JP6444699B2 - Load tap changer - Google Patents

Load tap changer Download PDF

Info

Publication number
JP6444699B2
JP6444699B2 JP2014234385A JP2014234385A JP6444699B2 JP 6444699 B2 JP6444699 B2 JP 6444699B2 JP 2014234385 A JP2014234385 A JP 2014234385A JP 2014234385 A JP2014234385 A JP 2014234385A JP 6444699 B2 JP6444699 B2 JP 6444699B2
Authority
JP
Japan
Prior art keywords
vacuum valve
lead conductor
negative pressure
movable shaft
load tap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014234385A
Other languages
Japanese (ja)
Other versions
JP2016100388A (en
Inventor
拓 石川
拓 石川
篠田 昌幸
昌幸 篠田
泰志 宮本
泰志 宮本
慧 小川
慧 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Energy Systems and Solutions Corp filed Critical Toshiba Corp
Priority to JP2014234385A priority Critical patent/JP6444699B2/en
Publication of JP2016100388A publication Critical patent/JP2016100388A/en
Application granted granted Critical
Publication of JP6444699B2 publication Critical patent/JP6444699B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)

Description

本発明の実施形態は、負荷時タップ切換装置に関する。   Embodiments described herein relate generally to an on-load tap switching device.

負荷電流を遮断せずに変圧器のタップを切り換える例えば真空バルブ遮断方式の負荷時タップ切換装置が知られている。この種の負荷時タップ切換装置は、真空バルブの他、例えば平編線を接続するための中継用端子部として機能する引出導体などを備えている。   2. Description of the Related Art For example, a vacuum valve cutoff type on-load tap switching device that switches a transformer tap without interrupting a load current is known. This type of on-load tap switching device includes, in addition to a vacuum valve, for example, a lead conductor that functions as a relay terminal for connecting a flat knitted wire.

真空バルブは、固定電極と対の可動電極を一端部に有し他端部が外部に突出する可動軸を備えている。一方、引出導体は、真空バルブと対向するように可動軸の他端部に固定されている。また、真空バルブ及び引出導体は、絶縁油と共に油槽内に収容されている。   The vacuum valve includes a movable shaft having a movable electrode paired with a fixed electrode at one end and the other end protruding outward. On the other hand, the lead conductor is fixed to the other end of the movable shaft so as to face the vacuum valve. Moreover, the vacuum valve and the lead conductor are accommodated in the oil tank together with the insulating oil.

なお、引出導体は、通電時の熱を放散させるために比較的大きな体積を必要とする。さらに、引出導体は、タップ切換時の通電性能を確保するために、特に閉極動作時には、可動電極を有する可動軸と共に高速で駆動される。   The lead conductor requires a relatively large volume in order to dissipate heat when energized. Further, the lead conductor is driven at a high speed together with the movable shaft having the movable electrode, particularly during the closing operation, in order to ensure the energization performance at the time of tap switching.

特開平3−235308号公報JP-A-3-235308 特開平3−83310号公報JP-A-3-83310 特開2002−50267号公報JP 2002-50267 A

ところで、真空バルブの閉極動作時には、可動軸と共に引出導体が真空バルブに高速で近付く動作によって、真空バルブと引出導体との間の絶縁油が急速に流出することに伴い、負圧が生じる場合がある。この際、絶縁油に溶け込んでいる気体が飽和状態になり、気泡として現れる、いわゆるエアレーションの発生を招く。   By the way, when the vacuum valve is closed, negative pressure is generated as the insulating oil between the vacuum valve and the lead conductor flows out rapidly due to the movement of the lead conductor together with the movable shaft at high speed. There is. At this time, the gas dissolved in the insulating oil becomes saturated and causes aeration, which appears as bubbles.

さらに、閉極動作完了後の急激な動作の停止に伴い、真空バルブと引出導体との間に絶縁油が流入して圧力が回復すると、絶縁油に生じた気泡が崩壊し、崩壊時のエネルギによって大きな衝撃が生じることになる。真空バルブの閉極動作の度に、エアレーションによる気泡の発生と崩壊が繰返されると、引出導体における真空バルブとの対向面や、真空バルブと引出導体との間の可動軸の周面などが壊食(浸食)する場合があり、壊食が進行すると壊食痕を発端として可動軸が折損するおそれもある。   In addition, if the insulation oil flows between the vacuum valve and the lead conductor due to the sudden stop of the operation after the closing operation is completed and the pressure is restored, the bubbles generated in the insulation oil collapse and the energy at the time of the collapse is lost. Will cause a big impact. If bubbles are repeatedly generated and collapsed by aeration each time the vacuum valve is closed, the surface of the extraction conductor facing the vacuum valve and the peripheral surface of the movable shaft between the vacuum valve and the extraction conductor are damaged. In some cases, erosion may occur, and when the erosion progresses, the movable shaft may be broken starting from the erosion mark.

そこで、本発明が解決しようとする課題は、エアレーションの発生を抑制することができる負荷時タップ切換装置を提供することである。   Therefore, the problem to be solved by the present invention is to provide an on-load tap switching device capable of suppressing the occurrence of aeration.

実施の形態の負荷時タップ切換装置は、真空バルブ、引出導体、油槽、及び負圧低減機構を有する。真空バルブは、固定電極と対の可動電極を一端部に有し他端部が外部に突出する可動軸を備えている。引出導体は、真空バルブと対向するように可動軸の他端部に固定された中継用端子部である。油槽は、絶縁油と共に真空バルブ及び引出導体を収容する。負圧低減機構は、真空バルブの閉極動作によって引出導体が真空バルブに近付くときの絶縁油の流動に伴う負圧の発生を低減する。前記負圧低減機構は、前記可動軸の軸方向に沿って前記引出導体を貫通するように形成された油抜き用の貫通穴を含む。 The on-load tap switching device of the embodiment includes a vacuum valve, a lead conductor, an oil tank, and a negative pressure reduction mechanism. The vacuum valve includes a movable shaft having a movable electrode paired with a fixed electrode at one end and the other end protruding outward. The lead conductor is a relay terminal portion fixed to the other end portion of the movable shaft so as to face the vacuum valve. The oil tank accommodates the vacuum valve and the lead conductor together with the insulating oil. The negative pressure reducing mechanism reduces the generation of negative pressure due to the flow of insulating oil when the extraction conductor approaches the vacuum valve by the closing operation of the vacuum valve. The negative pressure reducing mechanism includes a through hole for oil draining formed so as to penetrate the lead conductor along the axial direction of the movable shaft.

第1の実施形態に係る負荷時タップ切換装置を示す正面図。The front view which shows the tap switching apparatus at the time of load which concerns on 1st Embodiment. 図1の負荷時タップ切換装置が備える切換開閉器の構造を示す斜視図。The perspective view which shows the structure of the switching switch with which the tap switching apparatus at the time of a load of FIG. 図2の切換開閉器が備える真空バルブ及び引出導体の周辺の構造を部分的に断面で示す正面図。The front view which shows the structure of the periphery of the vacuum valve with which the switching switch of FIG. 図3の真空バルブと引出導体との間に生じ得る壊食現象について説明するための図。The figure for demonstrating the erosion phenomenon which may arise between the vacuum valve of FIG. 3, and an extraction conductor. 負圧低減機構を備える図3の引出導体の構造を示す斜視図。The perspective view which shows the structure of the extraction conductor of FIG. 3 provided with a negative pressure reduction mechanism. 比較例の引出導体の構造を示す斜視図。The perspective view which shows the structure of the extraction conductor of a comparative example. 図5の引出導体を適用したときの流体解析の結果を示す図。The figure which shows the result of the fluid analysis when the extraction conductor of FIG. 5 is applied. 図6の比較例の引出導体を適用したときの流体解析の結果を示す図。The figure which shows the result of the fluid analysis when the extraction conductor of the comparative example of FIG. 6 is applied. 図5の負圧低減機構とは一部構造が異なる他の負圧低減機構を備えた引出導体の構造を示す斜視図。The perspective view which shows the structure of the extraction conductor provided with the other negative pressure reduction mechanism in which a partial structure differs from the negative pressure reduction mechanism of FIG. 図9の引出導体を適用したときの流体解析の結果を示す図。The figure which shows the result of the fluid analysis when the extraction conductor of FIG. 9 is applied. 図3の真空バルブと引出導体との間に保護部材を配置した形態を示す図。The figure which shows the form which has arrange | positioned the protection member between the vacuum valve and drawing conductor of FIG. 図3の引出導体の動作速度を制限する速度制限機構を真空バルブの周辺に設けた形態を概略的に示す斜視図。FIG. 4 is a perspective view schematically showing a form in which a speed limiting mechanism for limiting the operation speed of the lead conductor in FIG. 3 is provided around the vacuum valve. 図12の速度制限機構としてダンパを適用したときの形態を示す図。The figure which shows a form when a damper is applied as a speed limiting mechanism of FIG. 図12の速度制限機構としてバネを適用したときの形態を示す図。The figure which shows a form when a spring is applied as a speed limiting mechanism of FIG.

以下、実施の形態を図面に基づき説明する。
図1、図2に示すように、本実施形態に係る負荷時タップ切換装置10は、真空バルブ遮断方式の負荷時タップ切換装置(VI−LTC:Vacuum Interrupter type on-Load Tap Changer)であって、送配電系統に接続される変圧器に組み込まれている。
Hereinafter, embodiments will be described with reference to the drawings.
As shown in FIGS. 1 and 2, the on-load tap changer 10 according to the present embodiment is a vacuum interrupter type on-load tap changer (VI-LTC). Built into the transformer connected to the power transmission and distribution system.

図1に示すように、負荷時タップ切換装置10は、切換開閉器12、タップ選択器11、油槽15を主に備えている。油槽15は、変圧器の筐体となるタンク内に設置されている。油槽15内には絶縁油が充填されている。切換開閉器12は、絶縁油と共に油槽15内に収容されている。   As shown in FIG. 1, the on-load tap switching device 10 mainly includes a switching switch 12, a tap selector 11, and an oil tank 15. The oil tank 15 is installed in a tank that becomes a casing of the transformer. The oil tank 15 is filled with insulating oil. The switching switch 12 is accommodated in the oil tank 15 together with the insulating oil.

タップ選択器11は、タップ巻線と中性点との間に可動接触子を備えており、この可動接触子によってタップ巻線のタップを選択する。一方、図1に示すように、切換開閉器12は、切換スイッチを備えており、タップ選択器11にて選択された一対のタップ間に、抵抗を介した短絡状態を作り、切換スイッチによって負荷電流を流すタップの切換を行う。つまり、切換開閉器12は、負荷電流を遮断することなく、電圧を切り換えることを可能とする。   The tap selector 11 includes a movable contact between the tap winding and the neutral point, and the tap of the tap winding is selected by the movable contact. On the other hand, as shown in FIG. 1, the change-over switch 12 includes a change-over switch, creates a short circuit state via a resistor between a pair of taps selected by the tap selector 11, and loads by the change-over switch. Switch taps to pass current. That is, the switching switch 12 can switch the voltage without interrupting the load current.

具体的には、図2に示すように、切換開閉器12は、タップを切り換えるための動力を蓄勢(弾性エネルギを蓄積)する蓄勢機構16と、タップ切換時に通電部の循環電流を抑制する限流抵抗17と、通電経路を変更する三相分の通電切換機構14と、駆動軸19と、を主に備えている。通電切換機構14は、真空バルブ(VCB:vacuum circuit breaker)18や、上記した切換スイッチなどを備えている。   Specifically, as shown in FIG. 2, the switching switch 12 suppresses the circulating current of the energizing unit when the tap is switched, and the accumulating mechanism 16 that accumulates the power for switching the tap (accumulates elastic energy). A current limiting resistor 17, a three-phase energization switching mechanism 14 for changing the energization path, and a drive shaft 19. The energization switching mechanism 14 includes a vacuum valve (VCB: vacuum circuit breaker) 18 and the above-described changeover switch.

ここで、切換開閉器12の通電切換機構14は、通電経路を変更する際の切換方式として、個々の相毎(三相あるうちの一相毎)に2つの限流抵抗17と3つの真空バルブ18を用いる2抵抗3真空バルブ方式を適用している。2抵抗3真空バルブ方式は、切換時に流れる循環電流を限流抵抗17が抑制し、真空バルブ18が回路の遮断動作を行う。   Here, the energization switching mechanism 14 of the switching switch 12 has two current limiting resistors 17 and three vacuums for each phase (each of the three phases) as a switching method when changing the energization path. A 2 resistance 3 vacuum valve system using the valve 18 is applied. In the 2-resistance 3-vacuum valve system, the current limiting resistor 17 suppresses the circulating current that flows at the time of switching, and the vacuum valve 18 performs a circuit breaking operation.

つまり、真空バルブ18は、主真空バルブと2つの抵抗真空バルブとで一組となる。また、切換スイッチは、2つの固定接点と可動接点とからなる。主真空バルブは、切換スイッチと直列に接続されている。抵抗真空バルブは、主真空バルブに並列に接続され、かつ限流抵抗17と直列に接続されている。   That is, the vacuum valve 18 is a set of a main vacuum valve and two resistance vacuum valves. The changeover switch includes two fixed contacts and a movable contact. The main vacuum valve is connected in series with the changeover switch. The resistance vacuum valve is connected in parallel to the main vacuum valve and in series with the current limiting resistor 17.

これら3つの真空バルブの開閉動作について簡易的に説明すると、切換スイッチの切換動作前の状態として、主真空バルブが閉極状態、通電タップ側の抵抗真空バルブが閉極状態、非通電タップ側の抵抗真空バルブが開極状態にあるとする。この状態から、切換スイッチが切換動作を開始すると、切換動作の途中で非通電タップ側の抵抗真空バルブが閉極する。次に、主真空バルブが開極し、切換スイッチの切換動作が終わると、主真空バルブが閉極する。最後に切換動作前に通電していた抵抗真空バルブが開極する。   Briefly describing the opening and closing operations of these three vacuum valves, the main vacuum valve is in a closed state, the resistance vacuum valve on the energizing tap side is in the closed state, and the non-energizing tap side is in the state before the changeover operation of the changeover switch. Assume that the resistance vacuum valve is in an open state. From this state, when the changeover switch starts the changeover operation, the resistance vacuum valve on the non-energizing tap side is closed during the changeover operation. Next, when the main vacuum valve is opened and the changeover operation of the changeover switch is finished, the main vacuum valve is closed. Finally, the resistive vacuum valve that was energized before the switching operation is opened.

このような通電切換機構14は、蓄勢機構16から開放される弾性エネルギにより駆動軸19が回転すると、図2、図3に示すように、この回転力が、カム21に伝達されて真空バルブ18を開閉動作させる。また、上記した切換スイッチは、カム21の回転と連動して切換動作を行う。   In the energization switching mechanism 14, when the drive shaft 19 is rotated by the elastic energy released from the accumulator mechanism 16, this rotational force is transmitted to the cam 21 as shown in FIGS. 18 is opened and closed. The above-described changeover switch performs a changeover operation in conjunction with the rotation of the cam 21.

次に、真空バルブ18の周辺の構造及び真空バルブ18の内部構造について図3に基づき説明する。なお、図3は、真空バルブ18の中心軸から左側を断面で図示している。図3に示すように、真空バルブ18の周辺には、銅製の引出導体22、連結ロッド23、圧縮バネ24、駆動ボス25、カムフロア36、上記カム21が設けられている。また、真空バルブ18は、固定電極27、可動軸28、碍子29、ベローズ(可とう管)30を内部に備えている。   Next, the structure around the vacuum valve 18 and the internal structure of the vacuum valve 18 will be described with reference to FIG. FIG. 3 is a cross-sectional view of the left side from the central axis of the vacuum valve 18. As shown in FIG. 3, a copper lead conductor 22, a connecting rod 23, a compression spring 24, a drive boss 25, a cam floor 36, and the cam 21 are provided around the vacuum valve 18. The vacuum valve 18 includes a fixed electrode 27, a movable shaft 28, an insulator 29, and a bellows (flexible tube) 30 inside.

可動軸28は、固定電極27と対の可動電極31を一端部28aに有し、他端部28bが真空バルブ18の本体内から外部に突出している。真空バルブ18は、可動軸28の一端部28aにおける可動電極31と固定電極27との接点部分32が真空になるように、碍子29と下部フランジ33と上部フランジ34とベローズ30とによって密封構造を構成する。   The movable shaft 28 has a movable electrode 31 paired with the fixed electrode 27 at one end portion 28 a, and the other end portion 28 b protrudes from the inside of the main body of the vacuum valve 18. The vacuum valve 18 has a sealing structure with an insulator 29, a lower flange 33, an upper flange 34, and a bellows 30 so that a contact portion 32 between the movable electrode 31 and the fixed electrode 27 at one end portion 28a of the movable shaft 28 is evacuated. Configure.

引出導体22には、平編線(フレキシブルケーブル)が接続される。引出導体22は、この平編線を介して他の通電部と接続される中継用端子部(中継用のターミナル導体)である。図3に示すように、引出導体22は、真空バルブ18と対向するように可動軸28の他端部28bに固定されている。具体的には、可動軸28の他端部28bの周面には雄ねじが形成されている。一方、引出導体22の中央部分には、可動軸固定用のねじ穴(雌ねじ)22aが形成されている。これにより、引出導体22は、ねじ穴22aを介して、可動軸28の他端部28bと締結(固定)されている。   A flat braided wire (flexible cable) is connected to the lead conductor 22. The lead conductor 22 is a relay terminal portion (relay terminal conductor) connected to another energization portion via the flat knitted wire. As shown in FIG. 3, the lead conductor 22 is fixed to the other end 28 b of the movable shaft 28 so as to face the vacuum valve 18. Specifically, a male screw is formed on the peripheral surface of the other end 28 b of the movable shaft 28. On the other hand, a screw hole (female screw) 22 a for fixing the movable shaft is formed in the central portion of the lead conductor 22. Accordingly, the lead conductor 22 is fastened (fixed) to the other end portion 28b of the movable shaft 28 through the screw hole 22a.

また、連結ロッド23の一端部23aの周面には、雄ねじが形成されている。可動軸28の他端部28bには、ねじ穴が形成されている。これにより、連結ロッド23の一端部23aと可動軸28の他端部28bとは、引出導体22のねじ穴22a内で互いに締結されている。ここで、連結ロッド23は、断面L字状の駆動ボス25に設けられた所定のロッド挿通穴と圧縮バネ24の内径部分とを共に挿通するように配置されている。   A male thread is formed on the peripheral surface of the one end 23 a of the connecting rod 23. A screw hole is formed in the other end 28 b of the movable shaft 28. As a result, the one end 23 a of the connecting rod 23 and the other end 28 b of the movable shaft 28 are fastened to each other within the screw hole 22 a of the lead conductor 22. Here, the connecting rod 23 is disposed so as to pass through both a predetermined rod insertion hole provided in the drive boss 25 having an L-shaped cross section and the inner diameter portion of the compression spring 24.

詳述すると、図3に示すように、連結ロッド23の他端部に設けられたロッド頭部23bと引出導体22との間に駆動ボス25を介して圧縮バネ24を挟持するようにして、連結ロッド23は、可動軸28と締結されている。これにより、引出導体22と固定された可動軸28の一端部28aにある可動電極31は、圧縮バネ24の弾性力によって、固定電極27側に(矢印Y2方向に)付勢されている。   Specifically, as shown in FIG. 3, the compression spring 24 is sandwiched between the rod head 23 b provided at the other end of the connecting rod 23 and the lead conductor 22 via the drive boss 25. The connecting rod 23 is fastened to the movable shaft 28. Thereby, the movable electrode 31 at the one end portion 28 a of the movable shaft 28 fixed to the lead conductor 22 is urged toward the fixed electrode 27 (in the direction of the arrow Y <b> 2) by the elastic force of the compression spring 24.

さらに、図3に示すように、駆動ボス25の側面には、上述したカム21のカム溝21aと係合するカムフロア36が固定されている。したがって、図2、図3に示すように、通電切換機構14の駆動軸19の回転に連動するカム21は、真空バルブ18の開極動作時には、カムフロア36を矢印Y1方向に上昇させるように動作し、これに伴い、駆動ボス25、連結ロッド23、引出導体22、及び可動軸28が一体となって上昇し、可動軸28の一端部28aにある可動電極31は、固定電極27側から離間するように動作する。   Further, as shown in FIG. 3, a cam floor 36 that is engaged with the cam groove 21 a of the cam 21 described above is fixed to the side surface of the drive boss 25. Therefore, as shown in FIGS. 2 and 3, the cam 21 interlocking with the rotation of the drive shaft 19 of the energization switching mechanism 14 operates to raise the cam floor 36 in the direction of the arrow Y1 when the vacuum valve 18 is opened. Accordingly, the drive boss 25, the connecting rod 23, the lead conductor 22, and the movable shaft 28 rise together, and the movable electrode 31 at the one end portion 28 a of the movable shaft 28 is separated from the fixed electrode 27 side. To work.

一方、真空バルブ18の閉極動作時には、カム21は、カムフロア36を矢印Y2方向に下降させるように動作し、これに伴い、駆動ボス25、連結ロッド23、引出導体22、及び可動軸28が一体となって下降し、可動軸28の一端部28aにある可動電極31は、固定電極27側に接触するように動作する。   On the other hand, during the closing operation of the vacuum valve 18, the cam 21 operates to lower the cam floor 36 in the direction of arrow Y 2, and accordingly, the drive boss 25, the connecting rod 23, the lead conductor 22, and the movable shaft 28 are moved. The movable electrode 31 descends as a unit and is located at one end portion 28a of the movable shaft 28 so as to come into contact with the fixed electrode 27 side.

ここで、真空バルブ18の閉極動作時に、真空バルブ18と引出導体22との間に生じ得る壊食現象について主に図4(a)〜図4(f)に基づき説明する。前述したように、真空バルブ18及び引出導体22を含む切換開閉器12は、絶縁油と共に油槽15内に収容されている。このため、図3に示した真空状態の接点部分32などを除き真空バルブ18及び引出導体22の周囲は、絶縁油で満たされている。   Here, the erosion phenomenon that may occur between the vacuum valve 18 and the lead conductor 22 during the closing operation of the vacuum valve 18 will be described mainly with reference to FIGS. 4 (a) to 4 (f). As described above, the switching switch 12 including the vacuum valve 18 and the lead conductor 22 is accommodated in the oil tank 15 together with the insulating oil. For this reason, the periphery of the vacuum valve 18 and the lead conductor 22 is filled with insulating oil except for the contact portion 32 in a vacuum state shown in FIG.

まず、図4(a)に示すように、真空バルブ18の閉極動作の開始時、可動軸28を介して引出導体22は、動作速度S1を大きく加速させながら真空バルブ18側に近接する。この際、引出導体22によって絶縁油が圧縮されることによって、比較的小さい流体(絶縁油)nの流れが生じる。つまり、絶縁油の流体速度S2が小さいため、引出導体22における真空バルブ18との対向面22eには、引出導体22の動作方向とは逆向きの流体圧力が作用し正圧が生じる。 First, as shown in FIG. 4 (a), at the start of the closing operation of the vacuum valve 18, the lead conductor 22 through the movable shaft 28 is close to the vacuum valve 18 side while greatly accelerate the operating speed S 1 . At this time, the insulating oil is compressed by the lead conductor 22, so that a relatively small fluid (insulating oil) n flows. That is, small fluid velocity S 2 of the insulating oil, the facing surfaces 22e of the vacuum valve 18 in the lead conductor 22, the positive pressure acts fluid pressure in the opposite direction resulting from the operation direction of the lead conductor 22.

図4(b)に示すように、閉極動作の進行に伴い、引出導体22の動作速度S1は減速するものの、絶縁油の流体速度S2は慣性力によって維持される。このため、引出導体22の動作速度S1と絶縁油の流体速度S2との相対的な速度の大小関係が逆転し、引出導体22と真空バルブ18との間には、流体nの流れ方向に沿った流体圧力が作用し負圧が生じる。 As shown in FIG. 4B, as the closing operation proceeds, the operation speed S 1 of the lead conductor 22 is reduced, but the fluid speed S 2 of the insulating oil is maintained by the inertial force. Therefore, the relative speed relationship between the operating speed S 1 of the lead conductor 22 and the fluid speed S 2 of the insulating oil is reversed, and the flow direction of the fluid n is between the lead conductor 22 and the vacuum valve 18. The fluid pressure along the line acts and a negative pressure is generated.

図4(c)に示すように、閉極動作が完了すると、引出導体22の動作速度S1に対する相対的な流体速度S2が最大となり、この際、引出導体22と真空バルブ18との間には、最大負圧が発生する。この場合、飽和蒸気圧以下まで圧力が低下すると、図4(d)に示すように、絶縁油中に溶解している空気が気化して気泡pとなって現れるエアレーションが発生する。 As shown in FIG. 4C, when the closing operation is completed, the relative fluid velocity S 2 with respect to the operation velocity S 1 of the lead conductor 22 becomes maximum, and at this time, between the lead conductor 22 and the vacuum valve 18. The maximum negative pressure is generated. In this case, when the pressure drops below the saturated vapor pressure, as shown in FIG. 4D, aeration is generated in which the air dissolved in the insulating oil is vaporized and appears as bubbles p.

閉極動作完了の後に、引出導体22と真空バルブ18との間に絶縁油が戻り圧力が回復して正圧になると、図4(e)に示すように、気泡pに圧縮力が加わり、気泡pが崩壊することになる。この場合、図4(f)に示すように、気泡の崩壊エネルギにより、引出導体22における対向面22eや、引出導体22と真空バルブ18との間における可動軸28の周面28cに、壊食痕kが生じる可能性がある。   After the closing operation is completed, when the insulating oil returns between the lead conductor 22 and the vacuum valve 18 and the pressure returns to a positive pressure, a compressive force is applied to the bubble p, as shown in FIG. The bubble p will collapse. In this case, as shown in FIG. 4 (f), erosion occurs on the opposing surface 22e of the lead conductor 22 and the peripheral surface 28c of the movable shaft 28 between the lead conductor 22 and the vacuum valve 18 due to the collapse energy of the bubbles. A mark k may occur.

そこで、本実施形態の負荷時タップ切換装置10は、図5に示すように、引出導体22に負圧低減機構35が設けられている。負圧低減機構35は、真空バルブ18の閉極動作によって引出導体22が真空バルブ18に近付くときの絶縁油の流動に伴う負圧の発生を低減する。   Therefore, in the on-load tap switching device 10 of the present embodiment, as shown in FIG. 5, the lead conductor 22 is provided with a negative pressure reducing mechanism 35. The negative pressure reduction mechanism 35 reduces the generation of negative pressure due to the flow of insulating oil when the extraction conductor 22 approaches the vacuum valve 18 by the closing operation of the vacuum valve 18.

具体的には、図5に示すように、矩形状の引出導体22における中央の可動軸固定用のねじ穴22aとこのねじ穴22aを両側から挟む位置に穿孔された一対の平編線取付穴22bとの間に、それぞれ一対の油抜き用の貫通穴22c、22dが、負圧低減機構35として引出導体22に形成されている。油抜き用の貫通穴22c、22dは、可動軸28の軸方向に沿って引出導体22を貫通するように穿孔されている。   Specifically, as shown in FIG. 5, a screw hole 22a for fixing the movable shaft in the center of the rectangular lead conductor 22 and a pair of flat knitting wire mounting holes drilled at positions sandwiching the screw hole 22a from both sides. A pair of through holes 22c and 22d for draining oil is formed in the lead conductor 22 as a negative pressure reducing mechanism 35 between the lead holes 22b. The oil draining through holes 22 c and 22 d are perforated so as to penetrate the lead conductor 22 along the axial direction of the movable shaft 28.

油抜き用の貫通穴22c、22dは、真空バルブ18の閉極動作時において、引出導体22が真空バルブ18に近付く際に絶縁油を圧縮せずに円滑に通過させることができるため、引出導体22と真空バルブ18との間に負圧が生じることを抑制できる。これにより、絶縁油中でのエアレーション(気泡)の発生を抑えることができるので、引出導体22の対向面22eや可動軸28の周面28cが壊食されることなどを回避することが可能となる。   The through holes 22c and 22d for draining oil allow the insulating oil to pass smoothly without being compressed when the extraction conductor 22 approaches the vacuum valve 18 when the vacuum valve 18 is closed. The generation of a negative pressure between 22 and the vacuum valve 18 can be suppressed. Thereby, since generation | occurrence | production of the aeration (bubble) in insulating oil can be suppressed, it can avoid that the opposing surface 22e of the extraction conductor 22 and the surrounding surface 28c of the movable shaft 28 are eroded. Become.

ここで、図7は、油抜き用の貫通穴22c、22dを有する図5の引出導体22を適用して、真空バルブ18を閉極動作させたときの絶縁油の圧力分布を表す流体解析の結果を示している。一方、図8は、油抜き用の貫通穴のない図6に示す比較例の引出導体62を適用して、真空バルブ18を閉極動作させたときの絶縁油の圧力分布を表す流体解析の結果を示している。   Here, FIG. 7 is a fluid analysis showing the pressure distribution of the insulating oil when the extraction conductor 22 of FIG. 5 having through holes 22c and 22d for oil draining is applied and the vacuum valve 18 is closed. Results are shown. On the other hand, FIG. 8 shows a fluid analysis representing the pressure distribution of insulating oil when the vacuum valve 18 is closed by applying the lead conductor 62 of the comparative example shown in FIG. 6 without a through hole for draining oil. Results are shown.

図7及び図8では、その中央の領域に可動軸固定用のねじ穴22aの配置部分22fが表されており、色が濃い程、負圧の値が大きいことを示している。つまり、図7、図8に示す流体解析の結果から、油抜き用の貫通穴22c、22dを有する引出導体22は、比較例の引出導体62と比べて、負圧の発生が低減されており(負圧の値が約11%小さく)、これによりエアレーションの発生を抑えることが可能となる。   7 and 8, an arrangement portion 22f of the screw hole 22a for fixing the movable shaft is shown in the center region, and the darker the color, the greater the negative pressure value. That is, from the results of the fluid analysis shown in FIGS. 7 and 8, in the lead conductor 22 having the through holes 22c and 22d for draining oil, the generation of negative pressure is reduced compared to the lead conductor 62 of the comparative example. (The negative pressure value is about 11% smaller), which makes it possible to suppress the occurrence of aeration.

図9は、負圧低減機構35を備えた引出導体42を示している。引出導体42の負圧低減機構45は、上述した油抜き用の貫通穴22c、22dに加え、引出導体42の真空バルブ18との対向面22e上における可動軸28の周囲に設けられたテーパ部46をさらに含んで構成されている。テーパ部46は、可動軸28の外縁部分(最大負圧が発生する部分)が真空バルブ18側に隆起するように傾斜を与えている。このテーパ部46は、真空バルブ18の閉極動作時に当該テーパ部46と接触する流体(絶縁油)を可動軸28の外縁側から放射状に分散させることで負圧の発生を抑制する。   FIG. 9 shows a lead conductor 42 provided with a negative pressure reducing mechanism 35. The negative pressure reducing mechanism 45 of the lead conductor 42 is a tapered portion provided around the movable shaft 28 on the surface 22e of the lead conductor 42 facing the vacuum valve 18 in addition to the above-described through holes 22c and 22d for draining oil. 46 is further included. The tapered portion 46 is inclined so that an outer edge portion (portion where the maximum negative pressure is generated) of the movable shaft 28 is raised toward the vacuum valve 18 side. The tapered portion 46 suppresses the generation of negative pressure by radially dispersing the fluid (insulating oil) in contact with the tapered portion 46 during the closing operation of the vacuum valve 18 from the outer edge side of the movable shaft 28.

テーパ部46の角度(対向面22eにおける平坦な表面との間の傾斜角度)は、例えば30°であり、少なくとも20°以上、45°以下の範囲に収まっていること望ましい。テーパ部46の角度が20°未満であったり、45°を超えていたりすると、真空バルブ18の閉極動作時にテーパ部46と接触する流体(絶縁油)を適切に分散することが難しくなる。   The angle of the taper portion 46 (inclination angle between the opposing surface 22e and the flat surface) is, for example, 30 °, and is desirably within a range of at least 20 ° and 45 °. If the angle of the tapered portion 46 is less than 20 ° or exceeds 45 °, it is difficult to properly disperse the fluid (insulating oil) that contacts the tapered portion 46 during the closing operation of the vacuum valve 18.

図10は、負圧低減機構45を有する図9の引出導体42を適用して、真空バルブ18を閉極動作させたときの絶縁油の圧力分布を表す流体解析の結果を示している。この流体解析の結果からわかるように、図9に示す引出導体42は、図6に示す比較例の引出導体62と比べて、負圧の発生が低減されており(負圧の値が約21%小さくなっており)、壊食などが生じるリスクが低減される。   FIG. 10 shows the result of fluid analysis representing the pressure distribution of insulating oil when the lead conductor 42 of FIG. 9 having the negative pressure reducing mechanism 45 is applied and the vacuum valve 18 is closed. As can be seen from the results of the fluid analysis, in the lead conductor 42 shown in FIG. 9, the generation of negative pressure is reduced compared to the lead conductor 62 in the comparative example shown in FIG. 6 (the value of the negative pressure is about 21). The risk of erosion is reduced.

また、図11は、上記した負圧低減機構を設けることに加えて、弾性を有する保護部材としてOリング47をさらに配置した形態を例示している。Oリング47は、可動軸28における真空バルブ18と引出導体22との間の周面(雄ねじの部分)28cを保護している。   Further, FIG. 11 illustrates a form in which an O-ring 47 is further arranged as a protective member having elasticity in addition to providing the above-described negative pressure reducing mechanism. The O-ring 47 protects the peripheral surface (male thread portion) 28 c between the vacuum valve 18 and the lead conductor 22 in the movable shaft 28.

Oリング47は、真空バルブ18の閉極動作時に、仮に気泡が発生して崩壊したとしても、気泡崩壊時に生じる衝撃から可動軸28の周面をガードすることができるので、可動軸28の損傷を防ぐことが可能となる。   Since the O-ring 47 can guard the peripheral surface of the movable shaft 28 from the impact generated when the bubble collapses even if bubbles are generated and collapsed during the closing operation of the vacuum valve 18, the movable shaft 28 is damaged. Can be prevented.

図12は、速度制限機構56を含む負圧低減機構55を例示している。速度制限機構56は、真空バルブ18の閉極動作によって引出導体22が真空バルブ18に近付くときの引出導体22の動作速度を制限(減速)する。速度制限機構56は、ブレーキパッド57を備えている。   FIG. 12 illustrates a negative pressure reducing mechanism 55 that includes a speed limiting mechanism 56. The speed limiting mechanism 56 limits (decelerates) the operating speed of the lead conductor 22 when the lead conductor 22 approaches the vacuum valve 18 by the closing operation of the vacuum valve 18. The speed limiting mechanism 56 includes a brake pad 57.

ブレーキパッド57は、駆動ボス25に固定されており、真空バルブ18の閉極動作時に例えば切換開閉器12の筐体の内壁部分などと摺動させるようにすることで、駆動ボス25や可動軸28などと共に一体となって動作する引出導体22の動作速度を制限する。これにより、真空バルブ18と引出導体22との間での絶縁油の急激な圧縮や流動を回避させることが可能となり、負圧が生じることに起因するエアレーションの発生を抑制できる。   The brake pad 57 is fixed to the drive boss 25. When the vacuum valve 18 is closed, the brake pad 57 is slid with, for example, the inner wall portion of the casing of the switching switch 12, so that the drive boss 25 and the movable shaft are moved. The operating speed of the lead conductor 22 that operates together with 28 and the like is limited. As a result, it is possible to avoid abrupt compression and flow of the insulating oil between the vacuum valve 18 and the lead conductor 22, and to suppress the occurrence of aeration due to the generation of negative pressure.

図13は、速度制限機構76を含む負圧低減機構75を示している。速度制限機構76は、ゴムなどの弾性体によって構成されたダンパ77を有している。このダンパ77は、真空バルブ18の閉極動作時に、駆動ボス25に押されて弾性変形することによって、駆動ボス25と共に一体となって動作する引出導体22の動作速度を制限する。   FIG. 13 shows a negative pressure reducing mechanism 75 including a speed limiting mechanism 76. The speed limiting mechanism 76 has a damper 77 made of an elastic body such as rubber. The damper 77 is pushed by the drive boss 25 and elastically deformed during the closing operation of the vacuum valve 18, thereby limiting the operation speed of the lead conductor 22 that operates integrally with the drive boss 25.

また、図14は、速度制限機構86を含む負圧低減機構85を例示している。速度制限機構86は、真空バルブ18と引出導体22との間に介在させた圧縮バネ87を有している。この圧縮バネ87は、真空バルブ18の閉極動作時に引出導体22に押されて弾性変形することによって、引出導体22の動作速度を制限する。   FIG. 14 illustrates a negative pressure reducing mechanism 85 including a speed limiting mechanism 86. The speed limiting mechanism 86 has a compression spring 87 interposed between the vacuum valve 18 and the lead conductor 22. The compression spring 87 limits the operating speed of the lead conductor 22 by being pushed and elastically deformed by the lead conductor 22 when the vacuum valve 18 is closed.

図13、図14に示す速度制限機構76、86を含む負圧低減機構75、85によっても、エアレーションの発生を抑制できるので、引出導体22や可動軸28の壊食などを防止することが可能となる。また、図13、図14に示すダンパ77や圧縮バネ87を適用することで、閉極動作を減速させ、一方、開極動作を、ダンパ77や圧縮バネ87の弾性力によって加速させることが可能なので、タップの切換操作に適した閉極動作及び開極動作を実現できる。   Since the generation of aeration can also be suppressed by the negative pressure reducing mechanisms 75 and 85 including the speed limiting mechanisms 76 and 86 shown in FIGS. 13 and 14, it is possible to prevent erosion of the lead conductor 22 and the movable shaft 28. It becomes. Further, by applying the damper 77 and the compression spring 87 shown in FIGS. 13 and 14, the closing operation can be decelerated, while the opening operation can be accelerated by the elastic force of the damper 77 and the compression spring 87. Therefore, the closing operation and the opening operation suitable for the tap switching operation can be realized.

以上、本発明の実施形態を説明したが、この実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。この新規な実施形態は、その他の様々な形態で実施することが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。この実施形態やその変形例は、発明の範囲や要旨に含まれると共に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   As mentioned above, although embodiment of this invention was described, this embodiment is shown as an example and is not intending limiting the range of invention. The novel embodiment can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. This embodiment and its modifications are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

10…負荷時タップ切換装置、15…油槽、18…真空バルブ、22,42…引出導体…引出導体、22c,22d…油抜き用の貫通穴、22e…対向面、27…固定電極、28…可動軸、28a…可動軸の一端部、28b…可動軸の他端部、28c…可動軸の周面、31…可動電極、35,45,55,75,85…負圧低減機構、46…テーパ部、47…Oリング、56,76,86…速度制限機構、57…ブレーキパッド、77…ダンパ、87…圧縮バネ。   DESCRIPTION OF SYMBOLS 10 ... Tap switching device at the time of loading, 15 ... Oil tank, 18 ... Vacuum valve, 22, 42 ... Lead-out conductor ... Lead-out conductor, 22c, 22d ... Through hole for oil draining, 22e ... Opposite surface, 27 ... Fixed electrode, 28 ... Movable shaft, 28a ... one end of the movable shaft, 28b ... other end of the movable shaft, 28c ... peripheral surface of the movable shaft, 31 ... movable electrode, 35, 45, 55, 75,85 ... negative pressure reducing mechanism, 46 ... Tapered portion, 47 ... O-ring, 56, 76, 86 ... speed limiting mechanism, 57 ... brake pad, 77 ... damper, 87 ... compression spring.

Claims (8)

固定電極と対の可動電極を一端部に有し他端部が外部に突出する可動軸を備えた真空バルブと、
前記真空バルブと対向するように前記可動軸の前記他端部に固定された中継用端子部となる引出導体と、
絶縁油と共に前記真空バルブ及び前記引出導体を収容する油槽と、
前記真空バルブの閉極動作によって前記引出導体が前記真空バルブに近付くときの前記絶縁油の流動に伴う負圧の発生を低減する負圧低減機構と、
を備え、
前記負圧低減機構は、前記可動軸の軸方向に沿って前記引出導体を貫通するように形成された油抜き用の貫通穴を含む、負荷時タップ切換装置。
A vacuum valve provided with a movable shaft having a fixed electrode and a pair of movable electrodes at one end and the other end protruding to the outside;
A lead conductor serving as a relay terminal fixed to the other end of the movable shaft so as to face the vacuum valve;
An oil tank for housing the vacuum valve and the lead conductor together with insulating oil;
A negative pressure reduction mechanism that reduces the generation of negative pressure accompanying the flow of the insulating oil when the lead conductor approaches the vacuum valve by the closing operation of the vacuum valve;
Bei to give a,
The negative pressure reduction mechanism, along the axial direction of the movable shaft includes a through hole for the formed oil drain which to penetrate the lead conductor, the load tap changer unit.
固定電極と対の可動電極を一端部に有し他端部が外部に突出する可動軸を備えた真空バルブと、
前記真空バルブと対向するように前記可動軸の前記他端部に固定された中継用端子部となる引出導体と、
絶縁油と共に前記真空バルブ及び前記引出導体を収容する油槽と、
前記真空バルブの閉極動作によって前記引出導体が前記真空バルブに近付くときの前記絶縁油の流動に伴う負圧の発生を低減する負圧低減機構と、
を備え、
前記負圧低減機構は、前記引出導体の前記真空バルブとの対向面上における前記可動軸の周囲に設けられたテーパ部を含む、負荷時タップ切換装置。
A vacuum valve provided with a movable shaft having a fixed electrode and a pair of movable electrodes at one end and the other end protruding to the outside;
A lead conductor serving as a relay terminal fixed to the other end of the movable shaft so as to face the vacuum valve;
An oil tank for housing the vacuum valve and the lead conductor together with insulating oil;
A negative pressure reduction mechanism that reduces the generation of negative pressure accompanying the flow of the insulating oil when the lead conductor approaches the vacuum valve by the closing operation of the vacuum valve;
With
The negative pressure reduction mechanism, said lead conductor the said movable shaft including a tapered portion provided around the on the surface facing the vacuum valve, the load tap changer unit.
固定電極と対の可動電極を一端部に有し他端部が外部に突出する可動軸を備えた真空バルブと、
前記真空バルブと対向するように前記可動軸の前記他端部に固定された中継用端子部となる引出導体と、
絶縁油と共に前記真空バルブ及び前記引出導体を収容する油槽と、
前記真空バルブの閉極動作によって前記引出導体が前記真空バルブに近付くときの前記絶縁油の流動に伴う負圧の発生を低減する負圧低減機構と、
記可動軸における前記真空バルブと前記引出導体との間の周面を保護する保護部材と、
を備える負荷時タップ切換装置。
A vacuum valve provided with a movable shaft having a fixed electrode and a pair of movable electrodes at one end and the other end protruding to the outside;
A lead conductor serving as a relay terminal fixed to the other end of the movable shaft so as to face the vacuum valve;
An oil tank for housing the vacuum valve and the lead conductor together with insulating oil;
A negative pressure reduction mechanism that reduces the generation of negative pressure accompanying the flow of the insulating oil when the lead conductor approaches the vacuum valve by the closing operation of the vacuum valve;
A protective member for protecting a peripheral surface between said vacuum valve before Symbol movable shaft the lead conductors,
Load tap changer apparatus comprising a.
前記保護部材は、弾性を有する請求項記載の負荷時タップ切換装置。 The on-load tap switching device according to claim 3 , wherein the protection member has elasticity. 前記保護部材は、Oリングである請求項記載の負荷時タップ切換装置。 The on-load tap switching device according to claim 4 , wherein the protective member is an O-ring. 前記負圧低減機構は、前記真空バルブの閉極動作によって前記引出導体が前記真空バルブに近付くときの前記引出導体の動作速度を制限する速度制限機構を含む、
請求項1ないしのいずれか1項に記載の負荷時タップ切換装置。
The negative pressure reduction mechanism includes a speed limiting mechanism that limits an operation speed of the lead conductor when the lead conductor approaches the vacuum valve by a closing operation of the vacuum valve.
The on-load tap switching device according to any one of claims 1 to 5 .
前記速度制限機構は、ダンパを有する請求項記載の負荷時タップ切換装置。 The on-load tap switching device according to claim 6 , wherein the speed limiting mechanism includes a damper. 前記速度制限機構は、バネを有する請求項記載の負荷時タップ切換装置。 The on-load tap switching device according to claim 6 , wherein the speed limiting mechanism includes a spring.
JP2014234385A 2014-11-19 2014-11-19 Load tap changer Active JP6444699B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014234385A JP6444699B2 (en) 2014-11-19 2014-11-19 Load tap changer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014234385A JP6444699B2 (en) 2014-11-19 2014-11-19 Load tap changer

Publications (2)

Publication Number Publication Date
JP2016100388A JP2016100388A (en) 2016-05-30
JP6444699B2 true JP6444699B2 (en) 2018-12-26

Family

ID=56078021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014234385A Active JP6444699B2 (en) 2014-11-19 2014-11-19 Load tap changer

Country Status (1)

Country Link
JP (1) JP6444699B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3472981A (en) * 1966-08-05 1969-10-14 Gen Electric Pressure responsive protective means for vacuum type circuit interrupters immersed in liquid
JP2001015357A (en) * 1999-07-02 2001-01-19 Toshiba Corp On-load tap changer

Also Published As

Publication number Publication date
JP2016100388A (en) 2016-05-30

Similar Documents

Publication Publication Date Title
JP5516568B2 (en) Puffer type gas circuit breaker
JP5153255B2 (en) Ground switchgear
WO2013035463A1 (en) Puffer type gas circuit breaker
JP5178967B1 (en) Gas circuit breaker
JP6444699B2 (en) Load tap changer
JP5019322B2 (en) Shunt type superconducting fault current limiter
JP6535610B2 (en) Gas circuit breaker
JP4879366B1 (en) Gas circuit breaker
WO2016199416A1 (en) Direct-current interruption apparatus, direct-current interruption method
JP6519179B2 (en) Vacuum circuit breaker
JP2018098128A (en) Gas insulated switchgear
JP5510442B2 (en) Gas circuit breaker
KR101579857B1 (en) A Oil dash pot for circuit breaker
CN110088866B (en) Gas-insulated switchgear
JP6490069B2 (en) Load selector for tap transformer and support arm for load selector preselector
JP2012221557A (en) Puffer type gas circuit breaker with input resistance contact
CN106057564A (en) Control method for vacuum tapping switch
JP6564331B2 (en) Gas circuit breaker
JP6057887B2 (en) Vacuum circuit breaker
WO2019073671A1 (en) Gas circuit breaker
JP2010061858A (en) Gas-blast circuit breaker
CN211628988U (en) Electrical equipment switch device
JP6351369B2 (en) Switchgear
KR200482657Y1 (en) Vacuum interrupter
KR101287011B1 (en) Damper for spring mechanism for gas circuit breaker of gas insulated switchgear

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170710

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20171201

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20171201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181128

R150 Certificate of patent or registration of utility model

Ref document number: 6444699

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150