JP6443915B2 - Fluoroalkane derivative, gelling agent, liquid crystalline compound and gel composition - Google Patents

Fluoroalkane derivative, gelling agent, liquid crystalline compound and gel composition Download PDF

Info

Publication number
JP6443915B2
JP6443915B2 JP2014192884A JP2014192884A JP6443915B2 JP 6443915 B2 JP6443915 B2 JP 6443915B2 JP 2014192884 A JP2014192884 A JP 2014192884A JP 2014192884 A JP2014192884 A JP 2014192884A JP 6443915 B2 JP6443915 B2 JP 6443915B2
Authority
JP
Japan
Prior art keywords
group
compound
carbon atoms
saturated
mmol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014192884A
Other languages
Japanese (ja)
Other versions
JP2016064990A (en
Inventor
岡本 浩明
浩明 岡本
由紀 森田
由紀 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NATIONAL UNIVERSITY CORPORATION YAMAGUCHI UNIVERSITY
Original Assignee
NATIONAL UNIVERSITY CORPORATION YAMAGUCHI UNIVERSITY
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NATIONAL UNIVERSITY CORPORATION YAMAGUCHI UNIVERSITY filed Critical NATIONAL UNIVERSITY CORPORATION YAMAGUCHI UNIVERSITY
Priority to JP2014192884A priority Critical patent/JP6443915B2/en
Publication of JP2016064990A publication Critical patent/JP2016064990A/en
Application granted granted Critical
Publication of JP6443915B2 publication Critical patent/JP6443915B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Liquid Crystal Substances (AREA)

Description

本発明は、フルオロアルカン誘導体、ゲル化剤、液晶性化合物及びゲル状組成物に関する。   The present invention relates to a fluoroalkane derivative, a gelling agent, a liquid crystal compound, and a gel composition.

従来、各種産業分野(例えば、塗料、化粧品、医薬医療、石油流出処理、電子・光学分野、環境分野など)において、液体状物質を固化、すなわちゼリー状に固めたり、又は、増粘したりする目的でゲル化剤が用いられている。   Conventionally, in various industrial fields (for example, paints, cosmetics, pharmaceutical medicine, oil spill treatment, electronic / optical fields, environmental fields, etc.), liquid substances are solidified, that is, solidified into a jelly or thickened. A gelling agent is used for the purpose.

これらのゲル化剤としては、水をゲル化(固化)させるもの、並びに、非水溶媒及びそれらを主として含む溶液等をゲル化(固化)させるものがある。また、ゲル化剤の構造は高分子量型と低分子量型とに大別することができる。高分子量型のゲル化剤は、主に非水溶媒のゲル化に用いられ、親油性を有する高分子ポリマーの絡み合った分子中に油類を取り込み膨油しつつ、固体状を保つことを特徴とする。一方、低分子量型のゲル化剤の多くは、分子内に水素結合性官能基(例えば、アミノ基、アミド基及びウレア基など)を含むものであり、水素結合によって水や非水溶媒をゲル化することを特徴とする(例えば、特許文献1参照)。低分子量型のゲル化剤は、水のゲル化剤としては一般的であるが、非水溶媒のゲル化剤としての開発は比較的遅れていた。   These gelling agents include those that gel (solidify) water, and those that gel (solidify) non-aqueous solvents and solutions mainly containing them. The structure of the gelling agent can be roughly classified into a high molecular weight type and a low molecular weight type. The high molecular weight type gelling agent is mainly used for gelation of non-aqueous solvents, and it is characterized by keeping oil solid while taking in oils in the entangled molecule of lipophilic polymer. And On the other hand, many low molecular weight type gelling agents contain hydrogen-bonding functional groups (for example, amino groups, amide groups, and urea groups) in the molecule, and water and non-aqueous solvents are gelated by hydrogen bonds. (For example, refer patent document 1). The low molecular weight type gelling agent is generally used as a water gelling agent, but its development as a nonaqueous solvent gelling agent has been relatively delayed.

さらに、水素結合性基を有しない低分子量型のゲル化剤は、例えば、特許文献2及び非特許文献1に開示されているものの、その例は極めて少ない。   Furthermore, although low molecular weight type gelling agents having no hydrogen bonding group are disclosed in, for example, Patent Document 2 and Non-Patent Document 1, there are very few examples.

また、それとは別に、近年、引き続き新規な液晶性化合物の開発が行われているところである。   Apart from that, new liquid crystalline compounds are being developed in recent years.

特開平8−231942号公報JP-A-8-231942 国際公開第2009/78268号International Publication No. 2009/78268

J. Fluorine. Chem.110,47−58(2001)J. et al. Fluorine. Chem. 110, 47-58 (2001)

そこで、本発明は上記事情にかんがみてなされたものであり、新規なフルオロアルカン誘導体、その化合物よりなるゲル化剤及びそのゲル化剤を含むゲル状組成物、並びに、新規なフルオロアルカン誘導体よりなる液晶性化合物を提供することを目的とする。   Therefore, the present invention has been made in view of the above circumstances, and comprises a novel fluoroalkane derivative, a gelling agent comprising the compound, a gel composition containing the gelling agent, and a novel fluoroalkane derivative. An object is to provide a liquid crystal compound.

本発明者らが、低分子量型のゲル化剤として有用な新規な化合物について鋭意検討を行ったところ、特定の化学構造を有するフルオロアルカン誘導体がゲル化剤として作用することを見出した。また、本発明者らは、かかるフルオロアルカン誘導体が液晶性を有することをも見出した。   When the present inventors diligently examined a novel compound useful as a low molecular weight type gelling agent, it was found that a fluoroalkane derivative having a specific chemical structure acts as a gelling agent. The present inventors have also found that such a fluoroalkane derivative has liquid crystallinity.

すなわち、本発明は下記のとおりである。
[1]下記一般式(1)で表されるフルオロアルカン誘導体。
R−X−Ar1−O−R1−O−Ar2−Y (1)
(式中、Ar1及びAr2は、それぞれ独立に、置換若しくは無置換の核原子数6〜30の2価の芳香族基を示し、R1は飽和又は不飽和の炭素数1〜20の2価の炭化水素基を示し、Rは下記一般式(2)で表される基を示し、Xは−S−又は−SO2−で表される基を示し、Yはシアノ基、ニトロ基、飽和若しくは不飽和の炭素数2〜20の1価のアルコキシル基又はフッ素原子を示す。
m 2m+1 p 2p − (2)
(式中、mは2〜16の自然数を示し、pは0〜6の整数を示す。)
[2下記一般式(1)で表されるフルオロアルカン誘導体。
R−X−Ar 1 −O−R 1 −O−Ar 2 −Y (1)
(式中、Ar1及びAr2 、それぞれ独立に、1つ以上の芳香族炭化水素環を有する縮合環、又は、複数の芳香環を単結合により結合した基であって、前記芳香環のうち1つ以上が芳香族炭化水素環である基を示し、R 1 は鎖中に酸素原子又は硫黄原子を有していてもよい飽和又は不飽和の炭素数1〜20の2価の炭化水素基を示し、Rはパーフルオロアルキル基を有する飽和又は不飽和の炭素数2〜22の1価の炭化水素基を示し、Xは−S−又は−SO 2 −で表される基を示し、Yはシアノ基、ニトロ基、飽和若しくは不飽和の炭素数2〜20の1価のアルコキシル基又はフッ素原子を示す。)
[3]前記Rが下記一般式(2)で表される基である、請求項2に記載のフルオロアルカン誘導体。
m 2m+1 p 2p − (2)
(式中、mは2〜16の自然数を示し、pは0〜6の整数を示す。)
[4]前記Ar1及びAr2は、それぞれ独立に、フェニレン基又はビフェニレン基である、[1]のいずれか一つに記載のフルオロアルカン誘導体。
[5]下記一般式(1)で表されるフルオロアルカン誘導体からなるゲル化剤。
R−X−Ar 1 −O−R 1 −O−Ar 2 −Y (1)
(式中、Ar 1 及びAr 2 は、それぞれ独立に、置換若しくは無置換の核原子数6〜30の2価の芳香族基を示し、R 1 は鎖中に酸素原子又は硫黄原子を有していてもよい飽和又は不飽和の炭素数1〜20の2価の炭化水素基を示し、Rはパーフルオロアルキル基を有する飽和又は不飽和の炭素数2〜22の1価の炭化水素基を示し、Xは−S−又は−SO 2 −で表される基を示し、Yはシアノ基、ニトロ基、飽和若しくは不飽和の炭素数2〜20の1価のアルコキシル基又はフッ素原子を示す。)
[6]下記一般式(1)で表されるフルオロアルカン誘導体からなる液晶性化合物。
R−X−Ar 1 −O−R 1 −O−Ar 2 −Y (1)
(式中、Ar 1 及びAr 2 は、それぞれ独立に、置換若しくは無置換の核原子数6〜30の2価の芳香族基を示し、R 1 は鎖中に酸素原子又は硫黄原子を有していてもよい飽和又は不飽和の炭素数1〜20の2価の炭化水素基を示し、Rはパーフルオロアルキル基を有する飽和又は不飽和の炭素数2〜22の1価の炭化水素基を示し、Xは−S−又は−SO 2 −で表される基を示し、Yはシアノ基、ニトロ基、飽和若しくは不飽和の炭素数2〜20の1価のアルコキシル基又はフッ素原子を示す。)
[7][5]に記載のゲル化剤と、有機溶媒と、を含有するゲル状組成物。
That is, the present invention is as follows.
[1] A fluoroalkane derivative represented by the following general formula (1).
R—X—Ar 1 —O—R 1 —O—Ar 2 —Y (1)
(In the formula, Ar 1 and Ar 2 each independently represent a substituted or unsubstituted divalent aromatic group having 6 to 30 nucleus atoms, and R 1 is a saturated or unsaturated carbon atom having 1 to 20 carbon atoms. R represents a divalent hydrocarbon group, R represents a group represented by the following general formula (2) , X represents a group represented by —S— or —SO 2 —, Y represents a cyano group, a nitro group Represents a saturated or unsaturated monovalent alkoxyl group having 2 to 20 carbon atoms or a fluorine atom.
C m F 2m + 1 C p H 2p − (2)
(In the formula, m represents a natural number of 2 to 16, and p represents an integer of 0 to 6. )
[2 ] A fluoroalkane derivative represented by the following general formula (1).
R—X—Ar 1 —O—R 1 —O—Ar 2 —Y (1)
(In the formula, Ar 1 and Ar 2 are each independently a condensed ring having one or more aromatic hydrocarbon rings, or a group in which a plurality of aromatic rings are bonded by a single bond, 1 or more of them represents a group which is an aromatic hydrocarbon ring, and R 1 is a saturated or unsaturated divalent hydrocarbon having 1 to 20 carbon atoms which may have an oxygen atom or a sulfur atom in the chain. R represents a saturated or unsaturated monovalent hydrocarbon group having 2 to 22 carbon atoms having a perfluoroalkyl group, X represents a group represented by —S— or —SO 2 —, Y represents a cyano group, a nitro group, a saturated or unsaturated monovalent alkoxyl group having 2 to 20 carbon atoms, or a fluorine atom.)
[3] The fluoroalkane derivative according to claim 2, wherein R is a group represented by the following general formula (2).
C m F 2m + 1 C p H 2p − (2)
(In the formula, m represents a natural number of 2 to 16, and p represents an integer of 0 to 6.)
[4] The fluoroalkane derivative according to any one of [1] to [ 3 ] , wherein Ar 1 and Ar 2 are each independently a phenylene group or a biphenylene group.
[5] A gelling agent comprising a fluoroalkane derivative represented by the following general formula (1) .
R—X—Ar 1 —O—R 1 —O—Ar 2 —Y (1)
(In the formula, Ar 1 and Ar 2 each independently represent a substituted or unsubstituted divalent aromatic group having 6 to 30 nuclear atoms, and R 1 has an oxygen atom or a sulfur atom in the chain. A saturated or unsaturated divalent hydrocarbon group having 1 to 20 carbon atoms which may be substituted, and R represents a saturated or unsaturated monovalent hydrocarbon group having 2 to 22 carbon atoms having a perfluoroalkyl group; X represents a group represented by —S— or —SO 2 —, and Y represents a cyano group, a nitro group, a saturated or unsaturated monovalent alkoxyl group having 2 to 20 carbon atoms, or a fluorine atom. )
[6] A liquid crystalline compound comprising a fluoroalkane derivative represented by the following general formula (1) .
R—X—Ar 1 —O—R 1 —O—Ar 2 —Y (1)
(In the formula, Ar 1 and Ar 2 each independently represent a substituted or unsubstituted divalent aromatic group having 6 to 30 nuclear atoms, and R 1 has an oxygen atom or a sulfur atom in the chain. A saturated or unsaturated divalent hydrocarbon group having 1 to 20 carbon atoms which may be substituted, and R represents a saturated or unsaturated monovalent hydrocarbon group having 2 to 22 carbon atoms having a perfluoroalkyl group; X represents a group represented by —S— or —SO 2 —, and Y represents a cyano group, a nitro group, a saturated or unsaturated monovalent alkoxyl group having 2 to 20 carbon atoms, or a fluorine atom. )
[7] A gel composition containing the gelling agent according to [5] and an organic solvent.

本発明によれば、新規なフルオロアルカン誘導体、その化合物よりなるゲル化剤及びそのゲル化剤を含むゲル状組成物、並びに、新規なフルオロアルカン誘導体よりなる液晶性化合物を提供することができる。   According to the present invention, a novel fluoroalkane derivative, a gelling agent comprising the compound, a gel composition containing the gelling agent, and a liquid crystalline compound comprising the novel fluoroalkane derivative can be provided.

本発明のフルオロアルカン誘導体(化合物(1−6))について有機溶媒中での各濃度毎のゾル−ゲル転移温度の結果を示す図である。It is a figure which shows the result of the sol-gel transition temperature for every density | concentration in the organic solvent about the fluoroalkane derivative (compound (1-6)) of this invention. 本発明のフルオロアルカン誘導体(化合物(1−12))について有機溶媒中での各濃度毎のゾル−ゲル転移温度の結果を示す図である。It is a figure which shows the result of the sol-gel transition temperature for every density | concentration in the organic solvent about the fluoroalkane derivative (compound (1-12)) of this invention. 本発明のフルオロアルカン誘導体(化合物(2))について有機溶媒中での各濃度毎のゾル−ゲル転移温度の結果を示す図である。It is a figure which shows the result of the sol-gel transition temperature for every density | concentration in the organic solvent about the fluoroalkane derivative (compound (2)) of this invention. 本発明のフルオロアルカン誘導体(化合物(1−4))について有機溶媒中での各濃度毎のゾル−ゲル転移温度の結果を示す図である。It is a figure which shows the result of the sol-gel transition temperature for every density | concentration in the organic solvent about the fluoroalkane derivative (compound (1-4)) of this invention. 本発明のフルオロアルカン誘導体(化合物(3−4))について有機溶媒中での各濃度毎のゾル−ゲル転移温度の結果を示す図である。It is a figure which shows the result of the sol-gel transition temperature for every density | concentration in the organic solvent about the fluoroalkane derivative (compound (3-4)) of this invention. 本発明のフルオロアルカン誘導体(化合物(3−6))について有機溶媒中での各濃度毎のゾル−ゲル転移温度の結果を示す図である。It is a figure which shows the result of the sol-gel transition temperature for every density | concentration in the organic solvent about the fluoroalkane derivative (compound (3-6)) of this invention. 本発明のフルオロアルカン誘導体(化合物(5))について有機溶媒中での各濃度毎のゾル−ゲル転移温度の結果を示す図である。It is a figure which shows the result of the sol-gel transition temperature for every density | concentration in the organic solvent about the fluoroalkane derivative (compound (5)) of this invention. 本発明のフルオロアルカン誘導体(化合物(5))について有機溶媒中での各濃度毎のゾル−ゲル転移温度の結果を示す図である。It is a figure which shows the result of the sol-gel transition temperature for every density | concentration in the organic solvent about the fluoroalkane derivative (compound (5)) of this invention. 本発明のフルオロアルカン誘導体(化合物(6))について有機溶媒中での各濃度毎のゾル−ゲル転移温度の結果を示す図である。It is a figure which shows the result of the sol-gel transition temperature for every density | concentration in the organic solvent about the fluoroalkane derivative (compound (6)) of this invention. 本発明のフルオロアルカン誘導体(化合物(6))について有機溶媒中での各濃度毎のゾル−ゲル転移温度の結果を示す図である。It is a figure which shows the result of the sol-gel transition temperature for every density | concentration in the organic solvent about the fluoroalkane derivative (compound (6)) of this invention. 本発明のフルオロアルカン誘導体(化合物(6))について有機溶媒中での各濃度毎のゾル−ゲル転移温度の結果を示す図である。It is a figure which shows the result of the sol-gel transition temperature for every density | concentration in the organic solvent about the fluoroalkane derivative (compound (6)) of this invention. 本発明のフルオロアルカン誘導体(化合物(7))について有機溶媒中での各濃度毎のゾル−ゲル転移温度の結果を示す図である。It is a figure which shows the result of the sol-gel transition temperature for every density | concentration in the organic solvent about the fluoroalkane derivative (compound (7)) of this invention. 本発明のフルオロアルカン誘導体(化合物(8))について有機溶媒中での各濃度毎のゾル−ゲル転移温度の結果を示す図である。It is a figure which shows the result of the sol-gel transition temperature for every density | concentration in the organic solvent about the fluoroalkane derivative (compound (8)) of this invention. 本発明のフルオロアルカン誘導体(化合物(9))について有機溶媒中での各濃度毎のゾル−ゲル転移温度の結果を示す図である。It is a figure which shows the result of the sol-gel transition temperature for every density | concentration in the organic solvent about the fluoroalkane derivative (compound (9)) of this invention. 本発明のフルオロアルカン誘導体を含む二成分系混合物において各成分の組成比を変化させた場合の相転移温度を示す図である。It is a figure which shows the phase transition temperature at the time of changing the composition ratio of each component in the binary mixture containing the fluoro alkane derivative of this invention. 本発明のフルオロアルカン誘導体を含む二成分系混合物において各成分の組成比を変化させた場合の相転移温度を示す図である。It is a figure which shows the phase transition temperature at the time of changing the composition ratio of each component in the binary mixture containing the fluoro alkane derivative of this invention. 本発明のフルオロアルカン誘導体を含む二成分系混合物において各成分の組成比を変化させた場合の相転移温度を示す図である。It is a figure which shows the phase transition temperature at the time of changing the composition ratio of each component in the binary mixture containing the fluoro alkane derivative of this invention. 本発明のフルオロアルカン誘導体の偏光顕微鏡写真である。It is a polarizing microscope photograph of the fluoroalkane derivative of the present invention. 本発明のフルオロアルカン誘導体の偏光顕微鏡写真である。It is a polarizing microscope photograph of the fluoroalkane derivative of the present invention. 本発明のフルオロアルカン誘導体を含む二成分系混合物の偏光顕微鏡写真である。It is a polarizing microscope photograph of the binary mixture containing the fluoroalkane derivative of the present invention.

以下、必要に応じて図面を参照しつつ、本発明を実施するための形態(以下、単に「本実施形態」という。)について詳細に説明するが、本発明は下記本実施形態に限定されるものではない。本発明は、その要旨を逸脱しない範囲で様々な変形が可能である。   Hereinafter, a mode for carrying out the present invention (hereinafter simply referred to as “the present embodiment”) will be described in detail with reference to the drawings as necessary. However, the present invention is limited to the following embodiment. It is not a thing. The present invention can be variously modified without departing from the gist thereof.

本実施形態のフルオロアルカン誘導体は、下記一般式(1)で表されるものである(以下、このフルオロアルカン誘導体を「化合物(1)」とも表記する。)。
R−X−Ar1−O−R1−O−Ar2−Y (1)
ここで、式(1)中、Ar1及びAr2は、それぞれ独立に、置換若しくは無置換の核原子数6〜30の2価の芳香族基を示し、R1は飽和又は不飽和の炭素数1〜20の2価の炭化水素基を示し、Rはパーフルオロアルキル基を有する飽和又は不飽和の炭素数2〜22の1価の炭化水素基を示し、Xは−S−又は−SO2−で表される基を示し、Yはシアノ基、ニトロ基、飽和若しくは不飽和の炭素数2〜20の1価のアルコキシル基又はフッ素原子を示す。以下、本実施形態のフルオロアルカン誘導体について詳述する。
The fluoroalkane derivative of this embodiment is represented by the following general formula (1) (hereinafter, this fluoroalkane derivative is also referred to as “compound (1)”).
R—X—Ar 1 —O—R 1 —O—Ar 2 —Y (1)
Here, in formula (1), Ar 1 and Ar 2 each independently represent a substituted or unsubstituted divalent aromatic group having 6 to 30 nuclear atoms, and R 1 is saturated or unsaturated carbon. R represents a divalent hydrocarbon group having 1 to 20 carbon atoms, R represents a saturated or unsaturated monovalent hydrocarbon group having 2 to 22 carbon atoms having a perfluoroalkyl group, and X represents -S- or -SO. 2 represents a group represented by-, and Y represents a cyano group, a nitro group, a saturated or unsaturated monovalent alkoxyl group having 2 to 20 carbon atoms, or a fluorine atom. Hereinafter, the fluoroalkane derivative of this embodiment will be described in detail.

上記式(1)において、Ar1及びAr2は、それぞれ独立に、置換若しくは無置換の核原子数6〜30の2価の芳香族基を示す。Ar1及びAr2は互いに同一であっても異なっていてもよい。2価の芳香族基は、いわゆる「芳香族性」を示す環式の2価の基である。この2価の芳香族基は、単素環式の基であっても複素環式の基であってもよい。2価の芳香族基は、置換基により置換されていてもよく、置換されていない無置換のものであってもよい。置換基は、化合物(1)の融点やゲル化能、液晶性を最適化する観点から選択されればよい。 In the above formula (1), Ar 1 and Ar 2 each independently represent a substituted or unsubstituted divalent aromatic group having 6 to 30 nuclear atoms. Ar 1 and Ar 2 may be the same as or different from each other. The divalent aromatic group is a cyclic divalent group exhibiting so-called “aromaticity”. This divalent aromatic group may be a monocyclic group or a heterocyclic group. The divalent aromatic group may be substituted with a substituent or may be an unsubstituted one that is not substituted. The substituent may be selected from the viewpoint of optimizing the melting point, gelling ability, and liquid crystallinity of the compound (1).

単素環式の基は、その環形成原子数が6〜30であり、置換基により置換されていてもよく、置換されていない無置換のものであってもよい。その具体例としては、以下に限定されないが、フェニレン基、ビフェニレン基、ターフェニレン基、ナフチレン基、アントラニレン基、フェナンスリレン基、ピレニレン基、クリセニレン基、フルオランテニレン基に代表される環を有する2価の基が挙げられる。また、単素環式の基は、環形成原子数が6〜30の範囲内において、上述の2価の基を2つ以上有するものであってもよい。ここで、2つ以上の2価の基は、互いに同一であっても異なっていてもよい。単素環式の基を用いる場合、合成容易性及びゲル化容易性の観点から、置換又は無置換の、フェニレン基、ビフェニレン基、ターフェニレン基、ナフチレン基及びアントラニレン基のいずれかを用いることが好ましく、置換又は無置換の、フェニレン基、ビフェニレン基及びナフチレン基のいずれかを用いることがより好ましく、置換又は無置換の、フェニレン基及びビフェニレン基のいずれかを用いることが更に好ましい。   The monocyclic group has 6-30 ring-forming atoms, may be substituted with a substituent, or may be unsubstituted or unsubstituted. Specific examples thereof include, but are not limited to, a divalent group having a ring represented by a phenylene group, a biphenylene group, a terphenylene group, a naphthylene group, an anthranylene group, a phenanthrylene group, a pyrenylene group, a chrysenylene group, or a fluoranthenylene group. The group of is mentioned. Further, the monocyclic group may have two or more of the above-described divalent groups within the range of 6 to 30 ring-forming atoms. Here, two or more divalent groups may be the same as or different from each other. When using a monocyclic group, from the viewpoint of ease of synthesis and ease of gelation, a substituted or unsubstituted phenylene group, biphenylene group, terphenylene group, naphthylene group, and anthranylene group may be used. Preferably, any one of a substituted or unsubstituted phenylene group, biphenylene group, and naphthylene group is used, and any one of a substituted or unsubstituted phenylene group or biphenylene group is more preferably used.

複素環式の基は、その環形成原子数が6〜30であり、以下に限定されないが、例えば、ピリジレン基及びピリミジレン基に代表される環を有する2価の基が挙げられる。また、複素環式の基は、環形成原子数が6〜30の範囲内において、上述の2価の基を2つ以上有するものであってもよい。ここで、2つ以上の2価の基は、互いに同一であっても異なっていてもよい。   The heterocyclic group has 6 to 30 ring-forming atoms and is not limited to the following, and examples thereof include a divalent group having a ring represented by a pyridylene group and a pyrimidylene group. Further, the heterocyclic group may have two or more of the above-described divalent groups within the range of 6 to 30 ring-forming atoms. Here, two or more divalent groups may be the same as or different from each other.

さらに、Ar1及びAr2は、環形成原子数6〜30の範囲内において、上記単素環式の基及び複素環式の基の両方を有する基であってもよい。 Further, Ar 1 and Ar 2 may be a group having both the monocyclic group and the heterocyclic group within the range of 6 to 30 ring-forming atoms.

Ar1及びAr2は、これらの中でも、ゲル化能及び化合物(1)を含むゲル状組成物の熱安定性又は液晶性をより有効かつ確実に有する観点から、それぞれ独立に、1つ以上の芳香族炭化水素環を有する縮合環、又は、複数の芳香環を単結合により結合した基であって、上記芳香環のうち1つ以上が芳香族炭化水素環である基であると好ましい。また、上記複数の芳香環は、いずれも芳香族炭化水素基であるとより好ましい。そのような2価の芳香族基としては、例えば、ビフェニレン基、ターフェニレン基、ナフチレン基及びアントラニレン基が挙げられる。 Among these, Ar 1 and Ar 2 are each independently one or more from the viewpoint of more effectively and reliably having the gelability and the thermal stability or liquid crystallinity of the gel composition containing the compound (1). A condensed ring having an aromatic hydrocarbon ring or a group in which a plurality of aromatic rings are bonded by a single bond, and at least one of the aromatic rings is preferably a group having an aromatic hydrocarbon ring. Moreover, it is more preferable that the plurality of aromatic rings are all aromatic hydrocarbon groups. Examples of such a divalent aromatic group include a biphenylene group, a terphenylene group, a naphthylene group, and an anthranylene group.

また、Ar1及びAr2は、上記に加えて、原料の入手が容易であり、合成が容易である観点から、それぞれ独立に、置換若しくは無置換の、フェニレン基、ビフェニレン基、ターフェニレン基、ナフチレン基又はアントラニレン基が好ましく、置換又は無置換の、フェニレン基、ビフェニレン基又はナフチレン基がより好ましく、置換又は無置換の、フェニレン基又はビフェニレン基がさらに好ましい。原料の入手が容易であり、合成が容易である観点からはフェニレン基が好ましく、少量の使用で高いゲル化能を示す観点からはビフェニレン基が好ましい。 In addition to the above, Ar 1 and Ar 2 are each independently a substituted or unsubstituted phenylene group, biphenylene group, terphenylene group, from the viewpoint of easy acquisition of raw materials and easy synthesis. A naphthylene group or an anthranylene group is preferable, a substituted or unsubstituted phenylene group, a biphenylene group, or a naphthylene group is more preferable, and a substituted or unsubstituted phenylene group or a biphenylene group is further preferable. From the viewpoint of easy availability of raw materials and easy synthesis, a phenylene group is preferable, and a biphenylene group is preferable from the viewpoint of showing high gelling ability with a small amount of use.

また、上記置換基としては、以下に限定されないが、例えば、メチル基、エチル基に代表されるアルキル基、ハロゲン原子が挙げられる。   Moreover, as said substituent, although not limited to the following, For example, the alkyl group represented by the methyl group and the ethyl group, and a halogen atom are mentioned.

Ar1及びAr2は、求めるゲル化能(ゲル化に必要な化合物(1)の量、化合物(1)を溶媒に溶解させるために必要な加熱温度)、あるいは液晶性を主に考慮して選択される。 Ar 1 and Ar 2 mainly take into account the gelling ability to be sought (the amount of compound (1) necessary for gelation, the heating temperature necessary to dissolve compound (1) in a solvent), or liquid crystallinity. Selected.

1は飽和又は不飽和の炭素数1〜20の2価の炭化水素基を示す。R1の炭素数が20以下であると、化合物(1)のゲル化能が高まると共に融点も高くなる。一方、R1の炭素数が1以上であると、液晶性により優れたものとなる。ここで、R1における炭化水素基は、鎖中(好ましくは主鎖中)に炭素原子だけでなく酸素原子又は硫黄原子を有していてもよい。R1は、2価の脂肪族炭化水素基であってもよく、更に置換基として、フェニル基などの1価の芳香族炭化水素基を有していてもよい。上記2価の炭化水素基が2価の脂肪族炭化水素基である場合、分岐していても分岐していなくても(直鎖状であっても)よい。また、上記2価の炭化水素基が置換基として1価の芳香族炭化水素基を有する場合、その芳香族炭化水素基が更に置換基を有していても有していなくてもよい。 R 1 represents a saturated or unsaturated divalent hydrocarbon group having 1 to 20 carbon atoms. When the carbon number of R 1 is 20 or less, the gelation ability of the compound (1) increases and the melting point also increases. On the other hand, when R 1 has 1 or more carbon atoms, the liquid crystallinity is more excellent. Here, the hydrocarbon group in R 1 may have not only a carbon atom but also an oxygen atom or a sulfur atom in the chain (preferably in the main chain). R 1 may be a divalent aliphatic hydrocarbon group, and may further have a monovalent aromatic hydrocarbon group such as a phenyl group as a substituent. When the divalent hydrocarbon group is a divalent aliphatic hydrocarbon group, it may be branched or unbranched (straight). When the divalent hydrocarbon group has a monovalent aromatic hydrocarbon group as a substituent, the aromatic hydrocarbon group may or may not have a substituent.

無置換の2価の炭化水素基としては、以下に限定されないが、例えば、メチレン基、エチレン基、プロピレン基、n−ブチレン基及びイソブチレン基などの炭素数1〜6の分岐状又は直鎖状のアルキレン基、オキシメチレン基、オキシエチレン基、オキシプロピレン基、オキシジメチレン基、オキシジエチレン基及びオキシジプロピレン基などのオキシアルキレン基、チオメチレン基、チオエチレン基、チオプロピレン基、チオジメチレン基、チオジエチレン基及びチオジプロピレン基などのチオアルキレン基が挙げられる。   Examples of the unsubstituted divalent hydrocarbon group include, but are not limited to, branched or straight chain having 1 to 6 carbon atoms such as a methylene group, an ethylene group, a propylene group, an n-butylene group, and an isobutylene group. Oxyalkylene groups such as alkylene groups, oxymethylene groups, oxyethylene groups, oxypropylene groups, oxydimethylene groups, oxydiethylene groups and oxydipropylene groups, thiomethylene groups, thioethylene groups, thiopropylene groups, thiodimethylene groups, thiodiethylenes Groups and thioalkylene groups such as thiodipropylene groups.

1は、それぞれ独立に、炭素数2〜16の2価の炭化水素基が好ましく、炭素数4〜12の2価の炭化水素基であることが更に好ましい。また、R1は、アルキレン基であると好ましく、炭素数4〜12のアルキレン基であるとより好ましい。R1を上記のものにすると、より原料が入手しやすく容易な合成経路で一層高いゲル化能を有する化合物(1)を得ることができる。さらに、R1の炭素数が上記範囲内で多いほど、ゲル化能及び化合物(1)を含むゲル状組成物の熱安定性が高まる。 R 1 is independently preferably a divalent hydrocarbon group having 2 to 16 carbon atoms, and more preferably a divalent hydrocarbon group having 4 to 12 carbon atoms. R 1 is preferably an alkylene group, and more preferably an alkylene group having 4 to 12 carbon atoms. When R 1 is as described above, a compound (1) having a higher gelation ability can be obtained by a synthetic route in which raw materials are more easily available. Furthermore, the more the carbon number of R 1 is within the above range, the higher the gelability and the thermal stability of the gel composition containing the compound (1).

Rは、パーフルオロアルキル基を有する飽和又は不飽和の炭素数2〜22の1価の炭化水素基を示す。Rの主鎖の炭素数は、4〜16であると好ましく、4〜10であるとより好ましい。その炭素数を上記範囲にすることで、化合物(1)は合成がより容易となり、かつ一層高いゲル化能を示すと共に、取り扱い性にもさらに優れる化合物となる。   R represents a saturated or unsaturated monovalent hydrocarbon group having 2 to 22 carbon atoms having a perfluoroalkyl group. The number of carbons in the main chain of R is preferably 4 to 16, and more preferably 4 to 10. By making the carbon number within the above range, the compound (1) becomes a compound that is easier to synthesize, exhibits higher gelation ability, and is more excellent in handleability.

Rはパーフルオロアルキル基(以下、この段落において「Rf基」と表記する。)とアルキレン基(以下、この段落において「Rh基」と表記する。)を含むものであることが好ましく、それらからなるものであることがより好ましい。具体的には、Rは、下記一般式(2)で表される基であると好ましい。
m2m+1p2p− (2)
ここで、式(2)中、mは2〜16の自然数を示し、pは0〜6の整数を示す。
R preferably contains a perfluoroalkyl group (hereinafter referred to as “Rf group” in this paragraph) and an alkylene group (hereinafter referred to as “Rh group” in this paragraph), and consists of them. It is more preferable that Specifically, R is preferably a group represented by the following general formula (2).
C m F 2m + 1 C p H 2p − (2)
Here, in formula (2), m represents a natural number of 2 to 16, and p represents an integer of 0 to 6.

同様の観点、並びに取扱い性及び合成の容易性の観点から、mは2〜10であることが好ましく、4〜8であるとより好ましい。同様の観点から、pは2〜6であることが好ましく、2〜4であることがより好ましい。さらに、mの方がpよりも大きい方が好ましく、Rf基は分枝のない直鎖構造であることがより好ましい。Rf基の鎖はゲル化能により大きく影響を与える。   From the same viewpoint, from the viewpoint of handleability and ease of synthesis, m is preferably 2 to 10, and more preferably 4 to 8. From the same viewpoint, p is preferably 2 to 6, and more preferably 2 to 4. Further, m is preferably larger than p, and the Rf group is more preferably a straight chain structure without branching. The chain of the Rf group greatly affects the gelling ability.

Xは硫黄原子(−S−で表される基)又はSO2基(−SO2−で表される基)を示す。化合物(1)がこれらの2価の基を有すると取扱い性とゲル化能又は液晶性とのバランスに優れたものとなる。化合物(1)が硫黄原子を有する場合、取り扱い性により優れると共に、合成が一層容易となる。一方、化合物(1)がSO2基を有する場合、ゲル化性能又は液晶性に一層優れる。 X represents a sulfur atom (a group represented by —S—) or an SO 2 group (a group represented by —SO 2 —). When the compound (1) has these divalent groups, the balance between handleability and gelling ability or liquid crystallinity is excellent. When the compound (1) has a sulfur atom, it is excellent in handleability and is further easily synthesized. On the other hand, when the compound (1) has an SO 2 group, the gelation performance or liquid crystallinity is further improved.

Yはシアノ基、ニトロ基、飽和若しくは不飽和の炭素数2〜20の1価のアルコキシル基又はフッ素原子を示す。飽和又は不飽和の炭素数2〜20の1価のアルコキシル基としては、飽和又は不飽和の炭素数2〜10の1価のアルコキシ基が好ましく、飽和の炭素数2〜8の1価のアルコキシ基がより好ましい。Yが、シアノ基又はニトロ基であると、化合物(1)が液晶性により優れたものとなり、Yが、炭素数2〜20の1価のアルコキシ基又はフッ素原子であると、ゲル化能及び化合物(1)を含むゲル状組成物の熱安定性が向上する。   Y represents a cyano group, a nitro group, a saturated or unsaturated monovalent alkoxyl group having 2 to 20 carbon atoms, or a fluorine atom. The saturated or unsaturated monovalent alkoxyl group having 2 to 20 carbon atoms is preferably a saturated or unsaturated monovalent alkoxy group having 2 to 10 carbon atoms, and saturated monovalent alkoxy having 2 to 8 carbon atoms. Groups are more preferred. When Y is a cyano group or a nitro group, the compound (1) becomes more excellent in liquid crystallinity, and when Y is a monovalent alkoxy group having 2 to 20 carbon atoms or a fluorine atom, gelation ability and The thermal stability of the gel composition containing the compound (1) is improved.

以下、本実施形態の化合物(1)の好ましいものを、R、X、Ar1、R1、Ar2及びYの組合せとして例示する。 Hereinafter, preferable examples of the compound (1) of the present embodiment are exemplified as combinations of R, X, Ar 1 , R 1 , Ar 2 and Y.

本実施形態の化合物(1)の製法は特に限定されるものでないが、例えば、下記のスキーム又はそれに準じたスキームによって合成することができる。なお、より詳細には実施例に記載の方法により合成することができる。また、各式中の符号のうち上記一般式(1)と同じ符号は、その一般式(1)におけるものと同義であり、各式同士で互いに同じ符号がある場合は、それらの符号は互いに同義である。   Although the manufacturing method of the compound (1) of this embodiment is not specifically limited, For example, it is compoundable with the following scheme or the scheme according to it. In more detail, it can be synthesized by the method described in the examples. Moreover, the code | symbol same as the said General formula (1) among the code | symbols in each formula is synonymous with the thing in the general formula (1), and when each formula has the same code | symbol mutually, those code | symbols mutually It is synonymous.

まず、下記一般式(1a)で表される化合物を、アセトンなどの溶媒中、K2CO3などのアルカリ金属化合物の存在下、下記一般式(1b)で表される化合物でスルフィド化して、下記一般式(1c)で表される化合物を得る。
H−S−Ar1−OH (1a)
RZ1 (1b)
R−S−Ar1−OH (1c)
ここで、上記式中、Z1は、例えばヨウ素原子などのハロゲン原子を示す(以下同様。)。
First, a compound represented by the following general formula (1a) is sulfided with a compound represented by the following general formula (1b) in the presence of an alkali metal compound such as K 2 CO 3 in a solvent such as acetone. A compound represented by the following general formula (1c) is obtained.
H—S—Ar 1 —OH (1a)
RZ 1 (1b)
R—S—Ar 1 —OH (1c)
Here, in the above formula, Z 1 represents a halogen atom such as an iodine atom (the same applies hereinafter).

次いで、上記一般式(1c)で表される化合物を、アセトン又は3−ペンタノンなどの溶媒中、K2CO3などのアルカリ金属化合物の存在下、下記一般式(1d)で表される化合物でエーテル化して、下記一般式(1e)で表される化合物を得る。
2−R1−Z2 (1d)
R−S−Ar1−O−R1−Z2 (1e)
ここで、式(1d)及び(1e)中、Z2は、例えば臭素原子などのハロゲン原子を示す(以下同様。)。
Next, the compound represented by the general formula (1c) is a compound represented by the following general formula (1d) in the presence of an alkali metal compound such as K 2 CO 3 in a solvent such as acetone or 3-pentanone. Etherification yields a compound represented by the following general formula (1e).
Z 2 -R 1 -Z 2 (1d)
R—S—Ar 1 —O—R 1 —Z 2 (1e)
Here, in the formulas (1d) and (1e), Z 2 represents a halogen atom such as a bromine atom (the same applies hereinafter).

上記一般式(1e)で表される化合物を酢酸などの触媒の存在下で、過酸化水素などの酸化剤により酸化(スルホニル化)することで、下記一般式(1f)で表される化合物が得られる。
R−SO2−Ar1−O−R1−Z2 (1f)
By oxidizing (sulfonylating) the compound represented by the general formula (1e) with an oxidizing agent such as hydrogen peroxide in the presence of a catalyst such as acetic acid, the compound represented by the following general formula (1f) is obtained. can get.
R—SO 2 —Ar 1 —O—R 1 —Z 2 (1f)

次いで、上記式(1e)又は(1f)で表される化合物を、アセトン、3−ペンタノン又はシクロヘキサノンなどの溶媒中、K2CO3などのアルカリ金属化合物の存在下、下記一般式(1g)で表される化合物と反応させて、化合物(1)を得る。
HO−Ar2−Y (1g)
Next, the compound represented by the above formula (1e) or (1f) is represented by the following general formula (1g) in the presence of an alkali metal compound such as K 2 CO 3 in a solvent such as acetone, 3-pentanone or cyclohexanone. Reaction with the represented compound gives compound (1).
HO—Ar 2 —Y (1 g)

また、Ar1がビフェニレン基やターフェニレン基、フェニレンピリジレン基などの複数の芳香環を単結合により結合した基である場合は、例えば下記合成法により、化合物(1)を得ることができる。まず、下記一般式(1h)で表されるチオール化合物を、アセトンなどの溶媒中、K2CO3などのアルカリ金属化合物の存在下、上記一般式(1b)で表される化合物でスルフィド化して、下記一般式(1i)で表される化合物を得る。ここで、式(1h)及び(1i)中、Z3は、例えば臭素原子などのハロゲン原子を示し、Ar3は、上記一般式(1)におけるAr1を構成する2価の芳香族炭化水素基の一部を示す。
HS−Ar3−Z3 (1h)
R−S−Ar3−Z3 (1i)
Further, when Ar 1 is a group in which a plurality of aromatic rings such as a biphenylene group, a terphenylene group, or a phenylenepyridylene group are bonded by a single bond, the compound (1) can be obtained by, for example, the following synthesis method. First, a thiol compound represented by the following general formula (1h) is sulfided with a compound represented by the above general formula (1b) in the presence of an alkali metal compound such as K 2 CO 3 in a solvent such as acetone. The compound represented by the following general formula (1i) is obtained. Here, in the formulas (1h) and (1i), Z 3 represents a halogen atom such as a bromine atom, and Ar 3 is a divalent aromatic hydrocarbon constituting Ar 1 in the general formula (1). A part of the group is shown.
HS-Ar 3 -Z 3 (1h )
R—S—Ar 3 —Z 3 (1i)

次いで、上記一般式(1i)で表される化合物を、酢酸などの触媒の存在下で、過酸化水素などの酸化剤により酸化することで、下記化合物(1j)を得る。
R−SO2−Ar3−Z3 (1j)
Next, the following compound (1j) is obtained by oxidizing the compound represented by the general formula (1i) with an oxidizing agent such as hydrogen peroxide in the presence of a catalyst such as acetic acid.
R—SO 2 —Ar 3 —Z 3 (1j)

次に、上記一般式(1i)又は(1j)で表される化合物と下記一般式(1k)で表される化合物とから、Na2CO3などの塩基水溶液中、パラジウム触媒の存在下で、鈴木・宮浦カップリングにより、下記一般式(1l)で表される化合物を得る。ここで、式(1k)中、Ar4は、上記一般式(1)におけるAr1を構成する2価の芳香族炭化水素基の一部であって、Ar3とは別の一部を示し、Ar3とAr4が単結合により結合したものがAr1となる。また、R2は、例えばメチル基などのアルキル基を示す。
2−O−Ar3−B(OH)2 (1k)
R−X−Ar1−O−R2 (1l)
Next, from the compound represented by the general formula (1i) or (1j) and the compound represented by the following general formula (1k), in the presence of a palladium catalyst in an aqueous base solution such as Na 2 CO 3 , A compound represented by the following general formula (1l) is obtained by Suzuki-Miyaura coupling. Here, in the formula (1k), Ar 4 represents a part of the divalent aromatic hydrocarbon group constituting Ar 1 in the general formula (1), and represents a part different from Ar 3. Ar 3 and Ar 4 are bonded by a single bond to form Ar 1 . R 2 represents an alkyl group such as a methyl group.
R 2 —O—Ar 3 —B (OH) 2 (1k)
R—X—Ar 1 —O—R 2 (1 l)

次いで、上記一般式(1l)で表される化合物を、酸触媒の存在下で脱アルキル化して、下記一般式(1m)で表される化合物を得る。
R−X−Ar1−OH (1m)
Next, the compound represented by the general formula (1l) is dealkylated in the presence of an acid catalyst to obtain a compound represented by the following general formula (1m).
R—X—Ar 1 —OH (1 m)

次に、上記一般式(1m)で表される化合物を、アセトン又は3−ペンタノンなどの溶媒中、K2CO3などのアルカリ金属化合物の存在下、上記一般式(1d)で表される化合物でエーテル化して、下記一般式(1n)で表される化合物を得る。
R−X−Ar1−O−R1−Z2 (1n)
Next, the compound represented by the general formula (1m) is converted into the compound represented by the general formula (1d) in a solvent such as acetone or 3-pentanone in the presence of an alkali metal compound such as K 2 CO 3 . To obtain a compound represented by the following general formula (1n).
R—X—Ar 1 —O—R 1 —Z 2 (1n)

そして、上記式(1n)で表される化合物を、アセトン、3−ペンタノン又はシクロヘキサノンなどの溶媒中、K2CO3などのアルカリ金属化合物の存在下、上記一般式(1g)で表される化合物と反応させて、化合物(1)を得る。 Then, the compound represented by the above formula (1n) is converted to the compound represented by the above general formula (1g) in the presence of an alkali metal compound such as K 2 CO 3 in a solvent such as acetone, 3-pentanone or cyclohexanone. To give compound (1).

本実施形態の化合物(1)は、有機溶媒をゲル化するゲル化剤として用いることができる。特に、かかる化合物は、多様な有機溶媒を少量の添加によりゲル化又は固化できる点で有利である。また、本実施形態のゲル状組成物は、1種又は2種以上の化合物(1)と有機溶媒とを含有する。   The compound (1) of this embodiment can be used as a gelling agent that gels an organic solvent. In particular, such a compound is advantageous in that it can be gelled or solidified by adding a small amount of various organic solvents. Moreover, the gel-like composition of this embodiment contains 1 type, or 2 or more types of compounds (1), and an organic solvent.

本実施形態のゲル状組成物に含まれる有機溶媒は非水溶媒であると好ましい。非水溶媒としては特に限定されないが、室温で液体である非水溶媒を用いるのが一般的である。   The organic solvent contained in the gel composition of the present embodiment is preferably a non-aqueous solvent. The non-aqueous solvent is not particularly limited, but a non-aqueous solvent that is liquid at room temperature is generally used.

そのような非水溶媒としては、例えば、メタノール、エタノール、イソプロパノール、ブタノール及びオクタノールなどのアルコール類、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル及びγ−ブチロラクトン、γ―バレロラクトン、ε―カプロラクトンなどの酸エステル類、ジメチルケトン、ジエチルケトン、メチルエチルケトン、3−ペンタノン及びアセトンなどのケトン類、ペンタン、ヘキサン、オクタン、シクロヘキサン、パーフルオロデカリン、ベンゼン、トルエン、キシレン、フルオロベンゼン及びヘキサフルオロベンゼンなどのフッ素原子を有してもよい炭化水素類、ジエチルエーテル、1,2−ジメトキシエタン、1,4−ジオキサン、クラウンエーテル類、グライム類、テトラヒドロフラン及びフルオロアルキルエーテルなどのエーテル類、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、エチレンジアミン及びピリジンなどのアミド類、プロピレンカーボネート、エチレンカーボネート、ビニレンカーボネート、フルオロエチレンカーボネート、ジエチルカーボネート、エチルメチルカーボネートなどのカーボネート類、パーフルオロトリブチルアミンなどのフッ素原子を有していてもよいアミン類、アセトニトリル、プロピオニトリル、アジポニトリル、メトキシアセトニトリルなどのニトリル類、N−メチルピロリドン(NMP)などのラクタム類、スルフォランなどのスルホン類、ジメチルスルホキシドなどのスルホキシド類、シリコンオイル及び石油などの工業オイル類、食用油などが挙げられる。   Examples of such non-aqueous solvents include alcohols such as methanol, ethanol, isopropanol, butanol and octanol, methyl acetate, ethyl acetate, propyl acetate, butyl acetate and γ-butyrolactone, γ-valerolactone, ε-caprolactone, etc. Acid esters, ketones such as dimethyl ketone, diethyl ketone, methyl ethyl ketone, 3-pentanone and acetone, fluorine such as pentane, hexane, octane, cyclohexane, perfluorodecalin, benzene, toluene, xylene, fluorobenzene and hexafluorobenzene Hydrocarbons which may have an atom, diethyl ether, 1,2-dimethoxyethane, 1,4-dioxane, crown ethers, glymes, tetrahydrofuran and fluoroalkyl ether Ethers such as N, N-dimethylacetamide, N, N-dimethylformamide, amides such as ethylenediamine and pyridine, carbonates such as propylene carbonate, ethylene carbonate, vinylene carbonate, fluoroethylene carbonate, diethyl carbonate, ethyl methyl carbonate , Amines which may have a fluorine atom such as perfluorotributylamine, nitriles such as acetonitrile, propionitrile, adiponitrile and methoxyacetonitrile, lactams such as N-methylpyrrolidone (NMP), sulfolane and the like Examples include sulfones, sulfoxides such as dimethyl sulfoxide, industrial oils such as silicon oil and petroleum, and edible oils.

また、非水溶媒としてイオン液体を用いることもできる。イオン液体とは、有機カチオンとアニオンとを組み合わせたイオンからなる常温溶融塩である。イオン液体は、難燃性であり、爆発性が低く、蒸気圧がほとんどないことなどが特徴である。また、イオン液体は、熱やイオンの伝導性が高いこと、イオン種の選択によって物性制御デザインが可能であること、及び選択的で高いガス吸収能を有することなどから、様々な用途への展開が期待されている。   Moreover, an ionic liquid can also be used as a non-aqueous solvent. An ionic liquid is a room temperature molten salt composed of ions obtained by combining an organic cation and an anion. Ionic liquids are flame retardant, have low explosive properties, and have almost no vapor pressure. In addition, ionic liquids have high heat and ion conductivity, physical property control design is possible by selecting ionic species, and selective and high gas absorption capability, so that they can be used in various applications. Is expected.

有機カチオンとしては、例えば、ジアルキルイミダゾリウムカチオン、トリアルキルイミダゾリウムカチオン等のイミダゾリウムイオン、テトラアルキルアンモニウムイオン、トリアルキルアルコキシアルキルアンモニウムイオン、アルキルピリジニウムイオン、ジアルキルピロリジニウムイオン、ジアルキルピペリジニウムイオンが挙げられる。   Examples of organic cations include imidazolium ions such as dialkylimidazolium cations and trialkylimidazolium cations, tetraalkylammonium ions, trialkylalkoxyalkylammonium ions, alkylpyridinium ions, dialkylpyrrolidinium ions, and dialkylpiperidinium ions. It is done.

これらの有機カチオンのカウンターとなるアニオンとしては、例えば、PF6アニオン、PF3(C253アニオン、PF3(CF33アニオン、BF4アニオン、BF2(CF32アニオン、BF3(CF3)アニオン、ビスオキサラトホウ酸アニオン、Tf(トリフルオロメタンスルフォニル)アニオン、Nf(ノナフルオロブタンスルホニル)アニオン、ビス(フルオロスルフォニル)イミドアニオン、ビス(トリフルオロメタンスルフォニル)イミドアニオン、ビス(ペンタフルオロエタンスルフォニル)イミドアニオン、ジシアノアミンアニオン、ハロゲン化物アニオンなどを用いることができる。 Examples of the anion serving as a counter for these organic cations include PF 6 anion, PF 3 (C 2 F 5 ) 3 anion, PF 3 (CF 3 ) 3 anion, BF 4 anion, and BF 2 (CF 3 ) 2 anion. , BF 3 (CF 3 ) anion, bisoxalatoborate anion, Tf (trifluoromethanesulfonyl) anion, Nf (nonafluorobutanesulfonyl) anion, bis (fluorosulfonyl) imide anion, bis (trifluoromethanesulfonyl) imide anion, bis (Pentafluoroethanesulfonyl) imide anion, dicyanoamine anion, halide anion and the like can be used.

これらの非水溶媒は1種を単独で又は2種以上を組み合わせて用いられる。   These non-aqueous solvents are used alone or in combination of two or more.

本実施形態のゲル状組成物は、その全量に対して化合物(1)を0.05〜10.0質量%含有すると好ましく、0.1〜8.0質量%含有するとより好ましく、0.3〜5.0質量%含有すると更に好ましい。この含有量が上記下限値以上であることにより、化合物(1)がゲル化剤としてより十分に機能する傾向にあり、上記上限値以下であることにより、経済性及びハンドリング性が更に向上する傾向にあると共に、ゲル化剤が不純物となるのを一層抑制し、非水溶媒が有する性能の低下を更に防止することができる。同様の観点から、本実施形態のゲル状組成物は、その全量に対して有機溶媒を90〜99.95質量%含有すると好ましく、92〜99.9質量%含有するとより好ましく、95〜99.7質量%含有すると更に好ましい。   The gel composition of the present embodiment preferably contains 0.05 to 10.0% by mass of compound (1), more preferably 0.1 to 8.0% by mass, and 0.3 More preferably, the content is ˜5.0 mass%. When the content is equal to or higher than the lower limit, the compound (1) tends to function more satisfactorily as a gelling agent. When the content is equal to or lower than the upper limit, the economy and handling properties tend to be further improved. In addition, it is possible to further suppress the gelling agent from becoming an impurity and further prevent the performance of the nonaqueous solvent from being deteriorated. From the same viewpoint, the gel composition of the present embodiment preferably contains 90 to 99.95% by mass of the organic solvent, more preferably 92 to 99.9% by mass, and more preferably 95 to 99.99% by mass with respect to the total amount. More preferably, the content is 7% by mass.

本実施形態のゲル状組成物は、化合物(1)と有機溶媒に加えて、化合物(1)のゲル化剤としての機能を阻害しない範囲において他の成分を含有してもよい。そのような成分としては、例えば、化合物(1)以外のゲル化剤、凝固剤、増粘剤、安定剤、酸化防止剤、乳化剤、潤滑剤及び安全性向上添加剤などが挙げられる。   The gel composition of this embodiment may contain other components in addition to the compound (1) and the organic solvent as long as the function of the compound (1) as a gelling agent is not inhibited. Examples of such components include gelling agents other than compound (1), coagulants, thickeners, stabilizers, antioxidants, emulsifiers, lubricants, and safety improving additives.

本実施形態のゲル状組成物の調製法は特に限定しないが、例えば、有機溶媒、ゲル化剤(すなわち化合物(1))及びその他の添加剤などを加熱しながら混合して均一な混合液にした後に当該混合液を降温することで調製できる。各成分の混合順は特に問わないが、予め非水溶媒と添加剤とからなる溶液を調製した後に、ゲル化剤を混合すると、より容易に均一な混合液になるため、好ましい。   Although the preparation method of the gel composition of this embodiment is not specifically limited, For example, it mixes, heating an organic solvent, a gelatinizer (namely, compound (1)), and other additives, etc. to a uniform liquid mixture. Then, it can be prepared by lowering the temperature of the mixture. The order of mixing the components is not particularly limited, but it is preferable to prepare a solution composed of a non-aqueous solvent and an additive in advance and then mix the gelling agent, so that a uniform mixed solution can be obtained more easily.

また、本実施形態の化合物(1)は、液晶性化合物として用いることもできる。化合物(1)は、特定の温度範囲でスメクチックA相を形成することができる。   Moreover, the compound (1) of this embodiment can also be used as a liquid crystalline compound. Compound (1) can form a smectic A phase in a specific temperature range.

以下、実施例によって本発明を更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。なお、以下、一般式(α)、一般式(α−β)及び一般式(γ)で表される化合物(α及びβは自然数を示し、γはアルファベットを示す。)を、それぞれ、化合物(α)、化合物(α−β)及び化合物(γ)と表記する。図面の簡単な説明においても同様である。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these Examples. Hereinafter, the compounds represented by the general formula (α), the general formula (α-β), and the general formula (γ) (α and β represent natural numbers, and γ represents an alphabet) are respectively represented by the compounds ( α), compound (α-β) and compound (γ). The same applies to the brief description of the drawings.

(実施例1)
(化合物(1−6)の合成)
まず、下記のスキームにて、下記式(A)で表される化合物を得た。
Example 1
(Synthesis of Compound (1-6))
First, a compound represented by the following formula (A) was obtained by the following scheme.

具体的には、まず、2−(ペルフルオロヘキシル)エチルアイオダイド21.70g(45.8mmol)、4−メルカプトフェノール5.72g(45.3mmol)、炭酸カリウム7.24g(52.8mmol)、及びアセトン50mLを200mLナスフラスコ内に入れ、65℃で2日間、還流を行った。反応終了後、室温になるまで静置し分液漏斗に移した。そこに、適量の水と1N塩酸30mLとを加えた後に酢酸エチル及び食塩水を更に加えて水相と有機相に分離した。次に、有機相に無水硫酸マグネシウムを加え30分間静置した後、ひだ折り濾過を行い、濾液をエバポレーターで濃縮し固体を得た。得られた固体をクロロホルムでシリカゲルカラムクロマトグラフィーにより精製し、化合物(A)18.23g(38.6mmol)を得た。得られた化合物(A)は無色の粉末であり、その融点は65〜68℃であり、収率は85.2%であった。また、赤外分光光度計(株式会社島津製作所社製、商品名「IRPrestige−21」。以下同様。)、及び、核磁気共鳴装置(日本電子株式会社社製、商品名「JMN−LA500」。以下同様。)により、化合物(A)を同定した。その結果を下記に示す。
IR(KBr):ν=3431 (O-H), 1588,1492 (C=C), 1235-1140 (C-F) cm-1
1H NMR(500MHz,CDCl3):δ = 2.28-2.38 (2H, m), 2.99 (2H, tt, J = 8.2, 2.7 Hz), 5.00 (1H, s), 6.82 (2H, d, J = 8.5 Hz), 7.34 (2H, d, J = 8.5 Hz) ppm
Specifically, first, 2- (perfluorohexyl) ethyl iodide 21.70 g (45.8 mmol), 4-mercaptophenol 5.72 g (45.3 mmol), potassium carbonate 7.24 g (52.8 mmol), and 50 mL of acetone was placed in a 200 mL eggplant flask and refluxed at 65 ° C. for 2 days. After completion of the reaction, the mixture was allowed to stand at room temperature and transferred to a separatory funnel. An appropriate amount of water and 30 mL of 1N hydrochloric acid were added thereto, and then ethyl acetate and brine were further added to separate into an aqueous phase and an organic phase. Next, anhydrous magnesium sulfate was added to the organic phase, and the mixture was allowed to stand for 30 minutes, followed by pleat filtration, and the filtrate was concentrated with an evaporator to obtain a solid. The obtained solid was purified by silica gel column chromatography with chloroform to obtain 18.23 g (38.6 mmol) of compound (A). The obtained compound (A) was a colorless powder, its melting point was 65 to 68 ° C., and the yield was 85.2%. In addition, an infrared spectrophotometer (manufactured by Shimadzu Corporation, trade name “IR Prestige-21”, the same applies hereinafter) and a nuclear magnetic resonance apparatus (manufactured by JEOL Ltd., trade name “JMN-LA500”). The same shall apply hereinafter) to identify the compound (A). The results are shown below.
IR (KBr): ν = 3431 (OH), 1588,1492 (C = C), 1235-1140 (CF) cm -1
1 H NMR (500 MHz, CDCl 3 ): δ = 2.28-2.38 (2H, m), 2.99 (2H, tt, J = 8.2, 2.7 Hz), 5.00 (1H, s), 6.82 (2H, d, J = 8.5 Hz), 7.34 (2H, d, J = 8.5 Hz) ppm

次に、下記のスキームにて、化合物(B)を得た。
Next, the compound (B) was obtained according to the following scheme.

具体的には、まず、化合物(A)2.12g(4.47mmol)、1,6−ジブロモヘキサン3.68g(15.1mmol)、炭酸カリウム0.72g(5.22mmol)、及びアセトン50mLを200mLナスフラスコ内に入れ、60℃で11時間、還流を行った。その間、高速液体クロマトグラフィー(HPLC)にて1時間毎に反応の進行度を確認した。反応終了後、室温になるまで静置し分液漏斗に移した。そこに、水、酢酸エチル及び食塩水を加えて水相と有機相に分離した。次に、有機相に無水硫酸マグネシウムを加えて30分間静置した後、ひだ折り濾過を行い、濾液をエバポレーターで濃縮し液体を得た。得られた液体にメタノールを加え、析出した固体をろ別し、得られた濾液を減圧蒸留して、化合物(B)1.79g(2.81mmol)を得た。得られた化合物(B)は灰色の固体であり、その融点は35〜37℃であり、収率は62.9%であった。また、赤外分光光度計及び核磁気共鳴装置により、化合物(B)を同定した。その結果を下記に示す。
IR(KBr):ν=1591,1496 (C=C), 1235-1140 (C-F), 640-520 (C-Br) cm-1
1H NMR(500MHz,CDCl3):δ = 1.49-1.58 (6H, m), 1.80 (2H, quin, J = 6.4 Hz), 1.90 (2H, quin, J = 6.4 Hz), 2.28-2.38 (2H, m), 3.30 (2H, tt, J = 7.9, 3.1 Hz), 3.42 (2H, t, J = 6.7 Hz), 3.95 (2H, t, J = 6.7 Hz), 6.86 (2H, d, J = 8.5 Hz), 7.36 (2H, d, J = 8.5 Hz) ppm
Specifically, first, 2.12 g (4.47 mmol) of compound (A), 3.68 g (15.1 mmol) of 1,6-dibromohexane, 0.72 g (5.22 mmol) of potassium carbonate, and 50 mL of acetone were added. The flask was placed in a 200 mL eggplant flask and refluxed at 60 ° C. for 11 hours. Meanwhile, the progress of the reaction was confirmed every hour by high performance liquid chromatography (HPLC). After completion of the reaction, the mixture was allowed to stand at room temperature and transferred to a separatory funnel. Water, ethyl acetate and brine were added thereto to separate into an aqueous phase and an organic phase. Next, anhydrous magnesium sulfate was added to the organic phase, and the mixture was allowed to stand for 30 minutes, followed by pleat filtration, and the filtrate was concentrated with an evaporator to obtain a liquid. Methanol was added to the obtained liquid, the precipitated solid was filtered off, and the obtained filtrate was distilled under reduced pressure to obtain 1.79 g (2.81 mmol) of Compound (B). The obtained compound (B) was a gray solid, its melting point was 35 to 37 ° C., and the yield was 62.9%. Moreover, the compound (B) was identified with the infrared spectrophotometer and the nuclear magnetic resonance apparatus. The results are shown below.
IR (KBr): ν = 1591, 1496 (C = C), 1235-1140 (CF), 640-520 (C-Br) cm -1
1 H NMR (500 MHz, CDCl 3 ): δ = 1.49-1.58 (6H, m), 1.80 (2H, quin, J = 6.4 Hz), 1.90 (2H, quin, J = 6.4 Hz), 2.28-2.38 (2H , m), 3.30 (2H, tt, J = 7.9, 3.1 Hz), 3.42 (2H, t, J = 6.7 Hz), 3.95 (2H, t, J = 6.7 Hz), 6.86 (2H, d, J = 8.5 Hz), 7.36 (2H, d, J = 8.5 Hz) ppm

そして、下記のスキームにて、化合物(1−6)を得た。
And the compound (1-6) was obtained with the following scheme.

具体的には、まず、化合物(B)1.8g(2.38mmol)、4−シアノ−4’−ヒドロキシビフェニル0.59g(2.40mmol)、炭酸カリウム0.53g(3.89mmol)、及びアセトン50mLをナスフラスコ内に入れ、65℃で2日間還流を行った。反応終了後、室温になるまで静置し分液漏斗に移した。そこに、水、シクロペンチルメチルエーテル及び食塩水を加えて水相と有機相に分離した。次に、有機相に無水硫酸マグネシウムを加えて30分間静置した後、ひだ折り濾過を行い、濾液をエバポレーターで濃縮し固体を得た。得られた固体を、クロロホルムでシリカゲルカラムクロマトグラフィーにより精製し、化合物(1−6)1.49g(1.99mmol)を得た。得られた化合物(1−6)は無色の粉末であり、その融点は108〜110℃であり、収率は83.6%であった。また、赤外分光光度計及び核磁気共鳴装置により、化合物(1−6)を同定した。その結果を下記に示す。
IR(KBr):ν =2250 (C≡N), 1593,1491 (C=C), 1235-1140 (C-F) cm-1
1H NMR(500MHz,CDCl3):δ = 1.56 (4H, quin, J = 3.66 Hz), 1.85 (4H, quin, J = 4.12 Hz), 2.28-2.38 (2H,m), 3.00 (2H, tt, J = 7.9, 3.1 Hz), 3.97 (2H, t, J =6.41 Hz), 4.02 (2H, t, J = 6.41 Hz), 6.87 (2H, d, J = 8.55 Hz), 6.99 (2H, d, J = 8.55 Hz), 7.36 (2H, d, J = 9.16 Hz), 7.52 (2H, d, J = 9.16 Hz), 7.63 (2H, d, J = 8.55 HZ), 7.69 (2H, d, J = 8.55 Hz) ppm
Specifically, first, 1.8 g (2.38 mmol) of compound (B), 0.59 g (2.40 mmol) of 4-cyano-4′-hydroxybiphenyl, 0.53 g (3.89 mmol) of potassium carbonate, and 50 mL of acetone was placed in a recovery flask and refluxed at 65 ° C. for 2 days. After completion of the reaction, the mixture was allowed to stand until it reached room temperature and transferred to a separatory funnel. Water, cyclopentyl methyl ether and brine were added thereto to separate into an aqueous phase and an organic phase. Next, anhydrous magnesium sulfate was added to the organic phase, and the mixture was allowed to stand for 30 minutes, then fold-fold filtration was performed, and the filtrate was concentrated with an evaporator to obtain a solid. The obtained solid was purified by silica gel column chromatography with chloroform to obtain 1.49 g (1.99 mmol) of compound (1-6). The obtained compound (1-6) was a colorless powder, its melting point was 108 to 110 ° C., and the yield was 83.6%. In addition, compound (1-6) was identified by an infrared spectrophotometer and a nuclear magnetic resonance apparatus. The results are shown below.
IR (KBr): ν = 2250 (C≡N), 1593,1491 (C = C), 1235-1140 (CF) cm -1
1 H NMR (500 MHz, CDCl 3 ): δ = 1.56 (4H, quin, J = 3.66 Hz), 1.85 (4H, quin, J = 4.12 Hz), 2.28-2.38 (2H, m), 3.00 (2H, tt , J = 7.9, 3.1 Hz), 3.97 (2H, t, J = 6.41 Hz), 4.02 (2H, t, J = 6.41 Hz), 6.87 (2H, d, J = 8.55 Hz), 6.99 (2H, d , J = 8.55 Hz), 7.36 (2H, d, J = 9.16 Hz), 7.52 (2H, d, J = 9.16 Hz), 7.63 (2H, d, J = 8.55 HZ), 7.69 (2H, d, J = 8.55 Hz) ppm

(実施例2)
(化合物(2)の合成)
まず、下記のスキームにて、化合物(C)を得た。
(Example 2)
(Synthesis of Compound (2))
First, compound (C) was obtained according to the following scheme.

具体的には、まず、上記のようにして得られた化合物(B)1.79g(2.81mmol)、35質量%過酸化水素水0.29g(2.91mmol)、及び酢酸50mLを200mLナスフラスコ内に入れ、110℃で一晩還流を行った。反応終了後、室温まで静置し、そこに6質量%亜硫酸水素ナトリウムを40mL加えて吸引濾過し、化合物(C)1.59g(2.38mmol)を得た。得られた化合物(C)は無色の結晶であり、その融点は64〜65℃であり、収率は85%であった。また、赤外分光光度計及び核磁気共鳴装置により、化合物(C)を同定した。その結果を下記に示す。
IR(KBr):ν = 1593,1497 (C=C), 1235-1140 (C-F), 640-520 (C-Br) cm-1
1H NMR(500MHz,CDCl3):δ = 1.52-1.58 (8H, m), 1.85 (2H, quin, J = 6.4 Hz), 1.91 (2H, quin, J = 6.4 Hz), 2.53-2.63 (2H, m), 3.29 (2H, tt, J = 8.5, 4.0 Hz), 3.43 (2H, t, J = 6.7 Hz), 4.06 (2H, t, J = 6.4 Hz), 7.05 (2H, d, J = 8.5 Hz), 7.85 (2H, d, J = 8.5 Hz) ppm
Specifically, first, 1.79 g (2.81 mmol) of the compound (B) obtained as described above, 0.29 g (2.91 mmol) of 35% by mass hydrogen peroxide, and 50 mL of acetic acid were added to 200 mL eggplant. The flask was placed in a flask and refluxed at 110 ° C. overnight. After completion of the reaction, the mixture was allowed to stand to room temperature, and 40 mL of 6% by mass sodium bisulfite was added thereto, followed by suction filtration to obtain 1.59 g (2.38 mmol) of Compound (C). The obtained compound (C) was a colorless crystal, the melting point was 64-65 ° C., and the yield was 85%. Moreover, the compound (C) was identified with the infrared spectrophotometer and the nuclear magnetic resonance apparatus. The results are shown below.
IR (KBr): ν = 1593,1497 (C = C), 1235-1140 (CF), 640-520 (C-Br) cm −1
1 H NMR (500 MHz, CDCl 3 ): δ = 1.52-1.58 (8H, m), 1.85 (2H, quin, J = 6.4 Hz), 1.91 (2H, quin, J = 6.4 Hz), 2.53-2.63 (2H , m), 3.29 (2H, tt, J = 8.5, 4.0 Hz), 3.43 (2H, t, J = 6.7 Hz), 4.06 (2H, t, J = 6.4 Hz), 7.05 (2H, d, J = 8.5 Hz), 7.85 (2H, d, J = 8.5 Hz) ppm

次に、下記のスキームにて、化合物(2)を得た。
Next, a compound (2) was obtained according to the following scheme.

具体的には、まず、化合物(C)2.60g(3.89mmol)、4−シアノ−4’−ヒドロキシビフェニル0.76g、(3.89mmol)、炭酸カリウム0.57g(4.11mmol)、及び3−ペンタノン50mLを200mLナスフラスコ内に入れ、110℃で24時間、還流を行った。反応終了後、室温になるまで静置し分液漏斗に移した。そこに、水、シクロペンチルメチルエーテル及び食塩水を加えて水相と有機相に分離した。次に、有機相に無水硫酸マグネシウムを加えて30分間静置した後、ひだ折り濾過を行い、濾液をエバポレーターで濃縮して固体を得た。得られた固体をクロロホルムでシリカゲルカラムクロマトグラフィーにより精製後、エタノールで再結晶を行い、化合物(2)2.19g(2.84mmol)を得た。得られた化合物(2)は無色の粉末であり、その融点は126〜128℃であり、収率は73.0%であった。また、赤外分光光度計及び核磁気共鳴装置により、化合物(2)を同定した。その結果を下記に示す。
IR(KBr):ν =2235 (C≡N), 1588,1498 (C=C), 1235-1140 (C-F) cm-1
1H NMR(500MHz,CDCl3):δ = 1.56 (4H, quin, J = 3.66 Hz), 1.87 (4H, quin, J = 6.71 Hz), 2.28-2.38 (2H,m), 3.00 (2H, tt, J = 8.5, 4.0 Hz), 4.03 (2H, t, J =6.41 Hz), 4.07 (2H, t, J = 6.41 Hz), 6.99 (2H, d, J = 8.55 Hz), 7.05 (2H, d, J = 9.16 Hz), 7.53 (2H, d, J = 8.55 Hz), 7.64 (2H, d, J = 8.55 Hz), 7.69 (2H, d, J = 8.55 HZ), 7.84 (2H, d, J = 9.16 Hz) ppm
Specifically, first, 2.60 g (3.89 mmol) of compound (C), 0.76 g of 4-cyano-4′-hydroxybiphenyl, (3.89 mmol), 0.57 g (4.11 mmol) of potassium carbonate, And 50 mL of 3-pentanone was put into a 200 mL eggplant flask and refluxed at 110 ° C. for 24 hours. After completion of the reaction, the mixture was allowed to stand until it reached room temperature and transferred to a separatory funnel. Water, cyclopentyl methyl ether and brine were added thereto to separate into an aqueous phase and an organic phase. Next, anhydrous magnesium sulfate was added to the organic phase, and the mixture was allowed to stand for 30 minutes, followed by pleat filtration, and the filtrate was concentrated with an evaporator to obtain a solid. The obtained solid was purified by silica gel column chromatography with chloroform and then recrystallized with ethanol to obtain 2.19 g (2.84 mmol) of Compound (2). The obtained compound (2) was a colorless powder, its melting point was 126 to 128 ° C., and the yield was 73.0%. In addition, Compound (2) was identified by an infrared spectrophotometer and a nuclear magnetic resonance apparatus. The results are shown below.
IR (KBr): ν = 2235 (C≡N), 1588,1498 (C = C), 1235-1140 (CF) cm -1
1 H NMR (500 MHz, CDCl 3 ): δ = 1.56 (4H, quin, J = 3.66 Hz), 1.87 (4H, quin, J = 6.71 Hz), 2.28-2.38 (2H, m), 3.00 (2H, tt , J = 8.5, 4.0 Hz), 4.03 (2H, t, J = 6.41 Hz), 4.07 (2H, t, J = 6.41 Hz), 6.99 (2H, d, J = 8.55 Hz), 7.05 (2H, d , J = 9.16 Hz), 7.53 (2H, d, J = 8.55 Hz), 7.64 (2H, d, J = 8.55 Hz), 7.69 (2H, d, J = 8.55 HZ), 7.84 (2H, d, J = 9.16 Hz) ppm

(実施例3)
(化合物(1−12)の合成)
下記のスキームにて、化合物(1−12)を得た。
Example 3
(Synthesis of Compound (1-12))
Compound (1-12) was obtained according to the following scheme.

具体的には、まず、化合物(A)3.00g(6.33mmol)、1,12−ジブロモウンデカン3.31g(9.50mmol)、炭酸カリウム1.03g、(7.46mmol)、及びアセトン50mLを200mLナスフラスコ内に入れ、60℃で11時間還流を行った。その間、HPLCにて1時間毎に反応の進行度を確認した。反応終了後、室温になるまで静置し分液漏斗に移した。そこに、水、酢酸エチル及び食塩水を加えて水相と有機相に分離した。次に、有機相に無水硫酸マグネシウムを加えて30分静置した後、ひだ折り濾過を行い、濾液をエバポレーターで濃縮し固体を得た。次いで、得られた固体をシクロペンチルメチルエーテルで洗浄し再び吸引濾過を行い、その洗浄を更に2回行った。得られた固体2.00g、4−シアノ−4’−ヒドロキシビフェニル1.24g、(6.36mmol)、炭酸カリウム1.24g、(8.99mmol)、及び3−ペンタノン50mLをナスフラスコ内に入れ、110℃で2日間還流を行った。反応終了後、室温になるまで静置し分液漏斗に移した。そこに、水、酢酸エチル及び食塩水を加えて水相と有機相に分離した。次に、有機相に無水硫酸マグネシウムを加えて30分静置した後、ひだ折り濾過を行い、濾液をエバポレーターで濃縮し固体を得た。得られた固体をクロロホルムでリサイクルHPLCにより精製し、化合物(1−12)0.82g(0.98mmol)を得た。得られた化合物(1−12)は、無色の粉末であり、その融点は107〜108℃であり、収率は15.5%であった。また、赤外分光光度計及び核磁気共鳴装置により、化合物(1−12)を同定した。その結果を下記に示す。
IR(KBr):ν = 2220 (C≡N), 1590,1496 (C=C), 1235-1140 (C-F) cm-1
1H NMR(500MHz,CDCl3):δ = 1.29-1.36 (10H, m), 1.42-1.50 (2H, m), 1.74-1.83 (8H, m), 2.27-2.38 (2H,m), 2.96 (2H, tt, J = 7.9, 3.1 Hz), 3.94 (2H, t, J = 6.41 Hz), 4.00 (2H, t, J = 6.71 Hz), 6.86 (2H, d, J = 9.16 Hz), 6.98 (2H, d, J = 9.16 Hz), 7.36 (2H, d, J = 9.16 Hz),7.51 (2H, d, J = 8.55 Hz), 7.62 (2H, d, J = 8.54 Hz), 7.67 (2H, d, J = 9.16 Hz) ppm
Specifically, first, 3.00 g (6.33 mmol) of compound (A), 3.31 g (9.50 mmol) of 1,12-dibromoundecane, 1.03 g of potassium carbonate (7.46 mmol), and 50 mL of acetone Was placed in a 200 mL eggplant flask and refluxed at 60 ° C. for 11 hours. Meanwhile, the progress of the reaction was confirmed every hour by HPLC. After completion of the reaction, the mixture was allowed to stand until it reached room temperature and transferred to a separatory funnel. Water, ethyl acetate and brine were added thereto to separate into an aqueous phase and an organic phase. Next, after adding anhydrous magnesium sulfate to the organic phase and allowing to stand for 30 minutes, pleat filtration was performed, and the filtrate was concentrated with an evaporator to obtain a solid. Subsequently, the obtained solid was washed with cyclopentyl methyl ether, suction filtered again, and the washing was further performed twice. 2.00 g of the obtained solid, 1.24 g of 4-cyano-4′-hydroxybiphenyl, (6.36 mmol), 1.24 g of potassium carbonate, (8.99 mmol), and 50 mL of 3-pentanone were placed in an eggplant flask. , And refluxed at 110 ° C. for 2 days. After completion of the reaction, the mixture was allowed to stand until it reached room temperature and transferred to a separatory funnel. Water, ethyl acetate and brine were added thereto to separate into an aqueous phase and an organic phase. Next, after adding anhydrous magnesium sulfate to the organic phase and allowing to stand for 30 minutes, pleat filtration was performed, and the filtrate was concentrated with an evaporator to obtain a solid. The obtained solid was purified by recycle HPLC with chloroform to obtain 0.82 g (0.98 mmol) of compound (1-12). The obtained compound (1-12) was a colorless powder, its melting point was 107 to 108 ° C., and the yield was 15.5%. In addition, compound (1-12) was identified by an infrared spectrophotometer and a nuclear magnetic resonance apparatus. The results are shown below.
IR (KBr): ν = 2220 (C≡N), 1590,1496 (C = C), 1235-1140 (CF) cm −1
1 H NMR (500 MHz, CDCl 3 ): δ = 1.29-1.36 (10H, m), 1.42-1.50 (2H, m), 1.74-1.83 (8H, m), 2.27-2.38 (2H, m), 2.96 ( 2H, tt, J = 7.9, 3.1 Hz), 3.94 (2H, t, J = 6.41 Hz), 4.00 (2H, t, J = 6.71 Hz), 6.86 (2H, d, J = 9.16 Hz), 6.98 ( 2H, d, J = 9.16 Hz), 7.36 (2H, d, J = 9.16 Hz), 7.51 (2H, d, J = 8.55 Hz), 7.62 (2H, d, J = 8.54 Hz), 7.67 (2H, d, J = 9.16 Hz) ppm

(実施例4)
(化合物(1−4)の合成)
まず、下記のスキームにて、化合物(H)を得た。
(Example 4)
(Synthesis of Compound (1-4))
First, compound (H) was obtained according to the following scheme.

具体的には、まず、化合物(A)3.08g(6.53mmol)、1,4−ジブロモブタン4.44g(20.6mmol)、炭酸カリウム1.50g(10.9mmol)、及びアセトン50mLを200mLナスフラスコ内に入れ、60℃で9時間、還流を行った。その間、高速液体クロマトグラフィー(HPLC)にて1時間毎に反応の進行度を確認した。反応終了後、室温になるまで静置し分液漏斗に移した。そこに、水、酢酸エチル及び食塩水を加えて水相と有機相に分離した。次に、有機相に無水硫酸マグネシウムを加えて30分間静置した後、ひだ折り濾過を行い、濾液をエバポレーターで濃縮し液体を得た。得られた液体にメタノールを加え再結晶して吸引濾過を行い、得られた濾液を減圧蒸留して、化合物(H)3.12g(5.12mmol)を得た。得られた化合物(H)は灰色の粘性がある固体であり、その融点は26〜30℃であり、収率は78%であった。また、赤外分光光度計及び核磁気共鳴装置により、化合物(H)を同定した。その結果を下記に示す。
IR(KBr):ν = 1234-1182 (C-F) cm-1
1H NMR(500MHz,CDCl3):δ = 1.95 (2H, quin, J = 3.05 Hz) 2.07 (2H, quin, J = 3.05 Hz), 2.28-2.38 (2H,m), 2.99 (2H, tt, J = 8.2, 2.7 Hz), 3.49 (2H, t, J = 6.41 Hz), 3.99 (2H, t, J = 6.10 Hz), 6.86 (2H, d, J = 8.55 HZ), 7.37 (2H, d, J = 8.55 Hz) ppm
Specifically, first, 3.08 g (6.53 mmol) of compound (A), 4.44 g (20.6 mmol) of 1,4-dibromobutane, 1.50 g (10.9 mmol) of potassium carbonate, and 50 mL of acetone were added. The flask was placed in a 200 mL eggplant flask and refluxed at 60 ° C. for 9 hours. Meanwhile, the progress of the reaction was confirmed every hour by high performance liquid chromatography (HPLC). After completion of the reaction, the mixture was allowed to stand until it reached room temperature and transferred to a separatory funnel. Water, ethyl acetate and brine were added thereto to separate into an aqueous phase and an organic phase. Next, anhydrous magnesium sulfate was added to the organic phase, and the mixture was allowed to stand for 30 minutes, followed by pleat filtration, and the filtrate was concentrated with an evaporator to obtain a liquid. Methanol was added to the obtained liquid for recrystallization and suction filtration was performed, and the obtained filtrate was distilled under reduced pressure to obtain 3.12 g (5.12 mmol) of compound (H). The compound (H) obtained was a gray viscous solid, its melting point was 26-30 ° C., and the yield was 78%. Moreover, the compound (H) was identified with the infrared spectrophotometer and the nuclear magnetic resonance apparatus. The results are shown below.
IR (KBr): ν = 1234-1182 (CF) cm -1
1 H NMR (500 MHz, CDCl 3 ): δ = 1.95 (2H, quin, J = 3.05 Hz) 2.07 (2H, quin, J = 3.05 Hz), 2.28-2.38 (2H, m), 2.99 (2H, tt, J = 8.2, 2.7 Hz), 3.49 (2H, t, J = 6.41 Hz), 3.99 (2H, t, J = 6.10 Hz), 6.86 (2H, d, J = 8.55 HZ), 7.37 (2H, d, J = 8.55 Hz) ppm

そして、下記のスキームにて、化合物(1−4)を得た。
And the compound (1-4) was obtained with the following scheme.

具体的には、まず、化合物(H)0.59g(0.97mmol)、4−シアノ−4’−ヒドロキシビフェニル0.19g(0.97mmol)、炭酸カリウム0.20g(1.45mmol)、及び3−ペンタノン50mLを200mLナスフラスコ内に入れ、110℃で24時間還流を行った。反応終了後、室温になるまで静置し分液漏斗に移した。そこに、水、シクロペンチルメチルエーテル及び食塩水を加えて水相と有機相に分離した。次に、有機相に無水硫酸マグネシウムを加えて30分間静置した後、ひだ折り濾過を行い、濾液をエバポレーターで濃縮し固体を得た。得られた固体を、クロロホルムでシリカゲルカラムクロマトグラフィーにより精製し、化合物(1−4)0.52g(0.72mmol)を得た。得られた化合物(1−4)は白色の粉末であり、その融点は124〜125℃であり、収率は74%であった。また、赤外分光光度計及び核磁気共鳴装置により、化合物(1−4)を同定した。その結果を下記に示す。
IR(KBr):ν = 2232 (C≡N), 1235-1140 (C-F) cm-1
1H NMR(500MHz,CDCl3):δ = 2.00 (4H, quin, J = 3.05 Hz), 2.28-2.38 (2H,m), 3.00 (2H, tt, J = 8.2, 2.7 Hz), 4.04 (2H, t, J = 5.50 Hz), 4.09 (2H, t, J = 5.80 Hz), 6.87 (2H, d, J = 9.16 Hz), 6.99 (2H, d, J = 8.55 Hz), 7.37 (2H, d, J = 8.55 Hz), 7.53 (2H, d, J = 8.55 Hz), 7.63 (2H, d, J = 8.55 HZ), 7.69 (2H, d, J = 8.55 Hz) ppm
Specifically, first, 0.59 g (0.97 mmol) of compound (H), 0.19 g (0.97 mmol) of 4-cyano-4′-hydroxybiphenyl, 0.20 g (1.45 mmol) of potassium carbonate, and 50 mL of 3-pentanone was placed in a 200 mL eggplant flask and refluxed at 110 ° C. for 24 hours. After completion of the reaction, the mixture was allowed to stand at room temperature and transferred to a separatory funnel. Water, cyclopentyl methyl ether and brine were added thereto to separate into an aqueous phase and an organic phase. Next, anhydrous magnesium sulfate was added to the organic phase, and the mixture was allowed to stand for 30 minutes, then fold-fold filtration was performed, and the filtrate was concentrated with an evaporator to obtain a solid. The obtained solid was purified by silica gel column chromatography with chloroform to obtain 0.52 g (0.72 mmol) of the compound (1-4). The compound (1-4) obtained was a white powder, its melting point was 124-125 ° C., and the yield was 74%. Moreover, the compound (1-4) was identified with the infrared spectrophotometer and the nuclear magnetic resonance apparatus. The results are shown below.
IR (KBr): ν = 2232 (C≡N), 1235-1140 (CF) cm −1
1 H NMR (500 MHz, CDCl 3 ): δ = 2.00 (4H, quin, J = 3.05 Hz), 2.28-2.38 (2H, m), 3.00 (2H, tt, J = 8.2, 2.7 Hz), 4.04 (2H , t, J = 5.50 Hz), 4.09 (2H, t, J = 5.80 Hz), 6.87 (2H, d, J = 9.16 Hz), 6.99 (2H, d, J = 8.55 Hz), 7.37 (2H, d , J = 8.55 Hz), 7.53 (2H, d, J = 8.55 Hz), 7.63 (2H, d, J = 8.55 HZ), 7.69 (2H, d, J = 8.55 Hz) ppm

(実施例5)
(化合物(3−4)の合成)
下記のスキームにて、化合物(3−4)を得た。
(Example 5)
(Synthesis of Compound (3-4))
Compound (3-4) was obtained by the following scheme.

具体的には、まず、化合物(H)0.57g(0.94mmol)、4−ヒドロキシ−4’−ニトロビフェニル0.20g(0.94mmol)、炭酸カリウム0.21g(1.52mmol)、及びアセトン50mLを200mLナスフラスコ内に入れ、65℃で2日間還流を行った。反応終了後、室温になるまで静置し分液漏斗に移した。そこに、水、シクロペンチルメチルエーテル及び食塩水を加えて水相と有機相に分離した。次に、有機相に無水硫酸マグネシウムを加えて30分間静置した後、ひだ折り濾過を行い、濾液をエバポレーターで濃縮し固体を得た。得られた固体を、クロロホルムでシリカゲルカラムクロマトグラフィーにより精製し、化合物(3−4)0.51g(0.69mmol)を得た。得られた化合物(3−4)は黄色の粉末であり、その融点は94〜96℃であり、収率は73%であった。また、赤外分光光度計及び核磁気共鳴装置により、化合物(3−4)を同定した。その結果を下記に示す。
IR(KBr):ν = 1530 (NO2), 1235-1140 (C-F) cm-1
1H NMR(500MHz,CDCl3):δ = 2.03 (4H, quin, J = 3.05 Hz), 2.28-2.39 (2H,m), 3.00 (2H, tt, J = 8.2, 2.7 Hz), 4.05 (2H, t, J = 5.80 Hz), 4.10 (2H, t, J = 5.80 Hz), 6.88 (2H, d, J = 8.55 Hz), 7.01 (2H, d, J = 9.16 Hz), 7.37 (2H, d, J = 8.55 Hz),7.57 (2H, d, J = 9.16 Hz), 7.68 (2H, d, J = 9.16 HZ), 8.26 (2H, d, J = 9.16 Hz) ppm
Specifically, first, 0.57 g (0.94 mmol) of compound (H), 0.20 g (0.94 mmol) of 4-hydroxy-4′-nitrobiphenyl, 0.21 g (1.52 mmol) of potassium carbonate, and 50 mL of acetone was placed in a 200 mL eggplant flask and refluxed at 65 ° C. for 2 days. After completion of the reaction, the mixture was allowed to stand at room temperature and transferred to a separatory funnel. Water, cyclopentyl methyl ether and brine were added thereto to separate into an aqueous phase and an organic phase. Next, anhydrous magnesium sulfate was added to the organic phase, and the mixture was allowed to stand for 30 minutes, then fold-fold filtration was performed, and the filtrate was concentrated with an evaporator to obtain a solid. The obtained solid was purified by silica gel column chromatography with chloroform to obtain 0.51 g (0.69 mmol) of the compound (3-4). The compound (3-4) obtained was a yellow powder, the melting point was 94 to 96 ° C., and the yield was 73%. In addition, compound (3-4) was identified by an infrared spectrophotometer and a nuclear magnetic resonance apparatus. The results are shown below.
IR (KBr): ν = 1530 (NO 2 ), 1235-1140 (CF) cm -1
1 H NMR (500 MHz, CDCl 3 ): δ = 2.03 (4H, quin, J = 3.05 Hz), 2.28-2.39 (2H, m), 3.00 (2H, tt, J = 8.2, 2.7 Hz), 4.05 (2H , t, J = 5.80 Hz), 4.10 (2H, t, J = 5.80 Hz), 6.88 (2H, d, J = 8.55 Hz), 7.01 (2H, d, J = 9.16 Hz), 7.37 (2H, d , J = 8.55 Hz), 7.57 (2H, d, J = 9.16 Hz), 7.68 (2H, d, J = 9.16 HZ), 8.26 (2H, d, J = 9.16 Hz) ppm

(実施例6)
(化合物(3−6)の合成)
下記のスキームにて、化合物(3−6)を得た。
(Example 6)
(Synthesis of Compound (3-6))
Compound (3-6) was obtained by the following scheme.

具体的には、まず、化合物(B)0.83g(1.30mmol)、4−ヒドロキシ−4’−ニトロビフェニル0.29g(1.30mmol)、炭酸カリウム0.25g(1.81mmol)、及びアセトン50mLを200mLナスフラスコ内に入れ、65℃で2日間還流を行った。反応終了後、室温になるまで静置し分液漏斗に移した。そこに、水、シクロペンチルメチルエーテル及び食塩水を加えて水相と有機相に分離した。次に、有機相に無水硫酸マグネシウムを加えて30分間静置した後、ひだ折り濾過を行い、濾液をエバポレーターで濃縮し固体を得た。得られた固体を、クロロホルムでシリカゲルカラムクロマトグラフィーにより精製し、化合物(3−6)0.62g(0.81mmol)を得た。得られた化合物(3−6)は黄色の粉末であり、その融点は76〜78℃であり、収率は62%であった。また、赤外分光光度計及び核磁気共鳴装置により、化合物(3−6)を同定した。その結果を下記に示す。
IR(KBr):ν =1533 (NO2), 1235-1140 (C-F) cm-1
1H NMR(500MHz,CDCl3):δ = 1.56-1.57 (4H, m), 1.85 (4H, quin, J = 4.28 Hz), 2.28-2.38 (2H,m), 2.99 (2H, tt, J = 8.2, 2.7 Hz), 3.98 (2H, t, J = 6.41 Hz), 4.03 (2H, t, J = 6.41 Hz), 6.87 (2H, d, J = 8.55 Hz), 7.01 (2H, d, J = 8.55 Hz), 7.37 (2H, d, J = 9.16 Hz), 7.57 (2H, d, J = 9.16 Hz), 7.68 (2H, d, J = 8.55 HZ), 8.26 (2H, d, J = 9.16 Hz) ppm
Specifically, first, 0.83 g (1.30 mmol) of compound (B), 0.29 g (1.30 mmol) of 4-hydroxy-4′-nitrobiphenyl, 0.25 g (1.81 mmol) of potassium carbonate, and 50 mL of acetone was placed in a 200 mL eggplant flask and refluxed at 65 ° C. for 2 days. After completion of the reaction, the mixture was allowed to stand until it reached room temperature and transferred to a separatory funnel. Water, cyclopentyl methyl ether and brine were added thereto to separate into an aqueous phase and an organic phase. Next, anhydrous magnesium sulfate was added to the organic phase, and the mixture was allowed to stand for 30 minutes, then fold-fold filtration was performed, and the filtrate was concentrated with an evaporator to obtain a solid. The obtained solid was purified by silica gel column chromatography with chloroform to obtain 0.62 g (0.81 mmol) of compound (3-6). The compound (3-6) obtained was a yellow powder, the melting point was 76 to 78 ° C., and the yield was 62%. In addition, Compound (3-6) was identified by an infrared spectrophotometer and a nuclear magnetic resonance apparatus. The results are shown below.
IR (KBr): ν = 1533 (NO2), 1235-1140 (CF) cm -1
1 H NMR (500 MHz, CDCl 3 ): δ = 1.56-1.57 (4H, m), 1.85 (4H, quin, J = 4.28 Hz), 2.28-2.38 (2H, m), 2.99 (2H, tt, J = 8.2, 2.7 Hz), 3.98 (2H, t, J = 6.41 Hz), 4.03 (2H, t, J = 6.41 Hz), 6.87 (2H, d, J = 8.55 Hz), 7.01 (2H, d, J = 8.55 Hz), 7.37 (2H, d, J = 9.16 Hz), 7.57 (2H, d, J = 9.16 Hz), 7.68 (2H, d, J = 8.55 HZ), 8.26 (2H, d, J = 9.16 Hz) ) ppm

(実施例7)
(化合物(4−4)の合成)
下記のスキームにて、化合物(4−4)を得た。
(Example 7)
(Synthesis of Compound (4-4))
Compound (4-4) was obtained by the following scheme.

具体的には、まず、化合物(H)0.76g(1.24mmol)、4−シアノフェノール0.14g(1.24mmol)、炭酸カリウム0.25g(1.81mmol)、及びアセトン50mLを200mLナスフラスコ内に入れ、65℃で2日間還流を行った。反応終了後、室温になるまで静置し分液漏斗に移した。そこに、水、シクロペンチルメチルエーテル及び食塩水を加えて水相と有機相に分離した。次に、有機相に無水硫酸マグネシウムを加えて30分間静置した後、ひだ折り濾過を行い、濾液をエバポレーターで濃縮し固体を得た。得られた固体を、クロロホルムでシリカゲルカラムクロマトグラフィーにより精製し、化合物(4−4)0.35g(0.54mmol)を得た。得られた化合物(4−4)は白色の粉末であり、その融点は67〜69℃であり、収率は44%であった。また、赤外分光光度計及び核磁気共鳴装置により、化合物(4−4)を同定した。その結果を下記に示す。
IR(KBr):ν = 2228 (C≡N), 1235-1140 (C-F) cm-1
1H NMR(500MHz,CDCl3):δ = 2.00 (4H, quin, J = 2.59), 2.28-2.38 (2H,m), 3.00 (2H, tt, J = 8.2, 2.7 Hz), 4.03 (2H, t, J = 5.80 Hz), 4.08 (2H, t, J = 5.80 Hz), 6.86 (2H, d, J = 9.16 Hz), 6.93 (2H, d, J = 8.55 Hz), 7.37 (2H, d, J = 8.55 HZ), 7.58 (2H, d, J = 9.16 Hz) ppm
Specifically, first, 0.76 g (1.24 mmol) of compound (H), 0.14 g (1.24 mmol) of 4-cyanophenol, 0.25 g (1.81 mmol) of potassium carbonate, and 50 mL of acetone were added to 200 mL eggplant. The flask was placed in a flask and refluxed at 65 ° C. for 2 days. After completion of the reaction, the mixture was allowed to stand until it reached room temperature and transferred to a separatory funnel. Water, cyclopentyl methyl ether and brine were added thereto to separate into an aqueous phase and an organic phase. Next, anhydrous magnesium sulfate was added to the organic phase, and the mixture was allowed to stand for 30 minutes, then fold-fold filtration was performed, and the filtrate was concentrated with an evaporator to obtain a solid. The obtained solid was purified by silica gel column chromatography with chloroform to obtain 0.35 g (0.54 mmol) of the compound (4-4). The compound (4-4) obtained was a white powder, the melting point was 67-69 ° C., and the yield was 44%. In addition, Compound (4-4) was identified by an infrared spectrophotometer and a nuclear magnetic resonance apparatus. The results are shown below.
IR (KBr): ν = 2228 (C≡N), 1235-1140 (CF) cm −1
1 H NMR (500 MHz, CDCl 3 ): δ = 2.00 (4H, quin, J = 2.59), 2.28-2.38 (2H, m), 3.00 (2H, tt, J = 8.2, 2.7 Hz), 4.03 (2H, t, J = 5.80 Hz), 4.08 (2H, t, J = 5.80 Hz), 6.86 (2H, d, J = 9.16 Hz), 6.93 (2H, d, J = 8.55 Hz), 7.37 (2H, d, J = 8.55 HZ), 7.58 (2H, d, J = 9.16 Hz) ppm

(実施例8)
(化合物(4−6)の合成)
下記のスキームにて、化合物(4−6)を得た。
(Example 8)
(Synthesis of Compound (4-6))
Compound (4-6) was obtained by the following scheme.

具体的には、まず、化合物(B)0.94g(1.48mmol)、4−シアノフェノール0.18g(1.48mmol)、炭酸カリウム0.25g(1.81mmol)、及びアセトン50mLを200mLナスフラスコ内に入れ、65℃で2日間還流を行った。反応終了後、室温になるまで静置し分液漏斗に移した。そこに、水、シクロペンチルメチルエーテル及び食塩水を加えて水相と有機相に分離した。次に、有機相に無水硫酸マグネシウムを加えて30分間静置した後、ひだ折り濾過を行い、濾液をエバポレーターで濃縮し固体を得た。得られた固体を、クロロホルムでシリカゲルカラムクロマトグラフィーにより精製し、化合物(4−6)0.48g(0.71mmol)を得た。得られた化合物(4−6)は白色の粉末であり、その融点は68〜70℃であり、収率は48%であった。また、赤外分光光度計及び核磁気共鳴装置により、化合物(4−6)を同定した。その結果を下記に示す。
IR(KBr):ν = 2223 (C≡N), 1235-1140 (C-F) cm-1
1H NMR(500MHz,CDCl3):δ =1.55 (4H, quin, J = 3.66 Hz), 1.80-1.87(4H, m), 2.28-2.38 (2H,m), 2.99 (2H, tt, J = 8.2, 2.7 Hz), 3.97 (2H, t, J = 6.41 Hz), 4.01 (2H, t, J = 6.41 Hz), 6.86 (2H, d, J = 8.55 Hz), 6.93 (2H, d, J = 8.55 Hz), 7.37 (2H, d, J = 8.55 HZ), 7.57 (2H, d, J = 9.16 Hz) ppm
Specifically, first, 0.94 g (1.48 mmol) of compound (B), 0.18 g (1.48 mmol) of 4-cyanophenol, 0.25 g (1.81 mmol) of potassium carbonate, and 50 mL of acetone were added to 200 mL eggplant. The flask was placed in a flask and refluxed at 65 ° C. for 2 days. After completion of the reaction, the mixture was allowed to stand until it reached room temperature and transferred to a separatory funnel. Water, cyclopentyl methyl ether and brine were added thereto to separate into an aqueous phase and an organic phase. Next, anhydrous magnesium sulfate was added to the organic phase, and the mixture was allowed to stand for 30 minutes, then fold-fold filtration was performed, and the filtrate was concentrated with an evaporator to obtain a solid. The obtained solid was purified by silica gel column chromatography with chloroform to obtain 0.48 g (0.71 mmol) of the compound (4-6). The compound (4-6) obtained was a white powder, the melting point was 68 to 70 ° C., and the yield was 48%. In addition, Compound (4-6) was identified by an infrared spectrophotometer and a nuclear magnetic resonance apparatus. The results are shown below.
IR (KBr): ν = 2223 (C≡N), 1235-1140 (CF) cm −1
1 H NMR (500 MHz, CDCl 3 ): δ = 1.55 (4H, quin, J = 3.66 Hz), 1.80-1.87 (4H, m), 2.28-2.38 (2H, m), 2.99 (2H, tt, J = 8.2, 2.7 Hz), 3.97 (2H, t, J = 6.41 Hz), 4.01 (2H, t, J = 6.41 Hz), 6.86 (2H, d, J = 8.55 Hz), 6.93 (2H, d, J = 8.55 Hz), 7.37 (2H, d, J = 8.55 HZ), 7.57 (2H, d, J = 9.16 Hz) ppm

(実施例9)
(化合物(5)の合成)
下記のスキームにて、化合物(5)を得た。
Example 9
(Synthesis of Compound (5))
Compound (5) was obtained by the following scheme.

具体的には、まず、化合物(B)0.94g(1.48mmol)、4−ヒドロキシ−4’−ヘキシルビフェニル0.27g(0.97mmol)、炭酸カリウム0.18g(1.30mmol)、及び3−ペンタノン50mLを200mLナスフラスコ内に入れ、110℃で12時間還流を行った。反応終了後、室温になるまで静置し分液漏斗に移した。そこに、水、シクロペンチルメチルエーテル及び食塩水を加えて水相と有機相に分離した。次に、有機相に無水硫酸マグネシウムを加えて30分間静置した後、ひだ折り濾過を行い、濾液をエバポレーターで濃縮し固体を得た。得られた固体を、クロロホルムでリサイクルHPLCにより精製し、化合物(5)0.45g(0.55mmol)を得た。得られた化合物(5)は白色の粉末であり、その融点は142〜144℃であり、収率は57%であった。また、赤外分光光度計及び核磁気共鳴装置により、化合物(5)を同定した。その結果を下記に示す。
IR(KBr):ν = 1235-1140 (C-F) cm-1
1H NMR(500MHz,CDCl3):δ = 0.90-0.93 (3H, m), 1.33-1.36 (4H, m), 1.47 (2H, quin, J = 7.25 Hz), 1.55-1.63 (4H, m), 1.77-1.85 (6H, m), 2.28-2.38 (2H,m), 2.99 (2H, tt, J = 8.2, 2.7 Hz), 3.99 (6H, ttt, J = 6.41, 6.41, 6.41 Hz), 6.87 (2H, d, J = 8.55 Hz), 6.93 (4H, dd, J = 8.55, 8.55 Hz), 7.36 (2H, d, J = 9.16 Hz), 7.46 (4H, dd, J = 8.55, 8.55 Hz) ppm
Specifically, first, 0.94 g (1.48 mmol) of compound (B), 0.27 g (0.97 mmol) of 4-hydroxy-4′-hexylbiphenyl, 0.18 g (1.30 mmol) of potassium carbonate, and 50 mL of 3-pentanone was placed in a 200 mL eggplant flask and refluxed at 110 ° C. for 12 hours. After completion of the reaction, the mixture was allowed to stand at room temperature and transferred to a separatory funnel. Water, cyclopentyl methyl ether and brine were added thereto to separate into an aqueous phase and an organic phase. Next, anhydrous magnesium sulfate was added to the organic phase, and the mixture was allowed to stand for 30 minutes, then fold-fold filtration was performed, and the filtrate was concentrated with an evaporator to obtain a solid. The obtained solid was purified by recycle HPLC with chloroform to obtain 0.45 g (0.55 mmol) of Compound (5). The compound (5) obtained was a white powder, its melting point was 142-144 ° C., and the yield was 57%. In addition, Compound (5) was identified by an infrared spectrophotometer and a nuclear magnetic resonance apparatus. The results are shown below.
IR (KBr): ν = 1235-1140 (CF) cm -1
1 H NMR (500 MHz, CDCl 3 ): δ = 0.90-0.93 (3H, m), 1.33-1.36 (4H, m), 1.47 (2H, quin, J = 7.25 Hz), 1.55-1.63 (4H, m) , 1.77-1.85 (6H, m), 2.28-2.38 (2H, m), 2.99 (2H, tt, J = 8.2, 2.7 Hz), 3.99 (6H, ttt, J = 6.41, 6.41, 6.41 Hz), 6.87 (2H, d, J = 8.55 Hz), 6.93 (4H, dd, J = 8.55, 8.55 Hz), 7.36 (2H, d, J = 9.16 Hz), 7.46 (4H, dd, J = 8.55, 8.55 Hz) ppm

(実施例10)
(化合物(6)の合成)
下記のスキームにて、化合物(6)を得た。
(Example 10)
(Synthesis of Compound (6))
Compound (6) was obtained by the following scheme.

具体的には、まず、化合物(B)0.60g(0.94mmol)、4−フルオロ−4’−ヒドロキシビフェニル0.18g(0.94mmol)、炭酸カリウム0.18g(1.30mmol)、及びアセトン50mLを200mLナスフラスコ内に入れ、65℃で2日間還流を行った。反応終了後、室温になるまで静置し分液漏斗に移した。そこに、水、シクロペンチルメチルエーテル及び食塩水を加えて水相と有機相に分離した。次に、有機相に無水硫酸マグネシウムを加えて30分間静置した後、ひだ折り濾過を行い、濾液をエバポレーターで濃縮し固体を得た。得られた固体を、クロロホルムでリサイクルHPLCにより精製し、化合物(6)0.35g(0.47mmol)を得た。得られた化合物(6)は白色の粉末であり、その融点は115〜117℃であり、収率は51%であった。また、赤外分光光度計及び核磁気共鳴装置により、化合物(6)を同定した。その結果を下記に示す。
IR(KBr):ν = 1235-1140 (C-F) cm-1
1H NMR(500MHz,CDCl3):δ = 1.55-1.57 (4H, m), 1.84 (4H, quin, J = 5.04 Hz), 2.28-2.38 (2H,m), 2.99 (2H, tt, J = 8.2, 2.7 Hz), 3.97 (2H, t, J = 6.41 Hz), 4.01 (2H, t, J = 6.41 Hz), 6.87 (2H, d, J = 9.16 Hz), 6.95 (2H, d, J = 9.16 Hz), 7.09 (2H, dd, J = 8.55, 9.16 Hz), 7.36 (2H, d, J = 8.55 Hz), 7.45 (2H, d, J = 8.5 Hz), 7.49 (2H, dd, J = 9.2, 5.5) ppm
Specifically, first, compound (B) 0.60 g (0.94 mmol), 4-fluoro-4′-hydroxybiphenyl 0.18 g (0.94 mmol), potassium carbonate 0.18 g (1.30 mmol), and 50 mL of acetone was placed in a 200 mL eggplant flask and refluxed at 65 ° C. for 2 days. After completion of the reaction, the mixture was allowed to stand until it reached room temperature and transferred to a separatory funnel. Water, cyclopentyl methyl ether and brine were added thereto to separate into an aqueous phase and an organic phase. Next, anhydrous magnesium sulfate was added to the organic phase, and the mixture was allowed to stand for 30 minutes, then fold-fold filtration was performed, and the filtrate was concentrated with an evaporator to obtain a solid. The obtained solid was purified by recycle HPLC with chloroform to obtain 0.35 g (0.47 mmol) of Compound (6). The compound (6) obtained was a white powder, its melting point was 115 to 117 ° C., and the yield was 51%. In addition, compound (6) was identified by an infrared spectrophotometer and a nuclear magnetic resonance apparatus. The results are shown below.
IR (KBr): ν = 1235-1140 (CF) cm -1
1 H NMR (500 MHz, CDCl 3 ): δ = 1.55-1.57 (4H, m), 1.84 (4H, quin, J = 5.04 Hz), 2.28-2.38 (2H, m), 2.99 (2H, tt, J = 8.2, 2.7 Hz), 3.97 (2H, t, J = 6.41 Hz), 4.01 (2H, t, J = 6.41 Hz), 6.87 (2H, d, J = 9.16 Hz), 6.95 (2H, d, J = 9.16 Hz), 7.09 (2H, dd, J = 8.55, 9.16 Hz), 7.36 (2H, d, J = 8.55 Hz), 7.45 (2H, d, J = 8.5 Hz), 7.49 (2H, dd, J = (9.2, 5.5) ppm

(実施例11)
(化合物(7)の合成)
まず、下記のスキームにて、化合物(D)を得た。
(Example 11)
(Synthesis of Compound (7))
First, compound (D) was obtained according to the following scheme.

具体的には、まず、2−(ペルフルオロヘキシル)エチルアイオダイド4.62g(9.75mmol)、4−ブロモベンゼンチール1.81g(9.57mmol)、炭酸カリウム1.51g(10.9mmol)、及びアセトン50mLを200mLナスフラスコに入れ、65℃にて24時間還流を行った。反応終了後、室温になるまで静置し分液漏斗に移した。そこに、水、シクロペンチルメチルエーテル及び食塩水を加えて水相と有機相に分離した。次に、有機相に無水硫酸マグネシウムを加え30分間静置した後、ひだ折り濾過を行い、濾液をエバポレーターで濃縮し固体を得た。得られた固体をメタノールで再結晶後、吸引濾過し、化合物(D)4.59g(8.58mmol)を得た。得られた化合物(D)は、無色の粉末であり、その融点は38〜40℃であり、収率は89.6%であった。また、赤外分光光度計及び核磁気共鳴装置により、化合物(D)を同定した。その結果を下記に示す。
IR(KBr):ν = 1580, 1477 (C=C), 1248-1140 (C-F) cm-1
1H NMR(500MHz,CDCl3):δ = 2.33-2.43 (2H, m), 3.10 (2H, tt, J = 8.2, 2.7 Hz), 7.23 (2H, d, J = 8.5 Hz), 7.46 (2H, d, J = 8.5 Hz) ppm
Specifically, first, 4.62 g (9.75 mmol) of 2- (perfluorohexyl) ethyl iodide, 1.81 g (9.57 mmol) of 4-bromobenzene teal, 1.51 g (10.9 mmol) of potassium carbonate, And 50 mL of acetone was put into a 200 mL eggplant flask and refluxed at 65 ° C. for 24 hours. After completion of the reaction, the mixture was allowed to stand until it reached room temperature and transferred to a separatory funnel. Water, cyclopentyl methyl ether and brine were added thereto to separate into an aqueous phase and an organic phase. Next, anhydrous magnesium sulfate was added to the organic phase, and the mixture was allowed to stand for 30 minutes, followed by pleat filtration, and the filtrate was concentrated with an evaporator to obtain a solid. The obtained solid was recrystallized from methanol and filtered with suction to obtain 4.59 g (8.58 mmol) of Compound (D). The obtained compound (D) was a colorless powder, its melting point was 38 to 40 ° C., and the yield was 89.6%. Moreover, the compound (D) was identified with the infrared spectrophotometer and the nuclear magnetic resonance apparatus. The results are shown below.
IR (KBr): ν = 1580, 1477 (C = C), 1248-1140 (CF) cm −1
1 H NMR (500 MHz, CDCl 3 ): δ = 2.33-2.43 (2H, m), 3.10 (2H, tt, J = 8.2, 2.7 Hz), 7.23 (2H, d, J = 8.5 Hz), 7.46 (2H , d, J = 8.5 Hz) ppm

次に、下記のスキームにて、化合物(E)を得た。
Next, a compound (E) was obtained according to the following scheme.

具体的には、まず、窒素雰囲気下で、4−ブロモアニソール5.01g(2.68mmol)、削状マグネシウム0.82g(33.7mmol)、及びドライテトラヒドロフラン25mLを200mL二口フラスコに入れ、室温で灰色の溶液になるまで撹拌を行った。次に、−78°Cまで冷却後、そこにホウ酸トリメチル3.43g(3.30mmol)及びドライテトラヒドロフラン15mLを加えて2時間撹拌を行った。その後、徐々に室温に戻して更に2時間撹拌した。次いで、空気雰囲気にして、1N希塩酸50mLを氷冷中で加えて1時間撹拌した。反応終了後、室温になるまで静置し分液漏斗に移した。そこに、酢酸エチル、水及び食塩水を更に加えて水相と有機相に分離した。次に、有機相に無水硫酸マグネシウムを加え30分間静置した後、ひだ折り濾過を行い、濾液をエバポレーターで濃縮し、化合物(E)2.63g(17.3mmol)を得た。得られた化合物(E)は灰色の粉末であり、その融点は201〜206℃であり、収率は65.0%であった。また、赤外分光光度計及び核磁気共鳴装置により、化合物(E)を同定した。その結果を下記に示す。
IR(KBr):ν = 3358 (O-H), 1601, 1580 (C=C), 1250 (>O) cm-1
1H NMR(500MHz,CDCl3):δ = 3.76 (3H, s), 6.88 (2H, d, J = 8.5 Hz), 7.73 (2H, d, J = 8.5 Hz), 7.85 (2H, s) ppm
Specifically, first, 5.01 g (2.68 mmol) of 4-bromoanisole, 0.82 g (33.7 mmol) of shaped magnesium and 25 mL of dry tetrahydrofuran were placed in a 200 mL two-necked flask under a nitrogen atmosphere, The mixture was stirred until a gray solution was obtained. Next, after cooling to −78 ° C., 3.43 g (3.30 mmol) of trimethyl borate and 15 mL of dry tetrahydrofuran were added thereto and stirred for 2 hours. Thereafter, the mixture was gradually returned to room temperature and further stirred for 2 hours. Subsequently, it was made into air atmosphere, 50 mL of 1N dilute hydrochloric acid was added in ice cooling, and it stirred for 1 hour. After completion of the reaction, the mixture was allowed to stand until it reached room temperature and transferred to a separatory funnel. Thereto, ethyl acetate, water and brine were further added to separate into an aqueous phase and an organic phase. Next, anhydrous magnesium sulfate was added to the organic phase, and the mixture was allowed to stand for 30 minutes, followed by pleat filtration, and the filtrate was concentrated with an evaporator to obtain 2.63 g (17.3 mmol) of Compound (E). The obtained compound (E) was a gray powder, its melting point was 201 to 206 ° C., and the yield was 65.0%. Moreover, the compound (E) was identified with the infrared spectrophotometer and the nuclear magnetic resonance apparatus. The results are shown below.
IR (KBr): ν = 3358 (OH), 1601, 1580 (C = C), 1250 (> O) cm -1
1 H NMR (500 MHz, CDCl 3 ): δ = 3.76 (3H, s), 6.88 (2H, d, J = 8.5 Hz), 7.73 (2H, d, J = 8.5 Hz), 7.85 (2H, s) ppm

次に、下記のスキームにて、化合物(F)を得た。
Next, the compound (F) was obtained according to the following scheme.

具体的には、まず、窒素雰囲気下で、化合物(D)7.10g(13.3mmol)、化合物(E)2.30g(15.1mmol)、炭酸ナトリウム1.98g(18.7mmol)、酢酸パラジウム(II)0.01g(0.045mmol)、トリフェニルホスフィン0.03g(0.11mmol)、水20mL及び1,4−ジオキサン80mLをフラスコに入れ、100℃で18時間還流を行った。反応終了後、室温になるまで静置して、空気雰囲気にして、1N塩酸50mLを加えて中和した後に吸引濾過を行って固体を得た。その固体を酢酸エチルに溶解し、さらに吸引濾過を行って、濾液をエバポレーターで濃縮し固体を得た。得られた固体を、シリカゲルカラムクロマトグラフィーにより精製し、化合物(F)7.04g(12.5mmol)を得た。得られた化合物(F)は褐色の粉末であり、その融点は128〜131℃であり、収率は94.2%であった。また、赤外分光光度計及び核磁気共鳴装置により、化合物(F)を同定した。その結果を下記に示す。
IR(KBr):ν = 1601, 1580 (C=C), 1250 (>O), 1248-1140 (C-F) cm-1
1H NMR(500MHz,CDCl3):δ = 2.33-2.48 (2H, m), 3.14 (2H, tt, J = 8.2, 2.7 Hz), 3.85 (3H, s), 6.98 (2H, d, J = 9.2 Hz), 7.41 (2H, d, J = 8.5 Hz), 7.52 (2H, d, J = 9.2 Hz), 7.52 (2H, d, J = 8.5 Hz) ppm
Specifically, first, under a nitrogen atmosphere, 7.10 g (13.3 mmol) of compound (D), 2.30 g (15.1 mmol) of compound (E), 1.98 g (18.7 mmol) of sodium carbonate, acetic acid Palladium (II) 0.01 g (0.045 mmol), triphenylphosphine 0.03 g (0.11 mmol), water 20 mL and 1,4-dioxane 80 mL were placed in a flask, and refluxed at 100 ° C. for 18 hours. After the completion of the reaction, the mixture was allowed to stand until it reached room temperature, and was neutralized by adding 50 mL of 1N hydrochloric acid, followed by suction filtration to obtain a solid. The solid was dissolved in ethyl acetate, further subjected to suction filtration, and the filtrate was concentrated by an evaporator to obtain a solid. The obtained solid was purified by silica gel column chromatography to obtain 7.04 g (12.5 mmol) of compound (F). The compound (F) obtained was a brown powder, the melting point was 128 to 131 ° C., and the yield was 94.2%. Moreover, the compound (F) was identified with the infrared spectrophotometer and the nuclear magnetic resonance apparatus. The results are shown below.
IR (KBr): ν = 1601, 1580 (C = C), 1250 (> O), 1248-1140 (CF) cm -1
1 H NMR (500 MHz, CDCl 3 ): δ = 2.33-2.48 (2H, m), 3.14 (2H, tt, J = 8.2, 2.7 Hz), 3.85 (3H, s), 6.98 (2H, d, J = 9.2 Hz), 7.41 (2H, d, J = 8.5 Hz), 7.52 (2H, d, J = 9.2 Hz), 7.52 (2H, d, J = 8.5 Hz) ppm

次に、下記のスキームにて、化合物(G)を得た。
Next, the compound (G) was obtained according to the following scheme.

具体的には、まず、化合物(F)7.04g(12.5mmol)、及びジクロロメタン60mLを500mLナスフラスコ内に入れ、氷浴中で1時間撹拌した後に、三臭化ホウ素8.01g(31.9mmol)を加え、徐々に室温に戻して更に12時間撹拌した。次いで、空気雰囲気にして、水を氷冷中で加えて1時間撹拌した。析出した固体を吸引濾過し、この固体をクロロホルムから再結晶し、化合物(G)5.14g(9.38mmol)を得た。得られた化合物(G)は無色の粉末であり、その融点は170〜173℃であり、収率は63.2%であった。また、赤外分光光度計及び核磁気共鳴装置により、化合物(G)を同定した。その結果を下記に示す。
IR(KBr):ν = 3445 (O-H), 1609, 1489 (C=C), 1235-1186 (C-F) cm-1
1H NMR(500MHz,CDCl3):δ = 2.43-2.51 (2H, m), 3.16 (2H, tt, J = 8.2, 2.7 Hz), 6.78 (2H, d, J = 8.5 Hz), 7.36 (2H, d, J = 8.5 Hz), 7.43 (2H, d, J = 8.5 Hz), 7.51 (2H, d, J = 8.5 Hz) ppm
Specifically, first, 7.04 g (12.5 mmol) of the compound (F) and 60 mL of dichloromethane were placed in a 500 mL eggplant flask and stirred for 1 hour in an ice bath, and then 8.01 g (31 of boron tribromide) .9 mmol) was added, the temperature was gradually returned to room temperature, and the mixture was further stirred for 12 hours. Next, the atmosphere was changed to air, and water was added in ice-cooling and stirred for 1 hour. The precipitated solid was subjected to suction filtration, and this solid was recrystallized from chloroform to obtain 5.14 g (9.38 mmol) of Compound (G). The obtained compound (G) was a colorless powder, its melting point was 170 to 173 ° C., and the yield was 63.2%. Moreover, the compound (G) was identified with the infrared spectrophotometer and the nuclear magnetic resonance apparatus. The results are shown below.
IR (KBr): ν = 3445 (OH), 1609, 1489 (C = C), 1235-1186 (CF) cm -1
1 H NMR (500 MHz, CDCl 3 ): δ = 2.43-2.51 (2H, m), 3.16 (2H, tt, J = 8.2, 2.7 Hz), 6.78 (2H, d, J = 8.5 Hz), 7.36 (2H , d, J = 8.5 Hz), 7.43 (2H, d, J = 8.5 Hz), 7.51 (2H, d, J = 8.5 Hz) ppm

次いで、下記のスキームにて、化合物(I)を得た。
Subsequently, compound (I) was obtained by the following scheme.

具体的には、まず、化合物(G)2.00g(3.65mmol)、1,6−ジブロモヘキサン2.88g(11.8mmol)、炭酸カリウム0.65g(4.72mmol)、及び3−ペンタノン50mLを200mLナスフラスコ内に入れ、110℃で6時間、還流を行った。その間、高速液体クロマトグラフィー(HPLC)にて1時間毎に反応の進行度を確認した。反応終了後、室温になるまで静置し分液漏斗に移した。そこに、水、シクロペンチルメチルエーテル及び食塩水を加えて水相と有機相に分離した。次に、有機相に無水硫酸マグネシウムを加えて30分間静置した後、ひだ折り濾過を行い、濾液をエバポレーターで濃縮し、残渣にアセトンを加え、不溶物を吸引濾過により除いた。そして、ろ液を濃縮して、化合物(I)1.50g(2.11mmol)を得た。得られた化合物(I)は灰色の固体であり、その融点は97〜101℃であり、収率は58%であった。また、赤外分光光度計及び核磁気共鳴装置により、化合物(I)を同定した。その結果を下記に示す。
IR(KBr):ν = 1235-1140 (C-F), 640-520 (C-Br) cm-1
1H NMR(500MHz,CDCl3):δ = 1.52 (4H, quin, J = 4.88 Hz), 1.82 (2H, quin, J = 6.87 Hz), 1.91 (2H, quin, J = 6.87 Hz), 2.28-2.38 (2H,m), 3.12-3.15 (2H, m), 4.01 (2H, t, J = 6.41 Hz), 6.97 (2H, d, J = 8.55 Hz), 7.41 (2H, d, J = 8.55 Hz), 7.50 (2H, dd, J = 8.55, 7.32 Hz) ppm
Specifically, first, 2.00 g (3.65 mmol) of compound (G), 2.88 g (11.8 mmol) of 1,6-dibromohexane, 0.65 g (4.72 mmol) of potassium carbonate, and 3-pentanone 50 mL was placed in a 200 mL eggplant flask and refluxed at 110 ° C. for 6 hours. Meanwhile, the progress of the reaction was confirmed every hour by high performance liquid chromatography (HPLC). After completion of the reaction, the mixture was allowed to stand until it reached room temperature and transferred to a separatory funnel. Water, cyclopentyl methyl ether and brine were added thereto to separate into an aqueous phase and an organic phase. Next, anhydrous magnesium sulfate was added to the organic phase and allowed to stand for 30 minutes, followed by pleated filtration. The filtrate was concentrated with an evaporator, acetone was added to the residue, and insolubles were removed by suction filtration. The filtrate was concentrated to obtain 1.50 g (2.11 mmol) of compound (I). The obtained compound (I) was a gray solid, its melting point was 97 to 101 ° C., and the yield was 58%. In addition, Compound (I) was identified by an infrared spectrophotometer and a nuclear magnetic resonance apparatus. The results are shown below.
IR (KBr): ν = 1235-1140 (CF), 640-520 (C-Br) cm -1
1 H NMR (500 MHz, CDCl 3 ): δ = 1.52 (4H, quin, J = 4.88 Hz), 1.82 (2H, quin, J = 6.87 Hz), 1.91 (2H, quin, J = 6.87 Hz), 2.28- 2.38 (2H, m), 3.12-3.15 (2H, m), 4.01 (2H, t, J = 6.41 Hz), 6.97 (2H, d, J = 8.55 Hz), 7.41 (2H, d, J = 8.55 Hz) ), 7.50 (2H, dd, J = 8.55, 7.32 Hz) ppm

そして、下記のスキームにて、化合物(7)を得た。
And the compound (7) was obtained with the following scheme.

具体的には、まず、化合物(I)0.60g(0.85mmol)、4−シアノ−4’−ヒドロキシビフェニル0.17g(0.85mmol)、炭酸カリウム0.21g(1.52mmol)、及び3−ペンタノン50mLを200mLナスフラスコ内に入れ、110℃で1日間還流を行った。反応終了後、室温になるまで静置し分液漏斗に移した。そこに、水、シクロペンチルメチルエーテル及び食塩水を加えて水相と有機相に分離した。次に、有機相に無水硫酸マグネシウムを加えて30分間静置した後、ひだ折り濾過を行い、濾液をエバポレーターで濃縮し固体を得た。得られた固体を、クロロホルムでシリカゲルカラムクロマトグラフィーにより精製し、化合物(7)0.40g(0.48mmol)を得た。得られた化合物(7)は白色の粉末であり、その融点は162〜163℃であり、収率は57%であった。また、赤外分光光度計及び核磁気共鳴装置により、化合物(7)を同定した。その結果を下記に示す。
IR(KBr):ν = 2230 (C≡N), 1235-1240 (C-F) cm-1
1H NMR(500MHz,CDCl3):δ = 1.57 (6H), 1.86 (4H), 2.43 (2H), 3.14 (2H), 4.03 (4H), 6.98 (4H), 7.42 (2H), 7.68 (2H) ppm
Specifically, first, Compound (I) 0.60 g (0.85 mmol), 4-cyano-4′-hydroxybiphenyl 0.17 g (0.85 mmol), potassium carbonate 0.21 g (1.52 mmol), and 50 mL of 3-pentanone was placed in a 200 mL eggplant flask and refluxed at 110 ° C. for 1 day. After completion of the reaction, the mixture was allowed to stand at room temperature and transferred to a separatory funnel. Water, cyclopentyl methyl ether and brine were added thereto to separate into an aqueous phase and an organic phase. Next, anhydrous magnesium sulfate was added to the organic phase, and the mixture was allowed to stand for 30 minutes, then fold-fold filtration was performed, and the filtrate was concentrated with an evaporator to obtain a solid. The obtained solid was purified by silica gel column chromatography with chloroform to obtain 0.40 g (0.48 mmol) of Compound (7). The compound (7) obtained was a white powder, its melting point was 162 to 163 ° C., and the yield was 57%. In addition, compound (7) was identified by an infrared spectrophotometer and a nuclear magnetic resonance apparatus. The results are shown below.
IR (KBr): ν = 2230 (C≡N), 1235-1240 (CF) cm −1
1 H NMR (500 MHz, CDCl 3 ): δ = 1.57 (6H), 1.86 (4H), 2.43 (2H), 3.14 (2H), 4.03 (4H), 6.98 (4H), 7.42 (2H), 7.68 (2H ) ppm

(実施例12)
(化合物(8)の合成)
下記のスキームにて、化合物(8)を得た。
(Example 12)
(Synthesis of Compound (8))
Compound (8) was obtained by the following scheme.

具体的には、まず、化合物(I)0.52g(0.73mmol)、4−フルオロ−4’−ヒドロキシビフェニル0.14g(0.73mmol)、炭酸カリウム0.18g(1.30mmol)、及び3−ペンタノン50mLを200mLナスフラスコ内に入れ、110℃で1日間還流を行った。反応終了後、室温になるまで静置し分液漏斗に移した。そこに、水、酢酸エチル及び食塩水を加えて水相と有機相に分離した。次に、有機相に無水硫酸マグネシウムを加えて30分間静置した後、ひだ折り濾過を行い、濾液をエバポレーターで濃縮し固体を得た。得られた固体を、クロロホルムでシリカゲルカラムクロマトグラフィーにより精製し、化合物(8)0.06g(0.07mmol)を得た。得られた化合物(8)は無色の結晶であり、その融点は181〜182℃であり、収率は10%であった。また、赤外分光光度計及び核磁気共鳴装置により、化合物(8)を同定した。その結果を下記に示す。
IR(KBr):ν = 1235-1140 (C-F) cm-1
1H NMR(500MHz,CDCl3):δ = 1.78 (6H), 1.86 (2H), 2.42 (2H), 3.14 (2H), 4.02 (4H), 6.97 (2H), 7.09 (2H), 7.40-7.54 (4H,m) ppm
Specifically, first, 0.52 g (0.73 mmol) of compound (I), 0.14 g (0.73 mmol) of 4-fluoro-4′-hydroxybiphenyl, 0.18 g (1.30 mmol) of potassium carbonate, and 50 mL of 3-pentanone was placed in a 200 mL eggplant flask and refluxed at 110 ° C. for 1 day. After completion of the reaction, the mixture was allowed to stand until it reached room temperature and transferred to a separatory funnel. Water, ethyl acetate and brine were added thereto to separate into an aqueous phase and an organic phase. Next, anhydrous magnesium sulfate was added to the organic phase, and the mixture was allowed to stand for 30 minutes, then fold-fold filtration was performed, and the filtrate was concentrated with an evaporator to obtain a solid. The obtained solid was purified by silica gel column chromatography with chloroform to obtain 0.06 g (0.07 mmol) of Compound (8). The compound (8) obtained was colorless crystals, the melting point was 181 to 182 ° C., and the yield was 10%. In addition, Compound (8) was identified by an infrared spectrophotometer and a nuclear magnetic resonance apparatus. The results are shown below.
IR (KBr): ν = 1235-1140 (CF) cm -1
1 H NMR (500 MHz, CDCl 3 ): δ = 1.78 (6H), 1.86 (2H), 2.42 (2H), 3.14 (2H), 4.02 (4H), 6.97 (2H), 7.09 (2H), 7.40-7.54 (4H, m) ppm

(実施例13)
(化合物(9)の合成)
まず、下記のスキームにて、化合物(J)を得た。
(Example 13)
(Synthesis of Compound (9))
First, compound (J) was obtained according to the following scheme.

具体的には、まず、化合物(I)0.6g(0.84mmol)、35質量%過酸化水素水0.21g(2.1mmol)、及び酢酸50mLを200mLナスフラスコ内に入れ、110℃で一晩還流を行った。反応終了後、室温まで静置し、そこに6質量%亜硫酸水素ナトリウムを40mL加えて吸引濾過し、化合物(J)0.54g(0.74mmol)を得た。得られた化合物(J)は無色の結晶であり、その融点は151〜152℃であり、収率は87%であった。また、赤外分光光度計及び核磁気共鳴装置により、化合(J)を同定した。その結果を下記に示す。
IR(KBr):ν = 1235-1140 (C-F), 640-520 (C-Br) cm-1
1H NMR(500MHz,CDCl3):δ = 1.53 (2H, quin, J = 3.51 Hz), 1.84 (2H, quin, J = 6.71 Hz), 1.92 (2H, quin, J = 7.02 Hz), 2.58-2.68 (2H,m), 3.36 (2H, tt, J = 8.5, 4.0 Hz), 3.44 (2H, t, J = 6.71 Hz), 4.03 (2H, t, J = 6.41 Hz), 7.00 (2H, d, J = 9.16 Hz), 7.56 (2H, d, J = 9.16 Hz), 7.77 (2H, d, J = 8.55 Hz), 7.96 (2H, d, J = 8.55 Hz) ppm
Specifically, first, 0.6 g (0.84 mmol) of Compound (I), 0.21 g (2.1 mmol) of 35 mass% hydrogen peroxide water, and 50 mL of acetic acid were placed in a 200 mL eggplant flask, and 110 ° C. Reflux was performed overnight. After completion of the reaction, the mixture was allowed to stand to room temperature, and 40 mL of 6% by mass sodium bisulfite was added thereto, followed by suction filtration to obtain 0.54 g (0.74 mmol) of compound (J). The compound (J) obtained was colorless crystals, the melting point was 151 to 152 ° C., and the yield was 87%. The compound (J) was identified by an infrared spectrophotometer and a nuclear magnetic resonance apparatus. The results are shown below.
IR (KBr): ν = 1235-1140 (CF), 640-520 (C-Br) cm -1
1 H NMR (500 MHz, CDCl 3 ): δ = 1.53 (2H, quin, J = 3.51 Hz), 1.84 (2H, quin, J = 6.71 Hz), 1.92 (2H, quin, J = 7.02 Hz), 2.58- 2.68 (2H, m), 3.36 (2H, tt, J = 8.5, 4.0 Hz), 3.44 (2H, t, J = 6.71 Hz), 4.03 (2H, t, J = 6.41 Hz), 7.00 (2H, d , J = 9.16 Hz), 7.56 (2H, d, J = 9.16 Hz), 7.77 (2H, d, J = 8.55 Hz), 7.96 (2H, d, J = 8.55 Hz) ppm

そして、下記のスキームにて、化合物(9)を得た。
And the compound (9) was obtained with the following scheme.

具体的には、まず、化合物(J)0.52g(3.89mmol)、4−フルオロ−4’−ヒドロキシビフェニル0.13g、(0.71mmol)、炭酸カリウム0.15g(1.10mmol)、及びシクロヘキサノン70mLを200mLナスフラスコ内に入れ、160℃で1日間、還流を行った。反応終了後、室温になるまで静置し分液漏斗に移した。そこに、水100mLを加えて吸引濾過を行い、固体と液体に分離した。得られた固体を酢酸エチルで洗浄し、化合物(9)0.03g(0.04mmol)を得た。得られた化合物(9)は無色の結晶であり、その融点は190〜191℃であり、収率は6.0%であった。また、赤外分光光度計及び核磁気共鳴装置により、化合物(9)を同定した。その結果を下記に示す。
IR(KBr):ν = 1235-1140 (C-F) cm-1
1H NMR(500MHz,CDCl3):δ = 1.58 (6H), 1.86 (2H), 2.61 (2H), 3.36 (2H), 4.05 (4H), 6.97 (2H), 7.09 (2H), 7.77 (2H), 7.95 (2H) ppm
Specifically, first, compound (J) 0.52 g (3.89 mmol), 4-fluoro-4′-hydroxybiphenyl 0.13 g, (0.71 mmol), potassium carbonate 0.15 g (1.10 mmol), In addition, 70 mL of cyclohexanone was placed in a 200 mL eggplant flask and refluxed at 160 ° C. for 1 day. After completion of the reaction, the mixture was allowed to stand until it reached room temperature and transferred to a separatory funnel. Thereto, 100 mL of water was added and suction filtration was performed to separate it into a solid and a liquid. The obtained solid was washed with ethyl acetate to obtain 0.03 g (0.04 mmol) of Compound (9). The compound (9) obtained was colorless crystals, the melting point was 190 to 191 ° C., and the yield was 6.0%. In addition, Compound (9) was identified by an infrared spectrophotometer and a nuclear magnetic resonance apparatus. The results are shown below.
IR (KBr): ν = 1235-1140 (CF) cm -1
1 H NMR (500 MHz, CDCl 3 ): δ = 1.58 (6H), 1.86 (2H), 2.61 (2H), 3.36 (2H), 4.05 (4H), 6.97 (2H), 7.09 (2H), 7.77 (2H ), 7.95 (2H) ppm

(ゲル化能の評価)
容器内で上記各化合物と有機溶媒とを加熱しながら混合して均一な混合液とした後に、25℃まで降温してサンプル液を得た。なお、加熱は化合物が溶解するまで行った。その容器を25℃の環境下で30分間静置後、サンプル液が収容された状態で容器を上下逆にして、その際の流動性を確認し、流動性を失っているものをゲル化したゲル状組成物であるとして「G」と評価した。また、有機溶媒と上記各化合物との混合比を変化させ、ゲル状組成物にするために必要な化合物の最低濃度(ゲル状組成物の総量を基準とする化合物の濃度)を、質量基準(質量%)で求めた。化合物の量が少ないほどゲル化能が高いといえる。結果を表1の括弧内に示す。
一方、上述のサンプル液における上記各化合物の濃度を5質量%まで高めて加熱してもゲル化せず、25℃の環境下で30分間静置後にゾル状にあったものを「S」、沈殿物が生じたものを「P」、化合物が溶解しなかったものを「I」と評価した。この結果も表1に示す。
(Evaluation of gelation ability)
The respective compounds and the organic solvent were mixed while heating in a container to obtain a uniform mixed solution, and then cooled to 25 ° C. to obtain a sample solution. The heating was performed until the compound was dissolved. The container was allowed to stand for 30 minutes in an environment at 25 ° C., and then the container was turned upside down with the sample solution contained therein, and the fluidity at that time was confirmed, and the fluid that lost fluidity was gelled. The gel composition was evaluated as “G”. In addition, the minimum concentration of the compound (concentration of the compound based on the total amount of the gel-like composition) required to change the mixing ratio of the organic solvent and each of the above-mentioned compounds into a gel-like composition is determined on a mass basis ( Mass%). It can be said that the smaller the amount of the compound, the higher the gelation ability. The results are shown in parentheses in Table 1.
On the other hand, when the concentration of each compound in the above sample solution was increased to 5% by mass, it did not gel even when heated, and “S” represents a sol form after standing for 30 minutes in an environment of 25 ° C. The case where the precipitate was formed was evaluated as “P”, and the case where the compound was not dissolved was evaluated as “I”. The results are also shown in Table 1.

また、ゲル化したサンプル液について、化合物の各濃度(Conc.)毎のゾル−ゲル転移温度(Tsol-gel)の結果を図1〜14に示す。なお、図中、有機溶媒として、「PC」は炭酸プロピレン、「GBL」はγ−ブチロラクトン、「BMIM−TFSA」は、イオン液体である1−ブチル−3−メチルイミダゾリウムビス(トリフルオロメタンスルホニル)アミド、「EMIM−TFSA」はイオン液体である1−エチル−3−メチルイミダゾリウムビス(トリフルオロメタンスルホニル)アミド、「TMPA−TFSA」はイオン液体であるN,N,N−−トリメチル−N−プロピルアンモニウムビス(トリフルオロメタンスルホニル)アミド、「DEME−TFSA」はイオン性液体であるN,N−ジエチル−N−メチル−N−(2−メトキシエチル)アンモニウムビス(トリフルオロメタンスルホニル)アミドをそれぞれ示す。
なお、用いた有機溶媒は、表1及び図1〜14に示すとおりである。
Moreover, the result of the sol-gel transition temperature ( Tsol-gel ) for every density | concentration (Conc.) Of a compound about the gelatinized sample liquid is shown to FIGS. In the figure, as an organic solvent, “PC” is propylene carbonate, “GBL” is γ-butyrolactone, and “BMIM-TFSA” is ionic liquid 1-butyl-3-methylimidazolium bis (trifluoromethanesulfonyl). Amide, “EMIM-TFSA” is ionic liquid 1-ethyl-3-methylimidazolium bis (trifluoromethanesulfonyl) amide, “TMPA-TFSA” is ionic liquid N, N, N-trimethyl-N— Propyl ammonium bis (trifluoromethanesulfonyl) amide, “DEME-TFSA” represents N, N-diethyl-N-methyl-N- (2-methoxyethyl) ammonium bis (trifluoromethanesulfonyl) amide, which is an ionic liquid. .
In addition, the used organic solvent is as showing in Table 1 and FIGS.

(相転移温度の測定)
上記各化合物について、結晶及びスメクティックA相の間の相転移温度(すなわち融点)、スメクティックA相及び等方性液体の間での相転移温度、並びに、スメクティックA相及び等方性液体の間での相転移潜熱を下記のようにして測定した。
相転移温度及び相転移潜熱は、示差走査熱量計(セイコーインスツル社製、製品名「SSC−5200DSC」)を用い、毎分5℃又は10℃の昇温速度及び降温速度にて測定した。液晶相の同定は、温度コントローラー(メトラー社製、FP82HTホットステージ及びFP90コントロールプロセッサー)を備えた偏光顕微鏡(ニコン社製、製品名「OHOPTIPHOT2−POL」、光学倍率100倍)にて行った。
(Measurement of phase transition temperature)
For each of the above compounds, the phase transition temperature (ie, melting point) between the crystal and the smectic A phase, the phase transition temperature between the smectic A phase and the isotropic liquid, and between the smectic A phase and the isotropic liquid. The phase change latent heat of was measured as follows.
The phase transition temperature and the latent heat of phase transition were measured using a differential scanning calorimeter (manufactured by Seiko Instruments Inc., product name “SSC-5200DSC”) at a heating rate of 5 ° C. or 10 ° C. per minute. Identification of the liquid crystal phase was performed with a polarizing microscope (manufactured by Nikon Corporation, product name “OHOPTIPHOT2-POL”, optical magnification of 100 times) equipped with a temperature controller (manufactured by Mettler, FP82HT hot stage and FP90 control processor).

結果を表2に示す。なお、表2中、「mp」は結晶及びスメクティックA相の間での相転移温度、すなわち融点を示し、「SmA−Iso」はスメクティックA相及び等方性液体(Iso)の間での相転移温度を示し、温度を括弧(( ))で示す相転移は、単変相転移であることを示す。また、ΔH[SmA−Iso]はスメクティックA相及び等方性液体の間での相転移潜熱を示す。さらに、化合物(1−4)と下記式(8OCB)で表される化合物(以下、「化合物(8OCB)」と表記する。)との二成分系混合物、化合物(1−6)と化合物(1−12)との二成分系混合物、並びに化合物(4−6)と化合物(8OCB)との二成分系混合物について、各成分の組成比を変化させた際の相転移温度を、上記と同様にして測定した。その結果を図15、16及び17に示す。なお、図15、16及び17中、「C」は結晶、「SmA」はスメクティックA相、「Iso」は等方性液体、「N」はネマティック相を示す。また、化合物(8OCB)は、相転移温度が、結晶及びスメクティックA相間で55℃、スメクティックA相及びネマティック相間で67℃、ネマティック相及び等方液体間で80℃であった。   The results are shown in Table 2. In Table 2, “mp” indicates the phase transition temperature between the crystal and the smectic A phase, that is, the melting point, and “SmA-Iso” indicates the phase between the smectic A phase and the isotropic liquid (Iso). A phase transition indicating a transition temperature and a temperature in parentheses (()) indicates a univariate phase transition. ΔH [SmA-Iso] represents the latent heat of phase transition between the smectic A phase and the isotropic liquid. Further, a binary mixture of the compound (1-4) and a compound represented by the following formula (8OCB) (hereinafter referred to as “compound (8OCB)”), a compound (1-6) and a compound (1 -12) and the binary transition mixture of compound (4-6) and compound (8OCB), the phase transition temperature when the composition ratio of each component is changed is the same as above. Measured. The results are shown in FIGS. 15, 16 and 17, “C” indicates a crystal, “SmA” indicates a smectic A phase, “Iso” indicates an isotropic liquid, and “N” indicates a nematic phase. The compound (8OCB) had a phase transition temperature of 55 ° C. between the crystal and smectic A phase, 67 ° C. between the smectic A phase and the nematic phase, and 80 ° C. between the nematic phase and the isotropic liquid.

(偏光顕微鏡写真)
化合物(3−4)及び(3−6)、並びに、化合物(1−4)と化合物(8OCB)との二成分系(化合物(1−4):化合物(8OCB)=40:60(モル比))混合物について、偏光顕微鏡写真を撮影した。まず、試料である化合物又は二成分系混合物を、スライドガラスとカバーガラスとの間に挟んだ後、結晶が融解し、等方性液体になるまで加熱し、室温まで冷却した。これにより結晶化した試料を偏光顕微鏡観察下で毎分5℃で昇温するよう加熱した。試料が等方性液体になった後、毎分5℃で降温するよう冷却した。
(Polarized light micrograph)
Compounds (3-4) and (3-6), and two-component system of compound (1-4) and compound (8OCB) (compound (1-4): compound (8OCB)) = 40:60 (molar ratio) )) Polarized micrographs were taken of the mixture. First, a sample compound or a binary mixture was sandwiched between a slide glass and a cover glass, and then heated until the crystals melted and became an isotropic liquid, and cooled to room temperature. The sample crystallized in this way was heated at a temperature of 5 ° C. per minute under a polarizing microscope. After the sample became an isotropic liquid, it was cooled so that the temperature dropped at 5 ° C. per minute.

化合物(3−4)については、試料加熱時には95℃にて結晶が融解し、等方性液体になった。等方性液体の冷却時には、88℃にてスメクティックA相に特徴を示すファン組織が認められた。さらに冷却し、85℃になった時点で、ファン組織の偏光顕微鏡写真(100倍)を撮影した。その写真を図18に示す。   With respect to compound (3-4), the crystal melted at 95 ° C. during sample heating and became an isotropic liquid. When the isotropic liquid was cooled, a fan structure characteristic of the smectic A phase was observed at 88 ° C. Further cooling and when the temperature reached 85 ° C., a polarizing micrograph (100 ×) of the fan structure was taken. The photograph is shown in FIG.

化合物(3−6)については、試料加熱時には70℃にて結晶が融解し、スメクティックA相になり、さらに加熱すると、78℃にて等方性液体になった。等方性液体の冷却時には、78℃にてスメクティックA相に特徴を示すファン組織が認められた。さらに冷却し、75℃になった時点で、ファン組織の偏光顕微鏡写真(100倍)を撮影した。その写真を図19に示す。   For compound (3-6), the crystal melted at 70 ° C. during sample heating to form a smectic A phase, and when heated, it became an isotropic liquid at 78 ° C. When the isotropic liquid was cooled, a fan structure characteristic of the smectic A phase was observed at 78 ° C. Further cooling was performed, and when the temperature reached 75 ° C., a polarizing micrograph (100 times) of the fan structure was taken. The photograph is shown in FIG.

化合物(1−4)と8OCBとの二成分系混合物については、試料加熱時には92℃にて結晶が融解して、スメクティックA相になり、さらに加熱すると、100℃にて等方性液体になった。等方性液体の冷却時には、100℃にてスメクティックA相に特徴を示すファン組織がみられた。さらに冷却し、95℃になった時点で、ファン組織の偏光顕微鏡写真(100倍)を撮影した。その写真を図20に示す。   For the binary mixture of compound (1-4) and 8OCB, the crystal melts at 92 ° C. during sample heating to form a smectic A phase, and when heated further becomes an isotropic liquid at 100 ° C. It was. During cooling of the isotropic liquid, a fan structure characteristic of the smectic A phase was observed at 100 ° C. Further cooling was performed, and when the temperature reached 95 ° C., a polarizing micrograph (100 times) of the fan structure was taken. The photograph is shown in FIG.

本発明の新規なフルオロアルカン誘導体は、ゲル化能を有したり液晶性を示したりするものである。したがって、本発明は、ゲル化剤及びそれを含むゲル状組成物、並びに液晶性化合物及びそれを含む液晶性組成物の分野に産業上利用可能性がある。   The novel fluoroalkane derivative of the present invention has gelling ability or exhibits liquid crystallinity. Therefore, the present invention has industrial applicability in the fields of gelling agents and gel compositions containing the same, and liquid crystal compounds and liquid crystal compositions containing the same.

Claims (7)

下記一般式(1)で表されるフルオロアルカン誘導体。
R−X−Ar1−O−R1−O−Ar2−Y (1)
(式中、Ar1及びAr2は、それぞれ独立に、置換若しくは無置換の核原子数6〜30の2価の芳香族基を示し、R1は鎖中に酸素原子又は硫黄原子を有していてもよい飽和又は不飽和の炭素数1〜20の2価の炭化水素基を示し、Rは下記一般式(2)で表される基を示し、Xは−S−又は−SO2−で表される基を示し、Yはシアノ基、ニトロ基、飽和若しくは不飽和の炭素数2〜20の1価のアルコキシル基又はフッ素原子を示す。
m 2m+1 p 2p − (2)
(式中、mは2〜16の自然数を示し、pは0〜6の整数を示す。)
A fluoroalkane derivative represented by the following general formula (1).
R—X—Ar 1 —O—R 1 —O—Ar 2 —Y (1)
(In the formula, Ar 1 and Ar 2 each independently represent a substituted or unsubstituted divalent aromatic group having 6 to 30 nuclear atoms, and R 1 has an oxygen atom or a sulfur atom in the chain. And a saturated or unsaturated divalent hydrocarbon group having 1 to 20 carbon atoms, R represents a group represented by the following general formula (2), and X represents —S— or —SO 2 —. Y represents a cyano group, a nitro group, a saturated or unsaturated monovalent alkoxyl group having 2 to 20 carbon atoms, or a fluorine atom.
C m F 2m + 1 C p H 2p − (2)
(In the formula, m represents a natural number of 2 to 16, and p represents an integer of 0 to 6. )
下記一般式(1)で表されるフルオロアルカン誘導体。
R−X−Ar 1 −O−R 1 −O−Ar 2 −Y (1)
(式中、Ar1及びAr2 、それぞれ独立に、1つ以上の芳香族炭化水素環を有する縮合環、又は、複数の芳香環を単結合により結合した基であって、前記芳香環のうち1つ以上が芳香族炭化水素環である基を示し、R 1 は鎖中に酸素原子又は硫黄原子を有していてもよい飽和又は不飽和の炭素数1〜20の2価の炭化水素基を示し、Rはパーフルオロアルキル基を有する飽和又は不飽和の炭素数2〜22の1価の炭化水素基を示し、Xは−S−又は−SO 2 −で表される基を示し、Yはシアノ基、ニトロ基、飽和若しくは不飽和の炭素数2〜20の1価のアルコキシル基又はフッ素原子を示す。)
A fluoroalkane derivative represented by the following general formula (1).
R—X—Ar 1 —O—R 1 —O—Ar 2 —Y (1)
(In the formula, Ar 1 and Ar 2 are each independently a condensed ring having one or more aromatic hydrocarbon rings, or a group in which a plurality of aromatic rings are bonded by a single bond, 1 or more of them represents a group which is an aromatic hydrocarbon ring, and R 1 is a saturated or unsaturated divalent hydrocarbon having 1 to 20 carbon atoms which may have an oxygen atom or a sulfur atom in the chain. R represents a saturated or unsaturated monovalent hydrocarbon group having 2 to 22 carbon atoms having a perfluoroalkyl group, X represents a group represented by —S— or —SO 2 —, Y represents a cyano group, a nitro group, a saturated or unsaturated monovalent alkoxyl group having 2 to 20 carbon atoms, or a fluorine atom.)
前記Rが下記一般式(2)で表される基である、請求項2に記載のフルオロアルカン誘導体。The fluoroalkane derivative according to claim 2, wherein R is a group represented by the following general formula (2).
C mm F 2m+12m + 1 C pp H 2p2p − (2)-(2)
(式中、mは2〜16の自然数を示し、pは0〜6の整数を示す。)(In the formula, m represents a natural number of 2 to 16, and p represents an integer of 0 to 6.)
前記Ar1及びAr2は、それぞれ独立に、フェニレン基又はビフェニレン基である、請求項1〜3のいずれか一項に記載のフルオロアルカン誘導体。 The fluoroalkane derivative according to any one of claims 1 to 3, wherein Ar 1 and Ar 2 are each independently a phenylene group or a biphenylene group. 下記一般式(1)で表されるフルオロアルカン誘導体からなるゲル化剤。
R−X−Ar 1 −O−R 1 −O−Ar 2 −Y (1)
(式中、Ar 1 及びAr 2 は、それぞれ独立に、置換若しくは無置換の核原子数6〜30の2価の芳香族基を示し、R 1 は鎖中に酸素原子又は硫黄原子を有していてもよい飽和又は不飽和の炭素数1〜20の2価の炭化水素基を示し、Rはパーフルオロアルキル基を有する飽和又は不飽和の炭素数2〜22の1価の炭化水素基を示し、Xは−S−又は−SO 2 −で表される基を示し、Yはシアノ基、ニトロ基、飽和若しくは不飽和の炭素数2〜20の1価のアルコキシル基又はフッ素原子を示す。)
A gelling agent comprising a fluoroalkane derivative represented by the following general formula (1) .
R—X—Ar 1 —O—R 1 —O—Ar 2 —Y (1)
(In the formula, Ar 1 and Ar 2 each independently represent a substituted or unsubstituted divalent aromatic group having 6 to 30 nuclear atoms, and R 1 has an oxygen atom or a sulfur atom in the chain. A saturated or unsaturated divalent hydrocarbon group having 1 to 20 carbon atoms which may be substituted, and R represents a saturated or unsaturated monovalent hydrocarbon group having 2 to 22 carbon atoms having a perfluoroalkyl group; X represents a group represented by —S— or —SO 2 —, and Y represents a cyano group, a nitro group, a saturated or unsaturated monovalent alkoxyl group having 2 to 20 carbon atoms, or a fluorine atom. )
下記一般式(1)で表されるフルオロアルカン誘導体からなる液晶性化合物。
R−X−Ar 1 −O−R 1 −O−Ar 2 −Y (1)
(式中、Ar 1 及びAr 2 は、それぞれ独立に、置換若しくは無置換の核原子数6〜30の2価の芳香族基を示し、R 1 は鎖中に酸素原子又は硫黄原子を有していてもよい飽和又は不飽和の炭素数1〜20の2価の炭化水素基を示し、Rはパーフルオロアルキル基を有する飽和又は不飽和の炭素数2〜22の1価の炭化水素基を示し、Xは−S−又は−SO 2 −で表される基を示し、Yはシアノ基、ニトロ基、飽和若しくは不飽和の炭素数2〜20の1価のアルコキシル基又はフッ素原子を示す。)
A liquid crystalline compound comprising a fluoroalkane derivative represented by the following general formula (1) .
R—X—Ar 1 —O—R 1 —O—Ar 2 —Y (1)
(In the formula, Ar 1 and Ar 2 each independently represent a substituted or unsubstituted divalent aromatic group having 6 to 30 nuclear atoms, and R 1 has an oxygen atom or a sulfur atom in the chain. A saturated or unsaturated divalent hydrocarbon group having 1 to 20 carbon atoms which may be substituted, and R represents a saturated or unsaturated monovalent hydrocarbon group having 2 to 22 carbon atoms having a perfluoroalkyl group; X represents a group represented by —S— or —SO 2 —, and Y represents a cyano group, a nitro group, a saturated or unsaturated monovalent alkoxyl group having 2 to 20 carbon atoms, or a fluorine atom. )
請求項5に記載のゲル化剤と、有機溶媒と、を含有するゲル状組成物。   A gel composition containing the gelling agent according to claim 5 and an organic solvent.
JP2014192884A 2014-09-22 2014-09-22 Fluoroalkane derivative, gelling agent, liquid crystalline compound and gel composition Expired - Fee Related JP6443915B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014192884A JP6443915B2 (en) 2014-09-22 2014-09-22 Fluoroalkane derivative, gelling agent, liquid crystalline compound and gel composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014192884A JP6443915B2 (en) 2014-09-22 2014-09-22 Fluoroalkane derivative, gelling agent, liquid crystalline compound and gel composition

Publications (2)

Publication Number Publication Date
JP2016064990A JP2016064990A (en) 2016-04-28
JP6443915B2 true JP6443915B2 (en) 2018-12-26

Family

ID=55804899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014192884A Expired - Fee Related JP6443915B2 (en) 2014-09-22 2014-09-22 Fluoroalkane derivative, gelling agent, liquid crystalline compound and gel composition

Country Status (1)

Country Link
JP (1) JP6443915B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021177334A1 (en) * 2020-03-04 2021-09-10

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5419210B2 (en) * 2009-06-04 2014-02-19 国立大学法人山口大学 Gelling agent
KR101413775B1 (en) * 2010-02-12 2014-06-30 고쿠리츠다이가쿠호우진 야마구치 다이가쿠 Fluoroalkane derivative, gelling agent and gel composition
JP5679262B2 (en) * 2010-05-31 2015-03-04 旭化成イーマテリアルズ株式会社 Gelling agent and gel composition
WO2014005670A1 (en) * 2012-07-06 2014-01-09 Merck Patent Gmbh Bimesogenic compounds and mesogenic media
WO2015025826A1 (en) * 2013-08-21 2015-02-26 北興化学工業株式会社 Substituted phenyl ether compound and pest control agent

Also Published As

Publication number Publication date
JP2016064990A (en) 2016-04-28

Similar Documents

Publication Publication Date Title
KR100760562B1 (en) Producing liquid crystals with cf2o bond
KR101413775B1 (en) Fluoroalkane derivative, gelling agent and gel composition
CN102459143B (en) The preparation of the 2-fluoroacrylic acid derivatives replaced
CN102414251B (en) Method for producing fluorine-containing polyether carboxylic acid amide
JP6900791B2 (en) Stabilizer compounds, liquid crystal compositions and display devices
JP6894150B2 (en) Silanol compound and method for producing silanol compound
CA2750448A1 (en) Novel tricyanoborates
JP4822269B2 (en) New onium salt
KR102500024B1 (en) Aromatic fluorination method
CN107835802A (en) Stabilizer compounds, liquid-crystal composition and display element
JP2014198688A (en) Production method of cyclic polysulfide compound
JP5014854B2 (en) Aminosiloxane ionic liquid
JP2004175667A (en) Onium salt
ES2924703T3 (en) Process for the preparation of disubstituted diaryloxybenzoheterodiazole compounds
JP5679262B2 (en) Gelling agent and gel composition
JP6443915B2 (en) Fluoroalkane derivative, gelling agent, liquid crystalline compound and gel composition
CN103756688B (en) Pentafluoropropylene ether liquid crystal compound as well as preparation method and application thereof
JP6501351B2 (en) Fluoroalkane derivative, gelling agent, liquid crystalline compound and gel composition
EP3068765A1 (en) Process for fluorinating compounds
JP6051757B2 (en) Ionic liquid
Özdemir et al. Phenyl/alkyl-substituted-3, 5-dimethylpyrazolium ionic liquids
WO2003076366A2 (en) A method for preparing organic fluorocompounds
CA2929940A1 (en) Process for fluorinating compounds
Linder et al. Three novel anions based on pentafluorophenyl amine combined with two new synthetic strategies for the synthesis of highly lipophilic ionic liquids
JP5582495B2 (en) Gelling agent

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181122

R150 Certificate of patent or registration of utility model

Ref document number: 6443915

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees