JP6443955B2 - Semiconductor laser device - Google Patents

Semiconductor laser device Download PDF

Info

Publication number
JP6443955B2
JP6443955B2 JP2017542755A JP2017542755A JP6443955B2 JP 6443955 B2 JP6443955 B2 JP 6443955B2 JP 2017542755 A JP2017542755 A JP 2017542755A JP 2017542755 A JP2017542755 A JP 2017542755A JP 6443955 B2 JP6443955 B2 JP 6443955B2
Authority
JP
Japan
Prior art keywords
semiconductor laser
light
substrate
optical
laser device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017542755A
Other languages
Japanese (ja)
Other versions
JPWO2017056499A1 (en
Inventor
石井 啓之
啓之 石井
藤原 直樹
直樹 藤原
渡邉 啓
啓 渡邉
井藤 幹隆
幹隆 井藤
恵介 葛西
恵介 葛西
中沢 正隆
正隆 中沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Nippon Telegraph and Telephone Corp
Original Assignee
Tohoku University NUC
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Nippon Telegraph and Telephone Corp filed Critical Tohoku University NUC
Publication of JPWO2017056499A1 publication Critical patent/JPWO2017056499A1/en
Application granted granted Critical
Publication of JP6443955B2 publication Critical patent/JP6443955B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4087Array arrangements, e.g. constituted by discrete laser diodes or laser bar emitting more than one wavelength
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0206Substrates, e.g. growth, shape, material, removal or bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02251Out-coupling of light using optical fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/0625Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes in multi-section lasers
    • H01S5/06255Controlling the frequency of the radiation
    • H01S5/06256Controlling the frequency of the radiation with DBR-structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/0625Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes in multi-section lasers
    • H01S5/06255Controlling the frequency of the radiation
    • H01S5/06258Controlling the frequency of the radiation with DFB-structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters
    • H01S5/06835Stabilising during pulse modulation or generation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/3013AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4006Injection locking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4031Edge-emitting structures
    • H01S5/4062Edge-emitting structures with an external cavity or using internal filters, e.g. Talbot filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02253Out-coupling of light using lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • H01S5/02325Mechanically integrated components on mount members or optical micro-benches
    • H01S5/02326Arrangements for relative positioning of laser diodes and optical components, e.g. grooves in the mount to fix optical fibres or lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02407Active cooling, e.g. the laser temperature is controlled by a thermo-electric cooler or water cooling
    • H01S5/02415Active cooling, e.g. the laser temperature is controlled by a thermo-electric cooler or water cooling by using a thermo-electric cooler [TEC], e.g. Peltier element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02476Heat spreaders, i.e. improving heat flow between laser chip and heat dissipating elements
    • H01S5/02492CuW heat spreaders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/028Coatings ; Treatment of the laser facets, e.g. etching, passivation layers or reflecting layers
    • H01S5/0287Facet reflectivity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/0607Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying physical parameters other than the potential of the electrodes, e.g. by an electric or magnetic field, mechanical deformation, pressure, light, temperature
    • H01S5/0612Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying physical parameters other than the potential of the electrodes, e.g. by an electric or magnetic field, mechanical deformation, pressure, light, temperature controlled by temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1003Waveguide having a modified shape along the axis, e.g. branched, curved, tapered, voids
    • H01S5/101Curved waveguide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1039Details on the cavity length
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/125Distributed Bragg reflector [DBR] lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4031Edge-emitting structures
    • H01S5/4068Edge-emitting structures with lateral coupling by axially offset or by merging waveguides, e.g. Y-couplers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/50Amplifier structures not provided for in groups H01S5/02 - H01S5/30

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Semiconductor Lasers (AREA)
  • Optical Integrated Circuits (AREA)
  • Optical Couplings Of Light Guides (AREA)

Description

本発明は、半導体レーザ光源に関する、より詳細には、中長距離の光ファイバ通信やガスなどの光センシングで用いられる単一モードで動作する半導体レーザ光源、半導体レーザ装置に関する。   The present invention relates to a semiconductor laser light source, and more particularly to a semiconductor laser light source and a semiconductor laser device that operate in a single mode used in optical sensing of medium and long distance optical fibers and gas.

近年、光通信システムが大容量化するのに伴って、多値位相振幅変調を用いたデジタル・コヒーレント通信方式が普及し始めている。この通信方式は、光の位相情報を用いてデジタル信号を伝達する方式であるため、キャリア光を供給する光源には、位相雑音が少なく、スペクトル線幅が狭いレーザ光源が必要とされる。   In recent years, with the increase in capacity of optical communication systems, digital coherent communication systems using multi-level phase amplitude modulation have begun to spread. Since this communication method is a method for transmitting a digital signal using phase information of light, a light source for supplying carrier light requires a laser light source with little phase noise and a narrow spectral line width.

レーザ光源としては様々な種類のものがあるが、半導体レーザは、小型で低コストなため、光通信用の光源として広く普及している。特に中・長距離の光通信システムにおいては、単一モードで動作する分布帰還型(DFB:Distributed FeedBack)レーザなどが広く用いられている。また中・長距離の光通信システムでは、光ファイバ1本あたりの伝送容量を増大させるために、波長多重(WDM:Wavelength Division Multiplexing)技術が一般に用いられている。したがって、デジタル・コヒーレント通信のための光源に対しては、任意の波長チャネルを出力することができる波長可変特性も必要とされている。   There are various types of laser light sources, but semiconductor lasers are widely used as light sources for optical communication because of their small size and low cost. In particular, in medium and long distance optical communication systems, distributed feedback (DFB) lasers that operate in a single mode are widely used. Also, in a medium / long-distance optical communication system, wavelength division multiplexing (WDM) technology is generally used in order to increase the transmission capacity per optical fiber. Therefore, a wavelength variable characteristic capable of outputting an arbitrary wavelength channel is also required for a light source for digital coherent communication.

半導体レーザは、他の固体レーザやガス・レーザなどと比べると共振器サイズが小さいため、位相ノイズは相対的に大きい。例えば、通常の数百μmの共振器サイズを持つ半導体レーザの線幅はMHzオーダーとなっている。ここで、線幅はスペクトル線幅を意味しており、スペクトルの半値全幅(FWHM:Full Width at Half Maximum)で表される。現在、普及が進んでいる100Gbit/sのデジタル・コヒーレント通信システムにおいては、偏波多重四位相偏移(QPSK:Quadrature Phase Shift Keying)変調方式が用いられており、レーザ光源には数百kHzのスペクトル線幅が要求されている。このような用途には、共振器長を1mm程度まで長くしてスペクトルを狭線幅化した波長可変DFBレーザアレイや外部共振器型レーザなどが用いられている。多値度のより大きな変調方式を使用してより大容量の通信を実現するために、今後さらにスペクトル線幅の狭い光源の実現が期待されている。また、通信以外の光センシング応用などにおいても、狭い吸収線スペクトルを高感度に観測するために、光源のスペクトルの狭線幅化が求められている。   Since the semiconductor laser has a smaller resonator size than other solid-state lasers and gas lasers, the phase noise is relatively large. For example, the line width of an ordinary semiconductor laser having a resonator size of several hundred μm is in the order of MHz. Here, the line width means a spectral line width, and is represented by a full width at half maximum (FWHM) of the spectrum. In a 100 Gbit / s digital coherent communication system that is currently in widespread use, a polarization multiple quadrature phase shift keying (QPSK) modulation method is used, and a laser light source has a frequency of several hundred kHz. Spectral line width is required. For such applications, a tunable DFB laser array, an external resonator type laser, or the like in which the resonator length is increased to about 1 mm to narrow the spectrum is used. Realization of a light source with a narrower spectral line width is expected in the future in order to realize a larger-capacity communication by using a modulation scheme having a higher multilevel. Also, in optical sensing applications other than communication, in order to observe a narrow absorption line spectrum with high sensitivity, it is required to narrow the spectrum of the light source.

M. Finot, et al., “Thermally tuned external cavity laser with micromachined silicon etalons: design, process and reliability,” Electronic Components and Technology Conference 2004 Proceedings, Vol.1, pp.818-823, 2004M. Finot, et al., “Thermally tuned external cavity laser with micromachined silicon etalons: design, process and reliability,” Electronic Components and Technology Conference 2004 Proceedings, Vol.1, pp.818-823, 2004 K. Petermann, “External optical feedback phenomena in semiconductor lasers,” IEEE J. Quantum Electron., vol.1, No.2, pp.480-489, 1995K. Petermann, “External optical feedback phenomena in semiconductor lasers,” IEEE J. Quantum Electron., Vol.1, No.2, pp.480-489, 1995

半導体レーザにおいてスペクトル線幅を10kHz程度まで狭めることのできるものとして、半導体チップの外に光学共振器を構成する、いわゆる外部共振器型レーザがある。例えば非特許文献1では、半導体光増幅器、外部反射器、波長を選択するためのエタロン・フィルタ、およびレンズなどからなる外部共振器型レーザが開示されている。この構成によって、1550nmのC帯全域をカバーする波長可変特性および数10kHzの線幅特性が得られたことが報告されている。しかしながら、外部共振器型レーザは半導体チップ以外にも多数の部品を必要とし、さらにこれらを高精度に組み立てる必要があった。また、外部共振器型レーザでは、多数の共振モードの中から1つの波長を選択するために、少なくとも2個以上の波長フィルタを制御しなければならず、その制御回路が複雑になる問題があった。さらには半導体レーザ装置の製造工程において、波長特性の試験・検査が複雑となる問題もあった。   As a semiconductor laser capable of narrowing the spectral line width to about 10 kHz, there is a so-called external resonator type laser in which an optical resonator is formed outside a semiconductor chip. For example, Non-Patent Document 1 discloses an external resonator type laser including a semiconductor optical amplifier, an external reflector, an etalon filter for selecting a wavelength, and a lens. It has been reported that with this configuration, a wavelength variable characteristic covering the entire C band of 1550 nm and a line width characteristic of several tens of kHz were obtained. However, the external resonator type laser requires a large number of parts in addition to the semiconductor chip, and further, it is necessary to assemble these with high accuracy. Further, in the external resonator type laser, in order to select one wavelength from a large number of resonance modes, at least two wavelength filters must be controlled, and there is a problem that the control circuit becomes complicated. It was. Further, in the manufacturing process of the semiconductor laser device, there has been a problem that the wavelength characteristic test / inspection becomes complicated.

スペクトル線幅を狭める他の構成として、DFBレーザをベースとした波長可変レーザも知られている。この構成では、原理的に同じ発振モードを保ったまま温度制御などを用いて波長を変えることができる。このため、波長可変のための制御は簡単となる。共振器長を1mm程度まで長くすることによって、DFBレーザベースの波長可変レーザでは100kHz程度までの線幅が得られている。しかしながら、共振器をさらに長くしようとすると、回折格子のピッチの均一性および共振器を構成する光導波路の等価屈折率の均一性を維持することが難しくなる。したがって長い共振器では、製造ゆらぎにより均一な共振器を形成することが難しくなり、DFBレーザベースの波長可変レーザにおいても、スペクトルの狭線幅化には限界があった。   As another configuration for narrowing the spectral line width, a tunable laser based on a DFB laser is also known. In this configuration, the wavelength can be changed using temperature control or the like while maintaining the same oscillation mode in principle. For this reason, the control for changing the wavelength becomes simple. By increasing the resonator length to about 1 mm, the DFB laser-based wavelength tunable laser has a line width of up to about 100 kHz. However, if the resonator is further lengthened, it becomes difficult to maintain the uniformity of the pitch of the diffraction grating and the uniformity of the equivalent refractive index of the optical waveguide constituting the resonator. Therefore, with a long resonator, it becomes difficult to form a uniform resonator due to manufacturing fluctuations, and even with a DFB laser-based tunable laser, there is a limit to narrowing the spectral linewidth.

半導体レーザの発振光の一部を外部から帰還することによって、スペクトル狭線幅化の効果が得られることが知られている。例えば非特許文献2では、光ファイバを用いて半導体レーザに光を帰還する構成が示されている。非特許文献2の構成によれば、外部から一部の光を半導体レーザに帰還することによって、スペクトル線幅を2桁以上狭窄化することができる。しかしながら、光ファイバを用いる方法では、発振の安定性に難点があった。半導体レーザの発振状態は帰還光の位相に敏感であり、帰還光の位相状態が変化すると、外部共振モードによる波長跳びなどが生じていた。すなわち光ファイバを用いた帰還型の構成では、光ファイバの変位、応力、温度などの微小な変化に対して発振状態が不安定になってしまうため、実際の通信装置の環境において波長可変光源として使用することは困難であった。   It is known that the effect of narrowing the spectral linewidth can be obtained by feeding back part of the oscillation light of the semiconductor laser from the outside. For example, Non-Patent Document 2 shows a configuration in which light is fed back to a semiconductor laser using an optical fiber. According to the configuration of Non-Patent Document 2, the spectral line width can be narrowed by two orders of magnitude or more by returning a part of the light from the outside to the semiconductor laser. However, the method using an optical fiber has a difficulty in oscillation stability. The oscillation state of the semiconductor laser is sensitive to the phase of the feedback light, and when the phase state of the feedback light changes, a wavelength jump due to the external resonance mode occurs. In other words, in the feedback type configuration using an optical fiber, the oscillation state becomes unstable with respect to minute changes such as displacement, stress, temperature, etc. of the optical fiber. It was difficult to use.

本発明はこのような問題に鑑みてなされたものであって、その目的とするところは、半導体レーザで構成され、小型で制御性が良く、スペクトルを狭線幅化した光源を実現することにある。   The present invention has been made in view of such a problem, and an object of the present invention is to realize a light source that is composed of a semiconductor laser, is small in size, has good controllability, and has a narrowed spectrum. is there.

本発明の一態様は、単一モードで発振する半導体レーザが形成された第1の基板と、前記半導体レーザからの出力光の一部を一定の光路長を伝搬させた後で、前記半導体レーザへ帰還するように構成された光波回路が形成された第2の基板と、前記第1の基板および前記第2の基板を搭載した第3の基板とを備え、前記第1の基板の前記半導体レーザからの出力光と、前記第2の基板の前記光波回路の入力導波路とが光学的に結合していることを特徴とする半導体レーザ装置である。   According to one embodiment of the present invention, a first substrate on which a semiconductor laser that oscillates in a single mode is formed, and after a part of output light from the semiconductor laser propagates a certain optical path length, the semiconductor laser A second substrate on which a lightwave circuit configured to return to the substrate is formed, and the first substrate and a third substrate on which the second substrate is mounted, and the semiconductor of the first substrate The semiconductor laser device is characterized in that the output light from the laser is optically coupled to the input waveguide of the light wave circuit of the second substrate.

好ましくは、前記第2の基板上の前記光波回路は、前記伝搬させた光を反射する反射器を含み、前記反射器で反射された光が、前記半導体レーザへ帰還するように構成されることができる。   Preferably, the lightwave circuit on the second substrate includes a reflector that reflects the propagated light, and the light reflected by the reflector is configured to return to the semiconductor laser. Can do.

また、前記第2の基板上の前記光波回路は、前記半導体レーザからの前記出力光を分岐して前記出力光の前記一部を生成する分岐手段を有することができる。また、前記第1の基板は、前記半導体レーザからの前記出力光を2つに分岐して、一方の分岐光として前記第2の基板の前記出力光の前記一部を生成し、他方の分岐光として当該半導体レーザ装置の出力光を生成する分岐手段を有し、前記分岐手段の前記一方の分岐光を増幅する第1の半導体光増幅器と、前記分岐手段の前記他方の分岐光を増幅する第2の半導体光増幅器とを有することもできる。   The lightwave circuit on the second substrate may include branching means for branching the output light from the semiconductor laser to generate the part of the output light. Further, the first substrate branches the output light from the semiconductor laser into two, generates the part of the output light of the second substrate as one branched light, and the other branch A first semiconductor optical amplifier that amplifies the one branched light of the branching means, and amplifies the other branched light of the branching means; A second semiconductor optical amplifier can also be included.

好ましくは、前記第1の基板の前記半導体レーザからの前記出力光と、前記第2の基板の前記光波回路の前記入力導波路とが、前記第1の基板の端面および当該端面と対向する前記第2の基板の端面の間で結合していることができる。   Preferably, the output light from the semiconductor laser on the first substrate and the input waveguide of the light wave circuit on the second substrate face the end surface of the first substrate and the end surface. There may be a bond between the end faces of the second substrate.

前記半導体レーザは、回折格子による波長選択機能を備えた分布帰還型(DFB)レーザまたは分布反射型(DBR)レーザであり得る。また好ましくは、前記半導体レーザは、N個の分布帰還型(DFB)レーザアレイ、前記N個のDFBレーザアレイからの各出力光を合波するよう構成された光合波器および半導体光増幅器が集積され、波長可変レーザとして動作することができる。また、前記半導体レーザは、N個の分布反射型(DBR)レーザアレイ、前記N個のDBRレーザアレイからの各出力光を合波するよう構成された光合波器および半導体光増幅器が集積され、波長可変レーザとして動作することもできる。上述の光合波器は、N対1光合波器として構成することもできるし、N対2の光合分波器として構成することもできる。   The semiconductor laser may be a distributed feedback (DFB) laser or a distributed reflection (DBR) laser having a wavelength selection function using a diffraction grating. Preferably, the semiconductor laser includes N distributed feedback (DFB) laser arrays, an optical multiplexer configured to multiplex output lights from the N DFB laser arrays, and a semiconductor optical amplifier. And can operate as a wavelength tunable laser. The semiconductor laser is integrated with N distributed reflection (DBR) laser arrays, an optical multiplexer configured to multiplex output lights from the N DBR laser arrays, and a semiconductor optical amplifier. It can also operate as a wavelength tunable laser. The above-described optical multiplexer can be configured as an N-to-1 optical multiplexer, or can be configured as an N-to-2 optical multiplexer / demultiplexer.

本発明によれば、半導体レーザの出力光の一部を光帰還用の光波回路を用いて半導体レーザに戻すことにより、スペクトルを狭線幅化した動作が可能となる。半導体レーザチップと光波回路チップの組み合わせで構成され、小型で制御性が良く、スペクトルを狭線幅化した光源を実現する。   According to the present invention, a part of the output light of the semiconductor laser is returned to the semiconductor laser by using a light wave circuit for optical feedback, thereby enabling an operation with a narrowed spectrum. It is composed of a combination of a semiconductor laser chip and a lightwave circuit chip, and realizes a light source having a small size, good controllability, and a narrowed spectrum.

図1は、本発明の実施例1に係る半導体レーザ装置の概略を示す図である。FIG. 1 is a diagram schematically illustrating a semiconductor laser device according to a first embodiment of the present invention. 図2Aは、本発明の半導体レーザ装置の波長可変半導体レーザチップのより詳細な構造を示す上面図である。FIG. 2A is a top view showing a more detailed structure of the wavelength tunable semiconductor laser chip of the semiconductor laser device of the present invention. 図2Bは、本発明の半導体レーザ装置の波長可変半導体レーザチップの発振器長さ方向に沿った断面図である。FIG. 2B is a cross-sectional view of the wavelength tunable semiconductor laser chip of the semiconductor laser device of the present invention along the oscillator length direction. 図2Cは、本発明の半導体レーザ装置の波長可変半導体レーザチップの発振器長さ方向に垂直な断面図である。FIG. 2C is a cross-sectional view perpendicular to the oscillator length direction of the wavelength tunable semiconductor laser chip of the semiconductor laser device of the present invention. 図3は、本発明の半導体レーザ装置の光波回路チップのより詳細な構造を示す図である。FIG. 3 is a diagram showing a more detailed structure of the lightwave circuit chip of the semiconductor laser device of the present invention. 図4は、本発明の半導体レーザ装置のスペクトル線幅特性を説明する図である。FIG. 4 is a diagram for explaining the spectral line width characteristics of the semiconductor laser device of the present invention. 図5は、本発明の実施例2に係る半導体レーザ装置の概略を示す図である。FIG. 5 is a diagram schematically illustrating a semiconductor laser device according to the second embodiment of the present invention. 図6は、本発明の実施例3に係る半導体レーザ装置の概略を示す図である。FIG. 6 is a diagram schematically showing a semiconductor laser device according to the third embodiment of the present invention.

本発明の半導体レーザ光源では、半導体レーザの出力光の一部を光帰還用の光波回路を用いて半導体レーザに戻すことにより、スペクトルを狭線幅化した動作が可能となる。前述のように、非特許文献2における、光ファイバを用いて半導体レーザに光を帰還する構成では、光ファイバの変位、応力、温度などの微小な変化に対して発振状態が不安定になり、実際の通信装置の環境で使用することは困難であった。   In the semiconductor laser light source of the present invention, an operation with a narrowed line width can be performed by returning a part of the output light of the semiconductor laser to the semiconductor laser using a light wave circuit for optical feedback. As described above, in the configuration in which light is fed back to the semiconductor laser using the optical fiber in Non-Patent Document 2, the oscillation state becomes unstable with respect to minute changes such as displacement, stress, and temperature of the optical fiber, It was difficult to use in an actual communication device environment.

これに対して本発明の半導体レーザ装置では、変形することのない光導波路によって光帰還用の光波回路を構成するとともに、光波回路を含む基板を、半導体レーザが保持される基板とともに、同一の基板上に配置している。このため、光帰還回路の動作環境の安定性を確保することが可能となる。また、本発明の半導体レーザ装置の光帰還の構成では、光波回路に波長選択フィルタの機能は含まれておらず、半導体レーザが持つ波長可変機能を用いる。このため、外部共振器レーザの構成のように、フィルタの波長を精密に調整する必要がない利点がある。このように、本発明の半導体レーザ装置の構成では、小型・安定で、波長制御性が良く、スペクトルの狭線幅化された光源を実現することができる。尚、以下の説明では、半導体レーザ光源および半導体レーザ装置は、同じ意味のものとして使用する。図面を参照しながら、本発明の様々な実施例について説明する。   On the other hand, in the semiconductor laser device of the present invention, a lightwave circuit for optical feedback is constituted by an optical waveguide that is not deformed, and the substrate including the lightwave circuit is the same substrate as the substrate on which the semiconductor laser is held. Arranged above. For this reason, it is possible to ensure the stability of the operating environment of the optical feedback circuit. Further, in the optical feedback configuration of the semiconductor laser device of the present invention, the function of the wavelength selection filter is not included in the light wave circuit, and the wavelength variable function of the semiconductor laser is used. For this reason, there is an advantage that it is not necessary to precisely adjust the wavelength of the filter as in the configuration of the external cavity laser. As described above, in the configuration of the semiconductor laser device of the present invention, it is possible to realize a light source that is small and stable, has good wavelength controllability, and has a narrow spectral line width. In the following description, the semiconductor laser light source and the semiconductor laser device are used as having the same meaning. Various embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の実施例1に係る半導体レーザ装置の概略を示す図である。本実施例の半導体レーザ装置100は、単一の基板101上に搭載された、波長可変半導体レーザチップ102および光帰還用の光波回路チップ103を備える。波長可変半導体レーザチップ102の出力端側には、出力光が光波回路チップ103の入力導波路に入射するように、レンズ104、105が配置される。基板101の材料としては、熱伝導性の良いタングステン銅合金(CuW)などの金属材料が用いられる。図1には描かれていないが、基板101の裏面には、TEC(Thermo-Electric Cooler)が配置され、基板101全体の温度を制御することができる。   FIG. 1 is a diagram schematically illustrating a semiconductor laser device according to a first embodiment of the present invention. The semiconductor laser device 100 of this embodiment includes a wavelength tunable semiconductor laser chip 102 and a lightwave circuit chip 103 for optical feedback mounted on a single substrate 101. Lenses 104 and 105 are arranged on the output end side of the wavelength tunable semiconductor laser chip 102 so that the output light enters the input waveguide of the lightwave circuit chip 103. As the material of the substrate 101, a metal material such as tungsten copper alloy (CuW) having good thermal conductivity is used. Although not depicted in FIG. 1, a TEC (Thermo-Electric Cooler) is disposed on the back surface of the substrate 101, and the temperature of the entire substrate 101 can be controlled.

波長可変半導体レーザチップ102からの出力光は、まずレンズ104によりコリメート・ビームに変換され、レンズ105により光波回路チップの入力導波路に集光される。後述するように、波長可変半導体レーザチップ102の光出力の一部が光波回路103から反射されて戻るように構成されている。この反射光は、光波回路103への往路とは逆の光路を辿って、波長可変半導体レーザチップの出力導波路に帰還される。光波回路103内では、帰還光以外の光は出力光として出力導波路に導かれる。光波回路103からの出力光は、レンズ106によりコリメート・ビームに変換され、光アイソレータ107を通して、半導体レーザ装置の出力光として使用される。光アイソレータ107は、半導体レーザ装置の外部からの戻り光によって、レーザ発振が不安定になるのを防ぐために用いられる。光ファイバに光を導きたい場合は、アイソレータ通過後のコリメート・ビームを、集光レンズを用いて光ファイバに入力させれば良い。   The output light from the wavelength tunable semiconductor laser chip 102 is first converted into a collimated beam by the lens 104 and then condensed by the lens 105 onto the input waveguide of the lightwave circuit chip. As will be described later, a part of the optical output of the wavelength tunable semiconductor laser chip 102 is reflected from the light wave circuit 103 and returned. This reflected light follows an optical path opposite to the outgoing path to the light wave circuit 103 and is fed back to the output waveguide of the wavelength tunable semiconductor laser chip. In the light wave circuit 103, light other than the feedback light is guided to the output waveguide as output light. The output light from the light wave circuit 103 is converted into a collimated beam by the lens 106 and is used as the output light of the semiconductor laser device through the optical isolator 107. The optical isolator 107 is used to prevent laser oscillation from becoming unstable due to return light from the outside of the semiconductor laser device. When it is desired to guide light to the optical fiber, the collimated beam after passing through the isolator may be input to the optical fiber using a condenser lens.

図2A〜図2Cは、本発明の半導体レーザ装置における波長可変半導体レーザチップのより詳細な構造を示す図である。図2Aは波長可変半導体レーザチップ102の基板面を見た上面図である。図2Bは、共振器の長さ方向に沿って、図2Aの上面図の線分IIB−IIBで基板面に垂直に切って見た断面図である。図2Cは、図2Aの上面図の線分IIC−IICで基板面に垂直にかつ共振器の長さ方向に垂直に切って見た断面図である。図2Aの波長可変半導体レーザチップは、4つのDFBレーザ201a〜201d、光合波器203および半導体光増幅器204の各部分がInP基板上に集積され、DFBレーザアレイ型の構成を持つ。各部分は、導波路202a、202bによって接続されている。図2Bのレーザ共振器に沿った断面図を参照すれば、1つのDFBレーザでは、電流を注入することにより増幅作用を持つ活性層212の直上に、回折格子214が形成されたガイド層213を備える。これらの層212、213、214は、n型InPクラッド層216およびp型InPクラッド層217によってさらに挟み込まれている。   2A to 2C are diagrams showing a more detailed structure of the wavelength tunable semiconductor laser chip in the semiconductor laser device of the present invention. FIG. 2A is a top view of the wavelength tunable semiconductor laser chip 102 as seen from the substrate surface. 2B is a cross-sectional view taken along line IIB-IIB in the top view of FIG. 2A and perpendicular to the substrate surface along the length direction of the resonator. 2C is a cross-sectional view taken along line IIC-IIC in the top view of FIG. 2A perpendicular to the substrate surface and perpendicular to the length direction of the resonator. The wavelength tunable semiconductor laser chip of FIG. 2A has a DFB laser array type configuration in which each of four DFB lasers 201a to 201d, an optical multiplexer 203, and a semiconductor optical amplifier 204 are integrated on an InP substrate. Each portion is connected by waveguides 202a and 202b. Referring to the cross-sectional view along the laser resonator of FIG. 2B, in one DFB laser, a guide layer 213 having a diffraction grating 214 formed on an active layer 212 having an amplifying action by injecting a current is provided. Prepare. These layers 212, 213, and 214 are further sandwiched between the n-type InP clad layer 216 and the p-type InP clad layer 217.

レーザ発振動作は、n側電極219を接地し、p側電極220に正の電圧を加えて、活性層212に電流を注入することによって生じる。このとき、回折格子214の周期で定まる波長のみが強く帰還されるため、この波長付近で単一モード発振する。図2Cのレーザ共振器の光進行方向を見た断面図に示すように、1つのDFBレーザは、活性層212およびガイド層213の周りがInPによって埋め込まれた、いわゆる埋め込み型の導波路構造を持つ。n型InP電流ブロック層221は、活性層212に効率良く電流を注入するために設けられている。   The laser oscillation operation occurs by grounding the n-side electrode 219, applying a positive voltage to the p-side electrode 220, and injecting a current into the active layer 212. At this time, since only the wavelength determined by the period of the diffraction grating 214 is strongly fed back, single mode oscillation occurs near this wavelength. As shown in the cross-sectional view of the laser resonator in FIG. 2C, a single DFB laser has a so-called embedded waveguide structure in which the active layer 212 and the guide layer 213 are embedded with InP. Have. The n-type InP current blocking layer 221 is provided to efficiently inject current into the active layer 212.

光合波器203は、4入力1出力の多モード干渉型導波路により構成される。DFBレーザから連続して形成された導波路の透明コア層215(図2Aの導波路202aに対応)は、発振光に対して透明な組成のInGaAsP混晶により形成されている。半導体光増幅器204は、DFBレーザ201a〜201dの各々と同様に利得を持つ導波路212によって構成されているが、回折格子214は形成されておらず、いわゆるSOA(Semiconductor Optical Amplifier)を構成している。尚、上述のDFBレーザの各部の具体的な構造、材料、構成パラメータは例示的なものであって、多値位相振幅変調を用いたデジタル・コヒーレント通信方式に適用可能なレーザ光源として利用可能な半導体レーザであれば、上述の具体例だけには限定されない。   The optical multiplexer 203 is composed of a multi-mode interference type waveguide with 4 inputs and 1 output. The waveguide transparent core layer 215 (corresponding to the waveguide 202a in FIG. 2A) formed continuously from the DFB laser is formed of an InGaAsP mixed crystal having a composition transparent to the oscillation light. The semiconductor optical amplifier 204 is configured by a waveguide 212 having a gain similar to each of the DFB lasers 201a to 201d. However, the diffraction grating 214 is not formed, and a so-called SOA (Semiconductor Optical Amplifier) is configured. Yes. The specific structure, material, and configuration parameters of each part of the DFB laser described above are exemplary, and can be used as a laser light source applicable to a digital coherent communication system using multilevel phase amplitude modulation. The semiconductor laser is not limited to the specific example described above.

波長可変半導体レーザチップ102では、チップ内の導波路から出射する光がチップ端面で反射するのを防ぐため、導波路がチップ端面に対して垂直ではなく、やや斜めになるように形成されている。さらに、チップの端面上には、反射防止膜211a、211bが形成されている。半導体光増幅器204に流す電流量を制御することにより、光出力レベルを調整することができる。DFBレーザアレイの各DFBレーザ201a〜201dに形成されている回折格子は、それぞれ異なるピッチで形成されているため、各々が対応する異なる波長で発振するように動作する。DFBレーザアレイの中から、電流を流して発振させるDFBレーザを1つ選択することによって、出力光の波長を変えることが可能となる。本実施例では、1550nm帯において、所定の温度で約4nmの波長間隔となるようにDFBレーザアレイ各々の発振波長が設定される。DFBレーザの発振波長は、チップ温度が1度変化すると、長波長側に約0.1nm変化する。したがって、レーザ温度を20℃から60℃の範囲で40度変化させれば、発振波長を4nm変化させることができる。所定の温度における4つのDFBレーザ201a〜201dの各発振波長の間で、任意の波長に連続的に変化さることができる。図2A〜図2Cの本実施例の構成の場合、4×4nm=16nmの波長範囲で、任意の波長で発振させることが可能となる。図2A〜図2Cでは、4つのDFBレーザを含むアレイ構成例を例示的に示したが、DFBレーザのアレイ数を増加すれば、アレイ数に応じて波長可変範囲をさらに広げることができる。   In the wavelength tunable semiconductor laser chip 102, in order to prevent the light emitted from the waveguide in the chip from being reflected by the chip end face, the waveguide is formed so as to be slightly inclined rather than perpendicular to the chip end face. . Furthermore, antireflection films 211a and 211b are formed on the end face of the chip. By controlling the amount of current flowing through the semiconductor optical amplifier 204, the light output level can be adjusted. Since the diffraction gratings formed in the DFB lasers 201a to 201d of the DFB laser array are formed at different pitches, each operates so as to oscillate at a different wavelength corresponding thereto. It is possible to change the wavelength of the output light by selecting one DFB laser that oscillates by passing a current from the DFB laser array. In this embodiment, in the 1550 nm band, the oscillation wavelength of each DFB laser array is set so as to have a wavelength interval of about 4 nm at a predetermined temperature. The oscillation wavelength of the DFB laser changes by about 0.1 nm on the long wavelength side when the chip temperature changes once. Therefore, if the laser temperature is changed by 40 degrees in the range of 20 ° C. to 60 ° C., the oscillation wavelength can be changed by 4 nm. The wavelength can be continuously changed to an arbitrary wavelength between the oscillation wavelengths of the four DFB lasers 201a to 201d at a predetermined temperature. In the case of the configuration of this embodiment shown in FIGS. 2A to 2C, it is possible to oscillate at an arbitrary wavelength in a wavelength range of 4 × 4 nm = 16 nm. 2A to 2C exemplarily show an array configuration including four DFB lasers. However, if the number of DFB laser arrays is increased, the wavelength variable range can be further expanded according to the number of arrays.

図3は、本発明の半導体レーザ装置の光波回路チップのより詳細な構造を示す図である。光波回路103は、Si基板上にSiOガラス膜を堆積させることにより作製されている。光導波路301は、屈折率の高い矩形状のコア層のまわりを屈折率の低いクラッド層で埋め込んだ構造を持つ。本実施例では、コア層とクラッド層との間の屈折率差は、約2.5%とした。図2Aに示した波長可変半導体レーザチップ102からの発振光は、レンズ104、105を経て、光導波路301の光入力部302へ入射する。入射光は光導波路301を伝搬し、方向性結合器306によって、光出力部303へ伝搬する光と光反射器305へ伝搬する光とに分けられる。発振光の一部を光反射器305導く導波路は、その光路長を一定程度長くするように設定される。スペクトル線幅は、光路長の二乗に反比例して狭まることが知られており、レーザ出力部から光反射器305までの光路長を一定程度長くした方が、スペクトル線幅の狭窄効果が高いからである。スペクトル線幅を10kHz以下にするためには10cm以上が必要であって、安定動作のためには40〜50cm以下が好ましい。本実施例の光導波路301では、光入力部302から光反射器305までの光路長を約13cmと設定した。反射器305により反射した光は、光導波路を逆方向に伝搬し、光入力部302へ戻っていき、最終的には半導体レーザチップ103に帰還される。反射光の一部は方向性結合器306により、光モニタ出力部304へと伝搬する。FIG. 3 is a diagram showing a more detailed structure of the lightwave circuit chip of the semiconductor laser device of the present invention. The lightwave circuit 103 is produced by depositing a SiO 2 glass film on a Si substrate. The optical waveguide 301 has a structure in which a rectangular core layer having a high refractive index is embedded with a cladding layer having a low refractive index. In this example, the refractive index difference between the core layer and the cladding layer was about 2.5%. The oscillation light from the wavelength tunable semiconductor laser chip 102 shown in FIG. 2A enters the light input portion 302 of the optical waveguide 301 through the lenses 104 and 105. Incident light propagates through the optical waveguide 301, and is divided into light propagating to the light output unit 303 and light propagating to the light reflector 305 by the directional coupler 306. The waveguide that guides part of the oscillation light to the light reflector 305 is set so that its optical path length is increased to a certain extent. The spectral line width is known to narrow in inverse proportion to the square of the optical path length, and the narrowing effect of the spectral line width is higher when the optical path length from the laser output unit to the light reflector 305 is increased to a certain extent. It is. In order to make the spectral line width 10 kHz or less, 10 cm or more is necessary, and 40 to 50 cm or less is preferable for stable operation. In the optical waveguide 301 of this example, the optical path length from the light input unit 302 to the light reflector 305 was set to about 13 cm. The light reflected by the reflector 305 propagates in the opposite direction through the optical waveguide, returns to the optical input unit 302, and finally returns to the semiconductor laser chip 103. A part of the reflected light propagates to the optical monitor output unit 304 by the directional coupler 306.

光波回路103の光入力部302、光出力部303および光モニタ出力部304では、チップの端面で光が反射しないようにするために、光導波路の伝搬方向がチップ端面に対して斜めになるように構成される。特に光入力部302および光出力部303では、光の反射を低く抑えるために、反射防止用のAR膜307a、307bが端面上にそれぞれ形成されている。一方、光反射器305では、一定の光反射を得るために、光導波路はチップ端面に対して垂直となるように構成されており、反射器305の表面には高反射膜308がコーティングされている。   In the optical input unit 302, the optical output unit 303, and the optical monitor output unit 304 of the lightwave circuit 103, the propagation direction of the optical waveguide is inclined with respect to the end surface of the chip so as not to reflect light at the end surface of the chip. Configured. In particular, in the light input portion 302 and the light output portion 303, antireflection AR films 307a and 307b are respectively formed on the end faces in order to keep light reflection low. On the other hand, in the light reflector 305, in order to obtain constant light reflection, the optical waveguide is configured to be perpendicular to the chip end face, and the surface of the reflector 305 is coated with a highly reflective film 308. Yes.

図3の光波回路チップの構成例では、反射光を得るためにチップの1つの端部に反射器305を有する例を示したが、必ずしもこの構成だけに限定されない。例えば、光波回路上にスプリッターと導波路を組み合わせて構成されるループ型の反射器を形成し、そのループ型反射器で、波長可変半導体レーザチップ102からの発振光を反射させても良い。   In the configuration example of the lightwave circuit chip in FIG. 3, an example in which the reflector 305 is provided at one end of the chip to obtain reflected light is shown, but the configuration is not necessarily limited to this configuration. For example, a loop type reflector configured by combining a splitter and a waveguide may be formed on a light wave circuit, and the oscillation light from the wavelength tunable semiconductor laser chip 102 may be reflected by the loop type reflector.

したがって、本発明の半導体レーザ装置は、単一モードで発振する半導体レーザ201a〜201dが形成された第1の基板102と、前記半導体レーザからの出力光の一部を一定の光路長を伝搬させた後で、前記半導体レーザへ帰還するように構成された光波回路が形成された第2の基板103と、前記第1の基板および前記第2の基板を搭載した第3の基板101とを備え、前記第1の基板の前記半導体レーザからの出力光と、前記第2の基板の前記光波回路の入力導波路とが光学的に結合していることを特徴とする半導体レーザ装置として実現できる。   Therefore, the semiconductor laser device of the present invention propagates a part of the output light from the first substrate 102 on which the semiconductor lasers 201a to 201d oscillating in a single mode are formed and a certain optical path length. A second substrate 103 on which a lightwave circuit configured to return to the semiconductor laser is formed, and a third substrate 101 on which the first substrate and the second substrate are mounted. The semiconductor laser device is characterized in that the output light from the semiconductor laser on the first substrate and the input waveguide of the light wave circuit on the second substrate are optically coupled.

好ましくは、前記光波回路は、前記分岐光を反射する反射器305を含み、前記反射器で反射された光が、前記半導体レーザへ帰還するように構成することができる。さらに好ましくは、前記第2の基板上の前記光波回路は、前記半導体レーザからの前記出力光を分岐して前記出力光の前記一部を生成する分岐手段306を有することができる。   Preferably, the light wave circuit includes a reflector 305 that reflects the branched light, and the light reflected by the reflector can be configured to return to the semiconductor laser. More preferably, the lightwave circuit on the second substrate may include a branching unit 306 that branches the output light from the semiconductor laser to generate the part of the output light.

図4は、本実施例の半導体レーザ装置のスペクトル線幅特性を説明する図である。図4では、DFBレーザアレイの中の1つのレーザに150mAの電流を注入し、半導体光増幅器(SOA)204に流す電流値を変化させたときのスペクトル線幅の変化を示している。このとき、半導体レーザ装置100の温度を25℃になるように制御した。スペクトル線幅は、遅延自己ヘテロダイン法によって測定した。SOA電流が低い場合は、DFBレーザへの光帰還量が少ないためスペクトル線幅は太いが、SOA電流値を60mA程度まで増加させると、10kHz以下までスペクトル線幅が狭窄化されている。DFBレーザアレイ単体のスペクトル線幅は、2〜3MHz程度であった。光帰還用の光波回路を備えた本発明の半導体レーザ装置の構成により、DFBレーザアレイ単体に対してスペクトル線幅が2桁以上狭窄化されていることを確認できた。図4に示したようにSOA電流値が180mA以上になると、光帰還量が多すぎることにより発振モードが不安定になり、スペクトル線幅はむしろ増大した。したがって、本実施例の構成の場合、SOA電流値を100mA前後で使用すれば、安定にスペクトル線幅を狭窄化した発振動作が可能となる。   FIG. 4 is a diagram for explaining the spectral line width characteristics of the semiconductor laser device of the present embodiment. FIG. 4 shows changes in the spectral line width when a current of 150 mA is injected into one laser in the DFB laser array and the current value flowing through the semiconductor optical amplifier (SOA) 204 is changed. At this time, the temperature of the semiconductor laser device 100 was controlled to be 25 ° C. The spectral line width was measured by the delayed self-heterodyne method. When the SOA current is low, the spectral line width is thick because the amount of optical feedback to the DFB laser is small, but when the SOA current value is increased to about 60 mA, the spectral line width is narrowed to 10 kHz or less. The spectral line width of the single DFB laser array was about 2 to 3 MHz. It was confirmed that the spectral line width was narrowed by two orders of magnitude or more with respect to the DFB laser array alone by the configuration of the semiconductor laser device of the present invention including the light wave circuit for optical feedback. As shown in FIG. 4, when the SOA current value was 180 mA or more, the oscillation mode became unstable due to too much optical feedback, and the spectral line width rather increased. Therefore, in the case of the configuration of this embodiment, if the SOA current value is used at around 100 mA, an oscillation operation in which the spectral line width is stably narrowed becomes possible.

本実施例では、半導体レーザの構造として、利得を持つ導波路上に回折格子が形成されたDFB構造を例に説明をしたが、回折格子が利得を持たない導波路に形成されたDBR(Distributed Bragg Reflector)型の構造を利用しても良い。また、図2A〜図2Cに示したような複数のDFBレーザからなるレーザアレイではなく、単体のDFBレーザまたはDBRレーザにも本発明を適用可能である。また、レーザを構成する導波路の構造として、図2Cに示したように埋め込み型を例に説明したが、リッジ型の構造の導波路を持つレーザにも本発明を適用可能である。本発明の半導体レーザ装置は、変形することのない光導波路によって光帰還用の光波回路を構成するとともに、半導体レーザが構成される基板と同一(共通)の基板上に配置することで、光帰還回路の動作環境の安定性を確保することができる。したがって、光帰還回路が単一の基板上に構成されていれば、帰還回路の構成も図3のものだけに限定されない。   In this embodiment, the DFB structure in which a diffraction grating is formed on a waveguide having a gain has been described as an example of the structure of the semiconductor laser. However, a DBR (Distributed) in which the diffraction grating is formed in a waveguide having no gain is described. A Bragg Reflector type structure may be used. In addition, the present invention can be applied to a single DFB laser or DBR laser instead of a laser array including a plurality of DFB lasers as shown in FIGS. 2A to 2C. Further, the waveguide structure constituting the laser has been described by taking the buried type as shown in FIG. 2C, but the present invention is also applicable to a laser having a waveguide having a ridge structure. In the semiconductor laser device of the present invention, a lightwave circuit for optical feedback is configured by an optical waveguide that is not deformed, and is disposed on the same (common) substrate as the substrate on which the semiconductor laser is configured. The stability of the circuit operating environment can be ensured. Therefore, if the optical feedback circuit is configured on a single substrate, the configuration of the feedback circuit is not limited to that shown in FIG.

また、図1の本発明の半導体レーザ装置の構成では、InP基板上に集積された半導体レーザチップ102を、共通の基板101上に直接搭載したものとして説明した。しかしながら、2つの基板が堅固に固定されていれば本発明の効果は同様に得られるので、2つの基板101、102の間の固定はどのような方法によっても良い。さらに、図1では半導体レーザチップ102を1つの基板として示したが、半導体レーザを含むチップおよび他の光学部品・電気部品を1つの別の基板に搭載し、その別の基板を共通基板101上に搭載しても良い。   In the configuration of the semiconductor laser device of the present invention shown in FIG. 1, the semiconductor laser chip 102 integrated on the InP substrate is described as being directly mounted on the common substrate 101. However, if the two substrates are firmly fixed, the effect of the present invention can be obtained in the same manner. Therefore, the fixing between the two substrates 101 and 102 may be performed by any method. Further, although the semiconductor laser chip 102 is shown as one substrate in FIG. 1, the chip including the semiconductor laser and other optical components / electrical components are mounted on one other substrate, and the other substrate is mounted on the common substrate 101. May be installed.

同様に、光波回路チップ103についても、2つの基板101、103の間の固定はどのような方法も可能であって、直接固定したり、何らかの基材を挟んで固定したりしても良い。さらに、光波回路を含むチップおよび他の光学部品を1つの別の基板に搭載し、その別の基板を共通基板101上に搭載しても良い。   Similarly, the light wave circuit chip 103 may be fixed between the two substrates 101 and 103 by any method, and may be directly fixed or fixed with some base material interposed therebetween. Further, a chip including a light wave circuit and other optical components may be mounted on one different substrate, and the other substrate may be mounted on the common substrate 101.

本実施例の半導体レーザ装置の構成では、光帰還用の光波回路を、変形することのない光導波路によって構成するとともに、半導体レーザが保持される基板と同一の基板上に配置している。これによって、光帰還回路の動作環境の安定性を確保することが可能となる。本発明の半導体レーザ装置の光帰還構成では、光波回路の中に波長選択フィルタの機能を持っておらず、半導体レーザが持つ波長可変機能を用いる。このため、外部共振器レーザの構成のように、フィルタの波長を精密に調整する必要もない。半導体レーザチップと光波回路チップの組み合わせによって構成され、小型で波長の制御性が良く、スペクトルを狭線幅化した光源を実現することができる。   In the configuration of the semiconductor laser device of this embodiment, the optical circuit for optical feedback is configured by an optical waveguide that is not deformed, and is disposed on the same substrate as the substrate on which the semiconductor laser is held. This makes it possible to ensure the stability of the operating environment of the optical feedback circuit. In the optical feedback configuration of the semiconductor laser device of the present invention, the wavelength selection function of the semiconductor laser is used instead of the wavelength selection filter function in the light wave circuit. For this reason, it is not necessary to precisely adjust the wavelength of the filter as in the configuration of the external cavity laser. A light source that is configured by a combination of a semiconductor laser chip and a lightwave circuit chip, is small in size, has good wavelength controllability, and has a narrow spectral line width.

図5は、本発明の実施例2に係る半導体レーザ装置の概略を示す図である。実施例1の半導体レーザ装置と比べると、半導体レーザチップ102および光波回路チップ103が接するように配置され、半導体レーザチップ102からの出力光が光波回路チップ103の光入力部に直接結合するようになっている点で相違する。その他の構成については、実施例1と同様である。光結合効率を高く保つため、半導体レーザチップ102の光出力部の光のスポットサイズ、および、光波回路チップ103の光入力部の光のスポットサイズがなるべく同一になるよう、チップ端部近傍の各々の導波路が最適に構成されている。例えば各チップの端部における導波路の傾斜角度は、光結合効率の低下なしにチップ端面同志を直接結合できるように設定される。   FIG. 5 is a diagram schematically illustrating a semiconductor laser device according to the second embodiment of the present invention. Compared to the semiconductor laser device of the first embodiment, the semiconductor laser chip 102 and the lightwave circuit chip 103 are disposed so as to be in contact with each other, and the output light from the semiconductor laser chip 102 is directly coupled to the light input portion of the lightwave circuit chip 103. It is different in that. Other configurations are the same as those in the first embodiment. In order to keep the optical coupling efficiency high, the light spot size at the light output portion of the semiconductor laser chip 102 and the light spot size at the light input portion of the lightwave circuit chip 103 are as close as possible to each other in the vicinity of the chip end. The waveguide is optimally configured. For example, the angle of inclination of the waveguide at the end of each chip is set so that the chip end faces can be directly coupled without a decrease in optical coupling efficiency.

したがって、本実施例の半導体レーザ装置は、第1の基板102の前記半導体レーザの出力光と、第2の基板103の前記光波回路の入力導波路301とが、対向する前記第1の基板の端面および前記第2の基板の端面で、結合しているものとして実施できる。本実施例の構成では、半導体レーザチップ102および光波回路チップ103を、サブミクロンの精度で基板101上に搭載する必要がある。しかしながら、実施例1で備えていた2つのレンズ104、105を用いずにチップ間の光結合を直接に行っているため、レンズを搭載するための領域が不要となり、半導体レーザ装置のよりいっそうの小型化が可能となる。   Therefore, in the semiconductor laser device of this embodiment, the output light of the semiconductor laser on the first substrate 102 and the input waveguide 301 of the lightwave circuit on the second substrate 103 are opposed to each other on the first substrate. The present invention can be carried out by combining the end face and the end face of the second substrate. In the configuration of this embodiment, it is necessary to mount the semiconductor laser chip 102 and the lightwave circuit chip 103 on the substrate 101 with submicron accuracy. However, since the optical coupling between the chips is directly performed without using the two lenses 104 and 105 provided in the first embodiment, an area for mounting the lens becomes unnecessary, and the semiconductor laser device is further improved. Miniaturization is possible.

本実施例の半導体レーザ装置でも、実施例1と同様に、SOAに適切な電流値を注入することにより、半導体レーザ単体の場合と比べて、スペクトル線幅を2桁〜3桁程度狭窄化することが可能となる。本実施例の半導体レーザ装置の構成でも、光帰還用の光波回路を、変形することのない光導波路によって構成するとともに、半導体レーザが構成・保持される基板と同一の基板上に配置している。これによって、光帰還回路の動作環境の安定性を確保できる。   Also in the semiconductor laser device of the present embodiment, as in the first embodiment, by injecting an appropriate current value into the SOA, the spectral line width is narrowed by about two to three orders of magnitude compared to the case of the semiconductor laser alone. It becomes possible. Even in the configuration of the semiconductor laser device of the present embodiment, the optical circuit for optical feedback is configured by an optical waveguide that is not deformed, and is disposed on the same substrate as the substrate on which the semiconductor laser is configured and held. . Thereby, the stability of the operating environment of the optical feedback circuit can be ensured.

尚、光波回路チップ103およびレンズ106の間にSOAチップをさらに集積化する構成とすれば、SOAによって光を増幅して、光出力レベルをさらに高めることも可能である。   If the SOA chip is further integrated between the lightwave circuit chip 103 and the lens 106, it is possible to amplify the light by the SOA and further increase the light output level.

上述の実施例1および実施例2の半導体レーザ装置では、半導体レーザチップの発振光および光波回路チップからの帰還光が、いずれも共通の半導体光増幅器(SOA)204を経由して伝播する。また図4で説明したように、SOA電流を変化させることでスペクトル線幅を制御していた。このような構成では、スペクトル線幅のためにSOA電流を決定すると、これによって発振光の出力レベルも同時に変化するために、半導体レーザ装置からの光出力レベルを任意に設定することは難しい。そこで本実施例では、本発明の効果を維持したままで、光出力レベルおよびスペクトル線幅を独立して制御可能な別の構成例を提示する。   In the semiconductor laser devices of the first and second embodiments described above, both the oscillation light of the semiconductor laser chip and the feedback light from the lightwave circuit chip propagate through the common semiconductor optical amplifier (SOA) 204. Further, as described with reference to FIG. 4, the spectral line width is controlled by changing the SOA current. In such a configuration, when the SOA current is determined for the spectral line width, the output level of the oscillation light also changes at the same time, so it is difficult to arbitrarily set the optical output level from the semiconductor laser device. Therefore, in this embodiment, another configuration example is presented in which the optical output level and the spectral line width can be independently controlled while maintaining the effects of the present invention.

図6は、本発明の実施例3に係る半導体レーザ装置の概略を示す図である。本実施例の半導体レーザ装置500も、単一の基板501上に半導体レーザチップ502および光波回路チップ510が構成され、2つのチップがレンズを介さずに直接光結合している点で、実施例2の構成と類似している。しかしながら、半導体レーザチップからの発振光の合波出力を、発振光の出力ルートおよび帰還光のルートの2つに分けていている点で実施例2の構成と相違する。   FIG. 6 is a diagram schematically showing a semiconductor laser device according to the third embodiment of the present invention. The semiconductor laser device 500 of the present embodiment also has an embodiment in that the semiconductor laser chip 502 and the lightwave circuit chip 510 are formed on a single substrate 501, and the two chips are directly optically coupled without a lens. It is similar to the configuration of 2. However, it differs from the configuration of the second embodiment in that the combined output of the oscillation light from the semiconductor laser chip is divided into two, the oscillation light output route and the feedback light route.

具体的には、本実施例の半導体レーザチップ502は、例えば4つのDFBレーザ506a〜506dからの発振光を合波する光合波器として4入力2出力の光合分波器503を用いている。合分波器503によって、4つのDFBレーザからの出力光は、第1のSOA508を経由して半導体レーザ装置の出力光として外部に出力する第1のルートと、第2のSOA507を経由して光波回路チップ510に出力する第2のルートとに分岐している。このように本実施例では、光合分波器503によって出力光を2つのルートに分岐して、それぞれのルートに別個のSOAを設けている点で、実施例2の構成と相違している。光合分波器503は、スターカプラ、多モード干渉型光合波器などによって実現できる。光波回路チップ510は、光反射器511、AR膜509、所定の長さの光導波路512を備えており、実施例1および実施例2の構成と同様である。   Specifically, the semiconductor laser chip 502 of the present embodiment uses, for example, a 4-input 2-output optical multiplexer / demultiplexer 503 as an optical multiplexer that multiplexes oscillation light from four DFB lasers 506a to 506d. The multiplexer / demultiplexer 503 outputs the output light from the four DFB lasers via the first SOA 508 to the outside as the output light of the semiconductor laser device, and the second SOA 507. Branches to the second route to be output to the lightwave circuit chip 510. As described above, the present embodiment is different from the configuration of the second embodiment in that the output light is branched into two routes by the optical multiplexer / demultiplexer 503 and a separate SOA is provided for each route. The optical multiplexer / demultiplexer 503 can be realized by a star coupler, a multimode interference optical multiplexer or the like. The lightwave circuit chip 510 includes a light reflector 511, an AR film 509, and an optical waveguide 512 having a predetermined length, and has the same configuration as that of the first and second embodiments.

したがって、本発明は、単一モードで発振する半導体レーザが形成された第1の基板502と、前記半導体レーザからの出力光の一部を一定の光路長を伝搬させた後で、前記半導体レーザへ帰還するように構成された光波回路が形成された第2の基板510と、前記第1の基板および前記第2の基板を搭載した第3の基板501とを備え、前記第1の基板の前記半導体レーザからの出力光と、前記第2の基板の前記光波回路の入力導波路とが光学的に結合している半導体レーザ装置であって、前記第1の基板は、前記半導体レーザからの前記出力光を2つに分岐して、一方の分岐光として前記第2の基板の前記出力光の前記一部を生成し、他方の分岐光として当該半導体レーザ装置の出力光を生成する分岐手段503を有し、前記分岐手段の前記一方の分岐光を増幅する第1の半導体光増幅器508と、前記分岐手段の前記他方の分岐光を増幅する第2の半導体光増幅器507とを有するものとして、実施できる。   Therefore, the present invention provides a first substrate 502 on which a semiconductor laser that oscillates in a single mode is formed, and a part of output light from the semiconductor laser is propagated through a certain optical path length before the semiconductor laser. A second substrate 510 on which a lightwave circuit configured to return to the second substrate 510 and a third substrate 501 on which the first substrate and the second substrate are mounted are provided. A semiconductor laser device in which an output light from the semiconductor laser and an input waveguide of the light wave circuit of the second substrate are optically coupled, wherein the first substrate is supplied from the semiconductor laser. Branch means for branching the output light into two, generating the part of the output light of the second substrate as one branched light, and generating the output light of the semiconductor laser device as the other branched light 503 of the branching means Serial and first semiconductor optical amplifier 508 for amplifying one of the branched light, as having a second semiconductor optical amplifier 507 for amplifying the other branched light of said branch means, can be implemented.

図6に示した実施例3では、4つのDFBレーザが構成されているので、光合分波器503としては4入力2出力の光合分波器を利用しているが、この構成だけに限定されない。すなわち、DFBレーザの数Nに応じて、N入力2出力の光合分波器とすることができる。また、光出力レベルのモニタ用のために、3出力の光合分波器としても良い。本実施例の構成によって、光帰還用の第2のSOA507に流す電流をスペクル線幅が狭くなる最適な値にしながら、光出力用の第1のSOA508に流す電流を独立に制御することで、光出力レベルを自由に設定することが可能になる。実施例1および実施例2のように光波回路チップ側に分岐回路(方向性結合器)がある場合、半導体レーザ装置の出力光は、SOA204の出力の一部を方向性結合器306で分岐した出力であったので、光出力レベルはSOA204の出力より常に小さな値となる。本実施例の構成では、SOA508の出力をそのまま光源の光出力として使うことができる。通信用光源としては、光出力レベルを任意に設定できることは大きな利点である。光源としての光出力レベルが固定されてしまうと、応用範囲が狭まってしまう。本実施例のように、合波出力を2つのルートに分岐する構成を採ることで、スペクトル線幅と光出力レベルを柔軟に設定可能な光源を実現することができる。尚、実施例2においても述べたように、光波回路チップ103およびレンズ106の間にSOAチップをさらに集積化することによって、光出力レベルの調整が可能となる。しかしながら、この場合には半導体レーザ装置全体でチップが3つ必要となり、部材コストや組立コストの増加を招くため、半導体レーザからの出力光を発振光の出力ルートおよび帰還光のルートの2つに分けた本実施例の構成の方がより優れている。   In the third embodiment shown in FIG. 6, since four DFB lasers are configured, a 4-input 2-output optical multiplexer / demultiplexer is used as the optical multiplexer / demultiplexer 503. However, the present invention is not limited to this configuration. . That is, an N-input 2-output optical multiplexer / demultiplexer can be provided according to the number N of DFB lasers. Further, a three-output optical multiplexer / demultiplexer may be used for monitoring the optical output level. With the configuration of the present embodiment, the current flowing through the first SOA 508 for optical output is independently controlled while the current flowing through the second SOA 507 for optical feedback is set to an optimum value that reduces the speckle line width. The light output level can be freely set. When there is a branch circuit (directional coupler) on the lightwave circuit chip side as in the first and second embodiments, a part of the output of the SOA 204 is branched by the directional coupler 306 in the output light of the semiconductor laser device. Since it is an output, the optical output level is always smaller than the output of the SOA 204. In the configuration of this embodiment, the output of the SOA 508 can be used as it is as the light output of the light source. As a communication light source, the ability to arbitrarily set the light output level is a great advantage. If the light output level as a light source is fixed, the application range is narrowed. By adopting a configuration in which the combined output is branched into two routes as in this embodiment, a light source capable of flexibly setting the spectral line width and the light output level can be realized. As described in the second embodiment, the light output level can be adjusted by further integrating the SOA chip between the lightwave circuit chip 103 and the lens 106. However, in this case, three chips are required for the entire semiconductor laser device, which causes an increase in member costs and assembly costs. Therefore, the output light from the semiconductor laser is divided into two routes, an oscillation light output route and a feedback light route. The divided configuration of this embodiment is superior.

以上詳細に述べたように、本発明の半導体レーザ装置によれば、半導体レーザの出力光の一部を光帰還用の光波回路を用いて半導体レーザに戻すことにより、スペクトルの狭線幅動作が可能となる。半導体レーザチップと光波回路チップの組み合わせで構成され、小型で制御性が良く、スペクトルを狭線幅化した光源を実現することができる。   As described above in detail, according to the semiconductor laser device of the present invention, a part of the output light of the semiconductor laser is returned to the semiconductor laser by using the optical circuit for optical feedback. It becomes possible. A light source having a combination of a semiconductor laser chip and a lightwave circuit chip, a small size, good controllability, and a narrow linewidth in the spectrum can be realized.

本発明は、一般的に光通信システムに利用することができる。特に、光通信システムの送信器に利用できる。また、光センシング・システムにも利用できる。   The present invention is generally applicable to an optical communication system. In particular, it can be used for a transmitter of an optical communication system. It can also be used for optical sensing systems.

Claims (8)

単一モードで発振する半導体レーザが形成された第1の基板と、
前記半導体レーザからの出力光の一部を一定の光路長を伝搬させた後で、前記半導体レーザへ帰還するように構成された光波回路が形成された、Siからなる第2の基板と、
前記第1の基板および前記第2の基板を搭載した第3の基板と
を備え、
前記第1の基板の前記半導体レーザからの出力光と、前記第2の基板の前記光波回路の入力導波路とが光学的に結合していることを特徴とする半導体レーザ装置。
A first substrate on which a semiconductor laser that oscillates in a single mode is formed;
A second substrate made of Si on which a lightwave circuit configured to return a part of the output light from the semiconductor laser to the semiconductor laser after propagating a part of the optical path length;
A third substrate on which the first substrate and the second substrate are mounted,
An output light from the semiconductor laser on the first substrate and an input waveguide of the light wave circuit on the second substrate are optically coupled to each other.
前記第2の基板上の前記光波回路は、前記伝搬させた光を反射する反射器を含み、前記反射器で反射された光が、前記半導体レーザへ帰還するように構成されたことを特徴とする請求項1に記載の半導体レーザ装置。  The lightwave circuit on the second substrate includes a reflector that reflects the propagated light, and the light reflected by the reflector is configured to return to the semiconductor laser. The semiconductor laser device according to claim 1. 前記第2の基板上の前記光波回路は、前記半導体レーザからの前記出力光を分岐して前記出力光の前記一部を生成する分岐手段を有することを特徴とする請求項1または2に記載の半導体レーザ装置。  3. The light wave circuit on the second substrate includes branching means for branching the output light from the semiconductor laser to generate the part of the output light. Semiconductor laser device. 前記第1の基板は、前記半導体レーザからの前記出力光を2つに分岐して、一方の分岐光として前記第2の基板の前記出力光の前記一部を生成し、他方の分岐光として当該半導体レーザ装置の出力光を生成する分岐手段を有し、
前記分岐手段の前記一方の分岐光を増幅する第1の半導体光増幅器と、前記分岐手段の前記他方の分岐光を増幅する第2の半導体光増幅器とを有すること
を特徴とする請求項1または2に記載の半導体レーザ装置。
The first substrate splits the output light from the semiconductor laser into two, generates the part of the output light of the second substrate as one branched light, and as the other branched light Branching means for generating output light of the semiconductor laser device,
The first semiconductor optical amplifier that amplifies the one branched light of the branching means, and the second semiconductor optical amplifier that amplifies the other branched light of the branching means. 2. The semiconductor laser device according to 2.
前記第1の基板の前記半導体レーザからの前記出力光と、前記第2の基板の前記光波回路の前記入力導波路とが、前記第1の基板の端面および当該端面と対向する前記第2の基板の端面の間で結合していることを特徴とする請求項1乃至4いずれかに記載の半導体レーザ装置。  The output light from the semiconductor laser on the first substrate and the input waveguide of the lightwave circuit on the second substrate are opposed to the end surface of the first substrate and the end surface. The semiconductor laser device according to claim 1, wherein the semiconductor laser device is coupled between end faces of the substrate. 前記半導体レーザは、回折格子による波長選択機能を備えた分布帰還型(DFB)レーザまたは分布反射型(DBR)レーザであることを特徴とする請求項1乃至5いずれかに記載の半導体レーザ装置。  6. The semiconductor laser device according to claim 1, wherein the semiconductor laser is a distributed feedback (DFB) laser or a distributed reflection (DBR) laser having a wavelength selection function by a diffraction grating. 前記半導体レーザは、N個の分布帰還型(DFB)レーザアレイ、前記N個のDFBレーザアレイからの各出力光を合波するよう構成された光合波器および半導体光増幅器が集積され、波長可変レーザとして動作することを特徴とする請求項1乃至6いずれかに記載の半導体レーザ装置。  The semiconductor laser includes N distributed feedback (DFB) laser arrays, an optical multiplexer configured to multiplex output lights from the N DFB laser arrays, and a semiconductor optical amplifier. 7. The semiconductor laser device according to claim 1, wherein the semiconductor laser device operates as a laser. 前記半導体レーザは、N個の分布反射型(DBR)レーザアレイ、前記N個のDBRレーザアレイからの各出力光を合波するよう構成された光合波器および半導体光増幅器が集積され、波長可変レーザとして動作することを特徴とする請求項1乃至6いずれかに記載の半導体レーザ装置。  The semiconductor laser is composed of N distributed reflection (DBR) laser arrays, an optical multiplexer configured to multiplex output lights from the N DBR laser arrays, and a semiconductor optical amplifier. 7. The semiconductor laser device according to claim 1, wherein the semiconductor laser device operates as a laser.
JP2017542755A 2015-09-29 2016-09-29 Semiconductor laser device Active JP6443955B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015192106 2015-09-29
JP2015192106 2015-09-29
PCT/JP2016/004396 WO2017056499A1 (en) 2015-09-29 2016-09-29 Semiconductor laser device

Publications (2)

Publication Number Publication Date
JPWO2017056499A1 JPWO2017056499A1 (en) 2018-03-01
JP6443955B2 true JP6443955B2 (en) 2018-12-26

Family

ID=58422925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017542755A Active JP6443955B2 (en) 2015-09-29 2016-09-29 Semiconductor laser device

Country Status (6)

Country Link
US (1) US10333280B2 (en)
EP (1) EP3358684B1 (en)
JP (1) JP6443955B2 (en)
CN (1) CN108141006B (en)
CA (1) CA2999682C (en)
WO (1) WO2017056499A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017138649A1 (en) * 2016-02-12 2017-08-17 古河電気工業株式会社 Laser module
JP7069993B2 (en) * 2018-04-09 2022-05-18 日本電信電話株式会社 Optical spectrum line width calculation method, device and program
WO2020107315A1 (en) * 2018-11-29 2020-06-04 华为技术有限公司 Two-section dbr laser and monolithic integrated array light source chip
CN114450861A (en) * 2019-09-26 2022-05-06 日本电信电话株式会社 Light emitter
CN113036949A (en) * 2021-03-02 2021-06-25 全球能源互联网研究院有限公司 Laser energy supply device based on photocell

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2572050B2 (en) * 1986-11-05 1997-01-16 シャープ株式会社 Waveguide type optical head
JPS6446995A (en) 1987-08-17 1989-02-21 Nippon Telegraph & Telephone Semiconductor laser light source apparatus
JPH09246642A (en) 1996-03-06 1997-09-19 Nippon Telegr & Teleph Corp <Ntt> Narrow spectrum line width laser beam source
US7313157B2 (en) * 2003-12-19 2007-12-25 Novera Optics, Inc. Integration of laser sources and detectors for a passive optical network
JP4774761B2 (en) * 2005-03-03 2011-09-14 日本電気株式会社 Wavelength tunable resonator, wavelength tunable laser, optical module, and control method thereof
JP2007094336A (en) 2005-08-31 2007-04-12 Furukawa Electric Co Ltd:The Optical semiconductor device and method of manufacturing optical semiconductor device
KR101109823B1 (en) * 2007-04-04 2012-02-13 닛산 지도우샤 가부시키가이샤 Suspension device for a wheel and method for supporting a wheel
JP5737777B2 (en) * 2010-03-18 2015-06-17 日本電信電話株式会社 Method and apparatus for controlling wavelength tunable laser array element
KR20120070836A (en) 2010-12-22 2012-07-02 한국전자통신연구원 Multi-wavelength optical source generator
JP5567226B2 (en) * 2012-05-31 2014-08-06 古河電気工業株式会社 Semiconductor laser module
JP2014135351A (en) 2013-01-09 2014-07-24 Furukawa Electric Co Ltd:The Semiconductor optical element, integrated type semiconductor optical element and method of manufacturing the same
JP6020601B2 (en) * 2013-01-28 2016-11-02 富士通株式会社 LASER DEVICE, LIGHT MODULATION DEVICE, AND OPTICAL SEMICONDUCTOR ELEMENT
US9184564B2 (en) * 2013-06-07 2015-11-10 Ngk Insulators, Ltd. External resonator type light emitting system
JP6245656B2 (en) 2015-02-16 2017-12-13 日本電信電話株式会社 Semiconductor laser element

Also Published As

Publication number Publication date
US10333280B2 (en) 2019-06-25
CN108141006B (en) 2020-09-15
CA2999682A1 (en) 2017-04-06
JPWO2017056499A1 (en) 2018-03-01
EP3358684A4 (en) 2019-08-21
CA2999682C (en) 2020-07-14
WO2017056499A1 (en) 2017-04-06
CN108141006A (en) 2018-06-08
EP3358684B1 (en) 2020-11-04
US20180269659A1 (en) 2018-09-20
EP3358684A1 (en) 2018-08-08

Similar Documents

Publication Publication Date Title
JP6443955B2 (en) Semiconductor laser device
US8885675B2 (en) Wavelength variable laser device, and method and program for controlling the same
US10522968B2 (en) Narrow linewidth multi-wavelength light sources
JP2006245344A (en) Wavelength-variable laser
JP6337960B2 (en) Optical transceiver module
US20210175689A1 (en) Multi-frequency hybrid tunable laser
US8548024B2 (en) Semiconductor laser module
JP2018129338A (en) Wavelength variable laser device
JP2007115900A (en) Wavelength tunable light source, module thereof, and method for driving the same
JP4290541B2 (en) Tunable light source and optical transmitter
WO2015085544A1 (en) Laser
JP2015167174A (en) Wavelength variable light source and wavelength variable light source module
JP6245656B2 (en) Semiconductor laser element
JP2013118315A (en) Semiconductor laser device and semiconductor laser module
JP6610834B2 (en) Tunable laser device
JP2000151014A (en) Optical function element and optical communication device
JP6586028B2 (en) Semiconductor laser light source
JP2004055647A (en) Distributed bragg reflector semiconductor laser diode, integrated semiconductor laser, semiconductor laser module, and optical network system
JP2019057539A (en) Semiconductor optical integrated element
JP2018046144A (en) Wavelength-variable laser, wavelength-variable laser device, and control method therefor
JP2011077069A (en) Wavelength variable light source module and wavelength variable optical transmitter
JP4036291B2 (en) Optical amplification element
JP2009267084A (en) Reflection type modulation module and method for driving the same
JP2009267096A (en) Reflection type modulation module, and method for driving the same
JP2008241953A (en) Wavelength selection reflective circuit and multi-wavelength light source

Legal Events

Date Code Title Description
A524 Written submission of copy of amendment under article 19 pct

Free format text: JAPANESE INTERMEDIATE CODE: A527

Effective date: 20171102

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20171102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181122

R150 Certificate of patent or registration of utility model

Ref document number: 6443955

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250