JP6444683B2 - Tangential sealed rubber kneader - Google Patents

Tangential sealed rubber kneader Download PDF

Info

Publication number
JP6444683B2
JP6444683B2 JP2014207046A JP2014207046A JP6444683B2 JP 6444683 B2 JP6444683 B2 JP 6444683B2 JP 2014207046 A JP2014207046 A JP 2014207046A JP 2014207046 A JP2014207046 A JP 2014207046A JP 6444683 B2 JP6444683 B2 JP 6444683B2
Authority
JP
Japan
Prior art keywords
kneading
blade
rubber
tangential
kneading blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014207046A
Other languages
Japanese (ja)
Other versions
JP2016074166A (en
Inventor
悟郎 篠田
悟郎 篠田
健二 大西
健二 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Original Assignee
Nok Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corp filed Critical Nok Corp
Priority to JP2014207046A priority Critical patent/JP6444683B2/en
Publication of JP2016074166A publication Critical patent/JP2016074166A/en
Application granted granted Critical
Publication of JP6444683B2 publication Critical patent/JP6444683B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/02Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type
    • B29B7/06Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices
    • B29B7/10Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices rotary
    • B29B7/18Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices rotary with more than one shaft
    • B29B7/183Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices rotary with more than one shaft having a casing closely surrounding the rotors, e.g. of Banbury type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/02Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type
    • B29B7/06Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices
    • B29B7/10Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices rotary
    • B29B7/18Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices rotary with more than one shaft
    • B29B7/183Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices rotary with more than one shaft having a casing closely surrounding the rotors, e.g. of Banbury type
    • B29B7/186Rotors therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/74Mixing; Kneading using other mixers or combinations of mixers, e.g. of dissimilar mixers ; Plant
    • B29B7/7476Systems, i.e. flow charts or diagrams; Plants
    • B29B7/7495Systems, i.e. flow charts or diagrams; Plants for mixing rubber

Description

本発明は、混練技術に係る接線型密閉式ゴム混練機に関する。   The present invention relates to a tangential sealed rubber kneader according to a kneading technique.

現在、天然ゴム又は合成ゴムと、カーボンブラック、シリカ、可塑剤、老化防止剤又は加硫系配合薬品といった様々な配合薬品との混練が密閉式混練機にて実施されている。   Currently, kneading of natural rubber or synthetic rubber with various compounding chemicals such as carbon black, silica, plasticizer, anti-aging agent or vulcanizing compounding chemical is carried out in a closed kneader.

密閉式ゴム混練機としては一般に、噛み合い型密閉式ゴム混練機であるインターミックス(三菱重工製)や、接線型密閉式ゴム混練機であるバンバリーミキサー(神戸製鋼製)やモリヤマ加圧式ニーダー(日本スピンドル製)などが広く使用されている。   Generally, the closed type rubber kneader is Intermix (Mitsubishi Heavy Industries), which is a mesh type closed type rubber kneader, Banbury mixer (made by Kobe Steel), which is a tangential type closed type rubber kneader, and Moriyama pressure kneader (Japan). Spindles) are widely used.

このようなゴムの混練においては、カーボンブラック等の配合薬品の凝集塊を破壊する力が必要とされるが、特に、粒径の小さなシリカやカーボンブラック等の高補強性補強剤を配合したアクリルゴムやブチルゴムなどの低粘度のポリマーを使用した材料の場合、カーボンブラック等の凝集塊の破壊や分散のために大きな破壊力が必要とされる一方で、その破壊力の源となるポリマーの粘度が小さいため、カーボンブラック等の補強剤の混練が難しく、混練時間に長時間を要したり、あるいは、充分なゴムの引張り強さを得ることが出来ない等、生産性やゴム材料の品質の低下を免れ得ない。   In such rubber kneading, it is necessary to have the ability to break up agglomerates of compounding chemicals such as carbon black. In particular, acrylic blended with a high reinforcing reinforcing agent such as silica or carbon black having a small particle size. In the case of materials using low-viscosity polymers such as rubber and butyl rubber, a large destructive force is required to destroy and disperse agglomerates such as carbon black, while the viscosity of the polymer that is the source of the destructive force Therefore, it is difficult to knead a reinforcing agent such as carbon black, and it takes a long time to knead or cannot obtain sufficient rubber tensile strength. I cannot escape the decline.

上記問題に対し、上記バンバリミキサーやモリヤマ加圧式ニーダーなどの接線型密閉式ゴム混練機においては、これまで、食い込み角度(Leading Angle,Front Angle)や捩じり角度(Twist Angle)といった混練機のブレード形状や、ブレードの数、あるいはチップクリアランス(混練ブレード先端と混練槽内壁の間の隙間)などについて種々の検討が実施されてきた。   To solve the above problems, tangential sealed rubber kneaders such as the Banbury mixer and the Moriyama pressure kneader have so far adopted the kneading machines such as the leading angle and the twist angle. Various studies have been conducted on the blade shape, the number of blades, or the tip clearance (gap between the tip of the kneading blade and the inner wall of the kneading tank).

しかしながら、これらの検討にて比較評価されている混練ブレードの寸法に定量的な関連が無かったり、評価対象が、混練されたゴムにおけるカーボンブラックの分散状態や混練エネルギーあるいは混練機内のゴム生地の流動や配合剤の混合度合いに偏っていて、混練速度に関する評価は稀である。   However, there is no quantitative relationship between the dimensions of the kneading blades comparatively evaluated in these studies, and the evaluation object is the dispersion state and kneading energy of carbon black in the kneaded rubber or the flow of the rubber dough in the kneading machine. Evaluation of the kneading speed is rare because it is biased toward the mixing degree of the compounding agent.

このため、生産性やゴム材料品質に関する混練工程ニーズを十分に満足するための混練ブレードの形状が必ずしも明確にされたわけではなく、また、量産の混練工程ではアクリルゴムやブチルゴムの混練に30分以上の時間を費やすことがあるなど、現在の接線型密閉式ゴム混練機には改良の余地が残されている。   For this reason, the shape of the kneading blade for sufficiently satisfying the kneading process needs regarding productivity and rubber material quality is not necessarily clarified, and more than 30 minutes are required for kneading acrylic rubber or butyl rubber in the mass production kneading process. However, there is still room for improvement in the current tangential sealed rubber kneader.

特開昭59−31369号公報JP 59-31369 A

ProcessingConditions in The Batch-Operated Internal Mixer H.Palmgren著 RubberChemistry and Technology Vol.48(1975)P462〜494ProcessingConditions in The Batch-Operated Internal Mixer by H.Palmgren RubberChemistry and Technology Vol.48 (1975) P462-494 充てん剤系加硫ゴムの構造と力学的刺激による構造変化 藤本邦彦、西俊夫著 ゴム協会誌 第43巻 P465〜476Structure of Filler-Based Vulcanized Rubber and Structural Change by Mechanical Stimulation Kunihiko Fujimoto, Toshio Nishi The Journal of Rubber Association, Vol. 43, P465-476 混練り過程における構造、物性安定化と三次元応力疲労に関する研究 藤本邦彦、今井啓二著 ゴム協会誌 第65巻 P529〜541Study on structure and physical properties stabilization and three-dimensional stress fatigue in kneading process Kunihiko Fujimoto, Keiji Imai Journal of Rubber Association, Vol. 65, P529-541 Scale-upof Internal Mixers I.ManasZloczower 著 RubberChemistry and Technology Vol.57(1984)P48〜54Scale-upof Internal Mixers by I.ManasZloczower RubberChemistry and Technology Vol.57 (1984) P48-54 DispersiveMixing in Internal Mixers- ATheoretical Mode Based on Agglomerate Rupture I.ManasZloczower ,A.Nir and Z.Tadmor 著 RubberChemistry and Technology Vol.55(1994)P1250〜1285DispersiveMixing in Internal Mixers- ATheoretical Mode Based on Agglomerate Rupture by I.ManasZloczower, A.Nir and Z.Tadmor RubberChemistry and Technology Vol.55 (1994) P1250-1285

本発明は以上の点に鑑みて、ゴム混練工程において、その生産性を向上することができる接線型密閉式ゴム混練機を提供することを目的とする。   In view of the above points, an object of the present invention is to provide a tangential sealed rubber kneader capable of improving productivity in a rubber kneading step.

上記目的を達成するため、本発明の請求項1による接線型密閉式ゴム混練機は、混練槽内に回転駆動するローターを備えるとともに前記ローターの周面上に混練作動する混練ブレードを備える接線型密閉式ゴム混練機において、前記混練ブレードのブレード回転方向前面近傍におけるゴム材料の旋回運動に伴う伸長変形を促進すべく前記混練ブレードの食い込み角度を55度を超え90度未満の角度としたことを特徴とする。   In order to achieve the above object, a tangential sealed rubber kneader according to claim 1 of the present invention includes a rotor that rotates in a kneading tank and a kneading blade that performs kneading operation on the peripheral surface of the rotor. In the hermetic rubber kneader, the biting angle of the kneading blade is more than 55 degrees and less than 90 degrees in order to promote elongation deformation accompanying the swirling motion of the rubber material in the vicinity of the front surface of the kneading blade in the blade rotation direction. Features.

また、本発明の請求項2による接線型密閉式ゴム混練機は、上記した請求項1記載の接線型密閉式ゴム混練機において、混練ブレード先端及び混練槽内壁間のチップクリアランスを1mm以上で3mm以下のクリアランスとしたことを特徴とする。   A tangential type sealed rubber kneader according to claim 2 of the present invention is the tangential type sealed rubber kneader according to claim 1, wherein the tip clearance between the tip of the kneading blade and the inner wall of the kneading tank is 1 mm or more and 3 mm. It is characterized by the following clearance.

また、本発明の請求項3による接線型密閉式ゴム混練機は、上記した請求項1又は2記載の接線型密閉式ゴム混練機において、混練ブレードの軸方向長さをローターの軸方向長さ対比65%以上で95%以下の長さとしたことを特徴とする。   A tangential sealed rubber kneader according to claim 3 of the present invention is the tangential sealed rubber kneader according to claim 1 or 2, wherein the axial length of the kneading blade is the axial length of the rotor. The length is 65% or more and 95% or less.

更にまた、本発明の請求項4による接線型密閉式ゴム混練機は、上記した請求項1、2又は3記載の接線型密閉式ゴム混練機において、混練ブレードの捩じり角度を45度未満で5度以上の角度としたことを特徴とする。   Furthermore, the tangential type sealed rubber kneader according to claim 4 of the present invention is the tangential type sealed rubber kneader according to claim 1, 2, or 3, wherein the twist angle of the kneading blade is less than 45 degrees. The angle is set to 5 degrees or more.

本発明は、上記従来の接線型密閉式ゴム混練機における生産性、特に混練速度に関する問題点を克服するための手段を鋭意検討した結果、
(a)ポリマーの性状(流入圧損)と、混練状態(混練電力曲線、混練電気量)と、混練速度(BITまでのバウンドラバーの成長速度)の関連付けによる混練メカニズムの推定
(b)混練ブレード近傍におけるゴム生地の流れと変形状態の観察による混練作用の確認
(c)混練メカニズムに基づく、ブレード形状の混練速度に対する影響の検証
といった検討を通して、特に、粒径の小さなシリカやカーボンブラック等の高補強性補強剤を配合したアクリルゴムやブチルゴムなどの低粘度のポリマーを使用した材料など、難混練性材料の混練速度を改善せしめる混練ブレードの食い込み角度(Leading Angle,Front Angle)、チップクリアランス、長さ及び捩り角度(Twist Angle)といった接線型密閉式ゴム混練機の混練ブレード形状を提案するものであって、具体的には混練ブレードのブレード回転方向前面近傍におけるゴム材料の旋回運動(混練ブレード回転方向とは逆方向のゴム生地の回転と、混練ブレードの捩じり角度に沿った混練ブレード軸方向の流動)に伴う伸長変形を促進するため、以下の構成を備えることを提案する。
The present invention, as a result of intensive investigations on means for overcoming the problems related to productivity, particularly kneading speed, in the conventional tangential sealed rubber kneader,
(A) Estimation of kneading mechanism by association of polymer properties (inflow pressure loss), kneading state (kneading power curve, kneading electricity amount) and kneading speed (bound rubber growth rate up to BIT) (b) Near kneading blade Confirmation of kneading action by observing the flow and deformation state of rubber dough (c) Based on the kneading mechanism, especially by examining the effect of blade shape on kneading speed, especially high reinforcement such as silica and carbon black with small particle size Cutting angle (Leading Angle, Front Angle), tip clearance, and length to improve the kneading speed of difficult-to-knead materials, such as materials using low viscosity polymers such as acrylic rubber and butyl rubber with a reinforcing reinforcing agent And a kneading blade shape of a tangential sealed rubber kneader, such as Twist Angle. Specifically, the swirling motion of the rubber material in the vicinity of the front of the blade rotation direction of the kneading blade (the rotation of the rubber material in the direction opposite to the rotation direction of the kneading blade and the kneading blade shaft along the twist angle of the kneading blade) In order to promote the elongation deformation accompanying the flow of direction), it is proposed to have the following configuration.

(1)混練ブレードの食い込み角度が、55度を超え90度未満である混練ブレードを装備すること。
混練ブレードの食い込み角度が55度以下の場合は、混練ブレード前面近傍のゴム材料の流れが剪断流に近くなり、回転運動が損なわれることで混練作用が損なわれる。また混練ブレードの食い込み角度が90度以上の場合は、ブレード先端の摩耗が大きくなり、混練ブレード形状の維持が難しくなる。
(1) Equipped with a kneading blade having a biting angle of more than 55 degrees and less than 90 degrees.
When the biting angle of the kneading blade is 55 degrees or less, the flow of the rubber material in the vicinity of the front surface of the kneading blade becomes close to a shearing flow, and the kneading action is impaired by impairing the rotational motion. If the biting angle of the kneading blade is 90 degrees or more, the blade tip wear becomes large, and it becomes difficult to maintain the shape of the kneading blade.

(2)混練ブレード先端及び混練槽内壁間のチップクリアランスが、1mm以上で3mm以下であること。
チップクリアランスが1mm未満の場合は、混練ブレード先端と混練槽内壁との接触による混練ブレードや混練槽内壁の摩耗や、ゴム生地中への金属異物混入の原因となり、チップクリアランスが3mmを超えると、ゴム生地のチップクリアランス通過量が増加してしまうため、混練ブレード前面近傍におけるゴム生地の滞在時間が短くなり、ゴム材料の旋回運動や、それに伴う伸長変形量が少なくなって混練作用が損なわれる。
(2) The tip clearance between the tip of the kneading blade and the inner wall of the kneading tank is 1 mm or more and 3 mm or less.
If the tip clearance is less than 1 mm, it will cause wear of the kneading blade or kneading vessel inner wall due to contact between the tip of the kneading blade and the inner wall of the kneading vessel, or contamination of the metal foreign material into the rubber cloth, and if the tip clearance exceeds 3 mm, Since the amount of the rubber dough passing through the chip clearance increases, the residence time of the rubber dough in the vicinity of the front surface of the kneading blade is shortened, and the kneading action is impaired by reducing the swirling motion of the rubber material and the accompanying amount of extension deformation.

(3)混練ブレードの軸方向の長さが、ローターの軸方向の長さの65%以上で95%以下であること。
混練ブレードの軸方向の長さがローターの軸方向の長さの65%未満の場合は、混練ブレード前面におけるゴム生地の滞在時間が短く、ゴム材料の旋回運動や、それに伴う伸長変形量が少なくなって混練作用が損なわれる。一方で、混練ブレードの軸方向の長さがローターの軸方向の長さの95%を超えると、ブレード末端開口部へのゴム生地の流入圧損が大きくなり、単純混合の効率が低下したり、ブレード軸端面方向のチャンバー内壁の異常摩耗といった不具合を発生させる。
(3) The axial length of the kneading blade is 65% or more and 95% or less of the axial length of the rotor.
When the axial length of the kneading blade is less than 65% of the axial length of the rotor, the residence time of the rubber fabric on the front surface of the kneading blade is short, and the swirling motion of the rubber material and the amount of elongation deformation associated therewith are small. Thus, the kneading action is impaired. On the other hand, when the axial length of the kneading blade exceeds 95% of the axial length of the rotor, the inflow pressure loss of the rubber cloth to the blade end opening increases, and the efficiency of simple mixing decreases, This causes problems such as abnormal wear on the inner wall of the chamber in the direction of the blade shaft end face.

(4)混練ブレードの捩じり角度が、45度未満で5度以上であること。
混練ブレードの捩じり角度が45度以上の場合は、混練ブレード前面近傍のゴム材料の混練ブレード軸方向の流れが促進されるため、混練ブレード前面近傍におけるゴム生地の滞在時間が短くなり、ゴム材料の旋回運動や、それに伴う伸長変形量が少なくなって混練作用が損なわれる。一方で、混練ブレードの捩じり角度が5度未満の場合は、混練ブレード前面近傍のゴム材料の、混練ブレード軸方向の流れが損なわれ、単純混合の効率が低下する。
(5)その他、混練ブレードの数を増やすことによっても、目的とする混練ブレード回転方向前面近傍のゴム材料の旋回運動に伴う伸長変形の絶対量を増加させることが可能となる。
(4) The twist angle of the kneading blade is less than 45 degrees and 5 degrees or more.
When the twisting angle of the kneading blade is 45 degrees or more, the rubber material in the vicinity of the front surface of the kneading blade is accelerated in the axial direction of the kneading blade. The swirling motion of the material and the amount of elongation deformation accompanying it are reduced, and the kneading action is impaired. On the other hand, when the twist angle of the kneading blade is less than 5 degrees, the flow of the rubber material in the vicinity of the front surface of the kneading blade in the axial direction of the kneading blade is impaired, and the efficiency of simple mixing is reduced.
(5) In addition, by increasing the number of kneading blades, it is possible to increase the absolute amount of expansion and deformation accompanying the swirling motion of the rubber material in the vicinity of the front surface in the target kneading blade rotation direction.

本発明では、上記構成のブレード形状を備えることによって、ゴム材料の混練作用、換言すると、ゴムに配合された補強剤の周辺に形成される準ガラス状態相の形成が大きく促進され、混練時間の短縮が可能となる。したがって本発明所期の目的どおり、ゴム混練工程において、その生産性を向上することができる。   In the present invention, by providing the blade shape of the above configuration, the kneading action of the rubber material, in other words, the formation of the quasi-glass state phase formed around the reinforcing agent compounded in the rubber is greatly promoted, and the kneading time is reduced. Shortening is possible. Therefore, the productivity can be improved in the rubber kneading step as intended by the present invention.

本発明の実施例に係る接線型密閉式ゴム混練機の構成説明図Configuration explanatory diagram of a tangential type sealed rubber kneader according to an embodiment of the present invention 同接線型密閉式ゴム混練機に備えられるローター及び撹拌ブレードの斜視図A perspective view of a rotor and a stirring blade provided in the tangential sealed rubber kneader ゴム材料の混練作用の説明図Illustration of kneading action of rubber material カーボンブラック充填ゴムの不均一構造の説明図Illustration of heterogeneous structure of carbon black filled rubber C相:準ガラス状態相容積比とゴム硬度の関係を示すグラフ図Graph showing the relationship between C phase: quasi-glass state phase volume ratio and rubber hardness 混練速度への影響及びBITまでの平均瞬間電力への影響を示すグラフ図Graph showing the effect on kneading speed and the average instantaneous power up to BIT 生地ブロックの混練状態を示す写真図Photograph showing the kneading state of the dough block ブレード混練部における生地の流れ和示す説明図Explanatory drawing showing the sum of the flow of dough in the blade kneading section 生地ブロックの混練状態を示す写真図Photograph showing the kneading state of the dough block 混練ブレードの準ガラス状態相成長速度の示すグラフ図Graph showing quasi-glass phase growth rate of kneading blade

本発明は上記したように、また図1及び図2に示すように、
(1)混練槽11内に回転駆動するローター12を備えるとともにローター12の周面上に混練作動する混練ブレード13を備える接線型密閉式ゴム混練機10において、混練ブレード13のブレード回転方向前面近傍における混練材料の旋回運動に伴う伸長変形を促進すべく混練ブレード13の食い込み角度θを55度を超え90度未満の角度としたこと、
(2)混練ブレード13の先端及び混練槽11の内壁間のチップクリアランスcを1mm以上で3mm以下のクリアランスとしたこと、
(3)混練ブレード13の軸方向長さLをローター12の軸方向長さL対比65%以上で95%以下の長さとしたこと、
(4)混練ブレード13の捩じり角度θを45度未満で5度以上の角度としたこと
を特徴とする。そこで、本発明をなすに至った経緯及び考察について以下、説明する。
As described above, and as shown in FIGS.
(1) In a tangential sealed rubber kneader 10 that includes a rotor 12 that rotates in a kneading tank 11 and a kneading blade 13 that performs kneading operation on the circumferential surface of the rotor 12, the vicinity of the front surface of the kneading blade 13 in the blade rotation direction We were biting angle theta 1 an angle of less than 90 degrees than 55 degrees of the kneading blade 13 to promote the expansion deformation caused by the pivoting movement of the mixing materials in,
(2) The tip clearance c between the tip of the kneading blade 13 and the inner wall of the kneading tank 11 is 1 mm or more and 3 mm or less,
(3) to the axial length L 1 of the kneading blade 13 has the axial length L 2 compared to 95% or less of the length of 65% or more of the rotors 12,
(4), characterized in that the torsion angle theta 2 to 5 times more than the angle less than 45 degrees of the kneading blade 13. Therefore, the background and consideration that led to the present invention will be described below.

(1)混練作用と混練速度の定義
ゴム材料の混練作用は、H.Palmgren(特許文献2)によって、「細片化(Subdivision)」「混入(Incorporating)」「分散(Dispersion)」「単純混合(Simple Mixing)といった工程(図3)を経るとされているが、これらの複数のプロセスを対象として混練速度を議論することは、非常に困難である。
一方で、藤本(特許文献3,4)が「カーボンブラック充填ゴムの不均一構造モデル」(図4)として提唱しているように、ゴム材料の母体が、カーボンブラックとA相:ゴム状態相、B相:集団架橋分子相、C相:準ガラス状態相によって構成されるとするならば、混練過程のいくつかのプロセスを、便魏的に「C相:準ガラス状態相の形成」といった、一つの混練作用として扱うことが可能と考えられる。
(1) Definition of kneading action and kneading speed The kneading action of the rubber material is made up of “Subdivision”, “Incorporating”, “Dispersion”, “Simple mixing” by H. Palmmgren (Patent Document 2). Although it is said that the process (FIG. 3) such as (Simple Mixing) is performed, it is very difficult to discuss the kneading speed for these plural processes.
On the other hand, as proposed by Fujimoto (Patent Documents 3 and 4) as “non-uniform structure model of carbon black-filled rubber” (FIG. 4), the base material of the rubber material is carbon black and A phase: rubber state phase. , B phase: collective cross-linking molecular phase, C phase: quasi-glass state phase, some processes of the kneading process are conveniently called "C phase: formation of quasi-glass state phase" It is considered that it can be handled as one kneading action.

このC相:準ガラス状態相の形成を混練速度として評価するためには、その容積を推定する必要がある。
このため、以下の仮定の基に、HAF、FEF、SRF、サーマル級など、種々のカーボンブラックを配合した種々のゴム材料のゴム硬度の実測値から、それぞれのゴム材料についてC相:準ガラス状態相の容積比を推定した。
a.ゴム母体全体のゴム硬度と、ゴム母体を構成する各要素の硬度と容積比の間に加成性が成り立つ。
b.カーボンブラックとC相:準ガラス状態相の硬さは、ゴム硬度とした場合100ポイントとみなし、A相:ゴム状態相とB相:集団架橋分子相の硬さは、カーボンブラックを含まない準ゴムの硬度とみなす。
結果は、図5に示される通りで、カーボンブラックの種類や配合量に大きな影響を受けることなく、ゴム材料のポリマー種毎に、C相:準ガラス状態相の容積比とゴム硬度の間に非常に良好な相関関係を得ることができた。
In order to evaluate the formation of this C phase: quasi-glass state phase as the kneading speed, it is necessary to estimate the volume.
For this reason, based on the following assumptions, from the measured values of rubber hardness of various rubber materials containing various carbon blacks such as HAF, FEF, SRF, thermal grade, etc., for each rubber material, C phase: quasi-glass state The volume ratio of the phases was estimated.
a. Additivity is established between the rubber hardness of the entire rubber base and the hardness and volume ratio of each element constituting the rubber base.
b. Carbon black and C phase: The hardness of the quasi-glass state phase is regarded as 100 points when the rubber hardness is considered, and the hardness of the A phase: rubber state phase and B phase: collective cross-linking molecular phase does not include carbon black. Considered the hardness of rubber.
The result is as shown in FIG. 5, and without being greatly affected by the type and blending amount of carbon black, for each polymer type of the rubber material, between the volume ratio of the C phase: quasi-glass state phase and the rubber hardness. A very good correlation could be obtained.

このC相:準ガラス状態相の容積比は、ゴム硬度の相関関係の他、ゴム材料の引張り強さや、ゴム混練時の消費電力量や、BITまでの混練時間との相関があり、藤本が提唱している「カーボンブラック充填ゴムの不均一構造モデル」の、ゴム材料の母体のモデルとしての適切さを示していると考えられるが、これをベースとして、C相:準ガラス状態相の形成を混練作用として取り扱い、共通性や普遍的な混練速度を定義することが可能と考え、混練速度を
混練速度=C相:準ガラス状態相の容積/BIT(Black Incorporation Time)
と定義して、以降の検討における評価尺度とした。
The volume ratio of this C phase: quasi-glass state phase has a correlation with the tensile strength of the rubber material, the power consumption during rubber kneading, and the kneading time until BIT, in addition to the correlation with rubber hardness. It is thought that the proposed “non-uniform structure model of carbon black-filled rubber” shows the appropriateness as a model of the base material of the rubber material. Based on this, the formation of C phase: quasi-glass state phase Can be defined as a kneading action, and it is possible to define commonality and universal kneading speed, kneading speed is kneading speed = C phase: volume of quasi-glass state phase / BIT (Black Incorporation Time)
And used as an evaluation scale in the following study.

(2)混練速度に対するポリマーの性状(流入圧損)と混練状態(混練電力)との関連
上記にて、混練速度をC相:準ガラス状態相の成長速度と定義した。
一方で、混練作用は、I.Manas(特許文献5,6)らによって、二次凝集塊の破壊作用として紹介されていて、凝集塊の破壊が、ポリマーの粘度に比例するパラメーターZに依存し、流動力学的な外力によって混練作用がもたらされるとされているが、とするならば、上記にて定義した混練速度も、ポリマー粘度やポリマー粘度に起因し、混練時の瞬間電力として観測される外力との相関を持っているものと考えられる。
また、この外力の源は、ポリマーが受ける剪断作用を源とする剪断粘度と、ポリマーの伸長作用を源とする伸長粘度の二種類のものを挙げることが出来、混練作用に対して、このどちらが貢献するのかを確認出来れば、混練されるゴム生地に与えるべき変形を明確にすることが出来、更には、混練にとって適切な混練ブレードの形状を推定することが可能と考えられる。
この確認のため、伸長粘度や剪断粘度の異なる種々のEPDMポリマーを評価対象とした混練実験によって、混練速度と混練時の電力との関連、および、混練時の電力と、EPDMポリマーの剪断粘度や伸長粘度との関連の確認を試みた。
ちなみに、伸長粘度は、キャピラリー粘度計にて測定される流入圧損におきかえ、また剪断粘度は、剪断速度200(1/s)を乗じて剪断応力として評価した。
結果を図6(A)(B)(C)に示す。
(2) Relationship between polymer properties (inflow pressure loss) and kneading state (kneading power) with respect to kneading rate The kneading rate was defined as the growth rate of the C phase: quasi-glass state phase.
On the other hand, the kneading action is introduced by I. Manas (Patent Documents 5 and 6) as a breaking action of the secondary agglomerates, and the breaking of the agglomerates depends on a parameter Z proportional to the viscosity of the polymer. It is said that the kneading action is brought about by external fluid dynamic force, but if it is assumed, the kneading speed defined above is also observed as instantaneous power during kneading due to polymer viscosity and polymer viscosity. It is considered to have a correlation with external force.
In addition, the source of this external force can include two types of shear viscosity, which is the shear action that the polymer receives, and the extension viscosity, which is the extension action of the polymer. If the contribution can be confirmed, it is possible to clarify the deformation to be imparted to the rubber material to be kneaded, and it is possible to estimate the shape of the kneading blade suitable for kneading.
For this confirmation, a kneading experiment using various EPDM polymers having different elongational viscosities and shear viscosities as the object of evaluation, the relationship between the kneading speed and the power during kneading, the power during kneading, the shear viscosity of the EPDM polymer, An attempt was made to confirm the relationship with the extensional viscosity.
Incidentally, the extensional viscosity was replaced with the inflow pressure loss measured by a capillary viscometer, and the shear viscosity was evaluated as a shear stress by multiplying by a shear rate of 200 (1 / s).
A result is shown to FIG. 6 (A) (B) (C).

図6(A)は、BITまでの平均瞬間電力(BITまでの積算電力量を、BITまでの時間(sec)にて除した値)が大きいほど、混練速度(BITまでのC相:準ガラス状態相の成長速度)が速くなることを示していて、混練過程においてゴム生地に加わる外力が大きいほど、混練速度が速くなることを示している。
この混練過程においてゴム生地に加わる外力の源としては、剪断応力と流入圧損の二つが考えられ、図6(B)と図6(C)は、剪断応力とBITまでの平均瞬間電力、および流入圧損とBITまでの平均瞬間電力の相関関係を示しているが、図6(C)にて示されている流入圧損とBITまでの平均瞬間電力との相関関係が、図6(B)の剪断応力とBITまでの平均瞬間電力の相関関係に比較して非常に良好であることから、流入圧損、言い換えると伸長粘度を源とする外力が、混練速度に対して大きく影響するものと考えられる。
FIG. 6 (A) shows that the kneading speed (phase C up to BIT: quasi-glass) increases as the average instantaneous power up to BIT (the value obtained by dividing the cumulative amount of power up to BIT divided by the time (sec) up to BIT). It shows that the growth rate of the state phase) increases, and that the greater the external force applied to the rubber fabric during the kneading process, the faster the kneading rate.
Two sources of external force applied to the rubber fabric during this kneading process are considered: shear stress and inflow pressure loss. FIGS. 6 (B) and 6 (C) show the shear stress, average instantaneous power up to BIT, and inflow. Although the correlation between the pressure loss and the average instantaneous power up to BIT is shown, the correlation between the inflow pressure loss and the average instantaneous power up to BIT shown in FIG. Since it is very good compared with the correlation between the stress and the average instantaneous power up to BIT, it is considered that the inflow pressure loss, in other words, the external force based on the extensional viscosity greatly affects the kneading speed.

(3)混練ブレード近傍におけるゴム生地の流れと変形状態の観察による混練作用の確認
以上にて、混練作用や混練速度に大きく影響する外力の源が、伸長粘度(流入圧損)であることを確認した。
このため、接線型密閉式混練機の混練槽内におけるゴム生地の変形状態を知ることが出来れば、ゴム生地の伸長作用を増進するための混練ブレード形状設計も可能と考えられるが、これまでの評価は、混練槽内の、ゴム生地の伸長変形を暗示しているものの、ゴム生地の伸長変形の状態や、混練機内のロケーションを明確に示す検討とはなっていない。
このため、伸長変形の確認を目的として、色彩ゴムの混練機内による生地変形状態の確認を試みた。
(3) Confirmation of kneading action by observing the flow and deformation state of the rubber dough near the kneading blade As described above, it is confirmed that the source of external force that greatly affects the kneading action and kneading speed is elongation viscosity (inflow pressure loss). did.
For this reason, if it is possible to know the deformation state of the rubber dough in the kneading tank of the tangential closed kneading machine, it is considered possible to design a kneading blade shape for enhancing the stretching action of the rubber dough. Although the evaluation implies the expansion and deformation of the rubber dough in the kneading tank, the evaluation does not clearly indicate the state of the expansion or deformation of the rubber dough or the location in the kneading machine.
For this reason, for the purpose of confirming elongation deformation, an attempt was made to confirm the deformation state of the dough in the kneading machine for the color rubber.

図9(A)〜(H)は、赤、緑、青、黄色、白、黒の1cm四方の立方体の生地を、図7(A)のように組み合わせた生地ブロックを、混練機内を一回通過することで変形した生地の断面写真図で、混練ブレードに対する相対的な位置関係の概略を図8に示す。
また、それぞれの生地断面には、混練ブレード接触面と混練ブレード接触面近傍の生地の流動方向を矢印にて示した。
これらの写真は、
a.混練ブレード前面にて、混練ブレードの回転方向とは、逆の方向へ回転している。
b.混練ブレード前面近傍にて大きく伸長されている。
c.接触している混練ブレードが変わると、生地回転方向が変わるため、位置jの図9(E)の破線で示される様な生地捻じれによる断層や、位置k,m,oの図9(F)(G)(H)に観られるような、方向が全く逆の二つの流れの共存が見られる。
これ等の写真図で示された生地は、混練ブレードの軸方向にも移動していると考えられるため、全体としては螺旋状に旋回していると考えられるが、この旋回流の中に、大きな伸長作用のあることが確認された。
この伸長作用が、混練作用を促進する外力の源と考えられる。
9 (A) to 9 (H) show a dough block in which red, green, blue, yellow, white, and black 1cm square doughs are combined as shown in FIG. 7 (A) once in the kneader. FIG. 8 shows an outline of a relative positional relationship with respect to the kneading blade in a cross-sectional photograph of the dough deformed by passing.
In addition, in each dough section, the kneading blade contact surface and the flow direction of the dough near the kneading blade contact surface are indicated by arrows.
These pictures
a. At the front surface of the kneading blade, the kneading blade rotates in the direction opposite to the rotation direction.
b. It is greatly extended near the front of the kneading blade.
c. When the kneading blade in contact changes, the rotation direction of the dough changes, so that a fault due to twisting of the dough as shown by a broken line in FIG. 9 (E) at position j and FIG. 9 (F) at positions k, m, and o. ) (G) (H), the coexistence of two flows in opposite directions can be seen.
Since the dough shown in these photographic diagrams is considered to have moved in the axial direction of the kneading blade, it is considered that the dough is swirling spirally as a whole. It was confirmed that there was a large elongation action.
This stretching action is considered to be a source of external force that promotes the kneading action.

以上の
(1)混練過程のいくつかのプロセスを、便魏的に「C相:準ガラス状態相の形成」といった、一つの混練作用として扱うことが可能と考えられる、
(2)混練速度=C相:準ガラス状態相の容積/BIT(Black Incorporation Time)として定義できる、
(3)BITまでの平均瞬間電力(言い換えると混練のための外力)が大きいほど、C相:準ガラス状態相成長速度(混練速度)が速く、ポリマー流入圧損が大きいほどBITまでの平均瞬間電力が大きいことから、ポリマーの伸長作用が混練作用の源であると判定できる、
(4)混練機内では、ブレード前方における旋回流と、ブレード間の生地回転方向の逆転の中に、大きな伸長作用のあることが確認できる、
ことより、接線型密閉式混練機における混練速度向上が期待できる混練ブレード形状は、ブレード前面におけるゴム生地の旋回運動によって引き起こされるゴム生地の伸長作用を増進出来る形状と考えられ、ゴム生地のブレード前面の滞在時間を増加させることのできる形状と考えられる。
It is considered that several processes of the above-mentioned (1) kneading process can be handled as one kneading action such as “C phase: formation of quasi-glass state phase” for convenience.
(2) Kneading speed = C phase: quasi-glass state phase volume / BIT (Black Incorporation Time)
(3) The higher the average instantaneous power to BIT (in other words, the external force for kneading), the faster the C phase: quasi-glass state phase growth speed (kneading speed), and the higher the polymer inflow pressure loss, the average instantaneous power to BIT. Since the elongation is large, it can be determined that the elongation action of the polymer is the source of the kneading action.
(4) In the kneader, it can be confirmed that there is a large elongation action in the swirl flow in front of the blades and in the reversal of the dough rotation direction between the blades.
Therefore, the kneading blade shape that can be expected to improve the kneading speed in the tangential closed kneading machine is considered to be a shape that can enhance the stretching action of the rubber fabric caused by the swirling motion of the rubber fabric on the front surface of the blade. It is considered that the staying time can be increased.

具体的には、
a.混練ブレード末端の開口率が小さい(混練槽のローターの軸方向の長さに対する、ブレードの長さの比が大きな)混練ブレード、
b.食い込み角度(Leading Angle, Front Angle)が大きな混練ブレード、
c.捩じり角度(Twist Angle)が小さな混練ブレード、
d.チップクリアランスの小さな混練ブレードといった混練ブレード、
となる。
In particular,
a. A kneading blade having a small opening ratio at the end of the kneading blade (the ratio of the blade length to the axial length of the rotor of the kneading tank is large);
b. A kneading blade with a large penetration angle (Leading Angle, Front Angle),
c. A kneading blade with a small twist angle,
d. A kneading blade such as a kneading blade with a small chip clearance,
It becomes.

(4)混練メカニズムに基づく、ブレード形状の混練速度に対する影響の検証
以上を基に、以下の混練ブレードにて、種々のゴム材料の混練速度を確認し、前記の仮説の信憑性を確認した。
a.供試験ブレード形状
(4) Verification of influence of blade shape on kneading speed based on kneading mechanism Based on the above, the kneading speed of various rubber materials was confirmed with the following kneading blade, and the credibility of the hypothesis was confirmed.
a. Test blade shape

b.供試ゴム材料
(a)ACM材料:ノックスタイト PA404K(ML1+4 at100℃ 30ポイント)100部
ADKサイザー RS700 5部、レオドール SPS10 1部、
ステアリン酸ナトリウム(NS Soap) 3.5部、
ステアリン酸カリウム(ノンサールSK−1) 1.2部、ステアリン酸 1部、
老化防止剤 CD 2部、硫黄 0.3部
(b)補強剤:
イ.カーボンブラック−ショウブラックN330L 80部
ロ.カーボンブラック−シーストG−S0 80部
ハ.湿式シリカ−二プシールE74P 60部
二.湿式シリカ−二プシールLP 40部
b. Test rubber material (a) ACM material: Noxtite PA404K (ML1 + 4 at100 ° C 30 points) 100 parts
ADK Sizer RS700 5 parts, Rheodor SPS10 1 part,
3.5 parts of sodium stearate (NS Soap)
1.2 parts of potassium stearate (non-sar SK-1), 1 part of stearic acid,
Anti-aging agent CD 2 parts, sulfur 0.3 parts (b) Reinforcing agent:
A. Carbon black-show black N330L 80 parts b. Carbon black-Seast G-S0 80 parts c. Wet silica-Nipseal E74P 60 parts2. Wet silica-Nipseal LP 40 parts

c.混練機
5Lワンダー二−ダー:モリヤマ製 WDS5-75MWA-S型
モーター出力75馬力、カモメタイプ加圧蓋、
実容積:ワンダーニーダー形状ブレード搭載時、5.2L
d.混練条件
(a)加圧蓋圧力:カーボンブラック材−エアー圧 0.6MPa
湿式シリカ材−0.3MPa
(b)充填率:65%
(c)ブレード回転速度:24rpm
(d)混練方法
イ.配合薬品、可塑剤、カーボンを一括投入後30秒間攪拌し、その後ポリマーを投入して加圧開始。
注1:ACMカーボンブラック材の場合は、混練温度上昇が速いので、少量薬品は、第二ステップ直前(第一ステップおよび清掃後)に投入した。
注2:カーボンブラック材は、ポリマー投入直後に最下段まで降下させたが、シリカ材の場合は、シリカの飛散防止のため、ポリマー投入後、加圧蓋を最下位の中間停止位置にて60秒間待機させた後、最下段まで降下させた。
ロ.BIT確認後、約45秒混練し、清掃後に更に約60秒混練。
ハ.まとめは12‘OR、ロール間隔3mmにて5回Pass後、5mmにて分出した。
c. Kneading machine 5L Wonder 2-der: Moriyama WDS5-75MWA-S type motor output 75 horsepower, seagull type pressure lid,
Actual volume: 5.2L when mounted on a wonder kneader blade
d. Kneading conditions (a) Pressure lid pressure: carbon black material-air pressure 0.6 MPa
Wet silica material-0.3 MPa
(B) Filling rate: 65%
(C) Blade rotation speed: 24 rpm
(D) Kneading method a. The chemicals, plasticizer, and carbon are added together and stirred for 30 seconds, then the polymer is added and pressurization is started.
Note 1: In the case of the ACM carbon black material, since the kneading temperature rises quickly, a small amount of chemical was added immediately before the second step (after the first step and cleaning).
Note 2: The carbon black material was lowered to the lowest level immediately after the introduction of the polymer, but in the case of the silica material, after the introduction of the polymer, the pressure lid was moved to the lowest intermediate stop position after the introduction of the polymer to prevent the silica from scattering. After waiting for 2 seconds, it was lowered to the lowest level.
B. After confirming BIT, knead for about 45 seconds, and after cleaning, knead for about 60 seconds.
C. The summary was taken out at 5 mm after passing 5 times at 12′OR and a roll interval of 3 mm.

e.混練速度評価結果
上記の検討によって得られた、各混練ブレードの準ガラス状態相の成長速度(=準ガラス状態相容積(cc)/BITまでの混練時間(sec))の評価結果を、図10に示す。
実施例1(ブレードC)は、前項にて、混練速度を改善しうるブレード形状と推定した要素のうち、チップクリアランスを狭くした(チップクリアランス:1mm)ブレードで、比較例1のブレードA(チップクリアランス:3mm)に比較して、いずれの材料においても(カーボンブラックの種類や配合量に関係無く)、準ガラス状態相の成長速度が速くなっており、混練速度が改善されていると判定できる。
e. Results of kneading rate evaluation The evaluation results of the growth rate of the quasi-glass state phase of each kneading blade (= quasi-glass state phase volume (cc) / kneading time up to BIT (sec)) obtained by the above examination are shown in FIG. Shown in
Example 1 (Blade C) is a blade having a narrow tip clearance (chip clearance: 1 mm) among the elements estimated to have a blade shape capable of improving the kneading speed in the previous section. Compared to (clearance: 3 mm), it can be determined that the growth rate of the quasi-glass state phase is faster and the kneading speed is improved in any material (regardless of the type and amount of carbon black). .

また、実施例2(ブレードD)は、前項にて、混練速度を改善しうるブレード形状と推定した要素のうち、食い込み角度を大きくした(食い込み角度:65°)もので、比較例1のブレードA(食い込み角度:55°)や比較例2のブレードB(食い込み角度:30°)に比較して、いずれの材料においても(カーボンブラックの種類や配合量に関係無く)、準ガラス状態相の成長速度が速くなっており、混練速度が改善されていると判定できる。   Further, Example 2 (Blade D) was obtained by increasing the biting angle (biting angle: 65 °) among the elements estimated as the blade shape capable of improving the kneading speed in the previous section. Compared to A (bite-in angle: 55 °) and blade B (bite-in angle: 30 °) in Comparative Example 2, in any of the materials (regardless of the type and amount of carbon black), the quasi-glass state phase It can be determined that the growth rate is high and the kneading rate is improved.

また、比較例1のブレードA(食い込み角度:55°)と比較例2のブレードB(食い込み角度:30°)の準ガラス状態相の成長速度を比較すると、食い込み角度の大きいブレードAの準ガラス状態相の成長速度が、若干ながらもブレードBよりも早くなっており、この結果も、食い込み角度が大きいほど、混練速度が速くなるといった、前記の結論を補足している。   Further, when the growth speeds of the quasi-glass state phases of blade A of comparative example 1 (bite angle: 55 °) and blade B of comparative example 2 (bite angle: 30 °) are compared, the quasiglass of blade A having a large bite angle. The growth rate of the state phase is slightly faster than that of the blade B, and this result also supplements the above conclusion that the kneading speed increases as the biting angle increases.

以上より、「接線型密閉式混練機における混練速度向上が期待できる混練ブレード形状は、ブレード前面におけるゴム生地の旋回運動によって引き起こされるゴム生地の伸長作用を増進出来る形状と考えられ、ゴム生地のブレード前面の滞在時間を増加させることのできる形状と考えられる。」といった仮説が検証されたと判定でき、
a.混練ブレード末端の開口率が低い(混練槽の軸方向の長さに対する、ブレードの軸方向の長さの比が大きな)混練ブレード、
b.食い込み角度(Leading Angle,Front Angle)が大きな混練ブレード、
c.捩じり角度(Twist Angle)が小さな混練ブレード、
d.チップクリアランスの小さな混練ブレード、
といった混練ブレード形状が、接線型密閉式混練機の混練速度を改善せしめると結論付けることができる。
From the above, “the kneading blade shape that can be expected to improve the kneading speed in the tangential closed kneader is considered to be a shape that can enhance the stretching action of the rubber fabric caused by the swirling motion of the rubber fabric on the front surface of the blade. It can be determined that the hypothesis that it is possible to increase the staying time on the front surface has been verified,
a. A kneading blade having a low opening ratio at the end of the kneading blade (the ratio of the axial length of the blade to the axial length of the kneading tank is large);
b. A kneading blade with a large penetration angle (Leading Angle, Front Angle),
c. A kneading blade with a small twist angle,
d. Kneading blade with small chip clearance,
It can be concluded that the kneading blade shape improves the kneading speed of the tangential closed kneader.

10 接線型密閉式ゴム混練機
11 混練槽
12 ローター
13 混練ブレード
θ 食い込み角度
θ 捩じり角度
c チップクリアランス
混練ブレードの軸方向長さ
ローターの軸方向長さ
10 Tangential Type Sealed Rubber Kneader 11 Kneading Tank 12 Rotor 13 Kneading Blade θ 1 Biting Angle θ 2 Torsion Angle c Chip Clearance L 1 Axial Length of Kneading Blade L 2 Axial Length of Rotor

Claims (4)

混練槽内に回転駆動するローターを備えるとともに前記ローターの周面上に混練作動する混練ブレードを備える接線型密閉式ゴム混練機において、
前記混練ブレードのブレード回転方向前面近傍におけるゴム材料の旋回運動に伴う伸長変形を促進すべく前記混練ブレードの食い込み角度を55度を超え90度未満の角度としたことを特徴とする接線型密閉式ゴム混練機。
In a tangential type sealed rubber kneader equipped with a kneading blade that kneads and operates on the peripheral surface of the rotor, with a rotor that rotates in the kneading tank,
A tangential sealed type characterized in that the biting angle of the kneading blade is more than 55 degrees and less than 90 degrees in order to promote the stretching deformation accompanying the swirling motion of the rubber material in the vicinity of the front surface of the kneading blade in the blade rotation direction. Rubber kneader.
請求項1記載の接線型密閉式ゴム混練機において、
混練ブレード先端及び混練槽内壁間のチップクリアランスを1mm以上で3mm以下のクリアランスとしたことを特徴とする接線型密閉式ゴム混練機。
In the tangential sealed rubber kneader according to claim 1,
A tangential sealed rubber kneader characterized in that the tip clearance between the tip of the kneading blade and the inner wall of the kneading tank is 1 mm or more and 3 mm or less.
請求項1又は2記載の接線型密閉式ゴム混練機において、
混練ブレードの軸方向長さをローターの軸方向長さ対比65%以上で95%以下の長さとしたことを特徴とする接線型密閉式ゴム混練機。
In the tangential type sealed rubber kneader according to claim 1 or 2,
A tangential sealed rubber kneader characterized in that the axial length of the kneading blade is 65% to 95% of the axial length of the rotor.
請求項1、2又は3記載の接線型密閉式ゴム混練機において、
混練ブレードの捩じり角度を45度未満で5度以上の角度としたことを特徴とする接線型密閉式ゴム混練機。
In the tangential sealed rubber kneader according to claim 1, 2, or 3,
A tangential sealed rubber kneader characterized in that the twisting angle of the kneading blade is less than 45 degrees and 5 degrees or more.
JP2014207046A 2014-10-08 2014-10-08 Tangential sealed rubber kneader Active JP6444683B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014207046A JP6444683B2 (en) 2014-10-08 2014-10-08 Tangential sealed rubber kneader

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014207046A JP6444683B2 (en) 2014-10-08 2014-10-08 Tangential sealed rubber kneader

Publications (2)

Publication Number Publication Date
JP2016074166A JP2016074166A (en) 2016-05-12
JP6444683B2 true JP6444683B2 (en) 2018-12-26

Family

ID=55949485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014207046A Active JP6444683B2 (en) 2014-10-08 2014-10-08 Tangential sealed rubber kneader

Country Status (1)

Country Link
JP (1) JP6444683B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6790721B2 (en) * 2016-10-26 2020-11-25 住友ゴム工業株式会社 Analysis method of kneading state of viscous fluid
JP6972534B2 (en) * 2016-10-31 2021-11-24 住友ゴム工業株式会社 Polymer for kneading machine input
CN108556169A (en) * 2018-03-28 2018-09-21 汪涛 A kind of Novel rubber material device

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5114142Y2 (en) * 1971-04-14 1976-04-15
JPS5154442Y1 (en) * 1972-12-26 1976-12-27
SE426561B (en) * 1975-05-29 1983-01-31 Usm Corp INTEGRATING MIXERS
JPS5931369B2 (en) * 1980-02-16 1984-08-01 株式会社神戸製鋼所 Rotor of closed type kneading device
JPS63306006A (en) * 1987-06-08 1988-12-14 Kobe Steel Ltd Hermetically closed type kneader
JPH02172523A (en) * 1988-12-26 1990-07-04 Fujitsu Ltd Mixing and kneading apparatus
JP2901336B2 (en) * 1990-10-31 1999-06-07 住友重機械工業株式会社 Horizontal twin-screw kneader
JPH0733611U (en) * 1993-11-29 1995-06-20 エヌオーケー株式会社 Sealed kneader
JP3135056B2 (en) * 1996-12-19 2001-02-13 株式会社神戸製鋼所 Closed kneading device
JP3674307B2 (en) * 1998-05-26 2005-07-20 Nok株式会社 Kneading apparatus and kneading method thereof
JP2011235258A (en) * 2010-05-13 2011-11-24 Inoue Mfg Inc Continuous biaxial kneader
JP2012066448A (en) * 2010-09-22 2012-04-05 Bridgestone Corp Rubber kneading apparatus
JP5906792B2 (en) * 2012-02-20 2016-04-20 横浜ゴム株式会社 Evaluation method of kneading efficiency of closed rubber kneader
JP6087135B2 (en) * 2012-12-26 2017-03-01 株式会社ブリヂストン Kneading equipment

Also Published As

Publication number Publication date
JP2016074166A (en) 2016-05-12

Similar Documents

Publication Publication Date Title
JP6444683B2 (en) Tangential sealed rubber kneader
JP5922403B2 (en) Method for producing rubber composition and rubber composition
TWI453104B (en) Kneading rotor, batch kneader and method of kneading materials
US6913380B2 (en) Continuous preparation of heat-vulcanizable silicone compositions
US20230141414A1 (en) Fiber-reinforced rubber compound useful in pdm stators
PT1537908E (en) Elastomer composite blends and methods for producing them
JPS6244409A (en) Enclosed type kneading machine
JP4905736B2 (en) Method for producing silicone composition
JP2009191197A (en) Rubber composition and method for producing the same
JP5792650B2 (en) Kneading rotor and hermetic kneading machine including the same
JP2010024400A (en) Rubber composition
US20150231579A1 (en) Planetary mixer
JP5094135B2 (en) Method for producing natural rubber and / or synthetic isoprene rubber masterbatch using powder rubber and filler
TWI710446B (en) Mixing rotor and batch mixer
JP2006142616A (en) Hermetically closed kneader and kneading rotor used therein
JP2015214119A (en) Quality evaluation method for rubber kneaded product
JP2018111770A (en) Gelatinous body, manufacturing method of gelatinous body, composite material and manufacturing method of composite material
JP2013139124A (en) Multi-spool kneading extruder, method for manufacturing wet master batch, material for tire, and tire
JP6209660B2 (en) Carbon fiber composite material and method for producing the same
JP4085957B2 (en) Closed kneader
JP2018104557A (en) Manufacturing method of master batch and manufacturing method of tire
JP2012218278A (en) Mixing device for regenerated rubber production, and method for producing regenerated rubber
JP6461628B2 (en) Method for kneading rubber composition and method for producing pneumatic tire
JP2022085878A (en) Rubber composite material, method for producing rubber composite material, rubber-biomass nanofiber masterbatch
JP2005272603A (en) Method for producing butyl-based rubber composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181128

R150 Certificate of patent or registration of utility model

Ref document number: 6444683

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250