical patent/JP2016172898A/en
Application granted granted Critical
Publication of JP6447276B2 publication Critical patent/JP6447276B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Description

本発明は、被浸炭処理物への浸炭量を解析する浸炭解析装置及び浸炭解析方法の技術に関する。   The present invention relates to a technique of a carburization analysis apparatus and a carburization analysis method for analyzing a carburization amount of a carburized object.

例えば、特許文献1に示すように、従来から、鋼材等の被浸炭処理物を、浸炭ガスが供給される処理空間に載置することによって、被浸炭処理物の表層に炭素を拡散浸透させる浸炭処理が行われている。このような浸炭処理によれば、被浸炭処理物の表層が硬化し、被浸炭処理物の表面の耐摩耗性を向上させたりすることができる。   For example, as shown in Patent Document 1, conventionally, carburizing that diffuses and infiltrates carbon into the surface layer of the carburized material by placing the carburized material such as steel in a processing space to which the carburizing gas is supplied. Processing is in progress. According to such a carburizing treatment, the surface layer of the carburized product can be hardened, and the wear resistance of the surface of the carburized product can be improved.

ところで、被浸炭処理物への炭素の含浸速度は、処理空間へ供給される浸炭ガスに含まれる炭素含有化合物の濃度や被浸炭処理物の形状等の様々な要件によって異なってくる。このため、実際の浸炭処理に先立ち、被浸炭処理物への浸炭量を数値解析し、この結果から最適な浸炭条件を設定する試みがなされている。   By the way, the carbon impregnation rate into the carburized product varies depending on various requirements such as the concentration of the carbon-containing compound contained in the carburizing gas supplied to the processing space and the shape of the carburized product. For this reason, prior to actual carburizing treatment, an attempt has been made to numerically analyze the carburizing amount of the carburized material and to set the optimum carburizing conditions based on the result.

例えば、特許文献2には、流体解析により被浸炭処理物との境界領域における浸炭ガスの状態量を計算する状態量計算工程と、上記状態量から上記被浸炭処理物の表面の炭素濃度を計算する表面炭素濃度計算工程と、上記被浸炭処理物の表面の炭素濃度に応じた上記被浸炭処理物への炭素流入量を設定し、当該炭素流入量に基づいて上記浸炭量を計算する浸炭量計算工程とを有する浸炭解析方法が開示されている。   For example, Patent Document 2 discloses a state quantity calculating step for calculating a state quantity of carburizing gas in a boundary region with a carburized object by fluid analysis, and calculating a carbon concentration on the surface of the carburized object from the state quantity. Carburizing amount for setting the carbon inflow amount to the carburized material according to the surface carbon concentration calculating step to be performed and the carbon concentration on the surface of the carburized material, and calculating the carburizing amount based on the carbon inflow amount A carburization analysis method having a calculation step is disclosed.

特開2004−59959号公報JP 2004-59959 A 特開2011−26658号公報JP 2011-26658 A

通常、浸炭処理(特に真空浸炭処理)では、固体内物質拡散現象の空間スケールが、流体対流又は流体拡散現象の空間スケールに比べて非常に小さいため、特許文献2の技術のように、浸炭ガスの流体対流、流体拡散、及び固体内物質拡散を同時に解析すると計算規模や計算時間等の点で、著しく非効率となる。   Usually, in the carburizing process (especially vacuum carburizing process), the spatial scale of the substance diffusion phenomenon in the solid is very small compared to the spatial scale of the fluid convection or fluid diffusion phenomenon. If the fluid convection, fluid diffusion, and material diffusion in the solid are analyzed at the same time, it becomes extremely inefficient in terms of calculation scale and calculation time.

そこで、本発明は、被浸炭処理物の浸炭量の計算時間を短縮することが可能な浸炭解析装置及び浸炭解析方法を提供することを目的とする。   Then, an object of this invention is to provide the carburizing analysis apparatus and carburizing analysis method which can shorten the calculation time of the carburizing amount of the carburized material.

本発明は、浸炭処理を行う処理空間内に載置された被浸炭処理物に対する浸炭量を解析する浸炭解析装置であって、連続の式、流体運動方程式、エネルギー方程式、ガス成分の輸送方程式、及び固体表面化学反応式に基づいて、前記被浸炭処理物への炭素吸着速度の定常解を算出する流体解析部と、前記炭素吸着速度の定常解を利用して、被浸炭処理物中の炭素の拡散方程式に基づいて、前記浸炭量を算出する固体内拡散解析部と、を備える。 The present invention is a carburization analysis device for analyzing the amount of carburization for a carburized object placed in a processing space for performing carburizing treatment, and includes a continuous equation, a fluid equation of motion, an energy equation, a transport equation of gas components, And a fluid analysis unit that calculates a steady solution of the carbon adsorption rate to the carburized product based on the solid surface chemical reaction formula, and a carbon in the carburized product using the steady solution of the carbon adsorption rate. And an in-solid diffusion analysis unit for calculating the carburization amount based on the diffusion equation.

また、前記浸炭解析装置において、前記流体解析部は、前記処理空間の流体拡散が定常に達するまでの時間と前記処理空間の流体対流が定常に達するまでの時間の比が所定値以上の場合には、前記連続の式、前記流体運動方程式、前記エネルギー方程式、前記ガス成分の輸送方程式、前記固体表面化学反応式に基づいて、前記処理空間のガス流速の定常解を算出し、当該ガス流速の定常解を利用して、前記エネルギー方程式、前記ガス成分の輸送方程式、前記固体表面化学反応式に基づいて、前記炭素吸着速度の定常解を算出することが好ましい。   Further, in the carburization analysis apparatus, the fluid analysis unit is configured such that a ratio of a time until the fluid diffusion in the processing space reaches a steady state and a time until the fluid convection in the processing space reaches a steady state is a predetermined value or more. Calculates a steady solution of the gas flow velocity of the processing space based on the continuity equation, the fluid equation of motion, the energy equation, the transport equation of the gas component, and the solid surface chemical reaction equation, It is preferable to calculate a steady solution of the carbon adsorption rate based on the energy equation, the transport equation of the gas component, and the solid surface chemical reaction equation using a steady solution.

また、本発明は、浸炭処理を行う処理空間内に載置された被浸炭処理物に対する浸炭量を解析する浸炭解析方法であって、連続の式、流体運動方程式、エネルギー方程式、ガス成分の輸送方程式、及び固体表面化学反応式に基づいて、前記被浸炭処理物への炭素吸着速度の定常解を算出する流体解析ステップと、前記炭素吸着速度の定常解を利用して、被浸炭処理物中の炭素の拡散方程式に基づいて、前記浸炭量を算出する固体内拡散解析ステップと、を備える。 The present invention also relates to a carburizing analysis method for analyzing the carburizing amount of a carburized object placed in a processing space for performing carburizing treatment, and includes a continuous equation, a fluid equation of motion, an energy equation, and transportation of gas components. Based on the equation and the solid surface chemical reaction equation, a fluid analysis step of calculating a steady solution of the carbon adsorption rate on the carburized product, and using the steady solution of the carbon adsorption rate, And a solid diffusion analysis step of calculating the carburization amount based on the carbon diffusion equation.

また、前記浸炭解析方法において、前記流体解析ステップでは、前記処理空間の流体拡散が定常に達すまでの時間と前記処理空間の流体対流が定常に達するまでの時間の比が所定値以上の場合に、前記連続の式、前記流体運動方程式、前記エネルギー方程式、前記ガス成分の輸送方程式、前記固体表面化学反応式に基づいて、前記処理空間のガス流速の定常解を算出し、当該ガス流速の定常解を利用して、前記エネルギー方程式、前記ガス成分の輸送方程式、前記固体表面化学反応式に基づいて、前記炭素吸着速度の定常解を算出することが好ましい。   Further, in the carburization analysis method, in the fluid analysis step, when a ratio of a time until the fluid diffusion in the processing space reaches a steady state and a time until the fluid convection in the processing space reaches a steady state is a predetermined value or more. Based on the equation of continuity, the equation of fluid motion, the energy equation, the transport equation of the gas component, and the chemical reaction formula of the solid surface, a steady solution of the gas flow rate of the processing space is calculated, and the steady state of the gas flow rate is calculated. It is preferable to calculate a steady solution of the carbon adsorption rate based on the energy equation, the transport equation of the gas component, and the solid surface chemical reaction equation using a solution.

本発明によれば、被浸炭処理物の浸炭量の計算時間を短縮することが可能な浸炭解析装置及び浸炭解析方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the carburizing analysis apparatus and carburizing analysis method which can shorten the calculation time of the carburizing amount of to-be-carburized processed material can be provided.

本実施形態に係る浸炭解析装置の構成の一例を示すブロック図である。It is a block diagram which shows an example of a structure of the carburizing analysis apparatus which concerns on this embodiment. 本実施形態の浸炭解析方法の一例を示すフロー図である。It is a flowchart which shows an example of the carburizing analysis method of this embodiment. 被浸炭処理物の深さ方向のみに1次元化された被浸炭処理物のモデル図を示す。The model figure of the to-be-carburized thing processed into one dimension only in the depth direction of the to-be-carburized thing is shown. 実施例で求めた被浸炭処理物の深さ方向の炭素濃度の結果を示す図である。It is a figure which shows the result of the carbon concentration of the depth direction of the to-be-carburized processed material calculated | required in the Example. 実施例で求めた処理時間に対する浸炭量の結果を示す図である。It is a figure which shows the result of the carburizing amount with respect to the processing time calculated | required in the Example.

以下、本発明の実施形態の一例について、図面に基づいて説明する。   Hereinafter, an example of an embodiment of the present invention will be described based on the drawings.

図1は、本実施形態に係る浸炭解析装置の構成の一例を示すブロック図である。図1に浸炭解析装置100は、浸炭処理を行う処理空間(例えば、浸炭炉)内に載置された被浸炭処理物(例えば、鋼材)に対する浸炭量を解析する装置である。処理空間には、被浸炭処理物中に炭素を拡散浸透させるための浸炭ガス(例えば、C)が供給される。 FIG. 1 is a block diagram illustrating an example of the configuration of the carburization analysis apparatus according to the present embodiment. A carburizing analysis apparatus 100 in FIG. 1 is an apparatus that analyzes a carburizing amount with respect to a carburized object (for example, a steel material) placed in a processing space (for example, a carburizing furnace) for performing a carburizing process. Carburizing gas (for example, C 2 H 2 ) for diffusing and penetrating carbon into the carburized material is supplied to the processing space.

図1の浸炭解析装置100を構成する各ブロックは、ハードウエア的には、コンピュータのCPU(central processing unit)をはじめとする素子や機械装置で実現でき、ソフトウエア的にはコンピュータプログラム等によって実現されるが、ここでは、それらの連携によって実現される機能ブロックを描いている。したがって、これらの機能ブロックはハードウエア、ソフトウエアの組合せによっていろいろな形で実現できることは、本明細書に触れた当業者には理解されるところである。   Each block constituting the carburizing analysis apparatus 100 of FIG. 1 can be realized in hardware by elements and mechanical devices such as a CPU (central processing unit) of a computer, and in software by a computer program or the like. However, here, functional blocks realized by their cooperation are depicted. Therefore, those skilled in the art who have touched this specification will understand that these functional blocks can be realized in various forms by a combination of hardware and software.

図1に浸炭解析装置100は、入力装置102および出力装置104と接続される。入力装置102は、浸炭解析装置100で実行される処理に関係するユーザの入力を受けるためのキーボード、マウスなどであってもよい。入力装置102は、インターネットなどのネットワークやCD、DVDなどの記録媒体から入力を受けるよう構成されていてもよい。出力装置104は、ディスプレイなどの表示機器やプリンタなどの印刷機器であってもよい。   In FIG. 1, the carburizing analysis device 100 is connected to an input device 102 and an output device 104. The input device 102 may be a keyboard, a mouse, or the like for receiving user input related to processing executed by the carburizing analysis device 100. The input device 102 may be configured to receive input from a network such as the Internet or a recording medium such as a CD or a DVD. The output device 104 may be a display device such as a display or a printing device such as a printer.

浸炭解析装置100は、諸条件設定部106と、流体解析部110と、固体内拡散解析部112と、データ保持部114と、表示制御部116とを備える。   The carburizing analysis apparatus 100 includes a condition setting unit 106, a fluid analysis unit 110, an in-solid diffusion analysis unit 112, a data holding unit 114, and a display control unit 116.

諸条件設定部106は、入力装置102を介してユーザから入力された入力情報に基づいて、処理空間内の流体(浸炭ガス等)の流体解析に必要な諸条件を設定する。流体解析に使用する諸条件としては、流入流量、質量分率、処理空間温度、処理空間圧力、メッシュデータ、最大計算時間、反応速度係数、拡散係数、計算時間刻み、各物性値(粘性係数、拡散係数等)である。ここで、流入流量は、処理空間に供給する浸炭ガスの流量である。また、質量分率は、浸炭ガスを構成する物質の質量の割合である。メッシュデータは、処理空間の形状を示すものであり、微小な複数の領域の集まりとした形状を表すものである。また、メッシュデータは、これらの各分割領域同士における物理量のやり取りを規定するための条件等も含まれる。   The various condition setting unit 106 sets various conditions necessary for fluid analysis of a fluid (such as carburizing gas) in the processing space based on input information input from the user via the input device 102. Various conditions used for fluid analysis include inflow rate, mass fraction, processing space temperature, processing space pressure, mesh data, maximum calculation time, reaction rate coefficient, diffusion coefficient, calculation time increment, each physical property value (viscosity coefficient, Diffusion coefficient, etc.). Here, the inflow flow rate is the flow rate of the carburizing gas supplied to the processing space. Moreover, a mass fraction is a ratio of the mass of the substance which comprises carburizing gas. The mesh data represents the shape of the processing space, and represents the shape of a collection of a plurality of minute areas. The mesh data also includes conditions for defining the exchange of physical quantities between these divided areas.

流体解析部110は、完全連成解析部118と、ガス成分輸送解析部120と、を備えている。完全連成解析部118は、後述する連続の式、流体運動方程式、エネルギー方程式、ガス成分の輸送方程式、固体表面化学反応式を用いた流体解析を実行し、処理空間内のガス流速又は被浸炭処理物への炭素吸着速度の定常解を算出する。ガス成分輸送解析部120は、処理空間内のガス流速の定常解を利用して、エネルギー方程式、ガス成分の輸送方程式、固体表面化学反応式を用いた流体解析を実行し、被浸炭処理物への炭素吸着速度の定常解を算出する。詳細は後述するが、例えば、処理空間内のガス流速が定常に達するまでの時間が、被浸炭処理物への炭素吸着速度が定常に達するまでの時間よりも非常に短い時間であることが推定される場合(後述するΛが所定値以上の場合)には、完全連成解析部118において、処理空間内のガス流速の定常解が得られるまで流体解析が実行され、ガス成分輸送解析部120において、得られたガス流速の定常解を利用して、炭素吸着速度の定常解が得られるまで流体解析が実行される。また、例えば、処理空間内のガス流速が定常に達するまでの時間が、被浸炭処理物への炭素吸着速度が定常に達するまでの時間と同程度であることが推定される場合(後述するΛが所定値未満の場合)には、完全連成解析部118において、被浸炭処理物への炭素吸着速度が定常に達するまで流体解析が実行される。   The fluid analysis unit 110 includes a complete coupling analysis unit 118 and a gas component transport analysis unit 120. The fully coupled analysis unit 118 performs fluid analysis using a continuous equation, a fluid equation of motion, an energy equation, a gas component transport equation, and a solid surface chemical reaction equation, which will be described later, and the gas flow rate or carburized carbon in the processing space. A steady solution of the rate of carbon adsorption on the treated material is calculated. The gas component transport analysis unit 120 performs a fluid analysis using an energy equation, a gas component transport equation, and a solid surface chemical reaction equation by using a steady solution of the gas flow velocity in the processing space, to the carburized workpiece. The steady solution of the carbon adsorption rate is calculated. Although details will be described later, for example, it is estimated that the time until the gas flow rate in the processing space reaches a steady state is much shorter than the time until the carbon adsorption rate on the carburized material reaches a steady state. In the case where Λ (described later) is greater than or equal to a predetermined value, the fluid analysis is performed in the complete coupling analysis unit 118 until a steady solution of the gas flow velocity in the processing space is obtained, and the gas component transport analysis unit 120. Then, using the obtained steady solution of the gas flow rate, the fluid analysis is executed until the steady solution of the carbon adsorption rate is obtained. Further, for example, when it is estimated that the time until the gas flow rate in the processing space reaches a steady state is the same as the time until the carbon adsorption rate on the carburized material reaches a steady state (Λ to be described later) Is less than a predetermined value), fluid analysis is performed in the complete coupled analysis unit 118 until the carbon adsorption rate on the carburized material reaches a steady state.

流体解析部110は、上記方程式により、被浸炭処理物への炭素吸着速度の定常解を算出する機能を有してれば特に制限されるものではないが、流体解析に要する時間の短縮化の観点から、後述するΛが所定値以上の場合、連続の式、流体運動方程式、エネルギー方程式、ガス成分の輸送方程式、固体表面化学反応式に基づいて、処理空間内のガス流速の定常解を算出し、そのガス流速の定常解を利用して、エネルギー方程式、ガス成分の輸送方程式、固体表面化学反応式に基づいて、被浸炭処理物への炭素吸着速度の定常解を算出する機能を有することが好ましい。   The fluid analysis unit 110 is not particularly limited as long as it has a function of calculating a steady solution of the carbon adsorption rate on the carburized material by the above equation, but it can shorten the time required for the fluid analysis. From a viewpoint, when Λ, which will be described later, is greater than or equal to a predetermined value, a steady solution of the gas flow velocity in the processing space is calculated based on a continuous equation, fluid equation of motion, energy equation, gas component transport equation, and solid surface chemical reaction equation And a function for calculating a steady solution of the carbon adsorption rate on the carburized material based on the energy equation, the transport equation of the gas component, and the solid surface chemical reaction equation using the steady solution of the gas flow rate. Is preferred.

固体内拡散解析部112は、流体解析部110により算出された被浸炭処理物への炭素吸着速度の定常解を利用し、後述する被浸炭処理物中の炭素の拡散方程式に基づいて、浸炭量を算出する。   The in-solid diffusion analysis unit 112 uses the steady solution of the carbon adsorption rate to the carburized material calculated by the fluid analyzing unit 110, and based on the carbon diffusion equation in the carburized material to be described later, the amount of carburization. Is calculated.

データ保持部114は、固体内拡散解析部112により算出された浸炭量をデータとして保持する。また、表示制御部116は、データ保持部114に保持された浸炭量を、浸炭量の時間変化、被浸炭処理物中の炭素濃度分布として、出力装置104に表示させる。   The data holding unit 114 holds the carburization amount calculated by the in-solid diffusion analysis unit 112 as data. In addition, the display control unit 116 causes the output device 104 to display the carburizing amount held in the data holding unit 114 as the time variation of the carburizing amount and the carbon concentration distribution in the carburized product.

以下に、本実施形態に係る浸炭解析装置100の動作を図2に示すフロー図に従って説明する。   Below, operation | movement of the carburizing analysis apparatus 100 which concerns on this embodiment is demonstrated according to the flowchart shown in FIG.

ステップS10では、諸条件設定部106により、浸炭処理を行う処理空間内の流体(浸炭ガス等)の流体解析に使用する諸条件が設定される。   In step S10, various conditions used for the fluid analysis of the fluid (carburizing gas, etc.) in the processing space in which the carburizing process is performed are set by the various condition setting unit 106.

ステップS12では、流体解析部110を構成する完全連成解析部118により、上記設定した諸条件の下、式(1)〜式(6)で表される方程式が連成され、処理空間内の流体の流体解析が実行される。式(1)〜式(6)で表される方程式を連成して計算することにより、処理空間内のガス流速(u)や被浸炭処理物への炭素吸着速度(Ws)等が求められるが、完全連成解析部118では、後述するように、処理空間内のガス流速(u)、又は被浸炭処理物への炭素吸着速度(Ws)が定常になるまで、式(1)〜式(6)を繰り返し計算する。ここで、定常とは、時間が経過しても式(1)〜式(6)を連成して求められた物理量(例えばガス流速(u))がほとんど変化しなくなった状態を意味し、その状態における物理量の値を定常解とする(例えば、ガス流速の定常解)。 In step S12, the fully coupled analysis unit 118 constituting the fluid analysis unit 110 couples the equations represented by the equations (1) to (6) under the above-described various conditions, A fluid analysis of the fluid is performed. By calculating the equations represented by the equations (1) to (6) in combination, the gas flow rate (u j ) in the treatment space, the carbon adsorption rate (Ws) to the carburized material, etc. are obtained. However, in the complete coupling analysis unit 118, as will be described later, until the gas flow rate (u j ) in the processing space or the carbon adsorption rate (Ws) to the carburized material becomes steady, the equation (1) ~ Calculate Equation (6) repeatedly. Here, the steady state means a state in which the physical quantity (for example, gas flow rate (u j )) obtained by coupling Equations (1) to (6) hardly changes over time. The value of the physical quantity in that state is set as a steady solution (for example, a steady solution of gas flow rate).

Figure 0006447276
Figure 0006447276
Figure 0006447276
Figure 0006447276
Figure 0006447276
Figure 0006447276
Figure 0006447276
Figure 0006447276
Figure 0006447276
Figure 0006447276

式(1)は連続の式である。式(2)は流体運動方程式であり、Navier−Stokes方程式で表される。式(3)はエネルギー方程式である。式(4)はガス成分の輸送方程式である。なお、圧力は、流体の流速が音速よりも十分に小さいことを仮定して(低マッハ数近似)、基準圧P(一定値)と基準圧からの変動分P(式(2)中)に分離された表現となっている。しかし、本実施形態は、この解法に限定されるものではなく、流体の密度変化を取り扱うことのできる解法であれば、どのような解法を用いても良い。 Equation (1) is a continuous equation. Equation (2) is a fluid motion equation and is represented by the Navier-Stokes equation. Equation (3) is an energy equation. Equation (4) is a gas component transport equation. Assuming that the flow velocity of the fluid is sufficiently smaller than the sonic velocity (low Mach number approximation), the pressure is a reference pressure P 0 (constant value) and a variation P from the reference pressure (in the formula (2)). The expression is separated. However, the present embodiment is not limited to this solution, and any solution may be used as long as it is a solution that can handle the density change of the fluid.

式中、uは処理空間内のガス流速、ρは密度(kg/m)、tは時間(s)、uは速度ベクトル、pは基準圧からの変動圧力(kg/m/s)、μは粘性係数(Pa・s)、gは重力加速度(m/s)、Tは温度(K)、Cpは定圧比熱(J/kg/K)、λは熱伝導率(W/m/k)、Yは処理空間内の各ガス成分の質量分率、Dは処理空間内の各ガス成分の有効拡散係数(m/s)、Pは基準圧(kg/m/s)、Rはガス定数(J/mol/K)、Mは分子量(kg/mol)である。なお、各物性値の代表的な算出方法として、Chapman−Enskog理論によるもの(化学工学便覧、第6版、化学工学会編、丸善、1999)が挙げられるが、本実施形態では、当該方法に限定されるものではなく、どのような算出方法を用いても良い。 Where u j is the gas flow rate in the processing space, ρ is the density (kg / m 3 ), t is the time (s), u i is the velocity vector, and p is the fluctuation pressure from the reference pressure (kg / m / s 2 ), μ is a viscosity coefficient (Pa · s), g is gravitational acceleration (m / s 2 ), T is temperature (K), Cp is constant pressure specific heat (J / kg / K), λ is thermal conductivity (W / M / k), Y i is the mass fraction of each gas component in the processing space, D i is the effective diffusion coefficient (m 2 / s) of each gas component in the processing space, and P 0 is the reference pressure (kg / m / s 2 ), R is a gas constant (J / mol / K), and M is a molecular weight (kg / mol). In addition, as a typical calculation method of each physical property value, a method based on Chapman-Enskog theory (Chemical Engineering Handbook, 6th edition, edited by Chemical Engineering Society, Maruzen, 1999) can be mentioned. The calculation method is not limited, and any calculation method may be used.

式(1)及び式(4)のWsは、処理空間内の流体と被浸炭処理物の表面との表面反応速度である。表面反応としては、例えば、浸炭ガスから被浸炭処理物表面への炭素吸着反応が想定されるため、表面反応速度Wsは、下式(6)の固体表面化学反応式を用いて、被浸炭処理物への炭素吸着速度(kg/m/s)として算出される。下式(6)は、Arrehenius型の吸着反応モデルにより表される式であり、浸炭ガスをCとした場合である。 Ws in Equation (1) and Equation (4) is the surface reaction rate between the fluid in the treatment space and the surface of the carburized product. As the surface reaction, for example, a carbon adsorption reaction from the carburizing gas to the surface of the carburized material is assumed. Therefore, the surface reaction rate Ws is calculated using the solid surface chemical reaction formula of the following formula (6). Calculated as the rate of carbon adsorption (kg / m 3 / s) on the object. The following formula (6) is a formula expressed by an Arrehenius type adsorption reaction model, and is a case where the carburizing gas is C 2 H 2 .

Figure 0006447276
Figure 0006447276

式中、CC2H2は、被浸炭処理物表面近傍におけるCのモル濃度(mol/m)であり、Aadは頻度因子(m/s)であり、Eadは活性化エネルギー(J/mol)である。Aad及びEadは、浸炭ガスの種類ごとに、予備実験等を行うことにより、適宜同定されるものである。 In the formula, C C2H2 is the molar concentration (mol / m 3 ) of C 2 H 2 in the vicinity of the carburized object surface, A ad is a frequency factor (m / s), and E ad is the activation energy ( J / mol). A ad and E ad are appropriately identified by performing a preliminary experiment or the like for each type of carburizing gas.

ここで、完全連成解析部118の流体解析において、処理空間の流体拡散が定常に達するまでの時間/処理空間の流体対流が定常に達するまでの時間が所定値以上の場合には、式(1)〜式(6)で表される方程式から、処理空間内のガス流速の定常解を求めた段階で、ステップS14に進む。一方、処理空間の流体拡散が定常に達するまでの時間/処理空間の流体対流が定常に達するまでの時間が所定値未満の場合には、ステップS16に進み、完全連成解析部118の流体解析がそのまま継続される。以下に、処理空間の流体拡散が定常に達するまでの時間/処理空間の流体対流が定常に達するまでの時間について説明する。   Here, in the fluid analysis of the complete coupling analysis unit 118, when the time until the fluid diffusion in the processing space reaches a steady state / the time until the fluid convection in the processing space reaches a steady state is a predetermined value or more, From the equations expressed by 1) to (6), the process proceeds to step S14 when a steady solution of the gas flow velocity in the processing space is obtained. On the other hand, when the time until the fluid diffusion in the processing space reaches a steady state / the time until the fluid convection in the processing space reaches a steady state is less than a predetermined value, the process proceeds to step S16 and the fluid analysis of the fully coupled analysis unit 118 is performed. Is continued as it is. Hereinafter, the time until the fluid diffusion in the processing space reaches a steady state / the time until the fluid convection in the processing space reaches a steady state will be described.

処理空間の流体拡散が定常に達するまでの時間/処理空間の流体対流が定常に達するまでの時間をΛとすると、以下の式(7)で表される。   The time until the fluid diffusion in the processing space reaches a steady state / the time until the fluid convection in the processing space reaches a steady state is represented by the following equation (7).

Figure 0006447276
Figure 0006447276

式中、Lは処理空間に浸炭ガスが流入する流入部から被浸炭処理物までの距離であり、Dは浸炭ガスの拡散係数であり、Uinは、浸炭ガスの流入速度である。これらのパラメータは、流体解析の計算における諸条件として設定される値であるため、Λは流体解析を実行する際に求められる。また、処理空間の流体拡散が定常に達するまでの時間は被浸炭処理物への炭素吸着速度が定常に達するまでの時間に対応し、処理空間の流体対流が定常に達するまでの時間は処理空間内のガス流速が定常に達するまでの時間に対応する。したがって、Λの値が大きいほど、処理空間内のガス流速が定常に達するまでの時間が、被浸炭処理物への炭素吸着速度が定常に達するまでの時間よりも非常に短い時間であることが推定され、Λの値が小さいほど、被浸炭処理物への炭素吸着速度が定常に達するまでの時間が、処理空間内のガス流速が定常に達するまでの時間と同程度か又は短いと推定される。 In the equation, L g is the distance from the inflow portion where the carburizing gas flows into the processing space to the carburized object, D g is the diffusion coefficient of the carburizing gas, and U in is the inflow rate of the carburizing gas. Since these parameters are values set as various conditions in the calculation of the fluid analysis, Λ is obtained when the fluid analysis is executed. The time until the fluid diffusion in the processing space reaches a steady state corresponds to the time until the carbon adsorption rate on the carburized material reaches a steady state, and the time until the fluid convection in the processing space reaches a steady state This corresponds to the time until the gas flow rate in the inside reaches a steady state. Therefore, as the value of Λ increases, the time until the gas flow rate in the processing space reaches a steady state is much shorter than the time until the carbon adsorption rate on the carburized material reaches a steady state. It is estimated that as the value of Λ is smaller, the time until the carbon adsorption rate on the carburized material reaches a steady state is the same as or shorter than the time until the gas flow velocity in the treatment space reaches a steady state. The

所定値は、被浸炭処理物への炭素吸着速度の定常解を求める計算量を軽減する観点から、適宜設定されればよいが、例えば10以上の範囲で設定されることが好ましい。図2では、所定値を10に設定している。すなわち、Λが10以上であれば、処理空間内のガス流速が定常に達するまでの時間が、被浸炭処理物への炭素吸着速度が定常に達するまでの時間よりも非常に短い時間であると推定する。この場合、完全連成解析部118では、上記式(1)〜(6)の計算を繰り返して、処理空間内のガス流速の定常解が得られた段階で、ガス流速の定常解データを、ガス成分輸送解析部120に送信し、完全連成解析部118での流体解析を停止する(以降、後述するステップS14)。また、Λが10未満であれば、被浸炭処理物への炭素吸着速度が定常に達するまでの時間が、処理空間内のガス流速が定常に達するまでの時間と同程度(又は短い)と推定する。この場合、完全連成解析部118において、引き続き上記式(1)〜(6)の計算を繰り返す(以降、後述するステップS16)。   The predetermined value may be set as appropriate from the viewpoint of reducing the amount of calculation for obtaining a steady solution of the carbon adsorption rate on the carburized material, but is preferably set in a range of 10 or more, for example. In FIG. 2, the predetermined value is set to 10. That is, if Λ is 10 or more, the time until the gas flow rate in the processing space reaches a steady state is much shorter than the time until the carbon adsorption rate on the carburized material reaches a steady state. presume. In this case, the complete coupled analysis unit 118 repeats the calculations of the above equations (1) to (6), and at the stage where the steady solution of the gas flow rate in the processing space is obtained, It transmits to the gas component transport analysis part 120, and the fluid analysis in the complete coupling analysis part 118 is stopped (hereinafter, step S14 described later). If Λ is less than 10, the time until the carbon adsorption rate on the carburized material reaches a steady state is estimated to be the same as (or short) the time until the gas flow rate in the processing space reaches a steady state. To do. In this case, the complete coupling analysis unit 118 continuously repeats the calculations of the above formulas (1) to (6) (hereinafter, step S16 described later).

ステップS14では、ガス成分輸送解析部120により、完全連成解析部118から送信された処理空間内のガス流速の定常解データを利用して、式(8)〜式(11)で表される方程式が繰り返し計算され、被浸炭処理物への炭素吸着速度の定常解が求められる。   In step S <b> 14, the gas component transport analysis unit 120 is expressed by the equations (8) to (11) using the steady solution data of the gas flow velocity in the processing space transmitted from the complete coupling analysis unit 118. The equation is iteratively calculated and a steady solution of the carbon adsorption rate on the carburized material is obtained.

Figure 0006447276
Figure 0006447276
Figure 0006447276
Figure 0006447276
Figure 0006447276
Figure 0006447276
Figure 0006447276
Figure 0006447276

式(8)はエネルギー方程式である。式(9)はガス成分の輸送方程式である。式(10)は流体の密度ρを求めるために用いられる。式(11)は、Arrehenius型の吸着反応モデルにより表される固体表面化学反応式である(浸炭ガスをCとした場合である)。 Equation (8) is an energy equation. Equation (9) is a gas component transport equation. Equation (10) is used to determine the density ρ of the fluid. Equation (11) is a solid surface chemical reaction equation represented by an Arrehenius type adsorption reaction model (when carburizing gas is C 2 H 2 ).

式(8)及び(9)中のU は、平均移流速度であり、このパラメータに処理空間内のガス流速の定常解が当てはめられる。その他の式中のパラメータは前述の通りである。 U j in the equations (8) and (9) is an average advection velocity, and a steady solution of the gas flow velocity in the processing space is fitted to this parameter. The parameters in other formulas are as described above.

このように、処理空間内のガス流速の定常解を利用して、エネルギー方程式、ガス成分の輸送方程式、固体表面化学反応式を連成し、これらを繰り返し計算することにより被浸炭処理物への炭素吸着速度の定常解を求める。すなわち、被浸炭処理物への炭素吸着速度の定常解を求める際に、処理空間内のガス流速の定常解を利用することで、連続の式、流体運動方程式を解く必要がなくなるため、流体解析に係る計算時間を大幅に短縮することが可能となる。   In this way, by utilizing the steady solution of the gas flow velocity in the processing space, the energy equation, the gas component transport equation, and the solid surface chemical reaction equation are coupled, and by repeatedly calculating these, Find the steady solution of carbon adsorption rate. In other words, when calculating the steady solution of the carbon adsorption rate on the carburized material, it is not necessary to solve the continuous equation and fluid equation of motion by using the steady solution of the gas flow velocity in the processing space. It is possible to greatly reduce the calculation time related to.

ステップS16では、完全連成解析部118により、引き続き式(1)〜式(6)で表される方程式が繰り返し計算され、被浸炭処理物への炭素吸着速度(Ws)の定常解が求められる。Λが所定値未満である場合、すなわち被浸炭処理物への炭素吸着速度が定常に達するまでの時間が、処理空間内のガス流速が定常に達するまでの時間と同程度あるいは長いと推定される場合には、ガス流速の定常解の受け渡しができないため、処理空間内のガス流速の定常解を利用して、式(8)〜式(11)のみを解くことはできない。   In step S16, the complete coupled analysis unit 118 continuously calculates the equations expressed by the equations (1) to (6) repeatedly to obtain a steady solution of the carbon adsorption rate (Ws) on the carburized material. . When Λ is less than a predetermined value, that is, the time until the carbon adsorption rate on the carburized material reaches a steady state is estimated to be the same as or longer than the time until the gas flow velocity in the treatment space reaches a steady state. In this case, since the steady solution of the gas flow rate cannot be transferred, it is not possible to solve only the equations (8) to (11) using the steady solution of the gas flow rate in the processing space.

流体解析部110(完全連成解析部118又はガス成分輸送解析部120)で求められた被浸炭処理物への炭素吸着速度の定常解データは、固体内拡散解析部112に送信される。   Steady solution data of the carbon adsorption rate on the carburized material obtained by the fluid analysis unit 110 (fully coupled analysis unit 118 or gas component transport analysis unit 120) is transmitted to the in-solid diffusion analysis unit 112.

ステップS18では、固体内拡散解析部112により、流体解析部110から送信された被浸炭処理物への炭素吸着速度の定常解を利用して、被浸炭処理物中の炭素の拡散方程式に基づいて、浸炭量が求められる。被浸炭処理物中の炭素の拡散方程式は式(12)により表される。   In step S18, based on the diffusion equation of carbon in the carburized material, the in-solid diffusion analysis unit 112 uses the steady solution of the carbon adsorption rate on the carburized material transmitted from the fluid analyzing unit 110. The amount of carburization is required. The diffusion equation of carbon in the carburized product is expressed by equation (12).

Figure 0006447276
Figure 0006447276

式中、ρは被浸炭処理物密度(kg/m)、Yは 被浸炭処理物中の炭素質量分率、Dは、被浸炭処理物中の炭素の拡散係数(m/s)である。被浸炭処理物中の炭素の拡散係数は、予備実験等により求めても良いし、実験結果として報告されているデータを用いてもよい。例えば、オーステナイトのγ相中の炭素の拡散係数は、非特許文献(Wells,C.etal.,Diffusion coefficient of carbon in austenite,Trans.Am.Inst.Min.Metal.Eng.,188(1950).)等により報告されている。 In the formula, ρ A is the carburized material density (kg / m 3 ), Y C is the carbon mass fraction in the carburized material, and D C is the diffusion coefficient of carbon in the carburized material (m 2 / s). The diffusion coefficient of carbon in the carburized material may be obtained by a preliminary experiment or the like, or data reported as an experimental result may be used. For example, the diffusion coefficient of carbon in the γ phase of austenite is described in a non-patent document (Wells, C. et al., Diffusion coefficient of carbon in austenite, Trans. Am. Inst. Min. Metal. Eng., 188 (1950). ) Etc.

また、拡散方程式の境界条件は、被浸炭処理物の任意の点における深さ方向のみに1次元化されたメッシュデータに基づいて設定することが望ましい。図3に、被浸炭処理物の深さ方向のみに1次元化された被浸炭処理物のモデル図を示す。図3に示す被浸炭処理物のモデルを用い、被浸炭処理物表面における炭素濃度の固溶限界に対応する炭素質量分率をTCsat、被浸炭処理物中の初期(浸炭処理前)の炭素質量分率をYC0とすると、境界条件は、下式(13)〜(15)として設定される。そして、式(13)中のWに被浸炭処理物への炭素吸着速度の定常解が当てはめられる。 Moreover, it is desirable to set the boundary condition of the diffusion equation based on mesh data that is one-dimensionalized only in the depth direction at an arbitrary point of the carburized material. FIG. 3 shows a model diagram of the carburized product that is one-dimensionalized only in the depth direction of the carburized product. Using the model of the carburized material shown in FIG. 3, the carbon mass fraction corresponding to the solid solution limit of the carbon concentration on the surface of the carburized material is T Csat , and the initial carbon (before carburizing treatment) in the carburized material. When the mass fraction is Y C0 , the boundary conditions are set as the following formulas (13) to (15). Then, a steady solution of the carbon adsorption rate on the carburized material is applied to WS in Equation (13).

Figure 0006447276
Figure 0006447276
Figure 0006447276
Figure 0006447276
Figure 0006447276
Figure 0006447276

このように、被浸炭処理物への炭素吸着速度の定常解を利用して、式(12)〜(15)を計算することにより、浸炭量が求められる。求められた浸炭量はデータとしてデータ保持部114に保存される。ステップS20では、表示制御部116により、保存された浸炭量データを出力装置104に出力する。なお、表示制御部116により、浸炭量データを浸炭量の時間変化や被浸炭処理物中の炭素濃度分布等として出力してもよい。   Thus, the amount of carburization is calculated | required by calculating Formula (12)-(15) using the steady solution of the carbon adsorption rate to a carburized material. The obtained carburizing amount is stored in the data holding unit 114 as data. In step S <b> 20, the display control unit 116 outputs the stored carburizing amount data to the output device 104. Note that the display control unit 116 may output carburizing amount data as a time change of the carburizing amount, a carbon concentration distribution in the carburized material, or the like.

本実施形態では、式(1)〜(6)(連続の式、流体運動方程式、エネルギー方程式、ガス成分の輸送方程式、固体表面化学反応式)を用いた流体解析により、被浸炭処理物への炭素吸着速度の定常解を求めた上で、その被浸炭処理物への炭素吸着速度の定常解を利用して、式(12)〜(15)を用いた被浸炭処理物内の炭素拡散解析を行い、浸炭量を求めるため、例えば、式(1)〜(6)を用いた流体解析を実行しながら、式(12)〜(15)を用いた被浸炭処理物内の炭素拡散解析を実行して、浸炭量を求める場合と比較して、浸炭量の計算において式(1)〜(6)を解く必要がなくなるため、計算時間を大幅に短縮することが可能となる。   In this embodiment, fluid analysis using equations (1) to (6) (continuous equation, fluid equation of motion, energy equation, gas component transport equation, solid surface chemical reaction equation), After obtaining a steady solution of the carbon adsorption rate, using the steady solution of the carbon adsorption rate to the carburized product, carbon diffusion analysis in the carburized product using equations (12) to (15) In order to obtain the carburizing amount, for example, while performing the fluid analysis using the equations (1) to (6), the carbon diffusion analysis in the carburized product using the equations (12) to (15) is performed. Compared with the case where the amount of carburization is calculated, it is not necessary to solve the equations (1) to (6) in the calculation of the amount of carburization, so that the calculation time can be greatly shortened.

さらに、本実施形態では、被浸炭処理物への炭素吸着速度の定常解を求める際に、Λが所定値以上であれば、流体解析で求められる処理空間内のガス流速の定常解を利用して、式(8)〜(11)(エネルギー方程式、ガス成分の輸送方程式、固体表面化学反応式)に基づいて、被浸炭処理物への炭素吸着速度の定常解を求めることにより、例えば、連続の式、流体運動方程式を解く必要がなくなるため、流体解析に係る計算時間を大幅に短縮することが可能となる。なお、式(1)〜(6)を用いた流体解析を実行しながら、式(12)〜(15)を用いた被浸炭処理物内の炭素拡散解析を実行して、浸炭量を求める計算方法では、Λが所定値以上であっても、言い換えれば処理空間内のガス流速が早い段階で定常に達している場合であっても、計算式を省略することができないため、計算時間は膨大となる。   Furthermore, in this embodiment, when obtaining a steady solution of the carbon adsorption rate on the carburized material, if Λ is equal to or greater than a predetermined value, the steady solution of the gas flow rate in the treatment space obtained by the fluid analysis is used. Based on the equations (8) to (11) (energy equation, gas component transport equation, solid surface chemical reaction equation), by obtaining a steady solution of the carbon adsorption rate on the carburized material, for example, continuous This eliminates the need to solve the above equation and the fluid equation of motion, so that the calculation time for fluid analysis can be greatly shortened. In addition, the calculation which calculates | requires the amount of carburization by performing the carbon diffusion analysis in the to-be-carburized processed material using Formula (12)-(15), performing the fluid analysis using Formula (1)-(6). In the method, even if Λ is greater than or equal to a predetermined value, in other words, even when the gas flow velocity in the processing space reaches a steady state at an early stage, the calculation formula cannot be omitted, so the calculation time is enormous. It becomes.

以下に、実施例を挙げて本発明をより具体的に説明するが、本発明は以下の実施例に制限されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples.

実施例では、被浸炭処理物を載置した浸炭炉内の3次元数値シミュレーションを実施し、対応する実験結果と比較した。対応する実験の条件は、浸炭ガスをCとし、炉内圧力を約1200Paとし、炉内温度を950℃とし、被浸炭処理物をSCr20とし、浸炭ガスの供給時間を240秒とした。C供給停止後、ただちにSCr20を冷却し、SCr20の炭素濃度分布をEPMA(Electron Probe Micro Analyser)により測定した。 In the examples, a three-dimensional numerical simulation in the carburizing furnace on which the carburized product was placed was performed and compared with the corresponding experimental results. The corresponding experimental conditions were as follows: the carburizing gas was C 2 H 2 , the furnace pressure was about 1200 Pa, the furnace temperature was 950 ° C., the carburized material was SCr20, and the carburizing gas supply time was 240 seconds. . Immediately after the supply of C 2 H 2 was stopped, the SCr20 was cooled, and the carbon concentration distribution of the SCr20 was measured by EPMA (Electron Probe Micro Analyzer).

3次元数値シミュレーションでは、上記の条件に加え、投入流量に対応する流入速度、物性値を算出するための各種パラメータ等の諸条件を設定した。   In the three-dimensional numerical simulation, in addition to the above conditions, various conditions such as inflow velocity corresponding to the input flow rate and various parameters for calculating the physical property values were set.

また、CからSCr20表面への炭素吸着を表す化学反応として、以下の反応式を設定した。
→2C+H
Moreover, the following reaction formula was set as a chemical reaction showing carbon adsorption from C 2 H 2 to the surface of SCr20.
C 2 H 2 → 2C + H 2

上記設定した諸条件の下、式(1)〜(6)(連続の式、流体運動方程式、エネルギー方程式、ガス成分の輸送方程式、固体化学表面反応式)を連成して、流体解析を実行した。ここで、実施例の条件では、Λは30以上となり、Λ≧10以上であった。したがって、式(1)〜(6)により、処理空間内のガス流速の定常解を求め、その定常解を利用して、式(8)〜(11)により、被浸炭処理物への炭素吸着速度の定常解を求めた。   Under the above-mentioned various conditions, equations (1) to (6) (continuous equation, fluid motion equation, energy equation, gas component transport equation, solid chemical surface reaction equation) are coupled and fluid analysis is performed did. Here, under the conditions of the example, Λ was 30 or more and Λ ≧ 10 or more. Accordingly, a steady solution of the gas flow rate in the processing space is obtained by the equations (1) to (6), and the carbon adsorption to the carburized material is obtained by the equations (8) to (11) using the steady solution. A steady speed solution was obtained.

次に、被浸炭処理物への炭素吸着速度の定常解を利用して、式(12)〜(15)により、浸炭量を求めた。浸炭量は、処理時間に対する浸炭量、及び被浸炭処理物の深さ方向の炭素濃度として表した。これらの結果を、上記実験結果と共に、図4及び図5に示す。   Next, the amount of carburization was calculated | required by Formula (12)-(15) using the steady solution of the carbon adsorption rate to a carburized material. The carburization amount was expressed as the carburization amount with respect to the treatment time and the carbon concentration in the depth direction of the carburized product. These results are shown in FIG.4 and FIG.5 with the said experimental result.

図4及び図5の結果から分かるように、実施例の3次元数値シミュレーションから求められた炭素量は、実験結果に近似した値となった。すなわち、実施例は、非常に高い計算精度であることが確認された。   As can be seen from the results of FIGS. 4 and 5, the carbon amount obtained from the three-dimensional numerical simulation of the example was a value approximated to the experimental result. That is, it was confirmed that the example has a very high calculation accuracy.

実施例では、240秒後の浸炭処理後の浸炭量を求めるまでに、約2日の時間を費やした。これに対し、式(1)〜(6)を連成して、流体解析を実行しながら、式(12)〜(15)を実行して、240秒後の浸炭処理後の浸炭量を求めるまでに係る時間を見積もると、約10000日を要することになる。なお、この場合の計算時間には、メッシュデータを非常に細かくすることによる計算負荷の増大、また、細かくしたメッシュデータにより生じる時間ステップの更なる制約等は加味されておらず、実際には、更に計算時間が増大することになる。   In the example, it took about 2 days to obtain the amount of carburization after the carburizing process after 240 seconds. On the other hand, the equations (1) to (6) are coupled and the fluid analysis is performed, and the equations (12) to (15) are executed to obtain the carburizing amount after the carburizing process after 240 seconds. Estimating the time required for this will require about 10,000 days. Note that the calculation time in this case does not take into account the increase in calculation load caused by making the mesh data very fine, and further restrictions on the time step caused by the fine mesh data. Furthermore, the calculation time increases.

以上により、実施例の計算方法は、式(1)〜(6)を連成して、流体解析を実行しながら、式(12)〜(15)を実行する計算方法と比べて、計算時間を短縮することが可能であると言える。そして、実施例の計算結果は実験結果と近似しており、高い計算精度が保証されていると言える。   As described above, the calculation method of the embodiment has a longer calculation time than the calculation method in which the equations (12) to (15) are executed while the equations (1) to (6) are coupled and the fluid analysis is performed. It can be said that this can be shortened. And the calculation result of an Example approximates with an experimental result, and it can be said that high calculation accuracy is guaranteed.

なお、実施例では、Cを原料とする浸炭処理に関するものであるが、本実施形態はこれに限定されるものではない。また、被浸炭処理物、炉内温度、炉内圧力等も実施例に限定されるものではない。そして、本発明はその要旨を変更しない限りにおいて、変形可能であり、それらは全て本発明の範囲に含まれる。 In the embodiment, although the C 2 H 2 relates carburizing as a raw material, the present embodiment is not limited thereto. Also, the carburized material, furnace temperature, furnace pressure, etc. are not limited to the examples. The present invention can be modified without changing the gist thereof, and they are all included in the scope of the present invention.

100 浸炭解析装置、102 入力装置、104 出力装置、106 諸条件設定部、110 流体解析部、112 固体内拡散解析部、114 データ保持部、116 表示制御部、118 完全連成解析部、120 ガス成分輸送解析部。
DESCRIPTION OF SYMBOLS 100 Carburizing analysis apparatus, 102 Input apparatus, 104 Output apparatus, 106 Various condition setting parts, 110 Fluid analysis part, 112 Solid diffusion analysis part, 114 Data holding part, 116 Display control part, 118 Complete coupling analysis part, 120 Gas Component transport analysis department.

Claims (4)

浸炭処理を行う処理空間内に載置された被浸炭処理物に対する浸炭量を解析する浸炭解析装置であって、
連続の式、流体運動方程式、エネルギー方程式、ガス成分の輸送方程式、及び固体表面化学反応式に基づいて、前記被浸炭処理物への炭素吸着速度の定常解を算出する流体解析部と、
前記炭素吸着速度の定常解を利用して、被浸炭処理物中の炭素の拡散方程式に基づいて、前記浸炭量を算出する固体内拡散解析部と、を備えることを特徴とする浸炭解析装置。
A carburization analysis device for analyzing the amount of carburization for a carburized object placed in a processing space for performing carburizing treatment,
A fluid analysis unit that calculates a steady solution of a carbon adsorption rate on the carburized material based on a continuous equation, a fluid equation of motion, an energy equation, a gas component transport equation, and a solid surface chemical reaction equation;
A carburization analysis apparatus comprising: an in-solid diffusion analysis unit that calculates the carburization amount based on a diffusion equation of carbon in a carburized product using a steady solution of the carbon adsorption rate.
請求項1に記載の浸炭解析装置において、前記流体解析部は、前記処理空間の流体拡散が定常に達するまでの時間と前記処理空間の流体対流が定常に達するまでの時間の比が所定値以上の場合には、前記連続の式、前記流体運動方程式、前記エネルギー方程式、前記ガス成分の輸送方程式、前記固体表面化学反応式に基づいて、前記処理空間のガス流速の定常解を算出し、当該ガス流速の定常解を利用して、前記エネルギー方程式、前記ガス成分の輸送方程式、前記固体表面化学反応式に基づいて、前記炭素吸着速度の定常解を算出することを特徴とする浸炭解析装置。 2. The carburization analysis apparatus according to claim 1, wherein the fluid analysis unit is configured such that a ratio of a time until the fluid diffusion in the processing space reaches a steady state and a time until the fluid convection in the processing space reaches a steady state is a predetermined value or more. In this case, a steady solution of the gas flow rate in the processing space is calculated based on the continuous equation, the fluid equation of motion, the energy equation, the transport equation of the gas component, and the solid surface chemical reaction equation, A carburization analysis apparatus that calculates a steady solution of the carbon adsorption rate based on the energy equation, the transport equation of the gas component, and the solid surface chemical reaction equation using a steady solution of a gas flow rate. 浸炭処理を行う処理空間内に載置された被浸炭処理物に対する浸炭量を解析する浸炭解析方法であって、
連続の式、流体運動方程式、エネルギー方程式、ガス成分の輸送方程式、及び固体表面化学反応式に基づいて、前記被浸炭処理物への炭素吸着速度の定常解を算出する流体解析ステップと、
前記炭素吸着速度の定常解を利用して、被浸炭処理物中の炭素の拡散方程式に基づいて、前記浸炭量を算出する固体内拡散解析ステップと、を備えることを特徴とする浸炭解析方法。
A carburization analysis method for analyzing a carburizing amount for a carburized object placed in a processing space for performing a carburizing process,
A fluid analysis step for calculating a steady solution of a carbon adsorption rate on the carburized material based on a continuous equation, a fluid equation of motion, an energy equation, a transport equation of a gas component, and a solid surface chemical reaction equation;
A carburization analysis method comprising: an in-solid diffusion analysis step of calculating the carburization amount based on a diffusion equation of carbon in a carburized product using a steady solution of the carbon adsorption rate.
請求項3に記載の浸炭解析方法において、前記流体解析ステップでは、前記処理空間の流体拡散が定常に達すまでの時間と前記処理空間の流体対流が定常に達するまでの時間の比が所定値以上の場合に、前記連続の式、前記流体運動方程式、前記エネルギー方程式、前記ガス成分の輸送方程式、前記固体表面化学反応式に基づいて、前記処理空間のガス流速の定常解を算出し、当該ガス流速の定常解を利用して、前記エネルギー方程式、前記ガス成分の輸送方程式、前記固体表面化学反応式に基づいて、前記炭素吸着速度の定常解を算出することを特徴とする浸炭解析方法。 4. The carburizing analysis method according to claim 3, wherein, in the fluid analysis step, a ratio of a time until the fluid diffusion in the processing space reaches a steady state and a time until the fluid convection in the processing space reaches a steady state is a predetermined value or more. In this case, a steady solution of the gas flow velocity in the processing space is calculated based on the continuous equation, the fluid equation of motion, the energy equation, the transport equation of the gas component, and the solid surface chemical reaction equation, and the gas A carburization analysis method, wherein a steady solution of the carbon adsorption rate is calculated based on the energy equation, the transport equation of the gas component, and the solid surface chemical reaction equation using a steady solution of a flow velocity.
JP2015053275A 2015-03-17 2015-03-17 Carburization analysis apparatus and carburization analysis method Active JP6447276B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015053275A JP6447276B2 (en) 2015-03-17 2015-03-17 Carburization analysis apparatus and carburization analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015053275A JP6447276B2 (en) 2015-03-17 2015-03-17 Carburization analysis apparatus and carburization analysis method

Publications (2)

Publication Number Publication Date
JP2016172898A JP2016172898A (en) 2016-09-29
JP6447276B2 true JP6447276B2 (en) 2019-01-09

Family

ID=57008890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015053275A Active JP6447276B2 (en) 2015-03-17 2015-03-17 Carburization analysis apparatus and carburization analysis method

Country Status (1)

Country Link
JP (1) JP6447276B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024090229A1 (en) * 2022-10-27 2024-05-02 山陽特殊製鋼株式会社 Carbon concentration distribution analysis method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06336671A (en) * 1993-05-31 1994-12-06 Kawasaki Steel Corp Continuous carburization furnace for metal strip
WO2006136166A1 (en) * 2005-06-22 2006-12-28 Danmarks Tekniske Universitet - Dtu Carburizing in hydrocarbon gas
JP2009221558A (en) * 2008-03-17 2009-10-01 Toyota Motor Corp Carburization depth control method and carburizing apparatus
JP5549909B2 (en) * 2009-07-24 2014-07-16 株式会社Ihi Carburizing analysis method and carburizing analysis apparatus
US9109277B2 (en) * 2011-01-10 2015-08-18 Air Products And Chemicals, Inc. Method and apparatus for heat treating a metal

Also Published As

Publication number Publication date
JP2016172898A (en) 2016-09-29

Similar Documents

Publication Publication Date Title
Xiong et al. Cybermaterials: materials by design and accelerated insertion of materials
Chen et al. Calculating phase diagrams using PANDAT and panengine
Zajusz et al. Modeling of vacuum pulse carburizing of steel
Feulvarch et al. XFEM investigation of a crack path in residual stresses resulting from quenching
Lee et al. Comparison of two finite element simulation codes used to model the carburizing of steel
Ariza et al. Numerical simulation with thorough experimental validation to predict the build-up of residual stresses during quenching of carbon and low-alloy steels
Vijayaraghavan et al. Measurement of surface characteristics of Ti6Al4V aerospace engineering components in mass finishing process
Lu et al. Computational thermodynamics, computational kinetics, and materials design
Rao et al. A unified mechanics theory-based model for temperature and strain rate dependent proportionality limit stress of mild steel
Zhao et al. A Three Dimensional Cellular Automata Model for Dendrite Growth in Non‐Equilibrium Solidification of Binary Alloy
JP6447276B2 (en) Carburization analysis apparatus and carburization analysis method
JP5549909B2 (en) Carburizing analysis method and carburizing analysis apparatus
Wei et al. Modeling of carbon concentration profile development during both atmosphere and low pressure carburizing processes
Ye et al. Bayesian calibration of multiple coupled simulation models for metal additive manufacturing: A bayesian network approach
JP2013211006A (en) Molecular dynamics simulation method and program
Makinde et al. Unsteady hydromagnetic flow of radiating fluid past a convectively heated vertical plate with the Navier slip
Pernach et al. Numerical solution of the diffusion equation with moving boundary applied to modelling of the austenite–ferrite phase transformation
Wang et al. Effect of process parameters on gas nitriding of grey cast iron
Elmaryami et al. Developing 1-dimensional transient heat transfer axi-symmetric MM to predict the hardness, determination LHP and to study the effect of radius on E-LHP of industrial quenched steel bar
Simsir et al. A mathematical framework for simulation of thermal processing of materials: Application to steel quenching
Diószegi et al. Modelling and simulation of heat conduction in 1-D polar spherical coordinates using control volume-based finite difference method
Kärnä et al. CFD Modeling of a Supersonic Top Blown Lance in a CAS‐OB Process: Development of Gas Heat and Mass Transfer Correlation
Ikehata et al. Modeling growth and dissolution kinetics of grain-boundary cementite in cyclic carburizing
Draganov et al. Experimental data and simulation by the finite element method of the cylindrical steel shaft quenching in water
Ye et al. Life Prediction for Directed Energy Deposition‐Manufactured 316L Stainless Steel using a Coupled Crystal Plasticity–Machine Learning Framework

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181119

R150 Certificate of patent or registration of utility model

Ref document number: 6447276

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150